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Abstract—We consider a dynamic model of traffic that has
received a lot of attention in the past few years. Infinitesimally
small agents aim to travel from a source to a destination as
quickly as possible. Flow patterns vary over time, and congestion
effects are modeled via queues, which form based on the
deterministic queueing model whenever the inflow into a link
exceeds its capacity.

Are equilibria in this model meaningful as a prediction of
traffic behavior? For this to be the case, a certain notion of
stability under ongoing perturbations is needed. Real traffic
consists of discrete, atomic “packets”, rather than being a
continuous flow of non-atomic agents. Users may not choose an
absolutely quickest route available, if there are multiple routes
with very similar travel times. We would hope that in both these
situations — a discrete packet model, with packet size going to
0, and ε-equilibria, with ε going to 0 — equilibria converge
to dynamic equilibria in the flow over time model. No such
convergence results were known.

We show that such a convergence result does hold in single-
commodity instances for both of these settings, in a unified way.
More precisely, we introduce a notion of “strict” ε-equilibria, and
show that these must converge to the exact dynamic equilibrium
in the limit as ε → 0. We then show that results for the two
settings mentioned can be deduced from this with only moderate
further technical effort.

Index Terms—Nash flows over time, dynamic traffic models,
continuity, convergence

The full version of this extended abstract can be found at
https://nolver.net/home/pubs/convergence-nash-flows/ .

I. INTRODUCTION

Telecommunications networks and transportation networks
are two settings where the natural description involves tracking
users or packets as they traverse the network. These users arrive
at different nodes in the network at different moments in time.
In some situations, this temporal aspect can be to some extent
ignored, and modeled through static models. This is reasonable
if we anticipate that over the timescale being modeled, the
solution of interest can reasonably be approximated by a
temporally repeated flow.

We will be interested in the game-theoretic perspective,
considering that the network traffic consists of self-interested
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users, each aiming to optimize their own objective (generally,
travel time) subject to the environment induced by the other
users. The interaction between agents is mediated through some
form of congestion in the network. With static flow models,
this leads to the very well-studied area of network congestion
games [Rou05].

Static models do not always suffice, however. For example,
in telecommunications networks with demands changing over
short time scales; or modeling morning or evening rush hour
traffic. Here, there is no plausible static approximation, and
the variation on congestion over time must be considered.

In both telecommunications networks and transportation
networks, many different dynamic models have been studied.
Our focus in this work will be on two related models, one
continuous and the other discrete (in some sense).

The deterministic queueing model: This model goes back
to Vickrey [Vic69], who studied this model for a single link
under departure time choice. As well as the deterministic
queueing model, it goes variously by the names of the fluid
queueing model, and the Vickrey bottleneck model. In this
model, each link has a capacity and a transit time. If the
inflow rate into the link always remains below its capacity,
then the time taken to traverse the link is constant, as given by
the transit time. However, if the inflow rate exceeds the link
capacity for some period, a queue grows on the entrance of
the link. The delay experienced by a user is then equal to the
transit time, plus whatever time is spent waiting in the queue.
As long as there is a queue present it will empty at rate given
by the link capacity; depending on whether the inflow rate is
smaller or larger than the capacity, this queue will decrease or
increase size. Note that this model is nonatomic, in the sense
that individual users are infinitesimally small.

There are many works investigating properties of equilibria
in this model [BFA15], [CCL15], [CCO21], [CCO19], [Kai22],
[Koc12], [KS11], [OSVK22], [SS18] and in generalized mod-
els [IS20], [PS20], [SVK19], [Ser20]. We will discuss some
of these later in Section II-E.

Packet-routing models: We will use “packet-routing” or
“packet-based” to refer to models of a similar form to the
Vickrey bottleneck model, but with atomic, unsplittable agents
(or packets). As one simple example of such a model, suppose
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all links in the network have an integer capacity and an integer
travel time. Packets have unit size, and the capacity of a link
represents the number of packets that can simultaneously be
processed by the link in unit time (or equivalently, in a single
time step; the model can be considered to be in discrete time). If
more packets than the capacity of a link need to be processed in
a time step, the excess packets wait in a first-in-first-out (FIFO)
buffer. Various models of this type, varying in the details,
have been considered, both in the telecommunications and
transportation context, e.g., [CCCW17], [HMRT11], [Ism17],
[KM15], [LMR94], [LMR99], [SST18], [TVK21], [WHK14].
The traffic simulator MATSim [HNA16] uses an atomic model;
each “packet” represents a single vehicle.

So broadly speaking, we have described nonatomic and
atomic variants of the same underlying dynamic model. The
nonatomic nature of the deterministic queueing model is
motivated primarily by better mathematical properties rather
than as a reflection of reality. Individual vehicles are of course
not really infinitesimal; though it seems reasonable to represent
them as such, as long as traffic volumes are large enough that
each individual road user alone is insignificant.

But while it seems reasonable to expect the (nonatomic)
deterministic queueing model to be a good approximation to a
corresponding (atomic) packet-routing model, is this actually
true? Can this approximation be justified? Formally, consider
the following question. Fix a network, including arc transit
times and capacities, and the inflow rate at the source. Now
consider a sequence β1, β2, . . . > 0, with βi → 0 as i → ∞.
For each βi, consider an instantiation of a specific packet-
routing model with packets having size βi. We maintain the
inflow rate, measured as the product of packet size with the
number of packets entering the network per unit time. An
equilibrium solution can be determined for this packet model,
and if we fix any link e in the network, we can observe how the
length of the queue on this arc behaves in this equilibrium (a
time-varying quantity). As i→∞, does this function converge
(say in the uniform norm) to the corresponding queue delay
function for e in the equilibrium of the deterministic queueing
model? If this is not true, then one has to seriously question
the relevance of the deterministic queueing model.

Positive experimental evidence for convergence was found
in [ZSV+21]. In [SVZ21], convergence was shown for a fixed
choice of paths for all packets (in an appropriate sense). This
already involves some significant technicalities, but their result
does not say anything about the relationship between equilibria
in the two settings. A key difficulty is that we do not know a
priori that the paths chosen in the equilibrium of the packet
model will resemble those chosen in the equilibria of the
deterministic queueing model.

There are a number of other distinct but similar questions
one can ask, all concerning the stability of the deterministic
queueing model and its equilibria. In exact equilibria, users
choose exactly quickest paths to the sink. That is, given the
strategies chosen by the other users, they choose a path that
in hindsight yields the earliest possible arrival time. This is

quite a strong property; note that users are taking into account
queues that they will see “in the future”, not the queues as they
are on entry into the network. One motivation for this is that
we view, for example, morning rush hour traffic as a repeated
game, with the expectation that behavior converges to a Nash
equilibrium.1 Still, it seems implausible to expect that this
process always achieves exactly a Nash equilibrium. It seems
much more plausible to hope that we obtain an approximate
equilibrium; no user is taking a path that is very far from
their quickest option, but might be choosing a route that is
close to quickest, but not quite. So it is natural to consider
ε-equilibria in this model (or in the packet model), and ask if
their behavior is similar to that of exact equilibria. Again as a
precise question: do ε-equilibria of the deterministic queueing
model converge to the exact equilibrium, in the same sense as
above?

Other natural types of “perturbations” can be considered.
For instance: arc travel times and capacities might vary slightly
over time, in some predictable or unpredictable way, or the
demand might vary slightly over time instead of being precisely
constant. The question in each case is the same: for sufficiently
small perturbations of whatever form, can we say that equilibria
in the perturbed system are close to equilibria in the original
unperturbed system?

Our results: We give a positive answer to the following
two convergence questions in the single-commodity setting.
We show that equilibria in a particular packet model converge
to that of the deterministic queueing model, as the size of
the packets goes to zero; and that ε-equilibria converge to the
exact equilibrium as ε→ 0. Moreover, we do this in a unified
way. We will prove a single main convergence result, and then
show that both of these specific results follow.

Our convergence result is based around the notion of a strict
δ-equilibrium, which is a fairly natural strengthening of an
ε-equilibrium. It asks that for every node in the network that an
agent uses in their path, not just the sink, the agent’s departure
time from that node is at most δ later than its earliest possible
arrival time (considering all possible routes to the node). This
is stronger than asking for an ε-equilibrium with ε = δ, which
only requires this at the sink. It is not the case that every ε-
equilibrium is a strict δ-equilibrium with δ = ε, but we are able
to show that every ε-equilibrium is a strict δ-equilibrium with
δ = O(ε) (here, the big-O notation hides network-dependent
constants). So convergence results for strict δ-equilibria hold
for ε-equilibria as well.

To obtain results for packet routing, we “embed” an
equilibrium of the packet-routing model into our continuous
framework, viewing each packet as consisting of a continuum
of particles.

1 Other equilibria notions distinct from Nash equilibria have been considered
in the literature, in which agents make decisions without full information of
the overall traffic situation. We refer to Graf, Harks and Sering [GHS20] and
references therein for a discussion of instantaneous dynamic equilibria (see also
[GH23a], [GH23b]), where agents make decisions as they traverse the network
based on current queues; and to Graf, Harks, Kollias and Merkl [GHKM22]
for a very interesting approach to a much more general information framework
where users use predictions of future congestion patterns.



While we focus on these two specific implications (and
also use a specific packet-routing model), our convergence
result can certainly be used to derive other stability results. For
example, convergence results for other packet-routing variants,
and for perturbed transit times and inflow rates. We will not
consider this further in the current paper however, in order to
focus on our central results.

One challenge in proving such a result is that the perturba-
tions we are considering are ongoing throughout the evolution
of the equilibrium. A much weaker notion of stability would
be that if we slightly perturb the equilibrium at a single
moment in time, or some bounded number of moments in
time, by (say) perturbing some queue lengths or transit times
by a small amount, that the equilibrium in the once-perturbed
instance stays close to the unperturbed equilibrium. This was
demonstrated quite recently for the deterministic queueing
model by Olver, Sering and Vargas Koch [OSVK22]. Their
result can be seen as a precursor to this one, and we will rely
on it in a number of places in our proof. However, their result
is not strong enough to handle the convergence results we are
interested in here. In some sense, we need to show not only
that the perturbations that occur in our perturbed equilibria at
a particular moment do not lead to vastly different behaviors,
but rather that there is a tendency to “revert to the mean”: if
some queue gets a little longer than it should in the perturbed
situation, future perturbations might push this back towards
the unperturbed value, but not even further away.

A smaller technical issue we have to address involves the
foundations of the definition of the model. Especially for the
implications to convergence of packet-routing models, it is
necessary for us to allow waiting in our nonatomic model;
an agent (that is, an infinitesimal flow particle) is allowed to
wait at a node before entering the next arc of its path to the
sink. This expansion of the strategy space, from a finite set of
paths to a finite dimensional space of paths along with waiting
times at nodes, requires some technical care, and we make
some efforts to handle this in a precise and clean way. As one
example of a complication that arises, it is now possible for a
positive measure of agents to enter an arc at precisely the same
moment in time. Previous works in this area had no particular
need to consider waiting, and did not face this issue.

A different application of our results is in the other direction,
to port results on the deterministic queueing model to packet
models. This allows us to profit from the cleaner and more
analytically tractable setup of the continuous model. Here we
briefly discuss two implications for packet models; we expect
there will be more.

Suppose we are considering an instance of the packet model,
in which packets enter the network at s at a constant rate,
and wish to reach a sink t. Suppose further that the number
of packets entering the network per unit of time, multiplied
by their size, is not larger than the minimum capacity of
an s-t-cut. Is it then true that queues in the network remain
bounded for all time? For the deterministic queueing model
analog of the instance, this is known to be true [CCO21]. The

proof uses a very delicate potential function, obtained from the
dual of a linear program that describes so called “steady-state”
conditions. It is not clear how this argument could be directly
ported to discrete packet models. But our convergence result
implies that indeed queues do remain bounded in the packet
model — at least as long as δ is sufficiently small. We expect
that with some further technical effort, our convergence result
can be strengthened so that this restriction can be bypassed.

A second question that can be attacked with this approach
is that of the price of anarchy. Here, one needs to specify the
objective to compare with some care. It’s known that the ratio
between the average journey time of agents in an equilibrium,
compared to the global optimum, can be unbounded even on
very simple examples [Koc12]. However, if one considers the
average arrival time objective (equivalently, viewing packets as
all being at the source at time 0), this becomes an interesting
question. It remains open in the deterministic queueing model,
but it is conjecture that the price of anarchy for this measure is
precisely e

e−1 , and it is known that this holds if another natural
conjecture is true [CCO19]. If this conjecture is demonstrated,
it will immediately imply (through [CCO19] and our result)
that the price of anarchy is bounded in the packet model, at
least if δ is sufficiently small.

The question of whether an equilibrium is “stable” under
some form of perturbation is a rather natural one, also in
other non-traffic settings. Aswathi, Balcan, Blum, Sheffet and
Vempala [ABB+10] and Balcan and Braverman [BB17] (see
also [RJLM06]) explicitly introduce and investigate a related
notion in the context of bimatrix games. In that context, they say
that a Nash equilibrium is (δ, ε)-perturbation stable if whenever
all payoffs in the bimatrix game are adjusted by at most δ,
any equilibrium in the resulting game is within distance ε (in
variation distance) of an equilibrium of the unperturbed game.
These papers study various properties (especially computational
properties) of perturbation stable games.

Dynamic traffic modeling is a huge, multidisciplinary area,
and we will not attempt to do it justice in this brief literature
review. In particular, our discussions have focused on the work
done by the algorithmic game theory community. We refer the
reader to the survey by Friesz and Han [FH19] for a different
perspective on the topic, considering a more general class
of link dynamics through the lens of differential variational
inequalities.

Outline: We give a precise definition of the model we
study in Section II, discussing also properties of exact dynamic
equilibria, and the definition of strict δ-equilibria. Section III
gives a high-level overview of the main results and the proofs.
The details are omitted in this extended abstract; we refer the
reader to the full version. We briefly conclude with some future
directions in Section IV.

II. MODEL AND PRELIMINARIES

An instance is described by a directed network G = (V,E),
with arc capacities νe > 0 and free-flow travel times τe > 0



for all arcs e ∈ E2. In addition, there is a specified source
node s ∈ V and sink node t ∈ V , and a constant network
inflow rate u0. We may assume that every node in G is both
reachable from s, and can reach t.

We use the notation δ−(v) and δ+(v) to denote the set of
incoming and outgoing arcs at v, respectively, and similarly
δ−(S) and δ+(S) for arcs entering or leaving a set S ⊆ V .

Whenever not specified, we will use ‖·‖ to refer to the infinity
norm, which will be our main measure of distance. Given a
point x ∈ Rm and a set S ⊆ Rm, we use d(x, S) to denote
the distance (with respect to the infinity norm) between x and
S, that is: d(x, S) := infy∈S ‖y−x‖. Similarly, given two sets
S, T ⊆ Rm, d(S, T ) := infx∈S d(x, T ) = infx∈S,y∈T ‖y−x‖.
We will use Br(x) to denote the ball of radius r around x ∈ Rm
and Br(S) = {x ∈ Rm | d(x, S) ≤ r } for any S ⊆ Rm, both
with respect to the infinity norm,.

A. Flows over time with waiting

In the literature (e.g., [CCL15]), flows over time are typically
denoted by a family of functions (f+

e , f
−
e )e∈E , where f+

e (ξ)
denotes the inflow rate into arc e at time ξ and f−e (ξ) the flow
rate out of arc e at time ξ. As we want to allow particles to
wait at nodes, this choice becomes less convenient, as it is
possible that particles wait at a node in such a way that an atom
of particles enters an arc at the same moment in time. In this
case the inflow rate would be infinite. Instead, we define flows
in terms of cumulative flow functions which are essentially the
integrals of f+

e and f−e .
A flow over time with waiting consists of a pair (F+, F−),

where F+ is a vector of functions F+
e : R≥0 → R≥0 for arcs

e ∈ E, and similarly for F−. For each arc e and ξ ∈ R≥0,
F+
e (ξ) denotes the total amount of flow that has entered arc
e up to time ξ and F−e (ξ) denotes the total flow amount that
has left arc e up to time ξ. Each F+

e and F−e should be a
nondecreasing and right-continuous function. These functions
must satisfy the following two conditions.

Relaxed flow conservation: For all times ξ ∈ R≥0 it must
hold that∑

e∈δ−(v) F
−
e (ξ)−

∑
e∈δ+(v) F

+
e (ξ) ≥

{
0 ∀v ∈ V \ { s, t } ,
−u0ξ for v = s.

(1)

Note that we require the flow to enter the network at s with
constant inflow rate of u0.

Queues operate at capacity: We assume that arcs always
operate at capacity (waiting is allowed at nodes, but there is no
waiting on arcs in our model). Let ze(ξ) be the queue volume
on e at time ξ; that is, the total measure of particles in the
queue at time ξ. We have

ze(ξ) := F+
e (ξ)− F−e (ξ + τe);

particles that enter by time ξ, but have not left the queue by
time ξ (and hence have not left the tail of the arc by time
ξ + τe) contribute to the queue volume.

2Excluding arcs with τe = 0 is convenient for technical reasons; it should
be possible with some additional effort to extend to at least the setting where
there are no directed cycles of 0-length arcs, but we will not discuss this here.

For all e ∈ E and all times ξ ∈ R≥0 we require that

ze(ξ) = max
0≤ψ≤ξ

(
F+
e (ξ)− F+

e (ψ)− νe(ξ − ψ)
)
. (2)

The interpretation of this is that for any ψ ≤ ξ, ze(ξ) is at
least the mass of particles entering in the interval [ψ, ξ], minus
the upper bound νe(ξ − ψ) on the mass of particles that can
leave the queue in this time. Further, if ψ is chosen so that
ze(ψ) = 0 but ze(ξ′) > 0 for all ξ′ ∈ (ψ, ξ), then we do not
merely have a lower bound on ze(ξ), but must have equality,
since the queue must operate at capacity on the interval (ψ, ξ).

B. Agent perspective

A flow over time with waiting does not identify a path or flow
corresponding to a given particle. For exact dynamic equilibria,
this is not a concern; a flow over time that corresponds
to a dynamic equilibrium provides sufficient information to
reconstruct the flow attributable to departures from the source
at any moment in time. This is no longer the case for our
setting however, and we need additional direct information
about particle behavior.

We will denote our set of agents (equivalently, particles) by
A := R≥0 × [0, 1]. We let µ denote the Lebesgue measure on
A. For each a ∈ A, we use ϑ(a) to denote the first coordinate
of a divided by u0, which we will interpret as the entry time
of agent a into the system, i.e., the time it arrives at the
source. (Put differently, the first coordinate of a ∈ A indicates
the measure of particles that arrive at the source before a.)
Previous works on Nash flows over time generally took the set
of particles to be indexed by R≥0, identifying an agent with its
entry time. The strategy of a flow particle was then described
by a unit flow. This approach turns out to be inconvenient for
our more general setting, however.

A strategy for an agent consists of a pair (P,w), where P is
an s-t-path, and w ∈ RV (P )

≥0 denotes the amount of time that
the agent will wait at each node in the path. Let S denote the
set of all possible strategies. We view S as a measurable space,
where a set Q ⊆ S is measurable if {w ∈ RV (P )

≥0 : (P,w) ∈ Q}
is Lebesque measurable for every s-t-path P . A strategy profile
ϕ is a measurable map from A to S . We use Pϕ(a) to denote
the first component of ϕ(a), i.e., the path that agent a chooses.
For each v ∈ V , we define wϕv to be the partial function that
defines wϕv (a) to be the time agent a waits at v, if v ∈ P(a).
We may write wϕ(a) for the vector (wϕv (a))v∈V (Pϕ(a)). We
will typically omit the explicit dependence on ϕ in our notation
whenever it is unambiguous.

The measurability condition on ϕ implies that for any s-
t-path P , any θ1 ≤ θ2, and any Lebesgue measurable set
R ⊆ RV (P )

≥0 ,

{a ∈ A : ϑ(a) ∈ [θ1, θ2],P(a) = P and w(a) ∈ R}

is a measurable set.
Note that µ({a ∈ A : θ1 ≤ ϑ(a) ≤ θ2}) = u0(θ2 − θ1) for

all θ1 ≤ θ2, given the network inflow rate of u0. In particular,
the set of particles entering the network at some time θ is
always a null set.



An outcome of the game for a given strategy profile ϕ
specifies, for each particle a, their precise departure time from
each node v on their path P(a). This must correspond to a
flow over time with waiting as described above. We now make
this precise.

We specify an outcome by a flow over time with waiting
(F+, F−), and partial functions dv : A → R≥0 for each v ∈ V .
The value dv(a) is defined only when v ∈ V (P(a)), and in
that case, it describes the time at which agent a departs v and
enters the arc e = vw ∈ P(a) that follows, or the time that
the agent departs the network if v = t. We call each dv a
departure time function.

In order for (F+, F−, d) to represent a valid outcome of a
given strategy profile ϕ, we require the following to hold. For
each arc e, let ze be the queue volume for e associated with
(F+, F−).
• Departure times must be consistent with queue delays

and node waiting times. Consider any agent a, and arc
e = vw ∈ P(a). We must have that

dw(a) = dv(a) + qde (a) + τe + ww(a),

where qde (a) is the amount of time that a waits on the
queue on arc e.
The value of qde (a) is essentially determined by the queue
volume at the time dv(a) that agent a enters e, with the
additional complication that if an atom of particles enters
e at this same moment, a tiebreaking rule is required. We
tiebreak according to entry time into the network. So we
have

qde (a) := 1
νe

(ze(dv(a))− µ({a′ ∈ A : e ∈ P(a′),

dv(a
′) = dv(a) and ϑ(a′) > ϑ(a)})).

(3)

• The cumulative flow F+
e (ξ) entering an arc e = vw by

some time ξ matches with ϕ and dv . That is,

F+
e (ξ) = µ({a ∈ A : e ∈ P(a) and dv(a) ≤ ξ}).

C. Network loading

It is not immediately obvious how to construct the outcome
(F+, F−, d), nor even that they exist or are unique. The
demonstration of this is via a network loading procedure. This
is fairly standard, and there are no major conceptual issues, but
previous discussions of network loading that we are aware of
do not allow for waiting, and this does introduce some minor
technical complications. We defer the proof to the appendix.

Theorem II.1. Given any strategy profile ϕ, there is a unique
associated outcome (F+, F−, d).

D. A form of approximate dynamic equilibria

We now recall the notion of earliest arrival labels, ubiquities
in the study of Nash flows over time (see [CCL15], [CCO21],
[KS11] among others). Let ϕ be a strategy profile, with outcome
(F+, F−, d), and let (ze)e∈E be the queue volume functions
associated with this. Then for any v ∈ V , the earliest arrival
label `v : R≥0 → R≥0 maps an entry time θ to an earliest
possible time a hypothetical particle departing at time θ could

arrive at v, taking into account queueing delays induced by
other agents using the current strategy profile. They can be
defined via the Bellman equations

`w(θ) =

{
θ if w = s

mine=vw `v(θ) + τe + ze(`v(θ))/νe otherwise.
(4)

Note that ze(`v(θ))/νe is the queue waiting time a hypothetical
particle departing the source at time θ and arriving at the earliest
possible time `v(θ) experiences on edge e = vw. There is no
issue to worry about in terms of tiebreaking, since all particles
with dv(a) = `v(θ) will have entry time at most θ, and so do
delay our hypothetical particle.

“Exact” dynamic equilibria: A dynamic equilibrium has
a simple definition in our notation. It is that dv(a) = `v(ϑ(a))
for all a ∈ A and v ∈ P(a). That is, each agent arrives and
departs at each node on its path at an earliest possible time (in
particular, the agent arrives at the sink at the earliest possible
time) taking into account queueing delays.

Given the vector ` of earliest arrival labels of a dynamic equi-
librium, we will follow [OSVK22] in calling ` an equilibrium
trajectory. We will discuss properties of dynamic equilibria
and equilibrium trajectories in more detail in Section II-E.

ε-equilibria: We can easily interpret the general notion
of an ε-approximate Nash equilibrium (more briefly, an ε-
equilibrium) in our model. Every agent should have a travel
time that is at most ε larger than the best travel time they could
achieve, taking into account the actions of all other agents. In
other words, a strategy profile is an ε-equilibrium for some
ε > 0 if the outcome satisfies

dt(a) ≤ `t(ϑ(a)) + ε for all a ∈ A. (5)

Strict δ-equilibria: If we consider some arbitrary node v
in an ε-equilibrium, it needs not be the case that every agent
a that uses v in their path arrives at v within ε of the earliest
possible arrival time. The reason is that the agent may be able
to “catch up” by the time it reaches the sink. For example, if
an arc entering the sink has large capacity, but at some point
in time has a large queue, then agents could join the back of
this queue over a larger interval of time, but exit the queue
over a shorter interval.

It will be useful for our purposes to consider the stronger
notion where this property does hold. Define a strict δ-
equilibrium as a strategy profile where the outcome satisfies

dv(a) ≤ `v(ϑ(a)) + δ for all a ∈ A and v ∈ P(a). (6)

Given a strict δ-equilibrium, the corresponding earliest arrival
labels ` will be of particular importance for us (as they were in
the case of exact dynamic equilibria). If ` arises from a strict
δ-equilibrium, we will say simply that ` is a δ-trajectory.

E. Properties of exact equilibria

We now briefly summarize some useful facts about the
structure of (exact) equilibria. For more details, we refer to
[CCL15] and [KS11] on thin flows and the piecewise-linear
structure; to [CCO21] and [OSVK22] for long-term behavior;



and to [OSVK22] for the vector-field view and uniqueness and
continuity of equilibria.

In most previous discussions of dynamic equilibria in
networks of Vickrey bottlenecks, there is no strategy profile in
the sense we have defined it for our model, where each particle
chooses a single path. Rather, an equilibrium is described by
a flow over time (F+, F−) (without waiting), which induces
the earliest arrival labels `(θ) and associated queue volumes
ze. Since there is no waiting, ze is continuous for each e. Let
qe(θ) = ze(`v(θ))/νe for each e = vw ∈ E. An arc e = vw
is called active at entry time θ if `w(θ) = `v(θ) + τe + qe(θ).
This means that a particle departing the source at time θ has a
shortest path to w that uses arc e, and that e defines `w(θ) in
the Bellman equations (4). Then one definition of a dynamic
equilibrium is that (F+

e )′(`v(θ)) = 0 whenever e = vw is not
active at entry time θ. This matches our earlier definition in
Section II-D for our model where waiting is allowed: agents
must arrive at the earliest possible time at each node on their
path. It turns out that if one defines xe(θ) := F+

e (`v(θ)) for
all e = vw and θ, then for a dynamic equilibrium, x(θ) is an
s-t-flow of value u0θ, for each θ. From our perspective, xe(θ)
can be viewed as the measure of agents with entry time at
most θ which choose arc e in their strategy.

Conveniently, as we describe below, ` alone, without
reference to the defining flow over time, suffices to describe
an exact dynamic equilibrium (which is not the case for
approximate equilibrium concepts). Consider some e = vw.
If `w(θ) < `v(θ) + τe, then even without a queue, e is not
active at entry time θ. Further, it can be argued that in a
dynamic equilibrium, qe(θ) = max{`w(θ) − `v(θ) − τe, 0}.
So information about whether arc e = vw is active or not,
whether it has a queue or not (from the perspective of a particle
entering the network at time θ), and the length of that queue,
is completely determined by `(θ).

Active and resetting arcs: For any l◦ ∈ RV , let

E′l◦ := {e = vw ∈ E : l◦w ≥ l◦v + τe}, and
E∗l◦ := {e = vw ∈ E : l◦w > l◦v + τe}.

(7)

So e is active at entrance time θ if e ∈ E′`(θ), and has a queue
if e ∈ E∗`(θ). We call the arcs with a queue also resetting arcs.

Thin flows: It has been shown [CCL15], [KS11] that a
flow over time is in equilibrium if and only if the resulting pair
(x, `) satisfies the following thin flow conditions for almost
every θ: setting x′ = x′(θ), `′ = `′(θ), E′ = E′`(θ) and
E∗ = E∗`(θ),

x′ is a static s-t flow of value u0,
`′s = 1,

`′w = min
e=vw∈E′

ρe(`
′
v, x
′
e) ∀w ∈ V \ { s } ,

`′w = ρe(`
′
v, x
′
e) ∀e = vw ∈ E′ with x′e > 0,

(8)

where ρe(`′v, x
′
e) :=

{
x′e
νe

if e = vw ∈ E∗,
max

{
`′v,

x′e
νe

}
if e = vw ∈ E′\E∗.

Note that the conditions are fully determined by the pair
(E′, E∗), with E∗ ⊆ E′. As long as (i) each node v is reachable
from s in (V,E′), (ii) each arc e ∈ E∗ lies on an s-t-path
in (V,E′), and (iii) no arc of E∗ lies on a directed cycle
in (V,E′), these equations always have a solution, and `′ is
uniquely determined [CCL15], [Koc12]. We will sometimes
call this unique `′ (leaving out x′) the thin flow direction.

We call a pair (E′, E∗) satisfying (i)-(iii) above a valid
configuration. Furthermore, we call a vector l♦ ∈ RV valid if
(E′l♦ , E

∗
l♦) is a valid configuration. We define Ω ⊆ RV to be

the subset of valid labels.
Define X : Ω→ RV be the vector field for which X(l◦) is

the unique solution to the thin flow equations for (E′l◦ , E
∗
l◦),

for all l◦ ∈ Ω. Then put differently `′(θ) = X(`(θ)) for
almost every θ. Since X(l◦) depends only on E′l◦ and E∗l◦ ,
it is piecewise constant, and indeed with a very specific
structure. Each arc e = vw divides Ω into two open halfspaces
separated by the hyperplane {l◦ ∈ Ω : l◦w − l◦v = τe}. So an
equilibrium trajectory ` has a piecewise linear structure, with
its direction only changing upon hitting a hyperplane. Each
maximal piecewise-linear segment of ` is called a phase.

We can define an equilibrium trajectory starting from any
initial point l◦ ∈ Ω, not necessarily an empty network. This
can be interpreted, with some care, as starting with some initial
queues present; if `w(0)−`v(0)−τe > 0, this value represents
a queue delay that an agent starting at time 0 and traversing e
via a shortest path would experience on the arc, not the queue
length at time 0.

A further generalization we will need in our arguments is
the notion of a generalized subnetwork, as in [OSVK22]. A
generalized subnetwork is defined by a valid configuration
(Ẽ, E∞). Given such a pair, we can define a new vector field
X(Ẽ,E∞)(·), by defining its value at position l◦ to be the
solution to the thin flow equations determined by the pair
(Ẽ ∩E′l◦ , E∞ ∪E∗l◦) (as opposed to (E′l◦ , E

∗
l◦)). Only arcs in

Ẽ\E∞ will have a corresponding hyperplane; arcs in E\Ẽ act
always as being inactive, and arcs in E∞ are viewed as always
having a queue. We can define an equilibrium trajectory in this
generalized subnetwork in the same way as for the full network;
a trajectory ` that follows X(Ẽ,E∞) almost everywhere. We
will sometimes refer to a “generalized network”, by which we
mean a network along with a choice of (Ẽ, E∞).

Long-term behavior: Given an equilibrium trajectory ` in
some generalized network, we say that ` has reached steady
state by time T if `′(θ) is constant for all θ ≥ T . This means
that queues change linearly from time T forward (in particular,
if E∞ = ∅ and the network has sufficient capacity, then in a
steady state queues will remain constant [CCO21]).

Say that a label l◦ ∈ Ω is a steady-state label if the
equilibrium trajectory starting from l◦ is immediately at steady
state. We denote the set of steady-state labels by I . It can be
shown that there is a unique “steady-state direction” λ so that
for every l◦ ∈ I , the equilibrium trajectory starting from l◦ is
`(θ) = l◦ + λθ. See [OSVK22] for details.

We will need the following result from [OSVK22], which
builds on an earlier result by [CCO21], and shows that



equilibrium trajectories always reach a steady state.3

Theorem II.2. ([OSVK22]) Let G be a generalized network.
Then there exists some T such that for any starting point
l◦ within distance r to the set of steady state-labels I , the
equilibrium trajectory ` starting from l◦ reaches steady state
in time at most T · r.

Continuity: In [OSVK22], it was shown that there is
a unique equilibrium trajectory for any given starting point
`(0) ∈ Ω, and that the trajectory ` depends continuously on
the starting point `(0). We will make crucial use of this.

Theorem II.3 ([OSVK22, Theorem 3.2]). Let Ψ : Ω →
L∞([0,∞)) be the map that takes l◦ ∈ Ω to the unique
equilibrium trajectory ` satisfying `(0) = l◦. Then Ψ is
a continuous map, where we imbue L∞([0,∞)) with the
supremum norm.

III. TECHNICAL OVERVIEW

A. The main convergence result

We are now ready to state our main result in its precise
form.

Theorem III.1. Fix a network G. Let l◦ ∈ Ω be the labeling
corresponding to the empty network, and let `∗ be the
equilibrium trajectory starting from l◦. Then for every ε > 0,
there is a δ > 0 such that every δ-trajectory ` starting from l◦

stays within ε distance to `∗, i.e.,

‖`(θ)− `∗(θ)‖ ≤ ε for all θ ∈ R≥0.

B. Implications for ε-equilibria and packet models

To show that we can use the above theorem to obtain
convergence for our two applications ε-approximate equilibria
and packet routings, we prove that both these concepts can be
modeled as strict δ-equilibria, where δ depends on ε in the
first case and on the packet size in the latter case.

Theorem III.2. Let ϕ be an ε-equilibrium for some ε > 0.
Then ϕ is a strict δ-equilibrium for δ = O(ε).

(The big-O hides network-dependent constants.) To prove
this, we show that for an ε-equilibrium, (i) the mass of particles
that could in principle overtake a fixed agent at a given
node is O(ε), and (ii) the earliest arrival labels fulfill an
approximate Lipschitz-property. If an agent a were to arrive
at some node much later than the quickest path would allow,
then by approximate Lipschitz-continuity, the measure of other
agents that would be able to overtake a would be too large.

We will fix a packet-routing model that is similar to the one
discussed in [HMRT11]. In this model, a packet enters the next
arc of its path only once it has been fully processed by the
previous arc. Given an equilibrium in this packet model, say
with packets of size β, we can view each packet as consisting

3 This theorem is more refined than the main continuity theorem of
[OSVK22] in terms of the dependence on ‖l(0) − l◦‖, but it can easily
be deduced from more technical results in their paper; we defer detailed
discussion to the full version.

of a measure β of infinitesimal flow particles, each taking the
same path. In order to maintain the temporal integrity of a
packet, we exploit the flexibility of waiting at nodes in our
model. If a packet is being processed by some arc e = vw,
we hold all particles of the packet at w as long as any of
the particles are still being processed by arc e. Once all these
particles arrive, they depart all at once onto the next arc of the
path. This results in a joint strategy choice for all particles,
with waiting at nodes.

Theorem III.3. Suppose we are given an equilibrium of the
packet model with packet size β, and consider the correspond-
ing flow over time strategy profile ϕ. Then ϕ is a strict δ-
equilibrium for δ = O(β).

We show that ϕ is an ε-equilibrium for some ε = O(δ);
the claim then follows from Theorem III.2. The intuition for
why this holds is simply that the “last” particle in each packet
takes an earliest arrival path4; and for other particles, assuming
some Lipschitzness, things cannot go too badly wrong.

C. Proof overview of the main convergence result

It will be somewhat convenient for our purposes to invert
the dependence between ε and δ. We will think of δ > 0 as
being given, and we must choose ε depending on δ so that
any δ-trajectory ` remains ε-close to the equilibrium trajectory
`∗, and moreover, the dependence of ε on δ must be such that
ε → 0 as δ → 0. From this perspective, δ is some “small”
quantity, and ε will be some typically much larger quantity
— but nonetheless still “quite small” in the sense that it goes
to 0 as δ goes to 0. Our arguments will involve producing
a sequence of parameters that are “quite small” in the same
sense, eventually leading to our choice of ε. We make this
precise with the following definition.

Definition III.4. We call a function r : R>0 → R>0 a small
parameter if r(δ) → 0 as δ → 0, and its definition only
depends on the network G and previously defined small
parameters.

We will typically omit the dependence on δ if there is no
ambiguity, and write simply r rather than r(δ).

Our main convergence theorem comes as a consequence of
the following technical theorem for which Tss is defined to
be the time an equilibrium trajectory requires to reach steady
state from the empty network.

Theorem III.5. There exists a family of small parameters
(εj)j∈{ 0,...,|E| } such that the following holds, for any δ

small enough. Let (Ẽ, E∞) be a valid configuration and
j := |Ẽ \ E∞|. Suppose we are given an interval [θ0, θ1]
and a δ-trajectory `. Let `∗ be the equilibrium trajectory for
the generalized subnetwork defined by (Ẽ, E∞) starting with
`∗(θ0) being a valid labeling closest to `(θ0) and T be the
time required for `∗ to reach steady state.

4“Last” rather than “first” because of details of the specific packet model;
for other natural packet models this might hold for the first particle instead.



Then supposing that (i) each hyperplane intersecting
B2δ(`([θ0, θ1])) corresponds to an arc in Ẽ \ E∞, and
(ii) min{θ1 − θ0, T} ≤ Tss + 1, we have

‖`(θ)− `∗(θ)‖ ≤ εj for all θ ∈ [θ0, θ1].

A few remarks:
• While `(θ) needs not be a valid labeling, we can show

that it always remains close to Ω. So in this theorem,
‖`∗(θ0)− `(θ0)‖ = O(δ).

• Condition (ii), while slightly awkward, will be convenient
for inductive purposes. In some cases, we will apply the
theorem inductively to an interval of length at most Tss +1,
and in other cases, to a potentially unbounded interval
but where the time T is guaranteed to be small.

• The equilibrium trajectory `∗ in this theorem is not (in
general) an equilibrium of the original network, but rather
of the generalized subnetwork determined by (Ẽ, E∞).
This is again for inductive purposes; the arcs in E∞

will be “far away”, and can be ignored. If we are able
to focus on a smaller number of hyperplanes, we can
proceed inductively. It may initially seem paradoxical that
we show that ` stays close to `∗, if `∗ is not not the
equilibrium trajectory in the full network that, in the end,
we are showing that ` remains close to. The resolution is
in condition (i), which is very strong. At the end of the
day, this condition will only hold for intervals where `∗

is close to the equilibrium trajectory on the full network.
• This technical theorem does imply our main theorem, The-

orem III.1, fairly immediately. Simply take (Ẽ, E∞) =
(E, ∅), θ0 = 0 and θ1 arbitrarily large. The trajectory `∗

is the equilibrium in the original network, starting from
the empty network, and so condition (ii) is satisfied by
the definition of Tss. Condition (i) is vacuous, and so we
obtain the desired claim, with ε = ε|E|.

The inductive proof of Theorem III.5 can be broken into two
main parts. Unless otherwise indicated, any reference to an
equilibrium trajectory (in particular the steady-state direction
λ) refers to such a trajectory in the generalized subnetwork
defined by (Ẽ, E∞), and Ω refers to the set of valid labels in
this generalized subnetwork.

Part I: Before reaching (near to) steady state: This first
part is heavily inductive, and makes little direct use of the
properties of δ-trajectories. The induction is on j = |Ẽ \E∞|,
that is, the number of hyperplanes determining our vector field
X; see Figures 1 to 3 for an illustration of these vector fields
and some key features of the proof.

Let I ⊆ Ω be the set of steady-state labels, and λ the
steady-state direction of the subnetwork.

We first consider the behavior when sufficiently far from
I . A geometric argument shows that this means that `(θ) is
reasonably far from some hyperplane. The argument is as
follow, roughly speaking. If all j hyperplanes do not have
a common intersection, then necessarily there is a (network-
dependent) lower bound on the distance between hyperplanes,
and so `(θ) must be “far” from at least one hyperplane.

Otherwise, if all hyperplanes have a nonempty intersection,
all points in this common intersection can be shown to be
part of I . One can always find a constant Γ such that the
distance between a given point and the intersection is at most
Γ times the distance to the farthest hyperplane. So being “far”
from the common intersection of all hyperplanes means being
(relatively) far from some hyperplane.

However, we may have a situation where over an interval
`(θ) remains far from I , but not far from any single hyperplane;
rather, we are always far from some hyperplane, but this
hyperplane changes over time. So we divide the interval into
“periods”, where in each period we are far from a single
particular hyperplane; we do this in such a way that each
period is not too short. We then apply the theorem inductively
for each period, one after the other. This is a somewhat lossy
process; we can control the distance that ` deviates from `∗

over the period in terms of the distance they are apart at the
beginning of the period (here the continuity of equilibrium
trajectories as stated in Theorem II.3 is central), but these
bounds get worse as we consider more and more periods.
Fortunately, we can bound the number of periods, because
of the fact that `∗ converges to steady state (along with our
assumption (i)) gives a bound on the amount of time `∗ (and
then inductively, `) stays away from I . Since we also argue
that each period is not too short, this suffices.

In slightly more detail, suppose that `(θ) is far from some
hyperplane, say the one associated with arc e′ = v′w′, on an
interval [θ′0, θ

′
1] of length at most Tss + 1. Therefore, we can

proceed inductively on this interval. If e′ is inactive at `(θ′0), we
consider the generalized subnetwork defined by (Ẽ\{e′}, E∞);
if e′ is active (hence has a queue) at `(θ′0), we consider the
generalized subnetwork defined by (Ẽ, E∞ ∪ {e′}). We apply
the theorem inductively to deduce that ` remains close to `∗ind,
the exact equilibrium of the generalized subnetwork starting
from a closest valid point to `(θ′0). As long as `(θ) is further
than εj−1 from the hyperplane, then we can in addition deduce
that `∗ind does not hit the hyperplane either, and so due to
continuity of equilibrium trajectories (Theorem II.3) `∗ind stays
close to `∗ on this interval, and we have what we want for
this particular interval.

Denote the first point in time that ` gets within distance r2 of
I (for some suitable small parameter r2) by θss. The next claim
is that ` remains (somewhat) close to I for the remainder of the
evolution: for some small parameter r3 (which may be much
larger than r2), d(`(θ), I) < r3 for all θ ∈ [θss, θ1]. In order
to reach a distance r3 from I , there will need to be an interval
[θstart, θend] where d(`(θstart), I) ≤ r2, d(`(θend), I) ≥ r3, and
d(`(θ), I) ≥ r2 for all θ ∈ [θstart, θend]. Since ` remains far from
I in this interval, we can apply what we have already shown
to deduce that ` remains close to the equilibrium trajectory
`∗ starting from a point `∗(θstart) close to `(θstart). But this
equilibrium trajectory will reach steady state very quickly, by
Theorem II.2. By choosing r3 large enough compared to r2 (but
still with r3 → 0 as δ → 0), we can ensure that this happens
by some time θ′ < θend. This exploits that δ-trajectories can be
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Figure 1. As an example consider a network with
only two nodes s and t but four parallel arcs
e1 to e4 with transit time τei = 2i + 1 and
capacities 1. The network inflow rate is u0 = 3.
First all hyperplanes are present and the equilibrium
trajectory reaches steady state as soon as arcs e1,
e2 and e3 are active. To prove Theorem III.5 we
consider inductively also generalized networks with
fewer arcs.
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Figure 2. Here, e3 and e4 are removed and
therefore Ẽ = { e1, e2 } and E∞ = ∅. We
consider an interval [θ0, θ1] such that all other
hyperplanes keep distance to `. We split the interval
at θss which is the first point in time ` comes
r2-close to the set of steady-state labels I . Here,
we also illustrated the equilibrium trajectory `ss,
which starts within Br2 (`(θss)) ∩ I and therefore
stays in steady state. `∗ and `ss are close due
to the continuity of equilibrium trajectories; see
Theorem II.3.
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Figure 3. Here, we choose the hyperplanes of e2
and e3, which means that e4 is removed and e1 is
promoted to a free arc. Hence Ẽ = { e1, e2, e3 }
and E∞ = { e1 }.

shown to be approximately Lipschitz in a certain sense, and so
the interval [θstart, θend] cannot be too short if r3 is large. But
this means that `(θ′), being close to `∗(θ′), is close to I — a
contradiction.

Part II: While close to steady state: At this point, we
have deduced that `(θ) is close to `∗(θ) until some time θss,
and that ` remains close to I from time θss forwards. It remains
to argue that `(θ) remains within distance εj of `∗(θ) for all
θ ≥ θss (for some small parameter εj). The main part is to
prove that ` stays within εj distance to an equilibrium trajectory
`ss(θ) = `ss(θss) + (θ − θss)λ with `ss(θss) ∈ I close to `(θss)
(and therefore close to `∗(θss)). Notice that we are asking for
something quite strong. It’s not enough to show that ` moves in
“roughly the right direction”; even a small error in the direction,
if maintained, would lead to a large error after a long enough
period of time, and we might be considering an arbitrarily
long interval. Some amount of self-correction is required; if
` deviates from `∗ in some direction by a significant amount,
it should not deviate further in this direction (but could drift
away in some other direction).

Consider some possible large θ ∈ (θss, θ1], and let ∆θ :=
θ−θss, and ∆` := `(θ)−`(θss). Let us also define ∆xe to be the
measure of particles that use arc e = vw, and enter the arc at
some time in the interval (`v(θss), `v(θ)]. Observe that if ` was
an exact equilibrium, then ∆` = λ∆θ and ∆x = y∆θ, where
(y, λ) is the solution to the thin flow equations (8). This is a

consequence of the uniqueness of equilibrium trajectories, or
more precisely, a consequence of the earlier result by [CCL15]
that thin flows are unique (in terms of λ). If there was in fact a
second distinct solution (ỹ, λ̃) with λ̃ 6= λ, then ˜̀(θ) = l◦+ λ̃θ
would be an equilibrium trajectory receding from `∗ at a linear
rate.

Our approach can be viewed as taking the proof of [CCL15]
on the uniqueness of thin flows, and making it “more robust”
in certain ways. To explain this, we begin by sketching the
basic idea of this proof (modified slightly to suit our present
purposes). Suppose for a contradiction that (ỹ, λ̃) is a second
solution to (8) for configuration (Ẽ, E∞), with λ̃ 6= λ. Suppose
that S := {v ∈ V : λ̃v/λv < 1} is nonempty and proper (if
it is not, meaning that λ̃v ≥ λv for all v, swap the role of λ
and λ̃, after which S must be proper). One can then make the
following key observations, as a consequence of the thin flow
equations:

• All arcs e = vw entering S either have ỹe = 0, or have
ỹe ≤ ye, and the inequality is strict if ỹe > 0. (Briefly: if
ỹe > 0, then the thin flow equations require that λ̃w ≥ λ̃v;
since e enters S, it follows that λw > λv, and then the
thin flow equations require that ye = λwνe and ỹe ≤
λ̃wνe < λwνe = ye.)

• All arcs e = vw leaving S have ỹe ≥ ye, and the
inequality is strict if ye > 0.

Since y and ỹ are both s-t-flows of the same value, y(δ+(S))−



y(δ−(S)) = ỹ(δ+(S))− ỹ(δ−(S)). This yields an immediate
contradiction if ỹ(δ+(S)) > 0 or y(δ−(S)) > 0. A small
further argument rules out the case that these crossing flows
are both zero.

We proceed with a similar cut-based argument in order to
reach a contradiction if ‖∆` − λ∆θ‖ is very large. In order
to do this, we first demonstrate that some of the thin flow
conditions in (8) hold approximately. Here we directly invoke
properties of strict δ-equilibria. For instance: we are able to
show the following:
• ∆x/∆θ is approximately an s-t-flow of value u0; the

appropriate flow conservation constraints hold at each
node, up to an O(δ) error.

• For e = vw ∈ E∞, |∆xe − νe∆`w| ≥ νeδ.
• For e = vw ∈ Ẽ\E∞, we can show that ∆xe ≤ νe∆`w+
νeδ. The thin flow equations imply the exact version of
this (without the νeδ error term), though this is a somewhat
weak implication. In particular, we cannot directly show
an approximate version of the statement that for (ỹ, λ̃) a
thin flow, and e = vw ∈ Ẽ with λ̃w > λ̃v , ỹe = νeλ̃w.

We then aim to define a cut S based on the ratio ∆`
λ , with

the intention of showing that ∆x
∆θ (δ+(S)) is significantly larger

than y(δ+(S)) and ∆x
∆θ (δ−(S)) is significantly smaller than

y(δ−(S)), thus deducing a contradiction to the fact that ∆x/∆θ
is approximately an s-t-flow of the same value as y. In order
to obtain the desired contradiction, we need to use the above
properties, and also some conclusions that can be drawn from
induction. Significant technical complications arise due to the
approximate nature of the information we have on `.

IV. CONCLUSION

We have demonstrated that strict δ-equilibria converge to
exact dynamic equilibria in the deterministic queueing model,
and as two specific consequences, derived the convergence of
ε-equilibria and of equilibria in a specific packet-routing model.
But we emphasize that these are merely two consequences, and
others can surely be obtained. Convergence of other packet
models can certainly be demonstrated, as well as stability with
respect to small perturbations of network parameters such as
transit times and capacities. We leave detailed investigation of
this to future work.

It must be admitted that our bounds are not very effective:
we do not explicitly compute how ε depends on δ, but
our dependence is certainly (at least) exponential, and very
dependent on the specific network being considered. This issue
arises even in the setting of continuity. One could hope that the
correct dependence is much better, perhaps linear. But it is not
clear how this can be approached with the current techniques
of this paper. A related issue already mentioned is that our
results only apply for δ sufficiently small (where “sufficiently
small” depends on the instance). This seems like a potentially
much easier issue to resolve.

As already mentioned, our result potentially allows for the
transfer of results from the deterministic queueing model to
atomic packet-routing models. This would especially be the
case if the restriction to sufficiently small δ can be removed.

There may be further applications of this, now or in the future,
as a better understanding of the deterministic queueing model
is obtained.
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