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Abstract. We develop an equilibrium model for market impact of trades when
investors with private signals execute via a trading desk. Fat tails in the signal
distribution lead to a power law for price impact, while the impact is logarithmic
for lighter tails. Moreover, the tail distribution of the equilibrium trade volume
obeys a power law. The spread decreases with the degree of noise trading and
increases with the number of insiders. In case of a monopolistic insider, the last
slice traded against the limit order book is priced at the fundamental value of the
asset reminiscent of [17]. However, competition among insiders leads to aggressive
trading, hence vanishing profit in the limit. The model also predicts that the order
book flattens as the amount of noise trading increases converging to a model with
proportional transactions costs with non-vanishing spread.

1. Introduction

Kyle [17] studies in a simple but remarkably powerful framework a single risk
neutral informed trader and a number of non-strategic uninformed liquidity traders
submitting orders to a market maker, who aggregates all the orders and clear the
market at a single price. Consequently, Kyle’s uniform auction model does not pro-
duce a bid-ask spread and predicts a linear price impact of trades. However, his
model allows for an explicit characterization of equilibrium parameters - including
the optimal strategy of the informed trader as well as the equilibrium pricing rule.
This in turn allows one to analyze how the private information is disseminated to the
market and gets incorporated into the prices over time. In particular, Kyle’s lambda
yields an explicit measurement of market’s liquidity and the extent of linear price
impact.

On the other hand, empirical data provides some clues as to the shape and scale of
market impact. There is a strong consensus among the practitioners that the impact
is a concave function of trade size (see [28]). But biases in the data, a low signal-to-
noise ratio and other issues hinder a precise determination of the functional form of
market impact, particularly for large trades where data is sparse. Impact functions
used in practice range from square root to logarithm (e.g. [28], [23], [11], [1], [3], and
[30]). We contribute to this debate using a rational expectations approach.
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Understanding the exact shape of the price impact is of utmost importance for
optimal trade execution (see Bouchaud et al. [7]). Portfolio managers endeavour
to find mispriced assets in order to beat their benchmarks. When they decide to
change their holdings to take advantage of a mispricing, they create orders in an
order management system and the trading desk routes these orders to broker-dealers
for execution. However, this new order causes prices to move to a different level due
to the price impact of the trade. The value lost by not being able to execute at the
decision price is called implementation shortfall (see [21]) and understanding how this
shortfall scales with trade size is essential to optimize the investment management
process. A market impact model is needed in order to maximize net trading profits,
optimize position sizes, limit liquidity risk and estimate a portfolio’s capacity.

Various models yield similar results for small trade sizes but they yield very different
predictions for the impact of large trades. This is unfortunate since the large trades
typically dominate the aggregate implementation shortfall for most portfolios. Indeed,
[8] finds that large trades (above 10,000 shares) from institutional traders account
for approximately 48% of the aggregate volume and the moderate trades (500-9,999
shares) by institutions make up 38% of the trading volume. Yet, large trades are fewer
in number, their implementation shortfall most exposed to market noise, and their
size most subject to selection bias: a manager may execute a large trade because she
can. This makes empirical testing difficult. The absence of a consensus on the shape
of market impact for large trades motivates the search for a theoretical framework that
would capture the essential features of trading and yet be sufficiently parsimonious
to be testable.

To address these issues we propose a market microstructure model for the price
impact that shares features from Kyle [17] and Glosten [13]. Our results provide
the micro-foundations for a large number of empirical findings including those on
price impact and volume. To the best of our knowledge, this is the first model
to establish the rules governing the power laws for the price impact function in an
equilibrium setting1. The liquidity suppliers in our model face adverse selection due
to the existence of informed traders (henceforth called insiders). Different from [17],
but consistent with the modern practice, they move first by posting limit orders as
in [13]. We assume following [13] that the resulting offer curve is competitive so that
the limit prices are given by ‘tail expectations.’ That the marginal cost of a trade
depends on the trade size leads to discriminatory pricing.

We show that whether the market impact follows a power law or a logarithmic law
depends on the distribution of the fundamental value, which is the private signal of
the insiders. The price impact, and equivalently the implementation shortfall, has a
power law if the market believes that the fundamental value has fat tails while lighter
tails are responsible for a logarithmic behavior.

1See also Nadtochiy [19] for an explanation of concave price impact in a continuous-time setting.
However, price is not determined in a rational expectations equilibrium setting in [19].
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Our model makes sharp predictions on the shape of market impact based on the
asset’s return distribution. Ignoring for a moment the difference between the risk-
neutral returns distribution and the physical distribution2, the asset’s conditional re-
turn distribution is predicted by options market participants who encode their views
in the options data. The shape of this distribution is sensitive to the event calen-
dar: for example, the shape and scale of the impact function for large trade in a
biopharmaceutical company ahead of a major drug approval release would be quite
different from the shape and scale of market impact for the same stock when no news
is expected. An investment manager with an active trading strategy in this kind
of company would be able to label trades as “pre-announcement” and “other”, and
over time, calibrate an impact model for each of these two cases. The goodness of fit
measures for the predicted shapes from the present paper would provide a test of our
theory3.

Our framework also allows us to compute the tails of the probability distribution
associated with the aggregate volume. For a large class of distributions that can be
used to model the liquidation value we demonstrate that the tail of the trade size
obeys a power law.

The power-law behavior of order sizes has been documented previously in various
contexts: [15] showed that the market volume in a time interval ∆t has a power-law
tail with exponent 1.7; [18] consider off-book trades and find an exponent ranging
from 1.59 to 1.74; [12] estimated the exponent to be in the neighbourhood of 1.5; [29]
reconstructed metaorders in Spanish stock exchange using data with brokerage codes
and found that the metaorder transaction size distribution has a power-law tail with
exponent 1.7. And in a study performed directly on institutional trade data from
Alliance Bernstein, [3] found a tail exponent 1.56 for metaorder sizes. Our model
gives an equilibrium based explanation for the magnitude of these exponents.

One of the most striking features of our model is its tractability while allowing
general distributions for the fundamental value. We characterize the equilibrium
strategy of insiders and the corresponding market impact of trades as a solution of
an integral equation. While an analytic solution to this equation can be found only
in few examples, its numerical implementation is straightforward and fast.

The solution of this integral equation is given by the fixed point of a highly non-
linear operator, existence of which is shown using Schauder’s fixed point theorem in
Sections 3 and 4. Although this integral equation arises from a one-period considera-
tion, we obtain a priori estimates on its solution using a space-time h-transform of a
standard Brownian motion on [0, 1] and via comparison arguments on the solutions
of the resulting h-path process. These estimates also allowed us to bound the fixed

2This is in fact consistent with the assumption that the market makers are risk-neutral. The more
realistic case with risk-averse market makers that leads to the risk neutral measure being different
than the physical one is left to future research.
3To formulate a test based on the options montage is more involved, in no small part because wide
spreads in option markets make pricing in the tails quite challenging. Such a project lies outside the
scope of this paper.
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point(s) of the original integral equation by the extremal fixed points of two better-
behaved and, most importantly, monotone integral operators. Such a comparison was
essential in establishing the power laws considered in this paper.

Although the exact form of the market impact can only be solved numerically, we
are nevertheless able to obtain the exact analytic asymptotics when the order size
is large using the theory of regular variation. Moreover, due to the scaling property
of the noise demand, these asymptotics still provide a good approximation for small
orders if the variance of the noise demand is relatively small. The error in such an
approximation appears to be still low even in the case of higher variance as confirmed
visually by our numerical studies and should provide a good benchmark for empirical
works.

Due to the discriminatory pricing by the liquidity suppliers, our model produces a
non-zero bid-ask spread in equilibrium. We find that the minimal bid-ask spread for
an infinitesimal trade is the same regardless of the variance of the noise trades. The
shape of the order book, however, is not invariant to the changes in this variance;
on the contrary, the order book flattens as it increases. In particular, the spread
associated with a non-infinitesimal trade size decreases with the amount of noise
trading consistent with the experimental findings of Bloomfield et al. [6]. In the limit
the equilibrium converges to a model with proportional transaction costs.

Our proof of the existence of equilibrium assumes that the fundamental value of the
asset is bounded. However, our numerical experiments suggest that equilibrium exists
for a large class of unbounded distributions commonly found in the literature and used
in practice. Moreover, the asymptotics for these solutions agree with the analytical
forms that our theory predicts. Yet, unlike the bounded case, an equilibrium may
not exist for all unbounded distributions. Given the premise of numerical results
and our formal calculations we conjecture that existence of equilibrium requires a
sufficient amount of competition among insiders if the signal distribution exhibit fat
tails. This is intuitive given the fact that the liquidity suppliers post limit prices using
tail expectations in equilibrium. Since the noise demand is Gaussian, the large orders
are more likely to be informed and the tail risk in the total demand is completely
determined by the signal distribution as the insiders’ aggregate demand is a monotone
function of the fundamental value. Therefore, fat tails in the signal distribution
increases the liquidity suppliers’ need for compensation. Moreover, sizable fat tails
are typically associated with excessive variance. Our model predicts that such risks
arising from the signal distribution cause the market to break down unless the risk is
reduced to a manageable level by strong enough competition among informed traders.

Even though we model the interactions in a single period model, our framework
also has the flavor of a continuous-time Kyle model considered by [2]. Indeed, in
case of a monopolistic insider, we show that conditional on the asset value V = v
the last infinitesimal slice of the aggregate order traded by the desk against the order
book is priced at v on average, reminiscing the convergence of the equilibrium price
to the liquidation value by the end of the trading horizon in the continuous-time Kyle
model. Thus, all private information gets incorporated into market prices once the
last slice has been traded.
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The above ‘convergence’ result motivates the analysis of the case of multiple in-
siders. In the same vein as [16], we also model and solve the imperfect competition
among N ≥ 2 insiders who observe the liquidation value V perfectly. As in [16] this
competition leads to more aggressive trading. When the signal distribution is contin-
uous, we find that (conditional on V = v) the average price for the last slice traded by
the desk exceeds v if the insiders are buying in equilibrium, which can be attributed
to more aggressive buying due to competition. An analogous observation holds when
the optimal strategy in equilibrium is to sell. We obtain an explicit formula for the
aggregate profit of the insiders that shows that it converges to 0 in the limit as the
number of insiders increases.

This article is related to the ‘econophysics’ literature that uses the concepts of
physics to study economic issues. Gabaix et al. [12] argue that “[econophysics] is
similar in spirit to behavioral economics in that it postulates simple plausible rules
of agent behavior,. . . ” and develop a theory of large institutional trades by assuming
that the liquidity providers’ preferences exhibit first order risk aversion justified by
prospect theory and institutional practices. While we share the same motivation
of explaining the power laws observed in the data for price impact and trade size
as [12], we instead follow a rational expectations approach to establish these laws.
Thus, our model can be interpreted as a merger between econophysics and the market
microstructure theory.

Our article also relates to the literature on limit order markets. The case of liquid-
ity suppliers moving first and submitting limit orders to be later hit by potentially
informed market order was first studied by [24] and [13]. Glosten [13] is more con-
cerned on the equilibrium among the liquidity suppliers for a given market order and
there is no general existence result for an equilibrium that incorporates the optimal
strategies of both the limit order traders as well as the strategic trader submitting
the market order with the exception of a special case given in an example. Moreover,
studies of [4] and [26] on the limit order book and the order flow in Paris Bourse and
Stockholm Stock Exchange found evidence that contradicts the predictions of [13]
and support a concave price impact function. [26] also stressed the need for a richer
theoretical model to replicate the empirical observations. More recent works on limit
order markets are mainly set in continuous time and a short list would include [20],
[10], [25], and [14]. However, the sheer complexity of equilibrium in continuous time
required these works imposing very restrictive assumptions to have a tractable model
such as traders being able to trade only once (essentially making it a collection of one
period models) or only for one unit of the asset. We, on the other hand, establish the
existence of equilibrium for general distributions and without any restriction on the
trading strategy of the strategic traders, and characterize it via an integral equation
that possesses an easy numerical solution.

Structure of the paper is as follows: We present the trading model and the first
implications of equilibrium in the next section. In Sections 3 and 4 we demonstrate
the existence of an equilibrium under mild assumptions. Section 5 considers the
asymptotic behavior of market impact and the distribution of trade volume in equi-
librium. Further properties of equilibrium along with some comparative statics are
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given in Section 6. Numerical solutions are provided in Section 7. Moreover, Section
8 explores an alternative same-price allocation model numerically and compares the
results with those of the trading desk model. Section 9 contains the concluding re-
marks and directions for future study. The Appendix contains some auxiliary results
and the proofs not presented in the main text.

2. The market structure and equilibrium

Our model is built upon Glosten [13] and the trading takes place in one-period. All
random variables in this section are assumed to be defined on a complete probability
space (Ω,F , P ) and E is the expectation operator associated to P . There are four
types of agents interacting in this market:

(1) Competitive (infinitely many) liquidity suppliers move first and place limit orders
that give rise to an order book. The resulting limit order book is identified by
some non-decreasing function h : R→ R and, therefore, a market order of size x
traded against the order book incurs the cost of∫ x

0

h(y)dy.

In other words, h(y) corresponds to marginal price of the y-th share.
(2) A trading desk, which acts as a broker for its clients, does not trade for its own

account, but only gathers and executes orders for its clients. At the beginning of
the day, the desk does not have any orders. Any arriving order of size y is priced
at ∫ y

0

h(Y + x)dx, (2.1)

where Y is the accumulated number of shares from prior orders. The desk does
not publish Y and, thus, its clients do not observe Y prior to submitting their
orders. However, they are aware of the form of the pricing rule given by (2.1).

(3) Noise traders whose cumulative demand for the traded asset is given by a random
variable Z ∼ N(0, σ2) are non-strategic. Z is independent of V , which is the
random variable representing the liquidation value of the asset. V is assumed to
be non-constant.

(4) N ≥ 1 risk neutral insider(s), who know(s) V and choose(s) a trade size to
maximize their expected profit conditional on their private information. The
cumulative demand of the insiders will be denoted by X. N is assumed to be
deterministic, and therefore, known to the market participants.

We assume that noise traders as well as insiders are the clients of the desk. The
desk aggregates all orders and trades Z + X with the liquidity suppliers. Moreover,
noise trades are assumed to arrive to the desk prior to the informed order(s).

Let us first consider the case N = 1. Since the accumulated number of shares
from prior orders equals Z when the insider’s order arrives at the desk, the insider is
charged ∫ X

0

h(Z + y)dy (2.2)
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for an order of X units. Observe that the insider will always prefer buying via the
desk to buying from the order book since she will get a better price from the desk
in case the noise traders are selling. Noise traders, on the other hand, are indifferent
between two trading venues under our assumption that they arrive slightly earlier to
the market than the informed trader.

The cost given by (2.1) can be justified by Bertrand competition for orders from a
strategic trader (informed or uninformed) among brokerage firms each of which has
already received noise orders of size Yi. We assume the strategic trader does not split
her trades among different brokers consistent with the market practice. Note that
one does not have to assume that Yis are the same, but the pairs (Yi, V ) have the
same distribution over the firms.

Another, and more common, approach in industry is to charge all orders the same
average price. That is, the insider’s cost of trading X units via the trading desk equals
X

X+Z

∫ X+Z

0
h(y)dy, while the noise trades are priced at Z

X+Z

∫ X+Z

0
h(y)dy. However,

such a cost structure makes the model analytically intractable. Nevertheless we ana-
lyze this model numerically in Section 8 and find that it shares the same qualitative
features and same asymptotic price impacts with the equilibrium arising from the
cost structure of (2.2).

2.1. Optimal strategies for the informed. Let us next consider the optimization
problem for the insider facing (2.2) as her trading cost. Note that the expected profit
of the insider from a market order of size x is, therefore, given by

Ev

[
V x−

∫ x

0

h(Z + y)dy

]
,

where Ev is the expectation operator for the insider with the private information
V = v. Since h is assumed nondecreasing, the first order condition characterizes the
unique X∗ achieving the maximum expected profit via V = F (X∗), where

F (x) :=

∫ ∞
−∞

h(x+ z)q(σ, z)dz (2.3)

and q(σ, ·) is the probability density function of a mean-zero Gaussian random variable
with variance σ2. Note that since h∗ is non-decreasing and not constant, F is strictly
increasing and one-to-one. Thus, X∗ = F−1(V ).

We shall also consider the case of multiple insiders trading via the same desk and
knowing the value of V . We assume that informed orders arrive simultaneously and
the desk charges each insider an amount proportional to their order size. Therefore,
the expected profit of an individual insider placing an order of size x is given by

Ev

[
V x− x

U + x

∫ U+x

0

h(Z + y)dy

]
,

where U denotes the aggregate demand of the other insiders.
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The first order condition associated with the above optimization problem of an
individual insider is again given by

v = Ev

[
x

U + x
h(Z + U + x) +

U

(U + x)2

∫ U+x

0

h(Z + u)du

]
.

As every insider has symmetric information and is risk-neutral, the equilibrium de-
mand x∗ for each insider must be the same and satisfy

v = Ev

[
h(Z +Nx∗)

N
+
N − 1

N2x∗

∫ Nx∗

0

h(Z + u)du

]
.

Denoting the total informed demand by X∗, the above can be rewritten as V =
F (X∗), where

F (x) := Ev

[
h(Z + x)

N
+
N − 1

Nx

∫ x

0

h(Z + u)du

]
, (2.4)

and F (0) is interpreted by continuity to be Ev[h(Z)].
Note that the marginal cost function F always satisfies F (x) ≤ Ev[h(Z + x)] for

x > 0 since the marginal price h is increasing. Recall that Ev[h(Z+x)] is the marginal
cost of buying x units for a monopolist insider. Thus, the expression of the marginal
cost via (2.4) can be viewed as a weighted combination of the marginal cost for the
monopolist and the average cost of buying x units. The weight placed on the average
cost vanishes in case of monopolist and is increasing to 1 as the number of insiders
increases.

Moreover, it follows from the monotonicity of h that F defined via (2.4) is strictly
increasing. Also note that (2.4) reduces to (2.3) when N = 1. Thus, we shall always
refer to (2.4) when discussing the optimal strategies of the insiders regardless of the
value of N .

2.2. Equilibrium and first properties. In what follows the total informed demand
will be denoted by X and we assume following [13] that limit prices are given by ‘tail
expectations.’ That is, denoting the total demand X + Z by Y ,

h(y) =

{
E[V |Y ≥ y], if y > 0;
E[V |Y ≤ y], if y < 0.

(2.5)

The value h(0) is not relevant for the subsequent computations and can be freely
chosen to be any value between the best ask h(0+) := limy↓0 h(y) and the best bid
h(0−) := limy↑0 h(y).

The definition (2.5) entails that liquidity suppliers earn zero aggregate profit on
average. Indeed, the expected profit is given by

E

[∫ Y

0

(h(y)− V )dy

]
=

∫ ∞
0

E[(h(y)− V )1[Y≥y]]dy +

∫ 0

−∞
E[(V − h(y))1[Y≤y]]dy = 0,

where the last equality is due to the definition of the conditional expectation.

Definition 2.1. The pair (h∗, X∗) is an equilibrium if h∗ is non-decreasing and non-
constant, X∗ ∈ R and
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i) h∗ satisfies (2.5) with Y = X∗ + Z;
ii) X∗ is the profit maximising order size for the insider(s) given h∗. That is,

V = F (X∗), where F is given by (2.4).

The strict monotonicity of F leads to the following result that in particular yields
an explicit formula for the aggregate profit of the insiders.

Proposition 2.1. Let (X∗, h) be an equilibrium and F defined by (2.4).

(1) For any x ∈ R we have

Ev[h(x+ Z)] = F (x) +
N(N − 1)

xN

∫ x

0

(F (x)− F (y))yN−1dy

= F (x) +N(N − 1)

∫ 1

0

(F (x)− F (xy))yN−1dy. (2.6)

(2) Ev[h(X∗ + Z)] = v when N = 1 and, in general

Ev[h(X∗ + Z)] = v + (N − 1)

∫ 1

0

(v − F (y
1
N F−1(v)))dy. (2.7)

Thus, Ev[h(X∗ + Z)] > v (resp. Ev[h(X∗ + Z)] < v) if F−1(v) ∈ (0,∞) (resp.
F−1(v) ∈ (−∞, 0)).

(3) The aggregate expected profit of the insiders conditional on V = v is given by

π∗(v) := Ev

[∫ X∗

0

(v − h(y + Z))dy

]
= N

∫ F−1(v)

0

(v − F (y))

(
y

F−1(v)

)N−1

dy

= F−1(v)

∫ 1

0

(v − F (y
1
N F−1(v)))dy, (2.8)

with the second and third equalities being valid if F−1(v) is finite.
(4) The expected loss of noise traders is given by∫ ∞

0

h(y)− h(−y)

2
P (|Z| ≥ y)dy. (2.9)

Moreover, if the aggregate mid-spread function S defined as S(x) :=
∫ x

0
h(y)−h(−y)

2
dy

satisfies limx→∞ S(x)P (Z ≥ x) = 0, then the above loss equals∫ ∞
0

S(y)P (|Z| ∈ dy) = E[S(|Z|)]. (2.10)

Since the liquidity suppliers earn zero profit on average, (2.10) implies that the ex-
ante profit of insiders is given by E[S(|Z|)]. Thus, the larger the spread, the bigger
is the insiders’ profit. Moreover, since S is concave and increasing, this profit (or the

loss of the noise traders) is bounded by S(E[|Z|]) = S(σ
√

2
π
) ≤ S(σ). This upper

bound corresponds to the aggregate spread at the expected noise volume.
The expression (2.7) reveals an interesting feature of our model akin to Kyle’s model

in continuous time. Observe that h(X∗ + Z) can be viewed as the last slice that is
traded with the limit order traders. Thus, when there is a monopolistic insider, (2.7)
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shows that the final slice is priced at the actual value of V similar to the convergence
of the equilibrium price to the liquidation value of the asset in the continuous time
version of the Kyle model studied in [2] for general payoffs.

This ‘convergence’ may disappear when the liquidation value of the asset is observed
by more than one insider as in [16]. If the distribution of the fundamental value does
not possess any atoms, the optimal strategy of the insiders will be finite for any
realization v of V . In this case Ev[h(X∗ + Z)] > v when the optimal strategy is
buy. The intuition, as observed earlier by [16], behind this overvaluation is that
competition leads to more aggressive trading and results in higher market valuation.

In practice an important trading benchmark for traders is the implementation short-
fall. [21] defines it as the difference between a ‘paper trading’ benchmark and the
actual trading costs. Assuming that the benchmark is given by the ex-ante valuation
E[V ], the associated shortfall in our context can be defined as follows:

Definition 2.2. The implementation shortfall associated with trading x units is given
by

IS(x) :=
1

x

∫ x

0

E[h(Z + y)]dy.

Observe that IS(x) is simply the expected average cost of trading x units. As the
following result shows, it is smaller than the marginal cost F (x), which is given by
the first order condition (2.4).

Proposition 2.2. Let h be a function that defines the order book and F (x) be given
by the first order condition (2.4). Then,

IS(x) = N

∫ 1

0

F (xy)yN−1dy.

In particular, IS(x) < F (x) for x > 0 and IS(x) > F (x) for x < 0.

3. Characterization of equilibrium

The aim of this section is to identify the integral equations whose solutions de-
termine an equilibrium (X∗, h∗). Writing h instead of h∗ to ease the exposition and
using the definition of h when y > 0, we get

h(y) = E[V |X∗ + Z ≥ y] = E[V |F−1(V ) ≥ y − Z] = E[V |V ≥ F (y − Z)].

Similarly, h(y) = E[V |V ≤ F (y − Z)] for y < 0.
Next introduce the right-continuous functions Φ± and Π± via

Φ+(y) := E[V 1[V >y]], Π+(y) := P (V > y)

Φ−(y) := E[V 1[V≤y]], Π−(y) := P (V ≤ y) = 1− Π+(y).

Note that Φ+(y−) = E[V 1[V≥y]] and Π+(y−) = P (V ≥ y) are the unnormalized
upper tail expectation and the upper tail probability, respectively.
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Now let us compute h(y) for y > 0 using the fact that Φ+(x) = Φ+(x−) for almost
all x:

h(y) =
E[V 1[V≥F (y−Z)]]

P (V ≥ F (y − Z))
=

∫∞
−∞Φ+(F (y − z))q(σ, z)dz∫∞
−∞Π+(F (y − z))q(σ, z)dz

. (3.11)

Similarly, for y < 0

h(y) =

∫∞
−∞Φ−(F (y − z))q(σ, z)dz∫∞
−∞Π−(F (y − z))q(σ, z)dz

. (3.12)

In order to obtain an equation for F it will be convenient to define, for any continuous
g, the mappings

φ+
g (x) :=

∫∞
−∞Φ+(g(z))q(σ, x− z)dz∫∞
−∞Π+(g(z))q(σ, x− z)dz

and φ−g (x) :=

∫∞
−∞Φ−(g(z)q(σ, x− z)dz∫∞
−∞Π−(g(z))q(σ, x− z)dz

.

Let us also set

φg(x) := φ+
g (x)1x≥0 + φ−g (x)1x<0. (3.13)

Now, combining (2.4), (3.11) and (3.12) yields an equation for F :

F (x) =
1

N

∫ ∞
−∞

q(σ, x− z)φF (z)dz +
N − 1

Nx

∫ x

0

dy

∫ ∞
−∞

q(σ, y − z)φF (z)dz. (3.14)

Assuming one can change the order of integration in above4, then (3.14) can be
rewritten as

F (x) =

∫ ∞
−∞

{
1

N
q(σ, x− z) +

N − 1

N
q̄(σ, x, z)

}
φF (z)dz, (3.15)

with

q̄(σ, x, z) := 1x 6=0
1

x

∫ x

0

q(σ, y − z)dy + 1x=0q(σ, z). (3.16)

The preceding calculations show that the existence of a solution for the above integral
equation is a necessary condition for equilibrium. Validity of the converse is obvious
and we, thus, have the following:

Theorem 3.1. Equilibrium exists if and only if there exists a function F : R → R
that satisfies (3.14). Given such a solution F , (X∗, h∗) constitutes an equilibrium,
where X∗ = F−1(V ) and h∗ is defined via (3.11) and (3.12).

In view of the above theorem finding an equilibrium boils down to finding a solution
of (3.14). Moreover, equilibrium will be uniquely defined if there exists a unique
solution of (3.14). As usual, solutions of (3.14) will be identified as fixed-points of a
mapping.

Before analyzing in depth this fixed-point problem, we shall first consider some
settings in which equilibrium is explicitly solvable. Note that since h is increasing its
right and left limits exist. In particular h(0+) is the lowest ask price and h(0−) is the
highest ask price. Thus, the bid-ask spread is given by h(0+)− h(0−) in equilibrium.

4We shall see later that this is justified when V is bounded from below
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Definition 3.1. V is said to be symmetric if V and −V have the same distribution.
That is, Π+(y−) = Π−(−y) for all y.

Proposition 3.1. Suppose that V is symmetric and there exists a unique solution
F to (3.14). Then F is symmetric, i.e. F (x) = −F (−x) for all x. Moreover, any
symmetric solution of (3.14) is also a solution of

F (x) =
1

N

∫ ∞
0

q0(σ, x− z)φ+
F (z)dz +

N − 1

Nx

∫ x

0

dy

∫ ∞
0

q0(σ, y − z)φ+
F (z)dz, (3.17)

where q0(σ, x, z) := q(σ, x− z)− q(σ, x+ z).

Proof. Observe that −Φ+(y−) = E[−V 1[V≥y]] = E[−V 1[−V≤−y]] = E[V 1[V≤−y]] =
Φ−(−y). Thus, utilising the fact that Φ+ and Π+ differ from their left limits at most
at countably many points and q is symmetric around zero, we obtain∫ ∞

−∞
q(σ,−x− z)φF (z)dz =

∫ 0

−∞
dz q(σ, x− z)

∫∞
−∞Φ+(F (−u))q(σ, z − u)du∫∞
−∞Π+(F (−u))q(σ, z − u)du

+

∫ ∞
0

dz q(σ, x− z)

∫∞
−∞Φ−(F (−u))q(σ, z − u)du∫∞
−∞Π−(F (−u))q(σ, z − u)du

= −
∫ 0

−∞
dz q(σ, x− z)

∫∞
−∞Φ−(−F (−u))q(σ, z − u)du∫∞
−∞Π−(−F (−u))q(σ, z − u)du

−
∫ ∞

0

dz q(σ, x− z)

∫∞
−∞Φ+(−F (−u))q(σ, z − u)du∫∞
−∞Π+(−F (−u))q(σ, z − u)du

= −
∫ ∞
−∞

q(σ,−x− z)φG(z)dz,

where G(x) := −F (−x). Moreover,

−1

x

∫ −x
0

dy

∫ ∞
−∞

q(σ, y − z)φF (z)dz =
1

x

∫ x

0

dy

∫ ∞
−∞

q(σ,−y − z)φF (z)dz

= −1

x

∫ x

0

dy

∫ ∞
−∞

q(σ, y − z)φG(z)dz.

Thus, −G is also a solution of (3.14), which establishes the first assertion. The second
assertion follows from a change of variable in (3.14) as above and using the assumed
symmetry of F . �

Example 3.1. Suppose that P (V = 1) = P (V = −1) = 1
2
. Then, the unique

symmetric solution of (3.14) is defined by

F (x) =
1

N

∫ ∞
0

q0(σ, x, z)dz +
N − 1

Nx

∫ x

0

dy

∫ ∞
0

dzq0(σ, y, z), x ≥ 0.

In this case it is easily seen that in equilibrium X∗ =∞ (resp. X∗ = −∞) if V = 1
(resp. V = −1). Moreover, h∗(y) = 1[y>0] − 1[y<0].
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Although the insiders’ optimal market order is to buy or sell an infinite amount
cumulatively, their profit remains finite. Indeed, when V = 1, the aggregate expected
profit is given by∫ ∞

0

E1(1− h(Z + y))dy = 2E1

(∫ ∞
0

1[Z<−y]dy

)
= σ

√
2

π
.

Note that the total profit is independent of N .

Example 3.2. Consider the case P (V = −1) = P (V = 0) = P (V = 1) = 1
3
. Then,

similar considerations as above should yield F (∞) = 1 and F (−∞) = −1. Moreover,
symmetry considerations lead to F (0) = 0, which suggests that the insider does not
trade when V = 0. Indeed, the unique solution of (3.14) is given by

F (x) =
1

N

∫ ∞
0

q0(σ, x, z)
1

1 + P (Z ≥ z)
dz +

N − 1

Nx

∫ x

0

dy

∫ ∞
0

dzq0(σ, y, z)
1

1 + P (Z ≥ z)
.

Differently from Example 3.1, the order book will not be flat since the insider does not
trade when V = 0. One can obtain h∗ via (3.12) and (3.11). Alternatively, for y > 0

h(y) =
E[V 1[X∗(V )+Z≥y]]

P (X∗(V ) + Z ≥ y)
=

P (V = 1)

P (V = 1) + P (V = 0, Z ≥ y)

=
P (V = 1)

P (V = 1) + P (V = 0)P (Z ≥ y)
=

1

1 + P (Z ≥ y)
,

where the first equality follows from the fact that X∗(V ) is infinite when V = −1 or
1. Similarly, for y < 0, h(y) = − 1

1+P (Z≤y)
. In particular, the bid-ask spread is given

by h(0+)− h(0−) = 4
3
, and is again independent of the noise volume and of N .

3.1. Existence of equilibrium. We shall denote by m (resp. M) lower (resp. up-
per) endpoint of the support of the random variable V . Note that, since V is assumed
non-degenerate, we have −∞ ≤ m < M ≤ ∞.

Define on the support of V

Ψ±(y) :=
Φ±(y)

Π±(y)
(3.18)

so that Ψ+(y) = E[V |V > y] and Ψ−(y) = E[V |V ≤ y].
We impose the following condition on the function F to ensure that the integral

equation (3.14) is well-defined and changing the order of integration in (3.15) is jus-
tified.

Assumption 3.1.
∫ 0

−∞ φ
−
F (z)q(σ, z)dz > −∞.

Observe that the above is automatically satisfied if V is bounded from below in
view of (4.22) in the next section. Moreover, if F is a continuous function satisfying
(3.14) and V is symmetric, it satisfies the above assumption, too.

One of the useful consequences of the above assumption is that the marginal trad-
ings costs are strictly increasing.
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Lemma 3.1. Let F be a continuous non-decreasing solution of (3.14) or (6.30) satis-
fying Assumption 3.1. Then, limx→∞ F (x) = M and limx→−∞ F (x) = m. Moreover,
F is strictly increasing.

This gives rise to the following sufficient condition for equilibrium. Note that since
V is bounded under the hypothesis of the theorem, Assumption 3.1 is satisfied.

Theorem 3.2. Suppose −∞ < m < M <∞. Then, there exists an equilibrium.

4. Existence of a solution for the fixed point equation

This section is devoted to the proof of Theorem 3.2 using Schauder’s fixed point
theorem. The next lemma provides the key foundations for the estimates that are
used to prove the existence of a fixed point.

Lemma 4.1. Let g : R → R be a continuous function and u+ (resp. u−) be the
unique solution of

ut + σ2uxx = 0, u(1, x) = Π+(g(x)) (resp. u(1, x) = Π−(g(x))). (4.19)

Then, the following hold:

(1) There exists a solution B on a filtered probability space (Ω,F , (Ft),Q) to the
following SDE:

dBt = σdWt + σ2ux(t, Bt)

u(t, Bt)
dt, B0 = x, (4.20)

where u is either u+ or u− and W is a Brownian motion with W0 = 0.
(2) φ+

g (x) = EQ+
[Ψ+(g(B1))] and φ−g (x) = EQ− [Ψ−(g(B1))], where (B,Q+) (resp.

(B,Q−)) corresponds to the solution of (4.20) if u = u+ (resp u = u−) and EQ

stands for the expectation under Q.
(3) φ+

g (0) > φ−g (0).
(4) Suppose further that g is non-decreasing. Then, φ±g are non-decreasing, too. Con-

sequently, φg is non-decreasing. Moreover,

φ+
g (x) ≤ EQ+ [

Ψ+(g(σW1 + x))
]

(4.21)

φ−g (x) ≥ EQ− [Ψ−(g(σW1 + x))
]
. (4.22)

Proof. We shall prove the claims for u+ only, the corresponding proof for u− being
analogous.

(1) Note that

u+(t, x) =

∫ ∞
−∞

Π+(g(z))
1√

2πσ2(1− t)
exp

(
− (x− z)2

2σ2(1− t)

)
dz.

Then, if β is a Brownian motion on a filtered probability space (Ω,F , (Ft),P)
with β0 = 0, u+(t, Bt) is a bounded martingale with u+(1, B1) = Π+(g(B1),
where B = σβ + x. Thus, we can define a new measure Q on (Ω,F) by

dQ
dP

=
u(1, B1)

u(0, B0)
.
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By means of Girsanov’s theorem, under Q, B solves (4.20).
(2) Observe that

φ+
g (x) =

E [Ψ+(g(B1))Π+(g(B1))]

E [Π+(g(B1))]
=

E [Ψ+(g(B1))u+(1, B1)]

E [u(1, B1)]
= EQ [Ψ+(g(B1))

]
.

(3) The claim is equivalent to∫ ∞
−∞

Φ+(g(z))q(σ, z)dz

∫ ∞
−∞

Π−(g(z))q(σ, z)dz−
∫ ∞
−∞

Φ−(g(z))q(σ, z)dz

∫ ∞
−∞

Π+(g(z))q(σ, z)dz > 0.

Using Φ+ = E[V ]− Φ− and Π+ + Π− = 1, the above is valid if and only if

0 <

∫ ∞
−∞

Φ+(g(z))q(σ, z)dz − E[V ]

∫ ∞
−∞

Π+(g(z))q(σ, z)dz

=

∫ ∞
−∞

(
Ψ+(g(z))− E[V ]

)
q(σ, z)Π+(g(z))dz,

which holds since for any x we have Ψ+(x) ≥ Ψ+(m) = E[V ] in view of Lemma
A.1 and Ψ+ is not constant.

(4) Now, suppose g is non-decreasing, which in turn implies u+
x ≤ 0 since Π+ is non-

increasing. Therefore, as ux(t,x)
u(t,x)

is Lipschitz on [0, t] for any t < T , the standard

comparison results for SDEs applied to (4.20) in conjunction with Lemma A.1
imply

EQ [Ψ+(g(B1))
∣∣B0 = y

]
≥ EQ [Ψ+(g(B1))

∣∣B0 = x
]

if y ≥ x

since we can construct all these solutions indexed by their starting point on the
same probability space due to the local Lipschitz property of u+

x /u
+. This shows

the desired monotonicity φ+
g .

Similarly, the same comparison principle yields that the solution of (4.20) is
bounded from above by σWt + x in case of u = u+ since u+

x ≤ 0. Combined with
the monotonicity property of Ψ+(g), we deduce φ+

g (x) ≤ EQ [Ψ+(g(σW1 + x))].

�

Proof of Theorem 3.2. The proof will be an application of Schauder’s fixed point the-
orem. Note that since V takes values in [m,M ], so does Ψ±. This justifies the
representation (3.15) for F . Since in equilibrium h must also be taking values in
[m,M ], we must expect F to take values in [m,M ], too. Thus, we can concentrate
on functions on R that takes values in [m,M ]. Moreover, F will possess a derivative
that is bounded by

K0 := (|m|+M)

∫ ∞
−∞
|z| e

− z2

2σ2

σ3
√

2π
dz

(
1

N
+
N − 1

2N

)
<∞.
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To see this first observe that

∂q̄(σ, x, z)

∂x
=

q(σ, x− z)− q̄(σ, x, z)

x
=

1

x2

∫ x

0

{q(σ, x− z)− q(σ, y − z)dy}

=
1

x2

∫ x

0

uqx(σ, u− z)du.

Therefore,∣∣∣∣ ddxF (x)

∣∣∣∣ ≤ ∫ ∞
−∞
|φF (z)|

{
|qx(σ, x− z)|

N
+
N − 1

Nx2

∫ |x|
0

u|qx(σ, u− z)|du

}
dz

≤ (|m|+M)

 1

N

∫ ∞
−∞
|z − x|e

− (z−x)2

2σ2

σ3
√

2π
dz +

N − 1

Nx2

∫ |x|
0

duu

∫ ∞
−∞
|z − u|e

− (z−u)2

2σ2

σ3
√

2π
dz


= (|m|+M)

∫ ∞
−∞
|z| e

− z2

2σ2

σ3
√

2π
dz

(
1

N
+
N − 1

2N

)
.

We shall show the existence of a fixed point in the normed space X := L2(R, µ0), i.e.
the space of Borel measurable functions that are square integrable with respect to µ0,
where

µ0(dx) =
1√
2π
e−

x2

2 dx.

Note that µ0 is equivalent to the Lebesgue measure on R. Next define

D0 : {g|g : R 7→ [m,M ] is such that |g(x)− g(y)| ≤ K0|x− y|,∀x, y ∈ R}
and let

D := {g ∈ X |g = g0, µ0-a.e. for some g0 ∈ D0}.
It is easy to see that D is a convex subset of X .

Next define the operator T on X via

Tg(x) :=

∫ ∞
−∞

{
1

N
q(σ, x− z) +

N − 1

N
q̄(σ, x, z)

}
φḡ(z)dz,

where ḡ := (g∨m)∧M and φg and q̄ are as defined in (3.13) and (3.16), respectively.
Note that for each x {

1

N
q(σ, x− z) +

N − 1

N
q̄(σ, x, z)

}
dz

is a probability measure on R.

Step 1 (T maps D into itself): It is easy to verify that Tg is continuous and takes
values in [m,M ] in view of Lemma 4.1 and that∫ ∞

−∞

{
1

N
q(σ, x− z) +

N − 1

N
q̄(σ, x, z)

}
dz = 1.

Moreover, Tg is differentiable with a derivative bounded by K0 by using the
above computations that led to the estimate K0. Thus, Tg ∈ D0 ⊂ D.
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Step 2 (D is compact): Let (gn) ⊂ D. Then there exists (g0
n) ⊂ D0 such that µ0-a.e.

we have gn = g0
n for each n ≥ 1. Then by Arzela-Ascoli Theorem there exists

a subsequence that converges uniformly on compacts to a continuous function
g0. Without loss of generality let us assume that g0

n converges to g0. Note that
necessarily |g0(x) − g0(y)| ≤ K0|x − y| for all x, y ∈ R, i.e g0 ∈ D0. Finally,
as gns are uniformly bounded and µ0 is a probability measure, the dominated
convergence theorem yields gn → g0 in L2(R, µ0).

Step 3 (T : D → D is continuous): Suppose gn → g in D as n → ∞. In view of
the definition of D we may assume without loss of generality that that gns
are continuous since changing gn on a Lebesgue null set does not alter the
value of Tgn. By another application of Arzela-Ascoli theorem there exists a
subsequence that converges pointwise to some continuous function, which we
may identify with g due to the uniqueness of L2-limits up to a null set. Thus,
we may assume g is continuous, too.

Moreover, the same argument shows that every subsequence of gn has a
further subsequence that converges to g pointwise since continuous functions
that agree on Lebesgue null sets should agree at every point. Thus, gn → g
pointwise as n→∞.

Next, since φgn is uniformly bounded, the dominated convergence theorem
yields

lim
n→∞

Tgn(x) =

∫ ∞
−∞

dz

{
1

N
q(σ, x− z) +

N − 1

N
q̄(σ, x, z)

}
lim
n→∞

φgn(z).

On the other hand, Lemma 4.1 and Girsanov theorem imply for z > 0

φgn(z) =
E [Ψ+(gn(σβ1 + z))Π+(gn(σβ1 + z))]

un(0, z)
,

where E is the expectation operator for P under which β is a standard Brow-
nian motion, and un is the function u+ in Lemma 4.1 defined by the terminal
condition Π+(gn). Since Ψ+ and Π+ are continuous except on a Lebesgue null
set, the dominated convergence theorem yields

lim
n→∞

E
[
Ψ+(gn(σβ1 + z))Π+(gn(σβ1 + z))

]
= E

[
Ψ+(g(σβ1 + z))Π+(g(σβ1 + z))

]
.

Similarly,

lim
n→∞

un(0, z) = lim
n→∞

E
[
Π+(gn(σβ1 + z))

]
= E

[
Π+(g(σβ1 + z))

]
.

Thus, we have shown limn→∞ φgn(z) = φg(z) for z > 0. Analogous arguments
yields the convergence for z ≤ 0, which in turn establishes the pointwise
convergence of Tgn to Tg; i.e.

lim
n→∞

Tgn(x) = Tg(x), x ∈ R.

This yields the claim by an application of the dominated convergence theorem
since Tgns are uniformly bounded.
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Therefore, there exists a g ∈ D such that g = Tg by Schauder’s fixed point theorem.
The claim now follows from Theorem 3.1. �

Under the hypotheses of Theorem 3.2 it is clear that m < F (x) < M for x ∈ R.
However, in view of the bounds given by (4.21) and (4.22) it is possible to obtain
sharper bounds on any solution of (3.14).

Theorem 4.1. Suppose −∞ < m < M < ∞ and let Ψ± be as in (3.18). Then the
following statements are valid.

(1) There exists a maximal nondecreasing solution5 to

R(x) =

∫ ∞
0

dz

{
1

N
q(σ, x− z) +

N − 1

N
q̄(σ, x, z)

}∫ ∞
−∞

Ψ+(R(y))q(σ, z − y)dy

+E[V ]

∫ 0

−∞
dz

{
1

N
q(σ, x− z) +

N − 1

N
q̄(σ, x, z)

}
. (4.23)

Moreover, this maximal solution is not constant and any solution of (3.14) is
bounded from above by this maximal solution.

(2) There exists a minimal nondecreasing solution6 to

l(x) = E[V ]

∫ ∞
0

dz

{
1

N
q(σ, x− z) +

N − 1

N
q̄(σ, x, z)

}
(4.24)

+

∫ 0

−∞
dz

{
1

N
q(σ, x− z) +

N − 1

N
q̄(σ, x, z)

∫ ∞
−∞

Ψ−(l(y))q(σ, z − y)dy

}
.

Moreover, this minimal solution is not constant and any solution of (3.14) is
bounded from below by this minimal solution.

Proof. (1) Let D be the space of nondecreasing functions on R that take values in
[m,M ] and define an operator T on D via

Tr(x) =

∫ ∞
0

dz

{
1

N
q(σ, x− z) +

N − 1

N
q̄(σ, x, z)

}∫ ∞
−∞

Ψ+(r(y))q(σ, z − y)dy

+E[V ]

∫ 0

−∞
dz

{
1

N
q(σ, x− z) +

N − 1

N
q̄(σ, x, z)

}
.

First observe that Tr1 ≥ Tr2 if r1 ≤ r2 since Ψ+ is non-decreasing. Thus, setting
r0 ≡ m and rn = Trn−1 for n ≥ 1, we observe that rn is an increasing sequence
of nondecreasing continuous functions taking values in [m,M ]. Thus, the limit,
r∞ exists, is nondecreasing, and continuous by Dini’s theorem. It also follows
from the dominated convergence theorem and that Ψ+ has only countably many
discontinuities that r∞ is a solution of (4.23).

5R is a maximal nondecreasing solution if R(x) ≥ r(x) for all x ∈ R, where r is any other nonde-
creasing solution.
6l is a minimal nondecreasing solution if l(x) ≤ L(x) for all x ∈ R, where L is any other nondecreasing
solution.
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Now let E denote the set of all solutions of (4.23) in D and define

R∗(x) := sup
r∈E

r(x).

Clearly, R∗ takes values in [m,M ]. Due to the aforementioned monotonicity
TR∗ ≥ Tr = r for all r ∈ E . Consequently, TR∗ ≥ R∗. Setting g0 = R∗ and
gn = Tgn−1 for n ≥ 1, we again obtain an increasing sequence which converges
to some element r of E . Moreover, r ≥ R∗, which in turn implies r = R∗ by the
construction of R∗.

Note that if R∗ is constant, it has to equal M since R∗(∞) = M . However,
under this assumption, the right side of (4.23) equals∫ ∞

0

dz

{
1

N
q(σ, x− z) +

N − 1

N
q̄(σ, x, z)

}
(M1z>0 + E[V ]1z<0) < M

as E[V ] < M . Thus, R∗ cannot be constant.
To show the final assertion let F be a solution of (3.14). Since Ψ− ≤ E[V ] and

that φ+
F (z) ≤

∫∞
−∞Ψ+(F (y))q(σ, z − y)dy by (4.21), we deduce that

F (x) ≤ TF (x).

As above, setting g0 = F and gn = Tgn−1 for n ≥ 1, we again obtain an increasing
sequence which converges to a member of E , which proves the claim.

(2) Since Ψ− ≤ E[V ], the proof follows the similar lines as above and, hence, omitted
�

5. Market impact asymptotics

The shape of market impact as a function of trade size is important to practitioners
to address capacity and position sizing. Various functional forms have been explored
in the literature (see, e.g., [3], [12], [23] and [28]), including

√
X and log(1 + aX).

Rejecting either of these forms empirically is challenging due to three practical dif-
ficulties: (1) the spread and market impact terms are collinear for small orders, (2)
signal-to-noise ratios are weak for executions that take a small percentage of mar-
ket volume, and (3) for very large trades, order sizes are often increased if liquidity
is available, or reduced if liquidity is hard to find, leading to bias in the data. In
absence of clear empirical evidence, theoretical predictions for the shape of market
impact provide valuable insight into how trading costs scale with trade size.

Motivated by this need, we draw our attention in this section to the market impact
associated with large orders. More precisely, we will be computing the asymptotics
of the marginal cost of trades, which is given by the function F . As we shall see
later, the asymptotic form of F will coincide (up to a scaling factor) with that of the
implementation shortfall IS. We will also be able to compute the tail asymptotics
of the distribution of the total demand in equilibrium using the theory of regular
variation.
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Definition 5.1. A function g : (0,∞) → (0,∞) is said to be regularly varying of
index ρ at ∞ if

lim
λ→∞

g(λx)

g(λ)
= xρ, ∀x > 0.

Analogously, a function g : (−∞, 0)→ (0,∞) is said to be regularly varying of index
ρ at −∞ if g(−x) is regularly varying of index ρ at ∞.

Roughly speaking, a function of regular variation behaves like a power function
asymptotically. We shall obtain our asymptotic results under a mild condition on the
distribution of V .

Assumption 5.1. Π+ has a continuous derivative on (m,M). Moreover, Ψ+
x (M) :=

limx→M
d
dx

Ψ+(x) and Ψ−x (m) := limx→m
d
dx

Ψ−(x) exist and equal the left and right
derivatives, respectively, at finite end points. Moreover, Ψ+

x (M)Ψ−x (m) 6= 07.

Observe that when M is finite and the left derivative of Ψ+ at M exists,

Ψ+
x (M) = lim

x→M

M −Ψ+(x)

M − x
≤ lim

x→M

M − x
M − x

= 1.

Similarly, Ψ−x (m) ≤ 1 if m is finite under an analogous condition.
In this section we will mainly focus on the asymptotics of F and IS. However, it

is easy to see from (2.4) that F and h behave similarly for large values. For a more
rigorous demonstration, suppose M −F is regularly varying at ∞ with exponent ρ+.
Recalling the measure ν defined in (B.50), we formally obtain

lim
x→∞

M − h(x)

M − F (x)
= lim

x→∞

∫ ∞
−∞

ν(x, 1, dy)
M −Ψ+(F (xy))

M − F (x)

= Ψ+
x (M)1ρ

+

= Ψ+
x (M),

(5.25)

using the mean value theorem and the continuity of the derivative of Ψ+ together with
the fact that the F is regularly varying with index ρ+ since the measure ν(x, 1, dy)
converges to the point mass at 1 as x → ∞. This shows that marginal price is also
regularly varying with the same index ρ+.

The next result is the first description of the asymptotics of solutions of (3.14).

Theorem 5.1. Assume Assumption 5.1, N > 1 and −∞ < m < M <∞. Let F be
any solution of (3.14). Then, the following statements are valid:

(1) M − F is regularly varying of index ρ+ at ∞, with ρ+ = Ψ+
x (M)−1

1−Ψ+
x (M)
N

.

Moreover, if Ψ+
x (M) = 1 and there exist an integer n ≥ 1 and a real constant

k ∈ (0,∞) such that8

lim
x→M

Ψ+(x)− x
(M − x)n+1

=
1

k
,

7This last condition is automatically satisfied if M =∞ and m = −∞ since Ψ+(∞) = −Ψ−(−∞) =
∞.
8In case Ψ+

x (M) 6= 1, this limit condition is valid with n = 0 and k = (1 − Ψ+
x (M))−1. Thus, this

additional regularity assumption can be viewed as an extension of the existing regularity that holds
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the following asymptotics hold:

M − F (x) ∼
(

N

N − 1

n

k

)− 1
n

(log x)−
1
n , x→∞. (5.26)

(2) F −m is regularly varying of index ρ− at −∞, with ρ− = Ψ−x (m)−1

1−Ψ−x (m)
N

.

Moreover, if Ψ−x (m) = 1, and there exist an integer n ≥ 1 and a real constant
k ∈ (0,∞) such that

lim
x→m

x−Ψ−(x)

(x−m)n+1
=

1

k
,

then

F (x)−m ∼
(

N

N − 1

n

k

)− 1
n

(log |x|)−
1
n , x→ −∞. (5.27)

The lengthy and technical proof of the above result is given in the Appendix.
However, we can give a quick motivation of why the regular variation exponent is

as given. To this end, define γ(x) := limα→∞
M−F (αx)
M−F (α)

for x ≥ 1. Then, using the

integral equation (3.14) and taking the appropriate ratios, one can formally ‘show’
that

γ(x) =
Ψ+
x (M)

N
γ(x) + Ψ+

x (M)
N − 1

Nx

∫ x

0

γ(y)dy.

The initial condition γ(1) = 1 next reveals that γ(x) = xρ
+

.
Observe that the asymptotic shape of marginal costs (or, equivalently, marginal

prices) are independent of the noise variance. This stems from the tail expectation
condition that defines the order book. Recall that, for y > 0, the marginal price of
the y-th share purchased is given by h(y) = E[V |F (y + Z)]. Since the noise demand
Z is mostly concentrated around two standard deviations in the neighborhood of 0,
i.e. the large trades are most likely coming from the informed traders, the impact of
the noise distribution on the asymptotic behavior of the marginal price is negligible
in equilibrium. This is also responsible for the price impact depending on return
distribution only by its tail.

Indeed, the power law of the price impact only depends on the number of insiders,
i.e. the intensity of the competition among the informed, and the particular tail mass
index Ψ+

x (M). To see why Ψ+
x (M) < 1 is an indication of fat tails, consider the

situation where the distribution Π+ exhibit fat tails, i.e. power-like behavior, in the
sense that for large x

Π+
x (x)

Π+(x)
∼ −α(M − x)−1, α > 0.

when ρ+ 6= 0. In particular, if V has a probability density p with

p(x) ∝ (M − x)β exp

(
− Σ

(M − x)n

)
,

for some β ∈ R, Σ > 0, and n ≥ 1, the limit condition holds with k = nΣ. Analogous considerations
apply in the second part.
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Since M−Ψ+(x)
M−x =

∫M
x Π+(y)dy

(M−x)Π+(x)
− 1, a direct application of the L’Hôpital rule implies

Ψ+
x (M) = α

1+α
< 1. This shows in view of Theorem 5.1 that the price impact obeys a

power law when the arithmetic return of the risky asset has a fat-tailed distribution.
In the preceding example, the magnitude of ρ+ equals 1

1+αN−1
N

. That is, the impact

gets bigger as the returns distribution has fatter tails (smaller α) and increased com-
petition among insiders results in smaller impact. We shall see analogous features
when we discuss unbounded return distributions in Section 7.

We have seen in Proposition 2.2 that the implementation shortfall is smaller than
F . In view of Theorem 5.1 we have a more precise relationship for large x.

Corollary 5.1. Assume Assumption 5.1, N > 1 and −∞ < m < M < ∞, and let
(h∗, X∗) be an equilibrium. Suppose that F ∗ is given by (2.4), with h being replaced
by h∗. Then,

M − IS∗(x) ∼ N

N + ρ+
(M − F ∗(x)), x→∞,

IS∗(x)−m ∼ N

N + ρ−
(F ∗(x)−m), x→ −∞,

where ρ+ and ρ− are as in Theorem 5.1.

Corollary 5.1 shows that for large N implementation shortfall and the marginal
cost of trading are almost indistinguishable. This is even more pronounced when
M − F (resp. F −m) is slowly varying, i.e. ρ+ = 0 (resp. ρ− = 0). Combined with
(5.25) the above yields

M − IS∗(x) ∼ N −Ψ+
x (M)

Ψ+
x (M)(N − 1)+

(M − h∗(x)), x→∞.

Observe that IS can be estimated from market data using the open limit order book
governed by h. Moreover, the returns distribution, hence Ψ+

x (M), can be estimated
from the option data. Thus, the above relationship gives a statistic to estimate the
number of informed traders in the market.

5.1. Equilibrium distribution of the traded volume. The above results will also
allow us to compute the distribution of the traded volume in equilibrium. Although
this will be achieved under an additional regularity assumption on the distribution
of the asset value V , it will be satisfied for practically all distributions typically
appearing in applications.

Corollary 5.2. Assume Assumption 5.1, N > 1 and −∞ < m < M <∞. Let F be
any solution of (3.14). Then, the following statements are valid:

(1) Suppose that there exist an integer n ≥ 0 and a real constant k ∈ (0,∞) such that

lim
x→M

Ψ+(x)− x
(M − x)n+1

=
1

k
.

Then, Π+(F ) is regularly varying at ∞ of index − Ψ+
x (M)

1−Ψ+
x (M)
N

.
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(2) Suppose that there exist an integer n ≥ 0 and a real constant k ∈ (0,∞) such that

lim
x→M

x−Ψ−(x)

(x−m)n+1
=

1

k
.

Then, Π−(F ) is regularly varying at −∞ of index − Ψ−x (m)

1−Ψ−x (m)
N

.

This seemingly technical result uncovers the distribution of the total volume traded
in equilibrium. Indeed, for x > 0

P (X∗ > x) = P (F−1(V ) > x) = P (V > F (x)) = Π+(F (x)).

Thus, under the hypothesis of Corollary 5.2, the tail distribution of equilibrium X∗

is regularly varying at infinity. That is,

P (X∗ > x) = x−ζ
+

s(x),

where s is a slowly varying function and ζ+ := Ψ+
x (M)

1−Ψ+
x (M)
N

.

Moreover, since the aggregate order is given by Y ∗ = X∗ + Z and Z and V are
independent, we have for y > 0

P (Y ∗ > y) =

∫ ∞
−∞

dzP (X∗ > y − z)q(σ, z) =

∫ ∞
−∞

dzP (X∗ > z)q(σ, y − z),

which can easily be shown to be regularly varying at infinity with the same index.
Thus,

P (Y ∗ > y) = y−ζ
+

s(y), y > 0, (5.28)

for some regularly varying s. In particular, if V has lighter tails, i.e. Ψ+
x (M) = 1,

P (Y ∗ > y) is regularly varying of index − N
N−1

.
Analogous computations yield for the sell side

P (Y ∗ < −y) = y−ζ
−
s(y), y > 0, (5.29)

where ζ− := Ψ−x (m)

1−Ψ−x (m)
N

.

6. Further properties of equilibrium and comparative statics

The following scaling property of F is inherited from the analogous property of the
Gaussian distribution.

Proposition 6.1. Let F (1; ·) be a solution of (3.14) with σ = 1. Then the function
x 7→ F (1; x

σ
) solves (3.14).
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Proof.

F
(

1;
x

σ

)
=

1

N

∫ ∞
−∞

q
(

1,
x

σ
− z
)
φF (z)dz + σ

N − 1

Nx

∫ x
σ

0

dy

∫ ∞
−∞

q(1, y − z)φF (z)dz

=
1

N

∫ ∞
−∞

q
(
σ, x− z

)
φF

( z
σ

)
dz +

N − 1

Nx

∫ x

0

dy

∫ ∞
−∞

q
(

1,
y

σ
− z
)
φF (z)dz

=
1

N

∫ ∞
−∞

q
(
σ, x− z

)
φF

( z
σ

)
dz +

N − 1

Nx

∫ x

0

dy

∫ ∞
−∞

q(σ, y − z)φF

(z
y

)
dz.

Similar manipulations yield

φ±F

(z
y

)
=

∫∞
−∞Φ±

(
F
(

1; u
y

))
q
(
σ, u− z

)
du∫∞

−∞Π±
(
F
(

1; u
y

))
q(σ, u− z)du

,

which establishes the claim. �

The above simplifies the numerical analysis of the model considerably. A straight-
forward corollary to this result is the following, whose proof is left to the reader.

Corollary 6.1. Consider the solutions of (3.14) for any σ.

(1) If (3.14) has a unique solution for some σ, it has a unique solution for all σs.
(2) If (3.14) has a unique solution for some σ, F (0) does not depend on σ.
(3) Let h(σ; ·) be the function defined via (3.11) and (3.12), where F is the unique

solution of (3.14) for the given σ. Then, h(σ;x) = h(1; x
σ
) for all x 6= 0.

(4) Suppose (3.14) has a unique solution for some σ and let X∗(σ) be the optimal
order size for the given σ. Then, X∗(σ) = σX∗(1).

In particular, h inherits the same scaling property of F . A simple but striking
consequence of this property concerns the equilibrium bid-ask spread. The next
result is immediate, hence its proof is omitted.

Corollary 6.2. Suppose that uniqueness holds for the solutions of (3.14). Then,
h(0+)− h(0−) does not depend on σ. Moreover, for fixed x, h(x) is decreasing in σ
for x > 0 and increasing in σ for x < 0. Consequently, the aggregate mid-spread S is
decreasing in σ.

The liquidity suppliers charge a minimal bid-ask spread that does not vanish even
if the amount of ‘noise’ trading is excessively large. On the other hand, the spread
associated with any trade size y > 0, i.e. h(y)− h(−y), and, therefore, the aggregate
mid-spread S is decreasing with the amount of noise trading, consistent with the
experimental findings of [6]. Moreover, in the limit as σ → ∞, the order book, i.e.,
gets flatten and converges to the one that yields transaction costs that are proportional
to the order size.

Uniqueness of solutions also allow us to discuss the dependency of aggregate insider
profit and the expected loss of noise traders on the noise variance. In particular, the
aggregate profit of insiders is increasing in noise variance as expected. The following
is a direct consequence of Proposition 2.1.
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Corollary 6.3. Suppose that uniqueness holds for the solutions of (3.14) and denote
by π(σ) the aggregate wealth of the insiders in equilibrium. Then, π(σ) = σπ(1).

Similarly, the expected loss of noise traders is given by σE[S(1, σ−1|Z|)] where
S(1, ·) is the aggregate mid-spread function in equilibrium for σ = 1.

Another consequence of the uniqueness of solutions of (3.11) is that the aggregate
expected profit of the insiders vanishes as N →∞.

Proposition 6.2. Suppose that −∞ < m < M < ∞, there exists a unique solution
FN of (3.14) for each N ≥ 1, and uniqueness holds for the solutions of

F (x) =
1

x

∫ x

0

dy

∫ ∞
−∞

q(σ, y − z)φF (z)dz. (6.30)

Assume further that Π+ is continuous. Then F∞ = limN→∞ FN exists and solves
(6.30). Moreover, limN→∞ π

∗(v) = 0, where π∗ is the aggregate expected profit as
defined in (2.8).

Proof. First observe that φF is bounded since V is. Thus the dominated convergence
theorem in conjunction with the continuity of Π+, and consequently that of Φ+ and
Φ−, show that both of lim inf FN and lim supFN solve (6.30). As (6.30) can have at
most one solution, F∞ := limFN exists.

Also note that F∞ is strictly increasing and continuous by Lemma 3.1. Thus,
limN→∞ F

−1
N (v) = F−1

∞ (v) ∈ R, and

lim
N→∞

π∗(v) = lim
N→∞

F−1
N (v)N

∫ 1

0

(v − FN(F−1
N (v)y)yN−1dy

= F−1
∞ (v) lim

N→∞
N

∫ 1

0

(v − FN(F−1
N (v)y)yN−1dy.

Since each FN takes values in (m,M), limN→∞ FN(F−1
N (v)y) = F∞(F−1

∞ (v)y), and the
measure NyN−1dy on [0, 1] converges weakly to the point mass at 1, we have

lim
N→∞

N

∫ 1

0

(v − FN(F−1
N (v)y)yN−1dy = v − F∞(F−1

∞ (v)) = 0.

�

We believe the aggregate profit of the insiders decreases and the spread increases in
the number of insiders. Although we are not able to prove these intuitive properties,
it is observed in all numerical studies that we perform in the next section.

7. Numerical studies

This section is devoted to description of results obtained in previous version via a
naive numerical search for a fixed point: Starting with an F0, we compute Fn+1 =
TFn until the distance between successive iterations become negligibly small, where
TF corresponds to the right side of (3.14). Although the proofs of the statements
concerning the existence of equilibrium and its asymptotics relied on a boundedness
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assumption, we shall also present the solutions of the fixed point problems associated
with equilibria with unbounded signals.

Since σ can be absorbed into the units for measuring equity in view of Proposition
6.1, we will set σ = 1 in all numerical tests with no loss of generality in this section.

We consider first the case of bounded signals that was the focus of the previous
section.

7.1. Bounded signals.

7.1.1. Truncated Gaussian distribution.
If signals are drawn from the truncated Gaussian distribution with density p(v) =

1
erf( M√

2Σ
)
√

2πΣ
e−

v2

2Σ for v ∈ [−M,M ], the numerical solution for equilibrium F converges

to the upper bound as M − F (x) ∼ 1/x
N−1
2N in accordance with the predictions of

Theorem 5.1. We show F and the theoretical prediction for its asymptotic behavior
in Figure 1.
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Convergence to upper bound of signals distribution
2.07/(1+0.66x)0.48

equilibrium

Figure 1. The asymptotic behavior of F is shown for the case where signals
are drawn from a truncated Gaussian distribution.

7.1.2. Logit-normal distribution. If price is a probability-weighted average over two
possible outcomes v± = p0 ± 1, where the probability is a sigmoidal function of
a Gaussian generator potential g as p = 1

1+e−g
, the signals distribution is the logit-

normal distribution with density p(v) =
√

2
πΣ

e−
ln2( 1−v

1+v )

2Σ

1−v2 . This distribution has support

in [−1, 1].
We show the equilibrium solution for F , the order book h and the implementation

shortfall for logit-normal signals, in Figure 2.
Note that the logit normal distribution does not satisfy the hypothesis of Theorem

5.1. Thus, our theory cannot predict the asymptotics of F for this distribution. How-
ever, the following formal arguments yield the asymptotics that seem to be verified
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by the numerical experiments. Observe that for x >> σ, (2.4) becomes

F (x) ≈ 1

N
h(x) +

N − 1

Nx

∫ x

0

h(u)du (7.31)

It follows that F (x) + xF ′(x) ≈ h(x) + 1
N
xh′(x). Moreover, for large values of x, we
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Equilibrium: logit-normal, N=1

h(x)
IS(x)
F(x)

Figure 2. Equilibrium impact and shortfall for logit-normal signals for the
case of an insider (N = 1).

roughly have h(x) ≈ Ψ+(F (x)). Let us consider the large N limit and drop the 1/N

term. Using the approximation erfc(x) ≈ e−x
2

x
√
π

(1− 1
2x2 ) and expanding to first order

in 1/ log(x) we find that asymptotically

xF ′ =
Σ(1− F )

log(1− F )
,

which yields F → 1− e−k
√

log(x)

The numerical solution shown in Figure 3 for N = 25 is consistent with this as-
ymptotic form.
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Figure 3. Convergence to the upper bound for M = 1 when signals are
drawn from a logit-normal distribution and shared with N = 25 traders.
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7.2. Unbounded signals. In the rest of this section we place emphasis on un-
bounded signals; that is, when the support of V is unbounded. Although we do
not have a theoretical justification for the existence of a solution for (3.14) in the case
of unbounded signals, we were able to arrive at numerical solutions via the above
numerical search.

The asymptotic behavior of F (x) for large signals will depend on the tail behavior
of the distribution of V . Assuming the interchange of limits and integrals in the proof
of Theorem 5.1, we can show that

γ(x) =
Ψ+
x (∞)

N
γ(x) +

N − 1

Nx
Ψ+
x (∞)

∫ x

0

γ(y)dy, x > 0,

where γ(x) := limα→∞
F (αx)
F (α)

in case of M = ∞. Solution of the above equation

immediately yields that, for N > 1, F is regularly varying at ∞ of order ρ+, where

ρ+ =
Ψ+
x (∞)− 1

1− Ψ+
x (∞)
N

. (7.32)

Observe that when M = ∞, Ψ+
x (∞) ≥ 1 in contrast to the bounded case, where

Ψ+
x (M) ≤ 1. Since ρ+ must be non-negative, this places the restriction on N :

N > Ψ+
x (∞) (7.33)

unless Ψ+
x (∞) = 1. Thus, we conjecture that (7.33) is a necessary condition for the

existence of equilibrium when M = ∞. Observe that for a fat tailed unbounded
distribution, Ψ+

x (∞) > 1. Thus, a sufficient competition among insiders is necessary
for the equilibrium to exist. Such a condition is always satisfied in the bounded case
since Ψ+

x (M) ≤ 1 for M <∞.
As in the bounded case F will be slowly varying at infinity when Ψ+

x (∞) = 1. In
this case, if we assume

lim
x→∞

(Ψ+(x)− x)xn−1 =
1

k
(7.34)

for some k > 0 and n ≥ 1, formal calculations yield

F (x) ∼
(

N

N − 1

n

k

) 1
n

(log x)
1
n , x→∞. (7.35)

Tables 1 and 2 summarize the predicted asymptotics for a class of distributions
commonly used in the literature and practice. As can be observed by Table 1, the
impact gets bigger as the return distribution has fatter tails (smaller α). At the same
time, the market also needs more competition among the informed traders in order
to function. Note that as α → 1, the mean and the variance of the distributions
listed therein diverge to∞. Thus, the liquidity suppliers are only willing to make the
market if this excessive risk is shared with a large amount of informed trading.
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Table 1. Distributions with power-law impact

Distribution Density ρ+

Beta prime xλ−1(1 + x)−(λ+α)
(
N−1
N
α− 1

)−1

Fréchet (x− β)−(1+α) exp
{
−
(
x−β
s

)−α} (
N−1
N
α− 1

)−1

Lomax
(
1 + x

λ

)−(α+1) (
N−1
N
α− 1

)−1

Pareto x−(α+1)
(
N−1
N
α− 1

)−1

Student
(

1 + x2

α

)−(α+1)/2 (
N−1
N
α− 1

)−1

In above probability densities are given up to a scaling factor and implicit constraints are enforced
to ensure they are well defined with finite mean. Moreover, N > α

α−1 in all of the above.

Table 2. Distributions with logarithmic impact

Distribution Density Asymptotics
Exponential exp(−λx) N

λ(N−1)
log x

Gaussian exp(−(x− µ)2/Σ)
√

2ΣN
N−1

√
log x

Inverse Gaussian x−3/2 exp
(
−λ(x−µ)2

2µ2x

)
2Nµ2

λ(N−1)
log x

Normal Inverse Gaussian K1(λζ(x))
πζ(x)

exp(δγ + β(x− µ) N
(N−1)(λ+β−1)

log x

Weibull xd−1 exp(−λpxp)
(

N
λp(N−1)

)1/p

(log x)1/p

In above probability densities are given up to a scaling factor and implicit constraints are enforced
to ensure they are well defined with finite mean. Moreover, ζ(x) := δ2 + (x− µ)2 for the Normal

Inverse Gaussian distribution.
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Figure 4. Functional form of the equilibrium for Gaussian signals, for N = 25.

7.2.1. Gaussian signals. We assume that the mean of V equals 0. The numerical
solution is shown in Figure 4 together with the

√
log x asymptotic behavior.
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7.2.2. Log-normal signals. For a log-normal distribution, the mean is an arbitrary

scale factor which we set to 1 and, thus, the density is p(v) = 1√
2πΣv

e−
(ln(v)+Σ/2)2

2Σ .

We choose a large signal variance
√

Σ = 10% in our numerical experiments below,
illustrative of an earnings announcement for a high-volatility name. Moreover, we
translate the distribution by 1 so that the mean is 0. The equilibrium solutions for
h, F and IS are shown for various values of N in Figure 5.
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Eq ilibri m: Log-normal signals

Figure 5. Equilibrium solutions for log-normal signals for the cases of an
insider (N = 1), and shared signals with N = 2, N = 25. The discontinuity
of h(x) at the origin is the bid-ask spread.

The log-normal distribution does not satisfy the conditions of Theorem 5.1. Thus,
we do not have a theoretical prediction for the asymptotic market impact. However,
we find numerically that the asymptotic form is

√
log(x), in Figure 6. Evidence for

more concave impact function than the square root was reported in [3]. In addition,
one of us (HW) has had the opportunity to consider the shape of the impact function
for asset managers with different order generation processes. We cite two relevant
(unpublished) examples here. The impact function for a quantitative fund with no
discernible intraday alpha is closest to a logarithmic one consistent with the findings
of Bershova and Rakhlin. However, for a manager with non-discretionary executions
rich in small-cap biopharmaceutical trades and other hard-to-execute orders, we found
the log function to be too concave to explain the impact of large trades whereas a
square root function fit the data well.

The aggregate profit is a decreasing function of the number of informed investors
and we show the profit as a function of trade size below for various values of N
in Figure 7. Moreover, Figure 8 shows how the spread depends on the number of
informed investors.
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Figure 6. Functional form of the equilibrium for Log-normal signals, for
N = 25. The log-normal distribution is not symmetric and this results in a
notable difference between the positive and negative branches for cost as a
function of trade size.
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Figure 7. Aggregate investor profit per share for Log-normal signals.

7.2.3. Student signals. We explore the effect of fat tails in the signal distribution
next. We consider the case where signals drawn from a Student t-distribution with
α = 3, p(v) ∼ 1

(1+ v2

Σ
)2

. This is reminiscent of some empirical studies such as [22].

However, we note that we are assuming a Student distribution of arithmetic returns.
The power-law tail of geometric returns in Plerou’s study implies an infinite expected
price.

In view of Table 1 the expected asymptotics is F (x) ∼ x1/(α−1− α
N

). Moreover, our
conjecture predicts no equilibrium when N ≤ α

α−1
= 3

2
. Indeed, no numerical solution

for F can be found when N = 1. The equilibrium is asymptotically parabolic for
N = 2 (theoretical ρ+ = 2), linear for N = 3 (theoretical ρ+ = 1) and concave
for N ≥ 4. The numerical solutions are shown in Figure 9. For N = 25, the
asymptotic exponent is F (x) ∼ x25/47 according to our theory. The numerical solution
is compared to this prediction in Figure 10.
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Figure 9. Equilibrium solutions for Student signals for the cases N = 2,
N = 3 and N = 25.

The case of power-law tailed signal distributions was considered previously by
Farmer et al. in the case of perfect competition between insiders [9]. One can view
their model as the limiting case of the one considered herein as N →∞ in case of a
Pareto-tailed distribution with exponent 3.
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8. Same-price allocation

An alternative framework also of interest to practitioners is one where portfolio
managers and noise traders submit their orders to an aggregator, which merges the
orders into a block (“metaorder”, in the literature), liquidates X+Z for some average
price, and allocates shares with the same average price to noise traders and insiders.
We refer to this framework as same-price allocation. The expected profit of the
insiders in this case is

Ev

[
V X − X

X + Z

∫ X+Z

0

h(y)dy

]
. (8.36)

In this case the corresponding first order condition for the maximization problem
is given by V = F (X∗), where

F (x) = Ev

[
x

Z + x

h(Z + x)− h̄(Z + x)

N
+ h̄(Z + x)

]
,

where h̄(x) = 1
x

∫ x
0
h(y)dy and h is given by the tail expectation as above.

The problem with this first order condition is that it is not clear whether it yields
a maximum as F defined above is not necessarily increasing. However, our numerical
experiments always suggest an increasing solution yielding a ‘numerical’ proof of the
existence of equilibrium.

The solutions are similar in form and share the same asymptotic behavior for both
bounded and unbounded signal distributions. We show in Figure 11 as an example
the case of log-normal signals.

Figure 12 compares the same-price allocation model to the trading desk model in
the case of Gaussian signals. The dotted lines represent the same-price liquidation
equilibria. Market impact is somewhat greater with same-price liquidation than for
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Figure 11. Equilibrium solutions for same-price liquidation with log-
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the trading desk model, for N > 1. For the insider case, the two are essentially
identical.
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Figure 12. Equilibrium for Gaussian signals, comparing the same-price
and trading desk liquidation models (N = 1, 2, 25). Dotted lines represent
the same-price liquidation equilibrium.

9. Conclusion

Since empirical data on very large trades is sparse and often biased, it is important
to develop a theoretical understanding of the process in order to discriminate between
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various proposals for the shape of the impact function. We proposed an asymmetric
information based equilibrium model where informed investors draw a signal and send
their orders along with noise traders to a trading desk that executes at the net cost
to liquidate the aggregate amount against a limit order book. Our results provide the
micro-foundations for a large number of empirical findings including those on price
impact and volume.

We found that market impact is asymptotically a power of trade size if the signal
has fat tails, whereas the impact becomes of the form (log x)1/p for some p > 0 for
lighter tails. Moreover, for fat-tailed signal distributions, an equilibrium only exists if
there is a sufficient amount of competition. The trade volume also obeys a power law
in equilibrium. The spread decreases with the amount of noise trading and, although
we do not have an analytic proof, the bid-ask spread seems to be an increasing and
bounded function of the number of informed investors.

A relevant and arguably more realistic extension of our framework while still re-
maining in a static setting is to consider the scenario in which the insiders receive
different but possibly correlated signals regarding the liquidation value. On the other
hand, due to our assumption that the insiders’ orders arrive simultaneously to the
desk, the optimization problem of each insider requires the solution of a non-linear
filtering problem even in the case of Gaussian signals.

In reality limit order markets are dynamic and thus the order books change over
time reflecting the changes in market parameters. The analytic characterization of the
equilibrium in the current framework in terms of the fixed point of an integral operator
makes us optimistic regarding an extension of the current framework to a dynamic
setting in continuous time. However, continuous trading brings extra flexibilities to
portfolio choice - including the option to place a market or limit order at each trade -
resulting in a more complicated model. This extension, though extremely interesting,
will thus be left for future research.

Appendix A. Auxiliary results and proofs

Lemma A.1. Ψ+ and Ψ− are non-decreasing on the support of V .

Proof. Suppose x < y. Note that Ψ+ is non-decreasing if E[V 1[V >y]]P (V > x) −
E[V 1[V >x]]P (V > y) ≥ 0. Indeed, the left side of the above equals

E[(V − y)1[V >y]]P (V > x)− E[(V − y)1[V >x]]P (V > y)

= E[(V − y)1[V >y]] (P (V > x)− P (V > y))− E[(V − y)1[x<V≤y]]P (V > y),

which is non-negative since V − y ≤ 0 on the set [x < V ≤ y].
The second assertion is proved analogously. �

Proof of Proposition 2.1. (1) Let g(x) := Ev[h(x+Z)]. By direct differentiation, the
expression (2.4) implies

xF (x) = x
g(x)

N
+
N − 1

N

∫ x

0

g(y)dy, (A.37)

which is equivalent to the ODE xg
′(x)
N

+ g = F (x) + xF ′(x).
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Recall that g(0) = Ev[h(Z)] = F (0) by construction. Thus, the unique solution
of the above ODE with this initial condition is given by

g(x) = NF (x)−N(N − 1)

xN

∫ x

0

F (y)yN−1dy = F (x)+
N(N − 1)

xN

∫ x

0

(F (x)−F (y))yN−1dy.

This yields (2.6) after a change of variable.
(2) The above also yields (2.7) due to the first order condition F (X∗) = V . The

remaining assertions are direct consequences of the strict monotonicity of F .
(3) Note that the total expected profit is given by∫ X∗

0

(v − Ev[h(y + Z)])dy =

∫ X∗

0

(v − g(y))dy

= vX∗ − N

N − 1

(
X∗F (X∗)−X∗ g(X∗)

N

)
= − vX∗

N − 1
+
X∗g(X∗)

N − 1

=
X∗

N − 1
(g(X∗)− v) = N

∫ X∗

0

(v − F (y))
( y

X∗

)N−1

dy,

where the second equality follows from (A.37) and the third is due to F (X∗) = V .
(4) Observe that∫ Z

0

h(y)dy =

∫ ∞
0

h(y)1[Z≥y]dy −
∫ 0

−∞
h(y)1[Z≤y]dy.

Taking expectations and using the symmetry of Z we obtain

E

[∫ Z

0

h(y)dy

]
=

∫ ∞
0

(h(y)− h(−y))P (Z ≥ y)dy =

∫ ∞
0

h(y)− h(−y)

2
P (|Z| ≥ y)dy

and prove the first claim. The second claim follows directly from integration by
parts.

�Proof of Proposition 2.2. Note that E[h(y + Z)] = Ev[h(y + Z)] for all y. We shall
show the result for N > 1, the remaining case is similar and easier. Using the first
representation in (2.6), we obtain∫ x

0

E[h(y + Z)]dy = N

∫ x

0

F (y)dy −N(N − 1)

∫ x

0

dyy−N
∫ y

0

dzF (z)zN−1

= N

∫ x

0

F (y)dy −N(N − 1)

∫ x

0

dzF (z)zN−1

∫ x

z

dyy−N

= N

∫ x

0

F (y)dy +N

∫ x

0

dzF (z)zN−1
(
x−N+1 − z−N+1

)
= N

∫ x

0

dzF (z)
(z
x

)N−1

= xN

∫ 1

0

dzF (xz)zN−1,

which yields the first assertion once divided by x. The remaining claims follow from
F (xy) < F (x) (resp. F (xy) > F (x)) for x > 0 (resp. x < 0) and for all y ∈ (0, 1)
since F is strictly increasing. �
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Proof of Lemma 3.1. We give the proof for the solutions of (3.14), the analogous
property of the solutions of (6.30) can be proven similarly.

Monotone convergence theorem in conjunction with Assumption 3.1 implies

lim
x→∞

∫ ∞
−∞

q(σ, z)φF (x+ z)dz =

∫ ∞
−∞

q(σ, z) lim
x→∞

φF (x+ z)dz.

Moreover, limx→∞ φF (x+ z) = Ψ+(F (∞)−). To see this, first note that

φ+
F (z + x) =

∫∞
−∞Ψ+(F (u))Π+(F (u)) 1√

2πσ2
exp

(
− (x+z−u)2

2σ2

)
du∫∞

−∞Π+(F (u)) 1√
2πσ2

exp
(
− (x+z−u)2

2σ2

)
du

.

Next, the measure
Π+(F (u)q(σ, z + x− u)du∫∞
−∞Π+(F (u)q(σ, z + x− u)du

converges to the point mass at ∞. Indeed, for any 0 < a <∞, we have∫ a
−∞Π+(F (u)q(σ, z + x− u)du∫∞
−∞Π+(F (u)q(σ, z + x− u)du

=

∫ a
−∞Π+(F (u) exp

(
− u2

2σ2 + u(z+x)
σ2

)
du∫∞

−∞Π+(F (u) exp
(
− u2

2σ2 + u(z+x)
σ2

)
du

≤
exp(a(z+x)

σ2 )
∫ a
−∞Π+(F (u) exp(− u2

2σ2 )du∫∞
2a

Π+(F (u) exp
(
− u2

2σ2 + u(z+x)
σ2

)
du

≤
exp(−a(z+x)

σ2 )
∫ a
−∞Π+(F (u) exp(− u2

2σ2 )du∫∞
2a

Π+(F (u) exp
(
− u2

2σ2

)
du

,

which converges to 0 as x→∞.
Thus, using the representation of F via (3.15), we deduce F (∞) = Ψ+(F (∞)−).

Note that changing the order of integration is justified thanks to Assumption 3.1. On
the other hand, Ψ+(x−) > x for any x < M since P (V > x) > 0 whenever x < M .
This in turn implies F (∞) = M . Similarly, limx→−∞ F (x) = m. Thus, F is strictly
increasing in view of (3.15) and Lemma 4.1 since m 6= M and, therefore, φF is not
constant. �

Appendix B. Proof of impact asymptotics

We shall first start with the asymptotics of solutions of (4.23) and (4.24) which will
later allow us to compute the asymptotics of interest.

Theorem B.1. Suppose that N > 1, −∞ < m < M < ∞, and Assumption 5.1
holds. Then, the following statements are valid:

(1) Set G := M − R, where R is any nondecreasing solution of (4.23). Then, G is

regularly varying of index ρ+ = Ψ+
x (M)−1

1−Ψ+
x (M)
N

.

(2) Set G := l − m, where l is any nondecreasing solution of (4.24). Then, G is

regularly varying of index ρ− = Ψ−x (m)−1

1−Ψ−x (m)
N

.
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Proof. Only the proof of the first statement will be given, proof of the second being
similar. We can assume without loss of generality that E[V ] = 0 since, otherwise, we
can replace V by V − E[V ] and redefine Ψ+ and R accordingly.

By means of a straightforward change of variable we obtain for x > 0

G(αx)

G(α)
=

1

N

∫ ∞
0

dzq
(σ
α
, x− z

)∫ ∞
−∞

dyq
(σ
α
, z − y

)M −Ψ+(R(αy))

M −R(α)

+
N − 1

N

∫ ∞
0

dzq̄
(σ
α
, x, z

)∫ ∞
−∞

dyq
(σ
α
, y − z

)M −Ψ+(R(αy))

M −R(α)
.(B.38)

+
M

M −R(α)

∫ 0

−∞
dz

{
1

N
q
(σ
α
, x− z

)
+
N − 1

N
q̄
(σ
α
, x, z

)}
Observe that the measure q(σ

α
, x− z)dz converges to the Dirac measure at point x

as α→∞.

Step 1: For y > 0
(M −Ψ+(R(αy))

M −R(α)
=

(M −R(αy))Ψ+
x (y∗)

M −R(α)

for some y∗ ≥ R(αy) by the Mean Value Theorem, where Ψ+
x stands for the

derivative of Ψ+, since Ψ+(M) = M . Thus,

lim
α→∞

(M −Ψ+(R(αy))

M −R(α)
=

(M −R(αy))Ψ+
x (y∗)

M −R(α)
= Ψ+

x (M) lim
α→∞

G(αy)

G(α)
(B.39)

as R(∞) = M .

Step 2: Let γ∗(x) := lim infα→∞
G(αx)
G(α)

. Then, in view of the first step, Fatou’s lemma

yields

γ∗(x) ≥ Ψ+
x (M)

N
γ∗(x) +

N − 1

Nx
Ψ+
x (M)

∫ x

0

γ∗(y)dy.

Thus, if γ∗(x) = 0 for some x > 0, it must be 0 for almost all x > 0. However,
γ∗(x) ≥ 1 for all x ∈ (0, 1) since G is decreasing. Thus, γ∗ > 0 for all x > 0. In
particular, γ∗ is bounded away from 0 on [0, n] for any n ≥ 1.

Step 3: It follows from Step 2 and Corollary 2.0.5 in [5] that

xd

C
≤ G(αx)

G(α)
≤ Cxc forx ≥ 1 and α ≥ α0

for some constants c, d, C and α0. Moreover, since for x < 1 we have

G(αx)

G(α)
=

(
G(αxx−1)

G(αx))

)−1

,

and αx > α0 for large enough α, we deduce that the mapping (α, x) 7→ G(αx)
G(α)

is

bounded when x belongs to bounded intervals in (0,∞).
Step 4: Moreover,

(M −R(α))α ≥ N − 1

N

∫ α

0

du

∫ ∞
0

dzq(σ, u− z)

∫ ∞
−∞

dy(M −Ψ+(R(y)))q(σ, z − y),
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which in turn implies

1

M −R(α)
≤ Kα, α > 1 for some K <∞. (B.40)

Since G(αx)
G(α)

is bounded when x belongs to bounded intervals in (0,∞) by Step 3,

we obtain, for any ε > 0,

lim
α→∞

∫ ∞
−∞

dzq
(σ
α
, x−z

)∫ z+ε

z−ε
dyq
(σ
α
, z−y

)M −Ψ+(R(αy))

M −R(α)
= Ψ+

x (M)γ(x), (B.41)

where γ(x) := limα→∞
G(αx)
G(α)

in view of (B.39) provided that the limit exists.

Furthermore, in view of (B.40) we also have∫ ∞
−∞

dzq
(σ
α
, x− z

)∫
R\(z−ε,z+ε)

dyq
(σ
α
, z − y

)M −Ψ+(R(αy))

M −R(α)

≤ KM

∫ ∞
−∞

dzq
(σ
α
, x− z

)∫
R\(z−ε,z+ε)

dyαq
(σ
α
, z − y

)
→ 0 as α→∞. (B.42)

Step 5: Applying the arguments of Step 4 to the second and the third integrals in (B.38)
now shows that for x > 0

γ(x) =
Ψ+
x (M)

N
γ(x) +

N − 1

Nx
Ψ+
x (M)

∫ x

0

γ(y)dy. (B.43)

In particular, limα→∞
G(αx)
G(α)

exists. Using the initial condition that γ(1) = 1,

direct manipulations show that

γ(x) = xρ
+

.

�

Theorem B.2. Assume that N > 1, −∞ < m < M < ∞, Π+ has a continuous
derivative and Assumption 5.1 holds. Then, the following statements are valid:

(1) Suppose that Ψ+
x (M) = 1 and there exist an integer n ≥ 1 and a real constant

k ∈ (0,∞) such that

lim
x→M

Ψ+(x)− x
(M − x)n+1

=
1

k
.

Then, the following asymptotics9 hold:

M −R(x) ∼
(

N

N − 1

n

k

)− 1
n

(log x)−
1
n , x→∞, (B.44)

where R is any solution of (4.23).

9We write f(x) ∼ g(x), x→ ±∞ if limx→±∞
f(x)
g(x) = 1.
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(2) Suppose that Ψ−x (m) = 1 and there exist an integer n ≥ 1 and a real constant
k ∈ (0,∞) such that

lim
x→m

x−Ψ−(x)

(x−m)n+1
=

1

k
.

Then

l(x)−m ∼
(

N

N − 1

n

k

)− 1
n

(log |x|)−
1
n , x→ −∞, (B.45)

where l is any solution of (4.24).

Proof. We shall again only give the proof the first statement and assume without loss
of generality that E[V ] = 0. For any α > 0 define

r(α, x) :=
R(αx)−R(α)

(M −R(α))n+1
.

Straightforward manipulations similar to the ones employed in the proof of Theorem
B.1 leads to

r(α, x) = − R(α)

(M −R(α))n+1

∫ 0

−∞
dz

{
1

N
q
(σ
α
, x− z

)
+
N − 1

N
q̄
(σ
α
, x, z

)}
+

∫ ∞
0

dz

{
1

N
q
(σ
α
, x− z

)
+
N − 1

N
q̄
(σ
α
, x, z

)}∫ ∞
1

dyq
(σ
α
, z − y

)Ψ+(R(αy))−R(α)

(M −R(α))n+1

+

∫ ∞
0

dz

{
1

N
q
(σ
α
, x− z

)
+
N − 1

N
q̄
(σ
α
, x, z

)}∫ 1

−∞
dyq
(σ
α
, z − y

)Ψ+(R(αy))−R(α)

(M −R(α))n+1

≤
∫ ∞

0

dz

{
1

N
q
(σ
α
, x− z

)
+
N − 1

N
q̄
(σ
α
, x, z

)}∫ ∞
1

dyq
(σ
α
, z − y

)Ψ+(R(αy))−R(α)

(M −R(α))n+1

+

∫ ∞
0

dz

{
1

N
q
(σ
α
, x− z

)
+
N − 1

N
q̄
(σ
α
, x, z

)}∫ 1

−∞
dyq
(σ
α
, z − y

)Ψ+(R(α))−R(α)

(M −R(α))n+1

≤ K +

∫ ∞
0

dz

{
1

N
q
(σ
α
, x− z

)
+
N − 1

N
q̄
(σ
α
, x, z

)}∫ ∞
1

dyq
(σ
α
, z − y

)Ψ+(R(αy))−R(α)

(M −R(α))n+1

for some K > 0 independent of α, where the first inequality follows from that R ≥
E[V ] = 0 and R(αy) ≤ R(α) for y ≤ 1 and the second is due to the boundedness of
Ψ+(R(αy))−R(α)

(M−R(α))n+1 .

Moreover, for y > 1

Ψ+(R(αy))−R(α)

(M −R(α))n+1
=

Ψ+(R(αy))−R(αy)

(M −R(α))n+1
+ r(α, y)

≤ Ψ+(R(αy))−R(αy)

(M −R(αy))n+1
+ r(α, y)
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due to the monotonicity of R. Thus, utilizing the boundedness of Ψ+(R(αy))−R(α)
(M−R(α))n+1 once

more, we arrive at

r(α, x) ≤ κ+

∫ ∞
0

dz

{
1

N
q
(σ
α
, x− z

)
+
N − 1

N
q̄
(σ
α
, x, z

)}∫ ∞
1

dyq
(σ
α
, z−y

)
r(α, y).

(B.46)
for some κ ∈ (0,∞) that is independent of α.

Step 1: Let κ be as above and consider the operator T : C([1,∞), [0,∞))→ C([1,∞), [0,∞))
defined by

Tf(x) = κ+

∫ ∞
0

dz

{
1

N
q
(σ
α
, x− z

)
+
N − 1

N
q̄
(σ
α
, x, z

)}∫ ∞
1

dyq
(σ
α
, z − y

)
f(y).

Clearly T is increasing, i.e. Tf ≥ Tg if f ≥ g.
Step 2: For z ≥ 0 and c ∈ R,∫ ∞

c

dyq
(σ
α
, z − y

)
y =

σ2

α2
q
(σ
α
, z − c

)
+ z

∫ ∞
c−z

dyq
(σ
α
, y
)
≤ z +

σ

α
√

2π
. (B.47)

Thus, if f(x) = βx+ δ for some β > 0 and δ ≥ 0, we have

Tf(x) ≤ δ + κ+

√
2σβ

α
√
π

+
βx

N
+ β

N − 1

xN

∫ x

0

ydy

= δ + κ+

√
2σβ

α
√
π

+
βx(N + 1)

2N
≤ δ + κ+ β

(√
2σ

α
√
π

+
3x

4

)
,

where the last inequality is due to the hypothesis that N ≥ 2.

In particular, given β = γκ for some γ > 4, Tf ≤ f whenever α ≥ 4
√

2σγ√
π(γ−4)

.

Step 3: Define

D(α) := {f : [1,∞)→ [0,∞) : f is continuous and f(x) ≤ 5κx+
1

(M −R(α))n
∀x ≥ 1}.

and observe that the restriction of r(α, ·) to [1,∞) belongs to D(α) for all α > 0.
In view of Step 2 we have that TD(α) ⊂ D(α) for large enough α. Thus, it

admits a fixed point in D(α) for large enough α by Tarski’s theorem (Theorem 1
in [27]). In fact, it admits a unique fixed point. Indeed, if f and g are two fixed
points of T in D(α),

(f−g)(x) =

∫ ∞
0

dz

{
1

N
q
(σ
α
, x− z

)
+
N − 1

N
q̄
(σ
α
, x, z

)}∫ ∞
1

dyq
(σ
α
, z−y

)
(f−g)(y).

Thus,

inf
x≥1

(f − g)(x) ≥ inf
x≥1

(f − g)(x) inf
x≥1

∫ ∞
0

dz

{
1

N
q
(σ
α
, x− z

)
+
N − 1

N
q̄
(σ
α
, x, z

)}∫ ∞
1

dyq
(σ
α
, z − y

)
= c inf

x≥1
(f − g)(x)

for some c ∈ (0, 1). Since infx≥1(f − g)(x) < ∞, the above implies infx≥1(f −
g)(x) ≤ 0. Applying the same argument to g − f , we deduce f = g.
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Moreover, taking f ∗(x) = 5κx and utilizing the previous step we deduce that
the unique fixed point is bounded from above by f ∗. Theorem 1 in [27] now yields
that r(α, ·) ≤ f ∗ for large enough α in view of (B.46).

Step 4: In view of Step 3 we have that r(α, x) ≤ 10κ for all x ∈ [1, 2] for large enough
α. Thus, Theorem 3.1.5 in [5] yields r(α, ·) is bounded in bounded subintervals
of (0,∞) uniformly in α.

Step 5: In view of Step 4 and using arguments similar to the ones used in Steps 4 and 5
of the proof of Theorem B.1, we arrive at

γ(x) =
1

k
+
γ(x)

N
+
N − 1

xN

∫ x

0

γ(y)dy,

where γ(x) := limα→∞ r(α, x) for x > 0. The unique solution of the above
equation with γ(1) = 0 is given by

γ(x) =
N

k(N − 1)
log x.

Step 6: Let g(x) := exp
(
(M −R(x))−n

)
and observe that

g(αx)

g(α)
= exp

(
(M −R(α))n − (M −R(αx))n

(M −R(α))n(M −R(αx))n

)
= exp

(
(R(αx)−R(α))

∑n−1
i=0 (M −R(α)n−1−i(M −R(αx)i

(M −R(α))n(M −R(αx))n

)

= exp

(
R(αx)−R(α)

(M −R(α))n+1

M −R(α)

M −R(αx)

n−1∑
i=0

(
M −R(α)

M −R(αx)

)n−1−i
)
,

which converges to exp(nγ(x)) as α → ∞ since M − R is slowly varying at ∞.
Thus,

g(x) = x
N
N−1

n
k s(x), x > 0.

where s is a slowly varying function at ∞. That is,

(M −R(x))−n =
N

N − 1

n

k
log x+ log s(x).

Since limx→∞
log s(x)

log x
= 0 (cf. Proposition 1.3.6 (i) and (iii) in [5]), we have

M −R(x) ∼
(

N

N − 1

n

k

)− 1
n

(log x)−
1
n , x→∞.

�

Corollary B.1. Assume that N > 1, −∞ < m < M < ∞, and Assumption 5.1
holds. Then, the following statements are valid:

(1) Suppose that there exist an integer n ≥ 0 and a real constant k ∈ (0,∞) such that

lim
x→M

Ψ+(x)− x
(M − x)n+1

=
1

k
.
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Then, Π+(R) is regularly varying at ∞ of index − Ψ+
x (M)

1−Ψ+
x (M)
N

, where R is any solu-

tion of (4.23).
(2) Suppose that there exist an integer n ≥ 0 and a real constant k ∈ (0,∞) such that

lim
x→M

x−Ψ−(x)

(x−m)n+1
=

1

k
.

Then, Π−(l) is regularly varying at −∞ of index − Ψ−x (m)

1−Ψ−x (m)
N

, where l is any solution

of (4.24).

Proof. Again we only prove the first statement. The hypothesis implies Ψ+(x)− x is
regularly varying with index n + 1 at M . Thus, Ψ+(R) − R is regularly varying of
index (n+ 1)ρ+ at ∞, which in particular implies

lim
x→∞

Ψ+(R(x))−R(x)∫∞
x

Ψ+(R(y))−R(y)
y

dy = − lim
x→∞

x(Ψ+
x (R(x)R′(x)−R′(x))

Ψ+(R(x))−R(x)
= −(n+ 1)ρ+, (B.48)

in view of Theorem 1.5.11(ii) in [5].

Moreover, direct manipulations yield Π+(x) =
∫M
x Π+(y)dy

Ψ+(x)−x , which in turn implies

−Π+
x (x)

Π+(x)
= Ψ+

x (x)
Ψ+(x)−x . Therefore,

lim
x→∞

xΠ+
x (R(x))R′(x)

Π+(R(x))
= − lim

x→∞

xR′(x)Ψ+
x (R(x))

Ψ+(R(x))−R(x)

= −(n+ 1)ρ+ − lim
x→∞

xR′(x)

Ψ+(R(x))−R(x)

= −(n+ 1)ρ+ − k lim
x→∞

xR′(x)

(M −R(x))n+1
,

where the second equality follows from (B.48).
Note that if Ψ+

x (M) < 1, n = 0 and k = 1
1−Ψ+(M)

. In this case,

lim
x→∞

xR′(x)

M −R(x)
= −ρ+

by Theorem Theorem 1.5.11(ii) in [5]. Thus,

lim
x→∞

xΠ+
x (R(x))R′(x)

Π+(R(x)
= ρ+(k − 1) = − Ψ+

x (M)

1− Ψ+
x (M)
N

.

An application of Exercise 1.11.13 in [5] to 1/Π+(R) establishes the claim.
Now, suppose Ψ+

x (M) = 1 and observe that n is necessarily bigger than 0 and
ρ+ = 0 in this case. Recall the function g in Step 6 of the proof of Theorem B.2 and
note that

lim
x→∞

xg′(x)

g(x)
=

Nn

(N − 1)k
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by another application of Theorem 1.5.11(i) in [5]. Since

xg′(x)

g(x)
=

xnR′(x)

(M −R(x))n+1
,

we arrive at

lim
x→∞

xR′(x)

(M −R(x))n+1
=

N

k(N − 1)
.

Therefore,

lim
x→∞

xΠ+
x (R(x))R′(x)

Π+(R(x)
= − N

N − 1
= − Ψ+

x (M)

1− Ψ+
x (M)
N

,

and we again conclude by means of Exercise 1.11.13 in [5]. �

We are now ready to prove the asymptotics that are of our main interest.

Proof of Theorem 5.1. We shall give a proof of the first statement as the second one
can be proven along similar lines.

By means of a change of variable employed in earlier proofs we obtain for x > 0

G(αx)

G(α)
=

1

N

∫ ∞
0

dzq
(σ
α
, x− z

)∫ ∞
−∞

ν(α, z, dy)dy
M −Ψ+(F (αy))

M − F (α)

+
N − 1

N

∫ ∞
0

dzq̄
(σ
α
, x, z

)∫ ∞
−∞

ν(α, z, dy)dy
M −Ψ+(F (αy))

M − F (α)
(B.49)

+
1

M − F (α)

∫ 0

−∞
dz

{
1

N
q
(σ
α
, x− z

)
+
N − 1

N
q̄
(σ
α
, x, z

)}
φF (αz),

where

ν(α, z, dy) :=
Π+(F (αy)q

(
σ
α
, y − z

)
)∫∞

−∞ duΠ+(F (αu)q
(
σ
α
, u− z

)
)
dy. (B.50)

We shall first demonstrate that for z > 0 the measure ν(α, z, dy) converges to the
Dirac measure at point z as α→∞. Indeed, let R∗ be the maximal solution of (4.23)
and observe that for any ε > 0 and z > 0

ν(α, z, (R\(z−ε, z+ε))) =

∫
R\(z−ε,z+ε) dyΠ+(F (αy)q

(
σ
α
, y − z

)
∫∞
−∞ duΠ+(F (αu)q

(
σ
α
, u− z

) ≤

∫
R\(z−ε,z+ε) dyq

(
σ
α
, y − z

)
∫∞

0
duΠ+(R(αu)q

(
σ
α
, u− z

) ,
where the last inequality is due to the fact that F ≤ R∗ by Theorem 4.1.

Moreover, since Π+(R) is regularly varying at ∞ with some index r ≤ 0 by Corol-
lary B.1, we have Π+(R(αu) ≥ c(1 + u)r−δαr−δ for some c > 0 for all u ≥ 0 by
Proposition 1.3.6(v) in [5]. Therefore,

ν(α, z, (R\(z − ε, z + ε))) ≤
αδ−r

∫
R\(z−ε,z+ε) dyq

(
σ
α
, y − z

)
c
∫∞

0
du(1 + u)r−δq

(
σ
α
, u− z

) , (B.51)
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the right side of which converges to 0 as α→∞. Similarly, we can show

lim
α→∞

ν(α, z, (−∞, z − ε)) = 0.

Step 1: Let γ∗(x) := lim infα→∞
G(αx)
G(α)

. It follows from the same argument in Step 2

of the proof of Theorem B.1 that γ∗ is bounded away from 0 on [0, n] for any

n ≥ 1. This in turn implies the mapping (α, x) 7→ G(αx)
G(α)

is bounded when x

belongs to bounded intervals in (0,∞) as in Step 3 of the same proof.
Step 2: Moreover, since F ≤ R∗, (B.40) yields

1

M −R(α)
≤ Kα, α > 1 for some K <∞.

Thus, the arguments of Steps 4 and 5 of the proof of Theorem B.1 are still
applicable due to (B.51) and that Ψ−F ≤ E[V ]. Consequently, γ still satisfies

(B.43), where γ(x) = limx→∞
G(αx)
G(α)

. In particular, γ(x) = xρ
+

.

Step 3: If Ψ+
x (M), the proof of Theorem B.2 can be applied verbatim once we show

that f(α, ·) is bounded in [1, 2] uniformly in α, where

f(α, x) :=
F (αx)− F (α)

(M − F (α))n+1
.

Since F (α) is eventually larger than E[V ] and φF (z) ≤ E[V ] for z < 0, we
have for large enough α

f(α, x) =

∫ 0

−∞
dz

{
1

N
q
(σ
α
, x− z

)
+
N − 1

N
q̄
(σ
α
, x, z

)} φF (αz)− F (α)

(M − F (α))n+1

+

∫ ∞
0

dz

{
1

N
q
(σ
α
, x− z

)
+
N − 1

N
q̄
(σ
α
, x, z

)}∫ ∞
−∞

ν(α, z, dy)
Ψ+(F (αy))− F (α)

(M − F (α))n+1

≤
∫ ∞

0

dz

{
1

N
q
(σ
α
, x− z

)
+
N − 1

N
q̄
(σ
α
, x, z

)}∫ ∞
−∞

q
(σ
α
, z − y

)Ψ+(F (αy))− F (α)

(M − F (α))n+1
,

where the last inequality follows from Part (4) of Lemma 4.1 since Ψ+(F (αy))
is increasing in y for positive α. Thus, f(α, ·) can be shown to be bounded
by the same function that bounds r(α, ·) introduces in the proof of Theorem
B.2. Repeating the remaining arguments therein yields the claim.

�

Proof of Corollary 5.1. It follows from Theorem 3.1 that F ∗ must solve (3.14). In
particular F ∗ is regularly varying at ∞ of order ρ+.

In view of Proposition 2.2 we have

M − IS∗(x)

M − F ∗(x)
= N

∫ 1

0

M − F ∗(xy)

M − F ∗(x)
yN−1dy =

N
∫ x

0
(M − F ∗(y))yN−1dy

xN(M − F ∗(x))
.

Observe that limy→∞(M − F ∗(y))y−ρ
+ε = ∞ by Proposition 1.3.6 (v) in [5]. Thus,∫∞

0
(M − F ∗(y))yN−1dy = ∞. This justifies the application of the L’Hôpital rule to
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arrive at

lim
x→∞

M − IS∗(x)

M − F ∗(x)
= lim

x→∞

N(M − F ∗(x))xN−1

NxN−1(M − F ∗(x))− xNF ∗x (x)

=
1

1− limx→∞
xF ∗x (x)

N(M−F ∗(x))

=
1

1 + ρ+

N

=
N

N + ρ+
,

where the third equality follows from Exercise 1.11.13 applied to 1/(M − F ).
Asymptotic relationship near −∞ is proved the same way. �
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