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Putting the Price in Asset Pricing

Abstract

We propose a novel way to estimate a portfolio’s abnormal price, the percentage

gap between price and the present value of dividends computed with a chosen asset

pricing model. Our method, based on a novel identity, resembles the time-series esti-

mator of abnormal returns, avoids the issues in alternative approaches, and clarifies the

role of risk and mispricing in long-horizon returns. We apply our techniques to study

the cross-section of price levels relative to the CAPM, finding that a single characteris-

tic dubbed adjusted value provides a parsimonious model of CAPM-implied abnormal

price.

Keywords: price level, mispricing metric, novel identity, stochastic discount factor, CAPM
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How well does an asset pricing model explain the observed price levels of stocks? And which

stock characteristics signal model-specific abnormal price, the deviation of price from the present

value of future dividends?1 These are central questions in finance, since stock price levels can

drive the financing and investment decisions of firms as well as the portfolio decisions of long-

term buy-and-hold investors. Understanding stock price levels can also reveal whether abnormal

returns on a given expected return anomaly are earned on price convergence or divergence.

The techniques with which to study asset price levels at our disposal are extremely limited.

Since discount rates vary over time, abnormal price cannot simply be inferred from short-horizon

abnormal returns (alphas), the literature’s traditional focus. Cohen, Polk, and Vuolteenaho (2009)

proposed an approximate estimator of abnormal price that nonetheless relies on strong assumptions

about the data. An estimator based on directly discounting subsequent dividends and a terminal

cash flow, as in van Binsbergen, Boons, Opp, and Tamoni (2023), can be significantly biased and

makes statistical inference challenging due to a serious overlapping observations issue.

Our contribution is to develop a new estimator of abnormal price. The estimator resembles the

time-series alpha estimator and avoids the issues in alternative approaches. Applying our tech-

niques, we document empirical facts about the cross-section of stock price levels. (i) The CAPM

explains some, but not all, of the cross-sectional variation in stock price levels. (ii) Net issuance,

investment, and beta predict significant CAPM-implied abnormal price. (iii) The classic momen-

tum strategy bets on overpriced stocks. (iv) A single characteristic that we dub adjusted value

provides a parsimonious model of CAPM abnormal price.

We define a portfolio’s average formation-period δ—which we also call delta, abnormal price,

or simply mispricing—as follows:

δ ≡ E
[

Pt −Vt

Pt

]
with Vt = Et

[
∞

∑
j=1

M̃t,t+ jDt+ j

]
, (1)

where t is the portfolio-formation period, Pt is the portfolio’s market price at t, and Vt is the present

1Abnormal price could signal either a misspecification of the model of risk or an actual distortion in asset price
levels. That is, like abnormal returns, abnormal price is subject to the joint hypothesis problem emphasized in Fama
(1970).
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value of post-formation dividends
{

Dt+ j
}∞

j=1 with respect to the candidate cumulative stochastic

discount factor (SDF) M̃t,t+ j implied by a chosen asset pricing model of risk. Abnormal price (δ )

is a price-level analogue of short-horizon abnormal return (α) in a return analysis and is specific

to the asset pricing model used to specify M̃, just like α .2

We estimate δ via a novel exact identity expressing today’s abnormal price using post-formation

buy-and-hold excess returns. For intuition, consider a portfolio that is currently overpriced relative

to an asset pricing model. If that overpricing undergoes a subsequent “correction,” the capital gain

component of future returns must be low on a risk-adjusted basis. If, on the other hand, the price

remains elevated—which our identity also allows for—the dividend yield component of future

returns must be low on a risk-adjusted basis. In both cases, we expect initial overpricing to be

reflected in lower subsequent risk-adjusted returns, an idea our identity formalizes.

Applying our novel identity, we derive a calendar-time estimator of δ , denoted δ̂ , based on the

portfolio’s post-formation buy-and-hold excess returns:

δ̂ =
1
T

T

∑
t=1

δ̃t with δ̃t =−
J

∑
j=1

M̃t− j,t
P(t− j),t−1
P(t− j),t− j

Re
(t− j),t , (2)

where t here indexes the month in which returns occur (i.e., calendar time) and the (t − j) argument

in the subscript indicates that the particular cumulative capital gain (
P(t− j),t−1
P(t− j),t− j

) or one-month excess

return (Re
(t− j),t) is earned on buying and holding a portfolio formed at time t − j. Using J = 15

years (180 months) turns equation (2) into an estimator of δ , whereas using J = 1 month reduces

it to the conventional alpha estimator, α̂ = 1
T ∑

T
t=1 M̃tRe

t .3

Our abnormal price estimator in equation (2) has three advantages relative to estimators in the

literature. First, estimating δ̂ with excess (rather than gross) returns prevents measurement errors

in the candidate M̃ from materially biasing δ̂ , since it forces M̃ in equation (2) to act mainly as a

risk adjustment rather than a time discount. This benefit is similar to the way using excess returns

in the expected return framework allows researchers to focus on risk adjustment rather than time

2This perspective on M̃ is similar to that of Hansen and Jagannathan (1991, 1997): δt measures the abnormal
component of Pt relative to a potentially misspecified candidate model of risk, M̃.

3This correspondence holds after a sign flip and an interest rate adjustment 1/M̃t .
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discount (p.9 of Cochrane (2009)). Second, equation (2) avoids using overlapping observations

and minimizes serial correlations, since each δ̃t combines the contemporaneous time-t returns on

portfolios formed in prior periods (t − 1, t − 2, t − 3, ...). Third, our estimator implies a natural

measure of long-horizon return that can be decomposed into “risk” and “abnormal price” (δ ) com-

ponents, facilitating the parallel between the expected return and price frameworks. In contrast, the

aforementioned dividend-based approach of van Binsbergen et al. (2023) and others leads to a bias,

has statistical inference that is challenging due to monthly discounted sums of future dividends re-

sulting in overlapping 15-year windows, and does not imply a natural measure of long-horizon risk

and return.

What is the statistical power of our price-level test? Since each time-series delta observation δ̃t

in equation (2) is a discounted cross-sectional sum of 15 years of post-formation returns, our Monte

Carlo analysis confirms that in order to reject the null of no mispricing, δ (abnormal price) must

be roughly 10 times larger in absolute value than the annualized α (abnormal return) required

for significance in a traditional return test. For example, if return volatility were such that an

annualized α of 2 to 4 percent achieves significance, we need a δ of roughly 20 to 40 percent to

find significance.4

Applying equation (2), we study cross-sectional variation in stock prices with respect to the

CAPM, providing a foundation for multifactor refinements in subsequent research. Following

Korteweg and Nagel (2016), we specify a loglinear candidate SDF and choose the SDF parameters

to make the market portfolio’s in-sample abnormal price (δ ) and abnormal return (α) zero, just as

the time-series return regression restricts a model’s factor portfolios to have zero in-sample α’s.

Our method does not assume the portfolio’s factor betas to be constant over the post-formation

months and instead allows these betas—computed implicitly as part of estimation—to vary over

different post-formation months. Based on Monte Carlo analysis, we recommend GMM standard

errors with a Newey-West bandwidth of 24 months.

Our initial analysis focuses on two signals recently studied in the price-level context: book-

4Interestingly, this finding provides conceptual and statistical grounds supporting Black (1986)’s conjecture that
markets are efficient if prices are within a factor of two of intrinsic value.

3



to-market (B/M) and quality which, according to Golubov and Konstantinidi (2019) and Asness,

Frazzini, and Pedersen (2019) respectively, predict α precisely because they proxy for δ . In isola-

tion, however, we find that neither is a statistically significant signal of CAPM δ (see Cohen, Polk,

and Vuolteenaho (2009) for similar evidence on B/M). A quintile sort on quality generates an es-

timated δ variation of just 11.4 percentage points, whereas B/M generates a larger but statistically

insignificant spread of 27.2 percentage points.

Next, we combine information about price, profitability, and CAPM risk to develop a simple

novel characteristic signaling abnormal price.5 This signal—dubbed adjusted value—generates

variation in δ that is economically large at 51.9 percentage points and statistically significant.

Hence, adjusted value generates the sort of price variation that should attract long-term buy-and-

hold CAPM investors and challenge researchers developing asset pricing models of price levels.

Turning to portfolios sorted on seven other characteristics (net issuance, investment, accruals,

beta, size, momentum, and profitability), we document four main findings. First, net issuance

is a robust signal of abnormal price relative to the CAPM, consistent with firm managers timing

the stock market based on the perceived mispricing of their stocks relative to the CAPM. Second,

investment and beta also generate price-level variation not explained by the CAPM. Third, on

average, momentum bets on overpriced stocks despite their short-term CAPM alpha being positive.

Finally, adjusted value subsumes the ability of net issuance and investment to generate significant

δ variation, indicating that adjusted value is a parsimonious signal of CAPM abnormal price.

Relation to the literature. This paper applies a novel identity linking abnormal price to sub-

sequent returns to develop an estimator of abnormal price resembling the time-series regression

for abnormal returns. Our novel identity mapping model-specific abnormal price to subsequent

returns allows one to estimate a portfolio’s unconditional abnormal price without a structural as-

sumption on the evolution of abnormal returns, clearly departing from the existing identities in

Cohen, Polk, and Vuolteenaho (2009) or van Binsbergen and Opp (2019). Our identity achieves

this benefit within a general SDF framework by putting market price in the denominator of our
5Our new signal draws from the ideas developed in Frankel and Lee (1998), Piotroski (2000), Vuolteenaho (2002),

Piotroski and So (2012), Novy-Marx (2013), Asness, Frazzini, and Pedersen (2019), and several others. The primary
advantage of our proposed measure is its simplicity.

4



definition of mispricing, δt = 1−Vt/Pt , which allows subsequent returns—which are inversely

related to initial price—to appear in the numerator of the identity in an additively separable man-

ner. Furthermore, unlike the cumulative abnormal return (CAR) or buy-and-hold abnormal return

(BHAR) constructs, our delta measure has an exact interpretation as the price deviation from the

present value of cash flows, or, equivalently, abnormal price from the perspective of buy-and-hold

investors.

On the empirical front, Cohen, Polk, and Vuolteenaho (2009) study the cross-section of price

levels, focusing on B/M-, size-, and beta-sorted portfolios, and apply the calendar-time reformu-

lation to price-level analysis to avoid the overlapping observations issue. Cho (2020) documents

that institutional trading of return anomalies can generate abnormal price with respect to a baseline

model, as trading by those intermediaries turns alphas into higher betas with intermediary factors.

Belo, Xue, and Zhang (2013) use the relation between Tobin’s q and investment under constant re-

turns to scale to study the cross-section of price levels. Belo, Gala, Salomao, and Vitorino (2022)

introduce labor and heterogeneous capital inputs to the Belo, Xue, and Zhang framework to struc-

turally decompose the sources of firm value.

Chernov, Lochstoer, and Lundeby (2021) discipline popular linear factor models by requiring

them to price their own factors at multiple horizons. Keloharju, Linnainmaa, and Nyberg (2021)

document that discount rates on stocks tend to converge over time. van Binsbergen et al. (2023)

estimate abnormal price for 57 anomalies and correlates those estimates with investment as done

in Polk and Sapienza (2009). They estimate δ based on post-formation dividends and a terminal

value, which, as mentioned above, suffers from a potentially large bias from misspecifying the

yield curve component of the candidate SDF and is exposed to serious autocorrelation issues.

Chen and Kaniel (2021) develop a new methodology to study long-horizon expected returns.

Organization of the paper. After explaining the drawbacks of existing approaches (Section 1),

we develop a novel identity (Section 2) and a new estimator of abnormal price (Section 3). We

then present data and our empirical results on B/M, quality, and adjusted value (Section 4), extend

our analysis to other characteristic sorts (Section 5), and conclude (Section 6).
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1 Why a New Estimator of Abnormal Price?

This section discusses the drawbacks of existing techniques that our novel estimator addresses. We

begin by specifying the asset pricing environment.

1.1 Asset pricing environment

Consider a portfolio formed at time t with post-formation dividends
{

Dt+ j
}∞

j=1 and a candidate

stochastic discount factor (SDF)
{

M̃t+ j

}∞

j=1
that may or may not be the true SDF. We want to

compare the portfolio’s market price Pt to the present value of post-formation dividends discounted

using M̃, which we denote by Vt :

Vt =
∞

∑
j=1

Et

[
M̃t,t+ jDt+ j

]
, (3)

where M̃t,t+ j = Π
j
s=1M̃t+s−1,t+s is the cumulative candidate SDF. There is a base asset whose

return, denoted Rb, satisfies the fundamental asset pricing equation with respect to M̃ in all periods:

Et+ j−1

[
M̃t+ j

(
1+Rb,t+ j

)]
= 1 ∀ j. (4)

In our particular CAPM implementation, a natural choice for the base asset b is the market portfolio

itself.6 Hence, we compute excess returns with respect to returns on the market portfolio rather

than the Treasury bill.

We define (conditional) abnormal price, denoted δt , as the percentage deviation of price from

present value:

δt =
Pt −Vt

Pt
. (5)

Hence, δt > 0 if the portfolio is overpriced, and δt < 0 if it is underpriced. The range of values δt

can take is (−∞,1], the opposite of the range of abnormal returns, [−1,∞). Define log abnormal

6For a multifactor implementation of our estimator, future research may need to think carefully about the most
appropriate base asset, given that Chernov, Lochstoer, and Lundeby (2021) show that popular unconditional multifactor
models cannot simultaneously price the short- and long-horizon returns on their own factors.
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price as

δ
log
t = log(Pt)− log(Vt). (6)

We use δ ≡ E[δt ] and δ log ≡ E[δ log
t ] to denote the unconditional mean of abnormal price and log

abnormal price, respectively.

1.2 Cohen, Polk, and Vuolteenaho (2009) (CPV)

Using the decomposition of Campbell and Shiller (1988),

δ
log
t ≈−

∞

∑
j=1

ρ
j−1Et [rt+ j]−Et [rV,t+ j], (7)

where rt ≡ log(Pt +Dt)− log(Pt−1) and rV,t ≡ log(Vt +Dt)− log(Vt−1) denote log returns on price

and value, respectively, and ρ < 1 is a parameter. Equation (7) and joint lognormality implies that

long-horizon returns are related to mean log abnormal price as follows:

E

[
∞

∑
j=1

ρ
j−1Rt+ j

]
≈ E

[
∞

∑
j=1

ρ
j−1Rb,t+ j

]
+E

[
∞

∑
j=1

ρ
j−1Covt+ j−1(re

V,t+ j,−M̃t+ j)

]

+
1
2

E

[
∞

∑
j=1

ρ
j−1{Vart+ j−1(rt+ j)−Vart+ j−1(rV,t+ j)}

]
−δ

log. (8)

We provide a detailed derivation of this equation in Appendix C.2. Note that CPV estimate δ log

using a closely related equation (their Equation 9) in the cross-section of portfolios:

E

[
J

∑
j=1

ρ
j−1Rk,t+ j

]
= λ0 +λ1 β

CF
k +uk, (9)

where k indexes a portfolio, βCF
k is measured by regressing the portfolio’s long-horizon cash flows

on that of the market, with the horizon capped at J.7

7CPV highlight that tests of the CAPM may be distorted when there is market-wide mispricing. Their use of a
ROE CAPM, as motivated by the Vuolteenaho (2002) decomposition, nicely avoids this concern. Of course, we can
similarly use a ROE-based SDF in our return-based identity approach. However, mispricing in firm-level returns does
not hinder us when using the distorted covariance between returns and the candidate SDF to estimate δ based on our
identity. See Appendix C.6 for more details and a simple example that illustrates this point.
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In addition to the potentially large measurement errors when estimating βCF
k , justifying equa-

tion (9) under the null where rv = r requires strong intertemporal restrictions that guarantee

E

[
∞

∑
j=1

ρ
j−1Covt+ j−1(re

t+ j,r
mkt
t+ j)

]
=Cov

(
∞

∑
j=1

ρ
j−1re

t+ j,
∞

∑
j=1

ρ
j−1rmkt

t+ j

)
, (10)

in which case λ1 = b1Var
(

ρ j−1rmkt
t+ j

)
if the candidate SDF is given by m̃t = b0 − b1rmkt

t for the

log market return rmkt . The simplest way to guarantee equation (10) is to assume that returns are

independently and identically distributed (i.i.d.). However, assuming that returns are i.i.d. is not

only inconsistent with the properties of return data but also obviates the need to study differences

between abnormal price and short-horizon abnormal returns in the first place. Indeed, estimating

both sides of equation (10) in our sample reveals a large discrepancy arising from (i) a portfolio’s

conditional market beta covarying with market volatility (which affects the left-hand side) and (ii)

the long-run reversal effect generating negative cross-autocovariances between portfolio excess

returns and market returns.

1.3 A direct discount of post-formation cash flows

A potential estimator of δ is to directly discount post-formation dividends and a terminal cash

flow:

δ = E
[

Pt −Vt

Pt

]
≈ 1−E

[
J

∑
j=1

M̃t,t+ j
Dt+ j

Pt

]
−E

[
M̃t,t+ j

Pt+J

Pt

]
. (11)

Suppose one takes equation (11) to the data using the method of moments estimator δ̂CF
t :

δ̂
CF =

1
T

T

∑
t=1

δ̃t
CF

with δ̃t
CF

= 1−
J

∑
j=1

M̃t,t+ j
D(t),t+ j

P(t),t
− M̃t,t+ j

P(t),t+J

P(t),t
, (12)

where the notation X(t),t+ j indicates a time t + j realization of X from buying and holding a port-

folio formed at time t. The resulting dividend-based estimator of δ in equation (12) is potentially

biased and also subject to a serious overlapping observations problem.

8



To see the bias point, restate the dividend-based estimator in equation (12) using post-formation

returns (see Appendix C.6 for the equivalence):

δ̂
CF =

1
T

T

∑
t=1

δ̃t
CF

with δ̃t
CF

=−M̃t,t+ j−1
P(t),t+ j−1

P(t),t
(M̃t+ j(1+R(t),t+ j)−1). (13)

Here, getting M̃t+ j(1+R(t),t+ j)−1 close to zero on average requires getting both the risk premium

and the interest rate parts of M̃ right, and measurement error in the interest rate part of M̃ could

bias M̃t+ j(1+R(t),t+ j)− 1 in the same direction for all periods, leading to a large bias in δ̂CF .

Importantly, simply introducing a T-bill rate into M̃ is not a remedy for this issue. Indeed, van

Binsbergen et al. (2023) grant that applying their dividend-based estimator to a simple strategy of

rolling over T-bills for 15 years results in a δ̂CF of around 0.50 (i.e., 50%), despite the strategy

requiring relatively little risk adjustment, highlighting the challenge of dealing with time discounts

in price-level analyses.8 (They propose correcting for such a bias through bootstrap and a structural

model of how returns are distributed.) Applying our excess-return-based estimator in equation (2)

to the same 15-year roll-over T-bill strategy results in a δ̂ of just 0.001 (i.e., 0.1%) without having

to apply a separate bias adjustment. We return to this point about the bias in Section 3.2 after we

formally introduce our excess-return-based estimator.

Second, to understand the overlapping samples issue, note that the covariance between δ̃t
CF

observations s months apart is

Cov(δ̃CF
t , δ̃CF

t+s) =
J

∑
j=s+1

Cov(
M̃t,t+ j

P(t),t
D(t),t+ j,

M̃t+s,t+ j

P(t+s),t+s
D(t+s),t+ j) + other terms. (14)

Since both δ̃CF
t and δ̃CF

t+s depend on dividend realizations in periods t + s+ 1 through t + J, the

cross-sectional covariance in dividend yields results in severe time-series covariances. For exam-

ple, for the growth portfolio (lowest B/M portfolio in a quintile sort), the time-series of δ obser-

vations based on the cash-flow approach (δ̃t
CF

) have 1-, 5-, and 15-year sample autocorrelations

8In our sample, the event-time gross-return approach estimates the δ̂ ET,gross of the T-bill roll-over strategy to be
0.497 (49.7%), similar to the number in van Binsbergen et al. However, for other portfolios, we find that the event-time
gross-return approach typically finds estimated mispricing that is similar to our calendar-time excess-return approach.
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of 0.78, 0.34, and −0.86 whereas the corresponding autocorrelations based on our approach are

0.15, −0.05, and 0.01 (Table A3 in the Internet Appendix). Furthermore, unlike returns, dividends

on a stock are extremely serially correlated over time such that the event-time-to-calendar-time

rearrangement does not sufficiently lower the serial correlation in the δ̃t
CF

observations. This high

serial correlation of a dividend-based approach makes standard errors imprecise and inference un-

reliable.9 We also discuss this issue further in Section 3.2.

1.4 Simple long-horizon returns

If short-horizon α cannot proxy for price-level δ , could we use simple long-horizon abnormal

return measures such as the cumulative abnormal return (CAR) or buy-and-hold abnormal return

(BHAR) instead? The issue with these measures is that they put equal weight on all future abnor-

mal returns and do not differentiate among abnormal returns earned in different time periods or

states of nature. As explained in the next section, our δ estimator appropriately discounts the ab-

normal returns earned in different periods and states, which can lead to a very different magnitude

of estimated δ .

One may argue that the CAR or the BHAR could generate the direction of price distortion

and associated statistical significance that tend to be correct under the null hypothesis. However,

measuring the exact magnitude of price-level δ under the alternative hypothesis is important for

firm managers and investors who wish to use our novel estimation approach and the magnitude of

the resulting δ estimate to inform their investment/issuance decisions. For example, firm managers

may wish to quantify the extent to which a particular characteristic is historically a signal of δ from

the CAPM perspective. Similarly, long-term buy-and-hold investors would like to understand the

magnitude of the δ associated with the stocks they bought. Indeed, equity analyst reports provide

a price target and the magnitude of estimated δ on a stock. When those investors undertake that

analysis, they would not want to rely on methods like CAR or BHAR, which do not have an

interpretable magnitude under the alternative of non-zero δ and, as we emphasize and document

in our analysis in Table A5 in the Internet Appendix, can have magnitudes that depart substantially

from δ estimated using our approach.

9Panel D of Figure 2 makes this point using Monte Carlo analysis.
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2 The Mispricing Identity

Under the asset pricing environment specified in the previous section, we derive a novel identity

that yields our new estimator of abnormal price in Section 3.

2.1 The law of motion for abnormal price

The first step is to derive a simple law of motion for conditional abnormal price, δt . Equation (3)

and the law of iterated expectations imply that the fundamental asset pricing equation holds for Vt

with respect to M̃:

1 = Et

[
M̃t+1

Vt+1 +Dt+1

Vt

]
. (15)

Next, using equation (5) to substitute the empirically unobserved quantities Vt and Vt+1 with Vt =

(1−δt)Pt and Vt+1 = (1−δt+1)Pt+1,

δt = 1−Et

[
M̃t+1 (1+Rt+1)

]
+Et

[
M̃t+1

Pt+1
Pt

δt+1

]
= −Et

[
M̃t+1Re

t+1

]
+Et

[
M̃t+1

Pt+1
Pt

δt+1

]
, (16)

where the last equality uses equation (4) to express mispricing δt at time t in terms of excess return

Re
t+1 = Rt+1 −Rb,t+1 at time t +1 and mispricing δt+1 at time t +1.

Equation (16) is intuitive. It says that overpricing (underpricing) at time t is either “paid out” as

a negative (positive) abnormal return, Et

[
M̃t+1Re

t+1

]
, or contributes to overpricing (underpricing)

at time t + 1. The correct discount factor on δt+1 is the SDF times the capital gain because δt+1

has been normalized by Pt+1. δt+1 matters more at time t if it arises in a state in which Pt+1 is high

(hence the capital gain term) or has a higher present value (hence the SDF term).

2.2 The identity: linking abnormal price to subsequent returns

Our identity is derived under the relatively mild assumption of no explosive bubbles in prices.

Assumption 1. Price is not explosive with respect to the candidate M̃: lim j→∞ Et

[
M̃t,t+ jPt+ j

]
= 0.

11



By definition, an analogous condition on value V also holds: lim j→∞ Et

[
M̃t,t+ jVt+ j

]
= 0. Hence,

Assumption 1 implies that the present value of the deviation in price from value at the limit j → ∞

is zero:

lim
j→∞

Et

[
M̃t,t+ j

(
Pt+ j −Vt+ j

)]
= 0. (17)

This condition is not restrictive, as it allows for most types of price deviations from value, including

a permanent gap (e.g., δt+ j = δ ̸= 0∀ j), which our identity correctly detects.10

Iterating equation (16) forward and imposing Assumption 1 to set lim j→∞ Et

[
M̃t,t+ j

Pt+ j
Pt

δt+ j

]
=

0 expresses abnormal price as a discounted sum of subsequent excess returns.

Lemma 1. (Mispricing identity). Under Assumption 1, a portfolio’s abnormal price δt is the

negative of the sum of expected subsequent excess returns discounted by the price-weighted SDF:

δt ≡
Pt −Vt

Pt
=−

∞

∑
j=1

Et

[
M̃t,t+ j

Pt+ j−1
Pt

Re
t+ j

]
, (18)

where Pt+ j−1
Pt

and Re
t+ j are, respectively, the portfolio’s cumulative capital gains from time t to

t + j− 1 and excess returns at time t + j. Hence, mean (unconditional) abnormal price, denoted

δ , equals

δ ≡ E
[

Pt −Vt

Pt

]
=−

∞

∑
j=1

E
[
M̃t,t+ j

Pt+ j−1
Pt

Re
t+ j

]
. (19)

Equation (18) can also be stated with conditional abnormal returns. By the law of iterated ex-

pectations, Et

[
M̃t,t+ j

Pt+ j−1
Pt

Re
t+ j

]
= Et

[
M̃t,t+ j−1

Pt+ j−1
Pt

Et+ j−1

[
M̃t+ j

]
Et+ j−1

[
M̃t+ j

Et+ j−1[M̃t+ j]
Re

t+ j

]]
=

Et

[
M̃t,t+ j

Pt+ j−1
Pt

αt+ j

]
, where αt+ j denotes the conditional abnormal return.

Corollary 1. (The identity in abnormal returns). Today’s abnormal price δt is the expectation of

a simple discounted sum of subsequent conditional abnormal returns:

δt =−
∞

∑
j=1

Et

[
M̃t,t+ j

Pt+ j−1
Pt

αt+ j

]
, (20)

10Appendix C.1 in the Internet Appendix gives an example illustrating this point.
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where αt+ j is the time t + j abnormal return conditional on information at time t + j−1.

Equation (20) is intuitive. The economic surplus, relative to a candidate SDF M̃, from a

buy-and-hold strategy on a portfolio is the net present value of all subsequent abnormal payoffs:

Vt −Pt = Et

[
∑

∞
j=1 M̃t,t+ jXAbnormal

t+ j

]
. The abnormal payoff at t + j is XAbnormal

t+ j = Pt+ j−1αt+ j, the

conditional abnormal return from t + j−1 to t + j, converted into monetary payoff through a mul-

tiplication by price at time t + j− 1. Finally, divide both sides by Pt and change sign to arrive at

equation (20).

We note in passing that equation (20) is fundamentally different from an identity van Binsbergen

and Opp (2019) exploit in their quantitative analysis:

Pt =
∞

∑
j=1

Et

[
M̃t,t+ j

Π
j
k=1

(
1+α∗

t+k

)Dt+ j

]
, (21)

where 1+α∗
t+k = Et+k−1

[
M̃t+k (1+Rt+k)

]
.11 Since equation (21) writes price in the numerator

of the left-hand side, abnormal returns appear in the denominator of the identity. This choice is

innocuous for the structural approach taken in their paper but does not render a simple expression

for unconditional abnormal price as in equation (19).

2.3 Theoretical implications of the abnormal price identity

Equation (20) clarifies the exact relation between price-level δ and subsequent buy-and-hold short-

horizon αs missing in the literature, summarized as Corollary 2.

Corollary 2. (Implications of the identity). Ceteris paribus, ex-ante abnormal price δ is larger if

subsequent abnormal returns

1. are larger

2. are more persistent

3. occur sooner

11This is a discrete-time version of their continuous-time expression. See Appendix C.3 for further details.

13



4. occur in more valuable states

5. occur after relatively large capital gains

While the first two points are relatively obvious (i.e., they are present in the Campbell-Shiller

based approach of CPV, at least to some degree), the last three points emphasize that to recover

ex-ante abnormal price, one must correctly discount the subsequent abnormal returns according to

the time and state in which they occur. Put differently, the correct way to aggregate subsequent

abnormal returns to arrive at ex-ante abnormal price is clearly distinct from existing long-run return

measures such as CAR or BHAR, which do not distinguish between abnormal returns earned in

the near vs. distant future or those earned in more valuable vs. less valuable cumulative states.

Mathematically, the time discount (#3) arises because the no-explosive-bubble condition im-

plies lim j→∞ Et

[
M̃t,t+ j

Pt+ j−1
Pt

]
= 0.12 Intuitively, an abnormal return that arises in the distant future

matters less for the stock’s current price level, since such an abnormal return only affects the

discounting of the dividends to be earned in the periods that follow the abnormal return, not the

dividends to be earned prior to the timing of the abnormal return. In contrast, an abnormal return in

the immediate future affects the discounting of all future dividends and therefore matters more for

today’s stock price level. The state discount (#4 and #5) arises because the conditional abnormal

return, αt+ j, is earned on Pt+ j−1, which has a large present value if either the cumulative capital

gain has been large or the cumulative candidate SDF is high.13 While we speculate that our abnor-

mal price identity can be applied in other ways, the present paper applies the identity to derive a

return-based estimator of abnormal price discussed next.

3 A Return-Based Estimator of Abnormal Price

This section derives a return-based estimator of a portfolio’s mean formation-period abnormal

price, δ ≡ E[δt ] = E [(Pt −Vt)/Pt ], and studies its statistical properties using Monte Carlo.

12CPV effectively incorporate a time discount through the Campbell-Shiller discount parameter although their
approach does not account for the differences in cash-flow duration across different stocks.

13Since the time t+ j component of the cumulative candidate SDF, M̃t+ j, is orthogonal to αt+ j by definition, it only
generates a time discount. The covariance between αt+ j and the past cumulative state, M̃t,t+ j−1, could be nonzero.
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3.1 The identity in calendar time

To get to our abnormal price estimator, we first rearrange the terms of the identity in Lemma 1

Equation (19) to obtain an equivalent calendar-time expression for unconditional abnormal price

δ .14

Lemma 2. (Calendar-time expression for unconditional δ ). Consider a series of portfolios

formed every period based on a predetermined rule (e.g., characteristic cutoffs). Then, the port-

folio’s unconditional formation-period abnormal price, δ ≡ E
[

Pt−Vt
Pt

]
, equals the unconditional

expectation of the sum of appropriately discounted time-t excess returns on all portfolios formed

between periods t −∞ and t −1:

δ =−E

[
∞

∑
j=0

M̃t− j,t
P(t− j),t−1

P(t− j),t− j
Re
(t− j),t

]
, (22)

where
P(t− j),t

P(t− j),t− j
and Re

(t− j),t denote, respectively, the time-t realizations of the cumulative capi-

tal gain and one-period excess return on the portfolio formed at t − j. The stochastic discount

M̃t− j,t
P(t− j),t−1
P(t− j),t− j

tends to place a greater weight on portfolios formed in the recent past.

Proof. Applying equation (19) to a multi-asset portfolio implies that a portfolio’s time-t0 ex-ante

conditional abnormal price is δt0 =−∑
∞
j=0 Et0[M̃t0,t0+ j

P(t0),t0+ j−1

P(t0),t0
Re
(t0),t0+ j], where (t0) in a subscript

indicates that the quantity is from a buy-and-hold strategy on a portfolio formed at t0. Take an

unconditional expectation of both sides of the expression and use calendar time t ≡ t0+ j (the time

when the excess returns are realized) to obtain the expression in equation (22).

Figure 1 visualizes the difference between an event-time and a calendar-time approach. The

original identity in equation (19) shows that unconditional δ is the expectation of the event-time δt

that appropriately discounts the post-formation buy-and-hold monthly excess returns on a growth

14Fama (1998) emphasizes the usefulness of calendar-time techniques in his discussion of the literature on post-
event, long-horizon abnormal returns. Cohen, Polk, and Vuolteenaho (2009) modify a calendar-time approach to have
portfolio weights decline as a function of time-from-event so that the return on the resulting portfolio approximates a
buy-and-hold investor’s experience in price-level units. We thank Rob Rogers for suggesting a similar approach for
our estimation of delta using our exact identity.
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portfolio formed today, as illustrated in Panel A. In contrast, the equivalent calendar-time identity

in equation (22) shows that unconditional δ also equals the expectation of the calendar-time δt that

appropriately discounts today’s realizations of monthly excess buy-and-hold returns on growth

portfolios formed in the past, as illustrated in Panel B.

3.2 A new estimator of abnormal price

In practice, truncating the infinite-horizon sum in equation (22) at some large J provides a good

approximation, since E
[
M̃t− j,t

P(t− j),t−1
P(t− j),t− j

Re
(t− j),t

]
converges to zero as j gets large. This conver-

gence is because both the discount part (M̃t− j,t
P(t− j),t−1
P(t− j),t− j

) and the conditional abnormal return part

(Et−1

[
M̃tRe

(t− j),t

]
) of the expression converge to zero as j → ∞ due to the no-explosive-bubble

condition and the long-term convergence in (abnormal) returns of stocks (Keloharju, Linnainmaa,

and Nyberg (2021)), respectively. We find that J = 15 years works well both empirically and in

simulations (see Figure A4 in the Internet Appendix).

Our estimator of unconditional δ is therefore the sample analogue of the true unconditional δ

in equation (22) with the truncation of the infinite sum at a large finite J.

Corollary 3. (A return-based estimator of abnormal price). The unconditional abnormal price δ

of a portfolio formed on a predetermined rule (e.g., “value portfolio”) can be estimated by

δ̂ =
1
T

T

∑
t=1

δ̃t with δ̃t =−
J

∑
j=1

M̃t− j,t
P(t− j),t−1
P(t− j),t− j

Re
(t− j),t , (2)

for J = 15 years, where the time-t observation of δ is the sum of appropriately discounted time-t

excess returns on all portfolios formed on the characteristic over the last J periods. The expression

coincides with the true δ in equation (22) as J,T → ∞.

An important advantage of our estimator in equation (2) is that using excess returns rather than

gross returns for estimation makes our mispricing estimates less subject to a potential bias. This

can be best explained by drawing an analogy with the expected return framework. Researchers

typically estimate time-series abnormal returns using the excess-return formulation, E
[

M̃t
E[M̃t ]

Re
t

]
,
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not the gross-return formulation, E
[
M̃t(1+Rt)−1

]
, since the former only requires the SDF to ex-

plain the risk premium component of excess returns, whereas the latter requires the SDF to explain

both the risk premium and the interest rate components of gross returns.15 Since our excess-return

estimator of abnormal price uses δ̃t =−∑
J
j=1

(
Mt− j,t−1

P(t− j),t−1
P(t− j),t− j

)
M̃tRe

(t− j),t , getting δ̂ close to zero

mostly hinges on getting M̃tRe
(t− j),t close to zero on average through the risk premium component

of M̃, whereas the interest rate component of M̃ only affects how M̃tRe
(t− j),t is time-discounted

back to the portfolio formation period through M̃t− j,t−1
P(t− j),t−1
P(t− j),t− j

. Thus, our excess return formula-

tion ensures that measurement error in the interest rate component of M̃ does not materially affect

our δ̂ .

Indeed, the strategy that rolls over the one-month T-bill return for 15 years has drastically

different CAPM delta estimates depending on whether or not the excess return method is employed.

Table 1 shows that using the proposed calendar-time excess-return method (top left corner) leads

to an estimated delta of 0.1%, consistent with how restrictions used to estimate the candidate SDF

parameters include an implicit assumption on the T-bill return being correct. The delta remains

relatively small at 2.8% even if we use the event-time excess-return method that does not take

advantage of the calendar-time formulation (top right corner of Table 1).16

In contrast, the calendar-time gross-return method and the dividend-discount method (equiv-

alent to the event-time gross-return method) lead to large estimated deltas of 45.7% and 49.7%,

respectively (bottom left and right corners of Table 1; the latter estimate is similar to the one found

in van Binsbergen et al. (2023)). The biases remain just as large even if we use candidate SDFs

estimated using the excess return method, implying that the problem arises with the delta estimator

itself, not in the restrictions used to estimate the candidate SDF coefficients.

Another advantage of working with this return-based calendar-time estimator of δ is that its

15Cochrane (2009): “In fact, much asset pricing focuses on excess returns. Our economic understanding of interest
rate variation turns out to have little to do with our understanding of risk premia, so it is convenient to separate the two
phenomena by looking at interest rates and excess returns separately” (p.9).

16The following restrictions are used to estimate the candidate SDF parameters. (1) Calendar-time excess-return
method: M̃t(1+Rmkt

t ) = 1 and δ̂ = 0 for the market portfolio. (2) Event-time excess-return method: M̃t(1+Rmkt
t ) = 1

and δ̂ ET,excess = 0. (3) Calendar-time gross-return method: M̃t(Rmkt
t − R f ,t) = 0 and δ̂CT,gross = 0. (4) Dividend

discount method: M̃t(Rmkt
t −R f ,t) = 0 and δ̂CF = 0.

17



time-series observations, δ̃t , have very little serial correlation, simplifying the inference problem.

To see this, consider estimating a value portfolio’s δ . Then, the time-t observation of the value

portfolio’s calendar-time δ is the discounted sum of time-t excess returns on all value portfolios

formed over the last J periods: δ̃t = −∑
J
j=1 M̃t− j,t

P(t− j),t−1
P(t− j),t− j

Re
(t− j),t . Hence, even if value portfolios

formed over the span of past few years have cross-sectionally correlated buy-and-hold one-period

returns at time t, by putting all these time-t returns into a single observation δ̃t , the expression

ensures that this cross-sectional return correlation increases the variance of δ̃t instead of generat-

ing serial correlation in δ̃t . On the other hand, since the stochastic discount part of the formula,

M̃t− j,t
P(t− j),t−1
P(t− j),t− j

, must always remain positive and multiplies an excess return Re
(t− j),t that fluctuates

around zero, the overlapping nature of the stochastic discount expression does not generate an

empirically discernible serial correlation in δ̃t .

3.3 Decomposing long-horizon return: risk vs. abnormal price

Similarly to how (short-horizon) expected return can be decomposed into an abnormal return and

a risk premium, a measure of long-horizon return can be written in terms of abnormal price, long-

horizon risk, and a cumulative state adjustment component. To see this, apply the covariance

identity, E[XY ] = E[X ]E[Y ]+Cov(X ,Y ), to equation (2).

Corollary 4. (Long-horizon return and long-horizon risk). Estimated abnormal price δ̂ is a

deviation of long-horizon return from long-horizon risk, adjusted by the cumulative state in which

the risk-return distortion arises:

J

∑
j=1

ET
[
φ(t− j),t−1

]
ET

[
M̃t

]
ET

[
Re
(t− j),t

]
︸ ︷︷ ︸

“long-horizon return"

= − δ̂ +
J

∑
j=1

ET
[
φ(t− j),t−1

]
CovT

(
Re
(t− j),t ,−M̃t

)
︸ ︷︷ ︸

“long-horizon risk"

(23)

−
J

∑
j=1

ET
[
φ(t− j),t−1

]
CovT

(
φ(t− j),t−1

ET
[
φ(t− j),t−1

] ,M̃tRe
(t− j),t

)
︸ ︷︷ ︸

“cumulative state adjustment"

where subscript T denotes a sample moment over T periods and φ(t− j),t−1 ≡ M̃t− j,t−1
P(t− j),t−1
P(t− j),t− j

discounts post-formation returns in more distant future or less important states more heavily.
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Long-horizon return summarizes the term structure of discount rates on the portfolio’s cash

flows. It puts more (less) weight on returns in the more imminent (distant) future, since in a

dividend discount model, return in an imminent future (e.g., Rt+1) discounts all future cash flows,

whereas return in a more distant future (e.g., Rt+ j) discounts a smaller subset of cash flows that

arise subsequently: Pt =Et

[
Dt+1

1+Rt+1
+ Dt+2

(1+Rt+1)(1+Rt+2)
+ ...+

Dt+ j
(1+Rt+1)(1+Rt+2)...(1+Rt+ j)

+ ...
]
. By the

same logic, long-horizon risk applies different time discounts to the term structure of risk premia.

Cumulative state adjustment accounts for the way the cumulative state in which returns deviate

from risk premia—not just the time at which those deviations happen—matters for abnormal price.

To obtain a measure of risk-neutral abnormal price, simply set M̃t in equation (60) to be one.17

Definition 1. (Risk-neutral abnormal price). Estimated risk-neutral abnormal price, denoted

δ̂ RN , equals

δ̂
RN =−

J

∑
j=1

ET

[
M̃t− j,t−1

P(t− j),t−1

P(t− j),t− j
Re
(t− j),t

]
. (24)

For instance, when excess returns are taken with respect to the market portfolio, risk-neutral ab-

normal price measures the extent to which the term structure of portfolio returns differs from the

term structure of market portfolio returns, where the weight on each excess return depends on the

time and the cumulative state in which it occurs.

3.4 Implementation

To take our estimator in equation (2) to data, we use the CAPM to specify the candidate SDF.18

While analyzing short-horizon returns requires choosing risk factors, analyzing price levels re-

quires choosing both risk factors and the functional form of the candidate SDF. We follow Ko-

rteweg and Nagel (2016) and use a loglinear SDF specification, a natural choice for price-level

17We thank an anonymous referee for this suggestion. One could alternatively set M̃t to be the inverse of the average
monthly risk-free rate, but the difference is very small at our monthly frequency.

18Our analysis in subsequent sections will provide a direction for future research on multifactor models of prices.
In addition, it would be natural to check whether the intertemporal CAPM specification of Campbell, Giglio, Polk,
and Turley (2018), which incorporates stochastic volatility into the ICAPM framework of Campbell and Vuolteenaho
(2004), significantly reduces the pricing errors relative to the CAPM in standard SDF return tests. We leave a multi-
factor analysis of price levels to future work.

19



analysis given its ability to explain short-horizon returns and prices simultaneously:

M̃t− j,t = exp
(

b0 j−b1 ∑
j−1
s=0 rmkt

t−s

)
, (25)

where rmkt
t = log

(
1+Rmkt

t
)

is the log market return and (b0,b1) are constant parameters, and

M̃t ≡ M̃t−1,t = exp
(
b0 −b1rmkt

t
)
. We choose b0 and b1 to explain the market portfolio’s prices and

returns perfectly in sample, which makes our approach analogous to the conventional time-series

approach to estimating abnormal returns. Specifically, the following two moment conditions pin

down b0 and b1:

0 = E
[
M̃t(1+Rmkt

t )
]
−1

0 =
J

∑
j=1

E[M̃t− j,t
Pmkt

t−1

Pmkt
t− j

(
Rmkt
(t− j),t −R f ,t

)
], (26)

where Rmkt
(t− j),t is the time-t return on market portfolio formed at t − j. The Internet Appendix

shows that the estimated values of b0 and b1 vary depending on the choice of the number of post-

formation years J that we include in our estimate of δ , but not dramatically so, with confidence

intervals at each horizon covering the point estimates of other horizons (Table A2). These results

are consistent with the CAPM evidence from Chernov, Lochstoer, and Lundeby (2021).

We compute excess returns on a characteristic-based portfolio with respect to returns on the

market portfolio, exploiting the CAPM implication that the market should be correctly priced and

the fact that the market has a zero in-sample δ with respect to the model SDF. Benchmarking

test assets against the market reduces the sensitivity of the time-series of δ observations to market

return shocks, reducing the volatility of the resulting series and improving the precision of our es-

timates (as in Campbell, Giglio, and Polk (2013), Campbell et al. (2018), and Korteweg and Nagel

(2022)). Simulation shows that taking excess returns with respect to the market portfolio reduces

the estimator’s volatility by seven percent. An added benefit of this approach could be that the re-

sulting estimates of δ may be less affected by the near-money feature of the T-bill (Krishnamurthy

and Vissing-Jorgensen (2012), Nagel (2016)).19

19Note also that any convenience yield properties of the short-term US government debt could still affect our results
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We use the generalized method of moments (GMM) standard errors and p-values that account

for the time-series and cross-sectional covariances in the data as well as the uncertainty in estimat-

ing the SDF parameters. Our Monte Carlo analysis in the next subsection shows that the Bartlett

kernel of Newey and West (1987) with a bandwidth of 24 months works well, given the low level

of autocorrelation observed in the time series of δ̃t .

3.5 Monte Carlo analysis

To study the performance of our delta estimator, we simulate a numerical model that resembles

the one in Korteweg and Nagel (2016). The model, explained in greater detail in Appendix C.5,

generates realistic moments that resemble those of the high adjusted value quintile portfolio and

those of the market portfolio (see Table A1 in the Internet Appendix).

We first analyze bias. Since the choice of candidate SDF parameters b0 and b1 affect δ̂ in

a highly nonlinear fashion, the uncertainty arising from having to estimate b0 and b1 using the

base asset (market portfolio) can lead our estimated δ̂ to deviate from the true δ . Panel A of

Figure 2 shows that such a bias, if any, leads to a small attenuation in the estimated δ̂ and a more

conservative rule in rejecting an asset pricing model.

Next, turning to size and power, Table 2 shows that our estimator under the null tends to under-

reject the null relative to the 5% significance level. The table also shows that our price-level test

has statistical power similar to a conventional return test. As equation (2) implies, abnormal price

δ is a discounted sum of 15 years of post-formation returns. This means that the magnitude of δ

required for statistical significance is roughly 10-to-12 times that for annualized α , consistent with

δ being a discounted sum of future αs over roughly 15 years. Panel B of Figure 2 visualizes this

rule of thumb.

Panel C and D highlight the main issue with doing inference on δ using cash flows, which is that

the resulting large serial correlation makes the number of independent time-series observations in

through its impact on candidate SDF parameter estimates, since the market portfolio’s δ in equation (26) is estimated
using its excess return with respect to the Treasury-bill rate. In practice, computing excess returns with respect to the
T-bill return makes only a small difference to the point estimates.
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the cash-flow approach small and the range of standard errors wide (Panel D). Our return-identity-

based approach addresses this problem and tends to estimate standard errors accurately.

4 Asset Pricing Tests on Prices

4.1 Data

We combine monthly stock price data from the Center for Research in Security Prices (CRSP),

annual accounting data from CRSP/Compustat Merged (CCM), and the pre-Compustat book eq-

uity data from Davis, Fama, and French (2000) to create our basic dataset. We compute the gross

market portfolio return, the factor in our candidate SDF, as the sum of the market excess return and

the one-month Treasury bill rate from Kenneth French’s data library.

Our tests estimate the δ s of diversified portfolios to minimize the impact of idiosyncratic re-

turns. We typically form value-weight quintile portfolios by sorting stocks on single characteristic

and applying NYSE cutoffs. When double-sorting, we form nine value-weight portfolios by sort-

ing stocks independently on each characteristic and applying 30% and 70% NYSE cutoffs.

Estimating a portfolio’s δ requires data on post-formation returns and capital gains over 180

months (15 years). Hence, for a portfolio formed at t, we track its monthly buy-and-hold returns

and capital gains over t +1, . . . , t +180.20 That is, as illustrated in Figure 1, the post-formation

returns on a portfolio formed in t are R(t),t+1, R(t),t+2, . . . , R(t),t+3, following the diagonal arrow

pointing southeast, where R(t),t+ j denotes the time-t + j return on buying and holding a portfolio

formed at time t.

In summary, we construct three-dimensional data for each sorting characteristic: buy-and-hold

monthly returns (and capital gains) over J post-formation months for T different months in which

the post-formation return data are available for the full J holding periods, all together on N different

portfolios. In contrast, a conventional short-horizon return test uses two dimensional data, since it

20Post-formation returns at t+ j for the portfolio formed at t are from a buy-and-hold strategy that does not reinvest
dividends into the same or different stocks. Appendix C.4 in the Internet Appendix explains how to apply our identity
correctly to a portfolio of stocks in an empirical analysis.
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tracks just J = 1 month post-formation returns for T different months on N different portfolios.

Our baseline analysis uses post-formation returns over 1948m6–2022m12, where 1933m6 is the

first month in which most of the characteristics other than accruals can be computed and 1948m6

is the first month in which the full 15 years of calendar-time observations of post-formation returns

and capital gains are available (the horizontal arrows in Figure 1). Our modern subsample analysis

uses 1972m6–2022m12. Table 3 provides descriptive statistics for the portfolios formed from a

univariate sort on each of the nine characteristics we consider in the rest of the paper. Appendix B

(Internet Appendix) provides further details on data construction.

4.2 Initial analysis on book-to-market and quality

Our initial analysis studies the book-to-market equity ratio (B/M) and quality, which the recent lit-

erature argues proxies for abnormal price. Golubov and Konstantinidi (2019) decompose B/M into

the market-to-value ratio (abnormal price) and the value-to-book ratio using within-industry cross-

sectional regressions of equity values on firm fundamentals, finding that the return predictability of

B/M stems from the abnormal price component. Asness, Frazzini, and Pedersen (2019) measure

quality, a z-score measure based on sixteen characteristics that rewards profitable, fast-growing,

safe, and high-payout stocks and find that quality predicts price-level distortions, measured by

cumulative abnormal returns over five years.

Looking first at returns, Rows 1 and 2 of Table 3 show that the CAPM does a poor job explain-

ing the cross-section of returns on quintile portfolios sorted on B/M or quality. The long-short

portfolio based on B/M generate an annualized CAPM alpha of 3.5% and the long-short portfolio

based on quality generates an annualized alpha of 5.5%. In conjunction with the fact that both B/M

and quality are relatively persistent characteristics, these two anomalies are natural candidates to

generate significant price-level errors as well.

To provide a formal analysis of prices, we estimate quintile δ s and the difference between the

two extreme quintile portfolios (Hi - Lo), along with t-statistics (in parentheses) and p-values for

J ∈ {1mo,1yr,3yrs,5yrs,10yrs,15yrs}. The J = 1 month estimates recovers results close to the

conventional time-series return regression results in Table 3 after the appropriate sign change, but
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with a loglinear model of the SDF, whereas J = 15 years (180 months) proxies for price-level

results given by J → ∞.21 The intermediate values of J allow us to see how the performance of the

asset pricing model changes as the return horizon increases gradually from 1 month to 15 years.

The results for B/M in the left columns of Table 4 Panel A show that value stocks are underval-

ued relative to growth stocks only from the perspective of CAPM investors with a short investment

horizon of J = 1 month or one year. Beyond an investment horizon of 1 year, B/M is a weak

signal of CAPM δ . In particular, the price-level result with J = 15 years in the last row shows that

value stocks are 27.2 percentage points underpriced relative to growth stocks but with a t-statistic

of 0.96.

Turning to quality, the right columns of Table 4 Panel A shows that high-quality stocks are

undervalued and low-quality stocks are overvalued from the perspective of CAPM investors with

an investment horizon of J = 3 year or less. However, for J = 5 or more years, the estimated

δ s are statistically indistinguishable from zero for all quality-sorted portfolios and imply that the

market price correctly accounts for the quality difference. For example, for J = 15, we find that

high-quality stocks are only 11.4 percentage points underpriced relative to low-quality stocks with

an associated t-statistic of 0.51. Our finding based on an exact definition of price distortion δ

is contrary to the conclusion drawn by Asness, Frazzini, and Pedersen (2019), whose analysis

instead studies either cumulative five-year abnormal returns or a cross-sectional regression of the

M/B ratio on quality.

Part of the reason that we find insignificant δ is that accounting for market risk reduces the

CAPM-implied δ . Comparing Panels A and B of Table 4 for J = 1 month shows that accounting for

market risk leads to a larger spread in risk-adjusted returns than that in simple returns. In contrast,

at J = 15 years, CAPM δ s are smaller in magnitude than their corresponding risk-neutral δ for both

B/M and quality, albeit to a small extent for B/M. Figure 3 makes this point graphically: whereas

CAPM-implied risk and average excess returns tend to have an anomalous negative relation over

a one-month post-formation horizon, they have a flat (for quality) or positive (for B/M) relation

21Figure A4 in the Internet Appendix shows that J = 15 years captures most, if not all, of the consequences of the
post-formation abnormal returns associated with characteristics we study.

24



over a long horizon.22

Figure 4 plots the post-formation behavior of excess returns and market betas to analyze why

risk and return tend to have a less anomalous relation over a long horizon. These plots show that a

contributing factor for the smaller spread in δ s for B/M-sorted portfolios is that value stocks have

slightly higher betas than growth stocks from year five, allowing the higher long-horizon risk of

value stocks to exceed that of growth stocks.23 As for quality-sorted portfolios, junk stocks have

persistently higher betas than quality stocks, which lines up with the fact that junk stocks have

higher returns than quality stocks for most of their 15-year post-formation horizon.

4.3 Primary sorting characteristic: adjusted value

A more powerful test on price levels requires test assets that a priori are likely to exhibit large

variation in δ . One way to generate more spread in δ is by adjusting the traditional value signal

(B/M) for the effect of profitability and risk.

Intuitively, the present-value logic says that a stock could be cheap (i.e., B/M high) because

it is (i) expected to have low dividend growth, (ii) risky, or (iii) truly undervalued. And for (i),

profitable stocks with high expected future returns on equity will tend to have faster dividend

growth as more earnings per book equity gets plowed back. Therefore, cheap stocks that are

nonetheless (i) profitable and (ii) safe are likely underpriced, an idea we capture in adjusted value:

adjusted value ≡ z(B/M)︸ ︷︷ ︸
value (cheap)

+ z(Prof)︸ ︷︷ ︸
profitable

− z(Beta)︸ ︷︷ ︸
risky

, (27)

where z denotes the z-score of the characteristic’s cross-sectional rank.

Formally, the loglinear present-value model of Vuolteenaho (2002) implies that a stock’s CAPM-

implied log value (vt = logVt) is the log book value (bt) plus expected log clean-surplus returns on

22Figure 3 plots the long-horizon components of risk and return in equation (60) for direct comparison with the
corresponding short-horizon measures. We thank an anonymous referee for this suggestion. Figure A8 shows that the
cumulative state adjustment is not a negligible component of δ , although this component typically has an absolute
magnitude below 10% and does not have a strong univariate cross-sectional relation to δ .

23That is, the insignificant delta associated with B/M is not merely an outcome of post-formation alpha decay over
time but of a small reversion in post-formation alphas.
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equity (Etroecs
t+ j+1) minus CAPM-implied discount rates (Etrt+ j+1):

vt ≈ bt +
∞

∑
j=0

ρ
jEtroecs

t+ j+1 −
∞

∑
j=0

ρ
jEtrt+ j+1 (28)

Since CAPM underpricing is the deviation of CAPM-implied value from price, it follows that

a characteristic that adds the z-scores of B/M and profitability and subtracts the z-score of beta

should proxy for CAPM underpricing:

vt − pt ≈ bt − pt︸ ︷︷ ︸
book-to-market

+
∞

∑
j=0

ρ
jEtroecs

t+ j+1︸ ︷︷ ︸
profitability

−
∞

∑
j=0

ρ
jEtrt+ j+1︸ ︷︷ ︸
beta

(29)

∝ z(B/M) + z(Prof) − z(Beta),

which equals adjusted value in equation (27).24,25

Our three-characteristic model of CAPM underpricing is similar in spirit to ‘quality at a rea-

sonable price’ in Asness, Frazzini, and Pedersen (2019) but addresses the potential concern that a

composite measure based on sixteen characteristics plus B/M can be difficult to interpret and sub-

ject to overfitting. Adjusted value is also related to the idea in Piotroski and So (2012) that one can

isolate the underpricing component of B/M through its interaction with proxies for the stock’s fu-

ture fundamentals.26 Although our baseline analysis uses the z-score of current gross profitability

of Novy-Marx (2013) to measure expected future profitability, we explore an alternative approach

that more directly proxies for future profitability as well.

24We use the z-score of current gross profitability to proxy for future profitability. When gross profitability data are
unavailable, we use the z-score of return on equity.

25Cho, Kremens, Lee, and Polk (forthcoming) derive a loglinear present-value identity that links today’s market-
to-book equity ratio to future investment (”scale”), profitability (”yield”), and discount rates. Their more granular
decomposition suggests that separately controlling for firms’ scale and yield characteristics may provide a better
adjustment of B/M than our current adjusted value measure.

26See also Frankel and Lee (1998), Piotroski (2000), Cohen, Polk, and Vuolteenaho (2003), Polk, Thompson, and
Vuolteenaho (2006), Novy-Marx (2013), and Gonçalves and Leonard (2023).
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4.4 Adjusted value and the cross-section of price levels

Table 5 shows that portfolios sorted on adjusted value are economically and statistically mispriced

at every horizon we consider. The first row shows that high-adjusted-value stocks outperform

low-adjusted-value stocks by 75 basis points a month with an associated t-statistic of 6.88. At the

15-year horizon, low-adjusted-value stocks are 51.9 percentage points more overpriced than their

high-adjusted-value counterparts. The large CAPM δ difference seems to arise from the CAPM

risk adjustment to long-horizon returns on high vs. low adjusted-value portfolios being too large

(i.e., the ex-post security market line being too flat), since the difference in risk-neutral δ is much

smaller at 8.5 percentage points. Indeed, consistent with this interpretation, Figure A7 Panel P

visually confirms the strong negative relation between long-horizon risk and long-horizon return

for portfolios sorted on adjusted value. Thus, Table 5 documents exactly the sort of variation a buy-

and-hold CAPM investor should be interested in exploiting and represents a challenge for future

asset pricing models that make understanding price-level risk a priority.27

We find that the exact way in which information in the three characteristics is used matters less

(first column of Table A4). For instance, defining adjusted value in a way that puts more weight on

the "price" component of adjusted value rather than putting an equal weight on all three z scores

generates similar results. We also find that using VAR-implied expected future profitability z-score

instead of current profitability z-score slightly improves the performance of the adjusted value

characteristic (columns three and four in the table).28

At the same time, accounting for all three characteristics—B/M, profitability, and beta—is criti-

cal in isolating the large price-level variations unexplained by the CAPM. The last three columns of

Table A4 shows that interacting the z-scores of only two of the three characteristics—i.e., profitabil-

ity and beta, B/M and beta, and B/M and profitability—fail to generate a statistically significant

CAPM δ .

27Appendix B.4 uses double sorts to generate variation in adjusted value.
28The improvement is relatively small, since profitability is one of the most persistent among the characteristics we

consider, making current profitability a strong predictor of its future values (Table 3). Hence, for parsimony as well as
to facilitate replication of our work, we present the adjusted value characteristic based on current profitability as the
baseline. Appendix B.5 details how we modify the baseline approach through a VAR model of characteristic z scores
to use information about expected future profitability.
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5 Are Return Anomalies Price-level Anomalies?

This second and final empirical section studies the extent to which the CAPM explains price-

level variation associated with nine additional characteristics known to be associated with cross-

sectional variation in average returns: net issuance, investment, accruals, beta, size, momentum,

and profitability. The first four are chosen for their potential conceptual link to price-level dis-

tortions, while the next three are chosen for being prominent return anomalies (in conjunction

with value, investment, and the market factor, they make up the widely-used Fama-French-Carhart

six-factor model).

5.1 Characteristics conceptually related to abnormal price

Certain characteristics are interesting to analyze using our abnormal price measure either due to

their conceptual association with abnormal price (net issuance, investment, and accruals) vis-à-vis

the endogenous choices of managers or their mechanical link to the long-horizon risk component

of abnormal price in Corollary 4 (beta). We explain the conceptual link that each characteristic has

to abnormal price δ and study the extent to which the characteristic is associated with price-level

variation that cannot be explained by exposure to market risk that the CAPM captures.

Net share issuance

A large literature in behavioral corporate finance views securities market mispricing as a pri-

mary factor in managerial financing and investment decisions.29 In particular, several papers

document evidence that share repurchase (issuance) indicate undervaluation (overvaluation) as

perceived by firm managers (e.g., Loughran and Ritter (1995); Ikenberry, Lakonishok, and Ver-

maelen (1995)). Nevertheless, this hypothesis has not been tested using our definition of stock

mispricing that explicitly accounts for the asset pricing model of risk (in our case, the CAPM):

δ = E [(Pt −Vt)/Pt ].

Table 6 shows that the spread in mispricing δ s associated with net issuance is indeed large.30

29Baker, Ruback, and Wurgler (2007) review this literature.
30Figure A7 visualizes the cross-sectional relations between long-horizon risk and long-horizon return for the

return anomalies studied in this section.
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Share repurchases (low net issuance) are especially strong signals of CAPM underpricing, consis-

tent with CFOs identifying market timing as the number one reason for stock repurchases (Brav,

Graham, Harvey, and Michaely (2005)). In contrast, share issuances (high net issuance) are not

strongly indicative of CAPM overpricing, and this weaker result may reflect that firm CFOs use

stock issuance primarily to finance investment projects (Graham and Harvey (2001)).31 The dif-

ference in δ ’s across the two extreme net issuance quintiles is 23.7 percentage points with a large

t-statistic of 2.72. Similarly to the adjusted value sort, the risk-neutral delta difference is small

and statistically insignificant, indicating that the implicit CAPM long-horizon risk adjustment is

an important contributor to the difference in deltas that we find. A similar finding holds for the

other two significant delta characteristics discussed below, investment and beta, highlighting that

the flat security line continues to play a role in our price-level analysis.32

Investment

Arguably the most important anomaly to study in this context is investment, given the potential

link between misvaluation and the allocation of capital by firms to real investment projects. That

link may occur indirectly, through the equity issuance decision (Stein (1996), Baker and Wurgler

(2002), Baker, Stein, and Wurgler (2003)), or directly, through catering by the firm to investor

sentiment (Polk and Sapienza (2009)). Thus, it is naturally interesting to measure whether price-

levels are also anomalous for portfolios sorted on investment, as measured by asset growth. The

high investment and the low investment quintiles have a statistically significant difference in δ ’s of

29.4 percentage points, confirming the link between investment and price-level mispricing.

Accruals

Earnings management proxied by accruals (Sloan (1996)) is an interesting phenomenon to re-

visit with our explicit mispricing definition, as its typical interpretation is that companies with

adverse operating results manage earnings to inflate the firm’s market value. Thus, if the firms

are successful in managing earnings, high accruals may proxy for overpricing perceived by firm

31The CFOs surveyed in the study identify market timing as the number two reason for stock issuance.
32Since the focus of our paper is to explain our novel method and document the corresponding empirical facts, we

leave a more complete analysis of the flat price-level security market line to future work.
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managers. The results in Table 6 do not support this interpretation of accruals, as it is a statistically

weak predictor of delta.

Beta

Equation (60) shows that long-horizon risk, defined as a discounted sum of contemporaneous

covariances between excess returns and the candidate SDF M̃, helps determine abnormal price δ .

Hence, the persistence of market beta implies that market beta sorts have the potential to generate

large variation in δ = E [(Pt −Vt)/Pt ]. In particular, we would find that sorts on beta generate

spread in δ if the resulting spread in long-horizon risk that must generate spread in CAPM-implied

V is not compensated by a corresponding spread in price (P).

Table 6 shows an estimated difference in δ s of 40.9 percentage points across the high- and

low-beta portfolios, consistent with the above prediction. Furthermore, this estimate is statistically

significant with a p-value of 2.9%. As discussed above, the flat security market line plays a par-

ticularly important role in our analysis, and the results for beta underscore this interpretation as

risk-neutral δ is of the opposite sign as risk-adjusted δ .

5.2 Prominent return anomalies

Next, we turn to three remaining prominent return anomalies. Fama and French (2015) argue

that profitability and size are characteristics that are important in summarizing the cross-section of

returns, and price momentum has been a prominent return anomaly since Jegadeesh and Titman

(1993). To what extent are these prominent return characteristics associated with variation in price

levels unrelated to CAPM price-level risk?

Size and momentum

Size and momentum are interesting to study from the price-level perspective, given that mo-

mentum strongly predicts the cross-section of average returns but is a rather transitory firm char-

acteristic while size weakly predicts the cross-section of average returns but is a rather persistent

firm characteristic. In particular, Cohen, Polk, and Vuolteenaho (2009) highlight that signal persis-

tence is an important consideration when moving from the conventional return perspective to the
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price-level perspective, a point that Cochrane (2011) subsequently emphasizes.

“For example, since momentum amounts to a very small time-series correlation and

lasts less than a year, I suspect it has little effect on long-run expected returns and hence

the level of stock prices. Long-lasting characteristics are likely to be more important.

Conversely, small transient price errors can have a large impact on return measures”

(p.1064).

Consistent with Cochrane’s conjecture, Table 6 shows that momentum is not a statistically signif-

icant predictor of CAPM abnormal price: the difference in δ between the high momentum and

low momentum portfolios is 22.5 percentage points with a p-value of 13.6%. Moreover, the point

estimates suggest that high momentum stocks with large positive abnormal returns are overpriced,

whereas low momentum stocks with negative abnormal returns are underpriced.33 This finding

is consistent with momentum profits often coming from continued overreaction.34 Figure 5 vi-

sualizes how momentum’s initial positive α quickly turns into negative α post formation. Low

momentum stocks start having higher average returns and lower CAPM betas compared to high

momentum stocks from around year 2, contributing to momentum being associated with over-

pricing. While size is a persistent characteristic, it generates small and statistically insignificant

price-level variation unaccounted by the CAPM.

Profitability

Table 6 documents that profitability-sorted portfolios are associated with price-level errors that

are statistically insignificant with an estimated δ spread of only 9.0 percentage points. The result

is consistent with the observation that cross-sectional variation in the marginal product of capital,

which our profitability measure could proxy for, does not necessarily imply a misallocation of

33The point estimates in van Binsbergen et al. (2023) are consistent with momentum stocks being overpriced as
well. In contrast to our results, their analysis finds statistical significance, suggesting the importance of our method’s
more reliable statistical inference.

34Lou and Polk (2022) provide extensive analysis arguing that momentum can transition from an underreaction to
an overreaction phenomenon in the presence of destabilizing activity by momentum traders. Blank, Kwon, and Tang
(2023) document similar findings in the cross-section for those stocks that are held relatively more by investors who
react excessively to salient public news. Our price-level measure of mispricing δ can facilitate those sorts of empirical
refinements of under and overreaction phenomena.
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capital (Joel, Schmid, and Zeke (2020)).

5.3 Why are (some) return anomalies not also price anomalies?

Having studied ten characteristics individually from the price-level perspective and estimated their

CAPM deltas, we now study them together to understand the factors that determine whether a

return anomaly is also a price anomaly.

Taking two extreme quintile portfolios from each of the ten characteristics, we run a cross-

sectional regression of CAPM delta on variables motivated by our identity:

δi = b0 +b1 αi +b2 [αi ×1(Reversali)]+b3 βi +b4CumStateAd ji + εi, (30)

where α is the short-horizon (1-month) alpha, 1(Reversal) is a dummy variable that takes the

value of one if the average excess return in years three-to-15 following portfolio formation is

opposite in sign to the average excess return in the first post-formation month, β is the CAPM

beta of the anomaly’s excess monthly return in the first post-formation month, and CumStateAd j

is the cumulative state adjustment from the decomposition in Corollary 4.35 We include β as an

incremental predictor of delta because a large initial β is likely to predict more persistent post-

formation alphas. That is, since a portfolio’s CAPM β is persistent, a flat security market line

could cause a portfolio starting out with a large initial β to have persistent post-formation alphas.

Table A14 and Figure A9 Panel D of the Internet Appendix show that these four variables explain

94% of the cross-sectional variation in the deltas of the twenty portfolios in question.

Figure 6 plots the component of fitted delta associated with each of these four explanatory

variables for all ten long-short portfolios; for example, b̂1 × (αL −αS) is the component of long-

short delta explained by short-horizon alpha and is plotted with a black bar for each anomaly.

Given the high R2 in column (4) of Table A14, the four components together explain almost all of

the cross-sectional variation in delta.

Figure 6 highlights four findings. First, short-horizon alphas explain only a small fraction of

35Note that excess returns are measured in excess of the market return.
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the variation in abnormal price. Second, the largest price anomalies—adjusted value and beta—are

those with a large initial beta, highlighting the importance of a flat security line in our price-level

analysis. Third, the other two significant price anomalies—net issuance and investment—have

delta contributions coming from a large initial alpha, a large initial beta, and (for investment) a large

cumulative state adjustment. Although a sort on investment leads to an eventual reversal in returns,

the other components of delta are enough to offset this effect, making investment a significant

price anomaly. Finally, the return anomalies that do not make the cut for a significant delta either

have weak contributions from short-horizon alpha and beta (e.g., B/M, profitability, size, accruals)

and/or an offsetting effect from return reversal (B/M, quality, profitability, and momentum).

5.4 Double sorts on characteristics and adjusted value

Our proposed adjusted value characteristic proxies for abnormal price by combining information

in price, profitability, and beta. How well, then, does it explain variation in δ generated by other

characteristics: net issuance, investment, accruals, size, and momentum? Table 7 synthesizes

our analysis by examining double sorts on adjusted value and each of the five characteristics.

Specifically, sorting stocks into three-by-three portfolios based on independent NYSE breakpoints,

we report the δ and associated t-statistic for each of the nine portfolios on the left-hand side of the

table. The right-hand-side of the table reports the δ ’s associated with the combination of the nine

portfolios that results in either a characteristic-neutral portfolio that bets on adjusted value or a

adjusted-value-neutral portfolio that bets on the second characteristic.

Table 7 has two important takeaways. First, across all of the rows, adjusted value repeatedly

generates economically and statistically significant variation in CAPM δ . Hence, adjusted value

appears to contain information about prices that is neither explained by CAPM-implied risk nor

captured by another single characteristic. Second, after controlling for adjusted value, there is

little incremental information about prices in the characteristics we study, in terms of the economic

magnitude or the statistical significance. This finding is true even for net issuance and investment

which both showed significant spread in δ in a univariate sort but are subsumed by adjusted value.36

36Our findings based on these double sorts suggest that adjusted value could be the natural second factor to put in a
multifactor model of price levels. However, a proper treatment of all potential multifactor refinements would require a
substantial expansion to the analysis. For this reason, we believe our single factor analysis based on the CAPM is one
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5.5 Modern subsample

Our results and conclusions in Sections 4 and 5 continue to hold in the modern subsample, 1972m6–

2022m12. Combining information in price, profitability, and CAPM risk through our composite

variable adjusted value describes economically and statistically significant variation in CAPM ab-

normal price (Tables A9 and A8 in the Internet Appendix) while the other characteristics we study

generally do not, with the exception of net issuance and beta (Tables A7 and A10).37 Furthermore,

in a horse race, all other characteristics are subsumed by adjusted value (Table A11).

5.6 Alternative approaches

How do results change if we employ alternative approaches to estimating abnormal price? First,

in terms of the point estimates, we show in Figure A6 that the cash-flow approach that directly

discounts the cash flows and a terminal value generates essentially the same delta estimates as

the version of our return-based approach that uses gross returns (rather than excess returns) and

event-time observations (rather than calendar-time observations). This equivalence confirms that

the cash-flow approach does not have an inherent advantage over the return-based approach but is

less desirable in finite-sample inference. (See the discussion in Sections 1.3, 3.2, and 3.5.)

Second, Table A6 shows that cumulative abnormal return (CAR) generates different results,

both in terms of magnitude and statistical significance at the 5% level. Third, Figure A9 shows

that short-horizon CAPM alpha, its persistence (proxied by the persistence of the characteristic

associated with that alpha), and the resulting interaction explain around half of the cross-sectional

variation in delta across the twenty extreme quintile portfolios we study, implying that a simple

measure based on short-horizon alpha and its persistence would miss important variation in abnor-

mal price.

that most lucidly illustrates our novel return-based price-level analysis.
37Investment, accruals, and profitability are defined only over the modern subsample, so their results remain the

same as before.
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6 Conclusion

Our novel identity precisely links ex-ante price distortion to subsequent returns and provides a new

natural framework for studying the cross-section of stock price levels. Our primary tests reveal that

portfolios formed on ‘adjusted value,’ a composite signal that extracts the mispricing component

from the market-to-book ratio, generate large variation in abnormal price, our measure of price

distortion. Among all other prominent return anomalies, net equity issuance, investment, and beta

sorts produce significant price-level distortions relative to the CAPM, and these distortions are

subsumed by adjusted value.

As a consequence, our novel abnormal price measure identifies the stocks that a buy-and-

hold mean-variance investor should find attractive/unattractive. Moreover, our approach highlights

where new models that aim to explain both short- and long-run patterns in markets should focus.

Indeed, by providing an exact metric of the extent to which a candidate asset-pricing model ex-

plains variation in prices, we aim to advance future research in both asset pricing and corporate

finance. For the former, estimates of ex-ante price distortion could provide a useful lens through

which to distinguish among risk-based, behavioral-based, and institutional-friction-based expla-

nations for well-known empirical patterns in short-horizon returns. For the latter, our measure of

mispricing with respect to a risk model may refine the results of a large literature (e.g. Baker and

Wurgler (2002) and Shleifer and Vishny (2003)) that aims to link a firm’s investment and financing

decisions to price distortions.
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Figure 1: Event Time vs. Calendar Time Approach to δ Estimation
Panel A visualizes the event-time approach to estimating δ . The equation there shows that unconditional δ

is the expectation of the event-time δ that appropriately discounts the post-formation buy-and-hold monthly
excess returns on a growth portfolio formed today. Hence, the event-time approach takes a sum of all dis-
counted post-formation excess returns diagonally in the southeast direction. Panel B visualizes the equiva-
lent calendar-time approach. The equation there shows that unconditional δ also equals the expectation of
the calendar-time δ that appropriately discounts today’s realizations of monthly excess buy-and-hold returns
on growth portfolios formed in the past. Hence, the calendar-time approach takes a sum of all discounted
excess returns in the concurrent period (on portfolios formed in the past) horizontally.
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A. Bias: True δ vs. Estimated δ̂ B. Power: Prices vs. Returns
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Figure 2: Bias, Power, and Standard Errors of the Return-Identity-Based δ Estimator

Panel A analyzes the bias of our estimator. The solid blue line relating the mean estimated δ̂ to the true δ

from a Monte Carlo simulation coincides almost exactly with the 45-degree line in dotted gray except that a
small attenuation (less than 1% point) appears in large values of δ .

Panel B shows that the magnitude of δ required for statistical significance is roughly 10-to-12 times that
for annualized α , consistent with δ being a discounted sum of future αs over roughly 15 years. For each
level of return volatility, the solid blue line (dotted orange line) reports the smallest absolute δ (α) needed
for significance at the 5% level. The two lines roughly coincide when the scale of y axis for δ (left vertical
axis) is approximately 11 times that for α (right vertical axis).

Panel C reports results from a Monte Carlo simulation analyzing whether a Newey-West standard error
("SE") with a bandwidth of around 2 years accurately estimates the true standard deviation ("SD") of δ̂ .

Panel D shows that our return-identity-based method generates more precise standard errors than the
cash-flow-based method. It reports the 10th-to-90th-percentile range of standard errors from a Monte Carlo
simulation for the return-identity-based method (blue solid line) and the cash-flow-based method (dotted
orange line).

The Monte Carlo simulation uses the parameter values reported in Table 2 except that the simulation for
Panel B varies the volatilities of cash flow shocks and conditional δt shocks to generate variation in return
volatility.
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A. Book-to-Market: Returns B. Book-to-Market: Price Levels
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Figure 3: The Risk-Return Relations in Returns and Price Levels: B/M and Quality

The plots show that, for portfolios sorted on book-to-market or quality, the relation between long-horizon
risk and long-horizon return (the right panel; Figures B and D) tends to be less anomalous than that between
short-horizon risk and return (the left panel; Figures A and C). This improvement contributes to the statis-
tically insignificant CAPM abnormal price associated with book-to-market and quality sorts. Long-horizon
return and long-horizon risk summarize the term structure of post-formation average excess returns and
of risk premia, respectively, and—together with the cumulative state adjustment component of abnormal
price—determine the estimated δ̂ :

J
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︸ ︷︷ ︸−δ̂ ,

cumulative state adjustment

where φ(t− j),t−1 = M̃t− j,t−1
P(t− j),t−1
P(t− j),t− j

, the expression (t − j) in the subscript denotes the portfolio formation
period, J = 180 post-formation months (15 years), and the subscript T indicates a sample moment. Short-
horizon return and risk respectively denote the average and the CAPM-predicted excess returns above the
market portfolio. The sample period is 1948m6–2022m12.
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A. B/M: Post-formation Excess Returns B. B/M: Post-formation Betas
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C. Quality: Post-formation Excess Returns D. Quality: Post-formation Betas
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Figure 4: Post-formation Behavior of Return and Risk: B/M and Quality

The plots study the post-formation behavior of returns and CAPM betas of extreme quintile B/M or quality
portfolios. The top plots (Panels A and B) show that the post-formation beta of value (high BM) stocks
exceeds that of growth (low BM) stocks from around year 5, consistent with value stocks having higher post-
formation mean returns than growth stocks until around year 8. The bottom plots (Panels C and D) show that
junk (low quality) stocks have higher mean returns than quality stocks from around year 3, consistent with
junk stocks having higher betas than quality stocks post formation. Excess returns used in the left panel are
taken relative to post-formation returns on the market portfolio. The sample period is 1948m6–2022m12.
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A. Post-formation Excess Returns B. Post-formation Betas
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Figure 5: Post-formation Behavior of Return and Risk: Momentum

The plots study the post-formation behavior of returns and CAPM betas of extreme quintile momentum
portfolios. They show that the anomalous pattern of high momentum stocks having higher excess returns
but lower market betas than low momentum stocks quickly reverses such that low momentum stocks have
higher excess returns and lower betas on those excess returns than high momentum stocks from around year
2 post portfolio formation. Excess return is measured relative to the post-formation returns on the market
portfolio. The sample period is 1948m6–2022m12.
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Figure 6: Why Are (Some) Return Anomalies Not Also Price Anomalies?

The figure plots the extent to which short-horizon alpha (+), post-formation return reversal (−), short-
horizon beta (+), and cumulative state adjustment (+) explain portfolio long-short delta. The fitted values
are based on a cross-sectional regression of delta on these four explanatory variables (Table A14; see also
Figure A9), and each vertical bar measures the component of fitted value due to a particular explanatory
variable. The sum across the four vertical bars for each characteristic portfolio is the fitted delta, with any
remaining difference representing the regression residual. Overall, the figure shows that short-horizon beta
contributes the most to delta for the two largest price anomalies (adjusted value and beta), whereas the other
two statistically significant price anomalies (net issuance and investment) are driven by multiple factors.
The other characteristics are not associated with a significant abnormal price typically because different
components offset each other’s effect (e.g., short-horizon alpha is offset by a subsequent reversal in returns).
Return reversal is a dummy variable that takes the value of one if the average excess return in years three-to-
15 following portfolio formation is opposite in sign to the average excess return in the first post-formation
month. Short-horizon beta is the portfolio’s one-month market beta immediately following portfolio for-
mation and matters because beta tends to be persistent and large betas tend not to be accompanied by large
excess returns (i.e., the security market line is flat). Cumulative state adjustment is defined in Section 3.3.
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Table 1: Estimated CAPM Abnormal Price (δ ) of a T-bill Rollover Strategy

This table presents the estimated CAPM δ , computed based on four different methods, of a strategy that rolls over the
1-month Treasury bill return for 15 years. The calendar-time excess return method proposed in the present study (#1)
ensures that the T-bill rollover strategy has a near-zero estimated CAPM δ . The event-time excess return method (#2)
also leads to a small CAPM δ of the T-bill strategy (but the corresponding δ̃

ET,excess
t has large serial correlation). The

gross-return method based on excess returns (#3) or the direct discount of cash flows (#4, equivalent to the event-time
gross return method) leads to large estimated CAPM δ s of the T-bill rollover strategy of around 50%. For each method, the
candidate SDF’s two parameters are estimated by imposing the restriction that the estimated delta of the market portfolio
is zero as well as the complementary restriction that either the market’s gross one-month return (methods #1 and #2) or
its excess one-month return (methods #3 and #4) is perfectly explained.

• #1 Calendar-time excess return (the present paper):

δ̂ = 1
T ∑

T
t=1 δ̃t with δ̃t =−∑

J
j=1 M̃t− j,t

P(t− j),t−1
P(t− j),t− j

Re
(t− j),t

• #2 Event-time excess return:

δ̂
ET,excess =

1
T

T

∑
t=1

δ̃
ET,excess
t with δ̃

ET,excess
t =−

J

∑
j=1

M̃t,t+ j
P(t),t+ j−1

P(t),t
Re
(t),t+ j

• #3 Calendar-time gross return:

δ̂CT,gross = 1
T ∑

T
t=1 δ̃

CT,gross
t with δ̃

CT,gross
t =−∑

J
j=1 M̃t− j,t−1

P(t− j),t−1
P(t− j),t− j

(M̃t(1+R(t− j),t)−1)

• #4 Direct discount of cash flows (equivalent to the event-time gross return method):

δ̂CF = 1
T ∑

T
t=1 δ̃t

CF
with δ̃t

CF
= 1−∑

J
j=1 M̃t,t+ j

D(t),t+ j
P(t),t

− M̃t,t+ j
P(t),t+J
P(t),t

Calendar Time vs. Event Time
Calendar Time Event Time

Excess Return
vs. Gross Return

Excess Return
#1 Calendar-time excess return (Cho and Polk)

δ̂ = 0.001
#2 Event-time excess return

δ̂ ET,excess = 0.028

Gross Return
#3 Calendar-time gross return

δ̂CT,gross = 0.457
#4 Direct discount of cash flows

δ̂CF = 0.497
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Table 2: Size and Power of the Return-identity-based Estimator of Abnormal Price

Panel A provides a Monte Carlo analysis of the size and power of our return-based estimator of abnormal
price δ . We choose the parameters in the simulation model to match the key moments of the high-adjusted-
value portfolio. Using B = 2 years leads to a conservative rejection rate of 2.4% as opposed to the 5%
significance level. Under the alternative in which the portfolio is underpriced on average by 36.6% with
respect to the candidate SDF, the null is rejected 75% of the time.

Panel B examines the size and power of a conventional abnormal return test, showing that an annualized
alpha of around 3.2% (12× 0.26bp) paired with GMM standard errors with no lag has a similar statistical
power as a price-level test on a delta of -36.6% and GMM standard errors with a NW lag of 2 years. For
all tests, we use 1,000 simulations of the same number periods as in the actual data (1,074 months spanning
89.5 years).

Panel A. Mispricing (J = 15 years)
Size (δ = 0) and Power (δ =−0.366)

Newey-West se(δ̂ ) with a block length of B yrs

True σ(δ̂ ) 1 year 2 yrs 3 yrs 4 yrs 5 yrs 10 yrs 15 yrs

Size 0.047 0.016 0.024 0.027 0.035 0.042 0.072 0.098

Power 0.750 0.686 0.750 0.796 0.818 0.835 0.873 0.891

Panel B. Abnormal Return (J = 1 month)
Size (α = 0) and Power (α = 0.0026)

Newey-West se(α̂)with a block length of B months

True σ(α̂) 0 mo 3 mo 6 mo 12 mo 24 mo 36 mo 60 mo

Size 0.051 0.056 0.053 0.050 0.054 0.058 0.064 0.069

Power 0.606 0.720 0.717 0.715 0.714 0.697 0.690 0.690
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Table 3: Descriptive Statistics on Stock Characteristics

The table describes the ten characteristics we use to study CAPM-implied abnormal price. Column 2 reports the sample period over
which post-formation returns for j = 1 through 180 months are available. Columns 3–5 report the CAPM alphas of the lowest and highest
portfolio quintiles as well as the difference in the alphas between the two portfolios. We report t-statistics based on heteroskedasticity-
robust standard errors in parentheses. Column 6 reports Persistence, the value-weighted probability that the characteristic decile of a
stock in the portfolio does not change after a year. The remaining columns report the time-series average of the pairwise cross-sectional
correlations among the characteristics. We use quintile numbers to compute these correlations to ensure that the correlations are not driven
by outliers. Excess return is taken with respect to market returns. See Appendix B for a detailed description of the ten characteristics.

CAPM alpha Correlation

Sample Lo Hi Hi-Lo Persistence B/M Qlty AdjVal Size Mom NI Beta Inv Prof Acc

Book-to-market Jun48-Dec22 -0.04 0.25 0.29 0.67 1.00
(-0.99) (2.87) (2.46)

Quality Jun48-Dec22 -0.28 0.17 0.46 0.56 -0.31 1.00
(-3.84) (4.56) (4.57)

Adjusted value Jun48-Dec22 -0.29 0.47 0.76 0.59 0.44 0.21 1.00
(-5.58) (6.39) (7.15)

Size Jun48-Dec22 0.03 0.01 -0.02 0.89 -0.35 0.26 -0.30 1.00
(0.23) (0.29) (-0.15)

Momentum Jun48-Dec22 -0.64 0.33 0.97 0.23 -0.00 0.11 0.05 0.10 1.00
(-5.74) (4.39) (5.81)

Net issuance Jun48-Dec22 0.24 -0.28 -0.51 0.49 -0.15 -0.33 -0.18 0.04 -0.03 1.00
(5.39) (-5.24) (-6.23)

Beta Jun48-Dec22 0.24 -0.38 -0.62 0.63 -0.15 -0.18 -0.66 0.15 -0.03 0.14 1.00
(3.58) (-4.67) (-4.94)

Investment Jun72-Dec22 0.25 -0.18 -0.43 0.35 -0.26 0.08 -0.18 0.15 -0.00 0.16 0.10 1.00
(3.30) (-2.88) (-3.75)

Profitability Jun72-Dec22 -0.08 0.09 0.17 0.77 -0.28 0.42 0.30 -0.05 0.02 -0.07 0.06 0.03 1.00
(-0.90) (1.31) (1.29)

Accruals Jun72-Dec22 0.04 -0.20 -0.24 0.37 -0.04 -0.09 -0.03 -0.00 -0.03 0.04 -0.01 0.28 -0.04 1.00
(0.57) (-3.08) (-2.14)
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Table 4: Pricing B/M- or Quality-sorted Portfolios: Returns vs. Prices

The table shows that the book-to-market equity ratio (B/M) and quality are not statistically significant univariate signals of abnormal
price relative to the CAPM (the last row), although they are significant signals of abnormal one-month returns (the first row). Quality
follows the definition in Asness, Frazzini, and Pedersen (2019). We form value-weight quintile portfolios based on NYSE breakpoints
and track post-formation returns for 15 years. In the first “return” row, δ measures −1 times the average one-month abnormal return:

δ (1) = −E
[
M̃tRe

t

]
.

Positive (negative) δ here means negative (positive) one-month abnormal return. The reported δ s in the last row are estimated values
of abnormal price defined as

δ = E
[

Pt−Vt
Pt

]
≈ δ (180) =−E

[
∑

180
j=1M̃t− j,t

P(t− j),t−1
P(t− j),t− j

Re
(t− j),t

]
,

where (t − j) denotes the portfolio formation month and t denotes the month in which returns are realized. In the remaining rows,
the reported δ estimates illustrate how the estimated δ (J) = −E

[
∑

J
j=1M̃t− j,t

P(t− j),t−1
P(t− j),t− j

Re
(t− j),t

]
changes as J takes values less than

180. We use the candidate SDF implied by the CAPM, M̃t− j,t = exp
(

b0 j−b1 ∑
j−1
s=0 rmkt

t−s

)
, where rmkt

t is log market returns and b0

and b1 are chosen to make the market portfolio’s prices (δ = 0) and returns (δ (1) = 0) correct in sample. We report t-statistics (in
parentheses) and p-values based on GMM standard errors that account for time-series and cross-sectional covariances in the data and
uncertainty in estimating the parameters of the candidate SDF. The sample period is 1948m6–2022m12.

Panel A. CAPM δ

B/M Quality

δ ×100 δ ×100

J Lo 2 3 4 Hi Hi - Lo p(Hi - Lo) Lo 2 3 4 Hi Hi - Lo p(Hi - Lo)

1mo 0.04 0.02 -0.14 -0.16 -0.24 -0.28 0.017 0.29 0.04 0.06 -0.03 -0.17 -0.46 0.000
("return") (0.97) (0.44) (-2.65) (-2.30) (-2.77) (-2.38) (3.85) (0.65) (1.51) (-0.86) (-4.55) (-4.58)

1yr 0.52 -0.23 -1.22 -2.38 -2.81 -3.33 0.055 2.49 0.61 0.71 -0.65 -1.88 -4.37 0.001
(0.78) (-0.43) (-1.40) (-2.19) (-2.34) (-1.92) (2.78) (0.71) (1.19) (-1.52) (-3.31) (-3.24)

3yrs 0.70 -0.79 -2.07 -6.43 -7.89 -8.58 0.124 4.69 1.31 1.44 -1.17 -3.79 -8.48 0.034
(0.30) (-0.56) (-0.77) (-2.00) (-2.22) (-1.54) (1.90) (0.53) (0.99) (-0.84) (-2.05) (-2.12)

5yrs 1.90 -0.59 -3.53 -9.68 -12.64 -14.53 0.163 4.19 1.37 1.39 -1.28 -3.74 -7.93 0.264
(0.44) (-0.25) (-0.82) (-1.77) (-1.97) (-1.39) (1.02) (0.31) (0.49) (-0.63) (-1.09) (-1.12)

10yrs 4.58 1.30 -1.42 -14.42 -17.61 -22.19 0.277 7.83 4.70 3.03 -1.78 -5.27 -13.10 0.407
(0.55) (0.28) (-0.15) (-1.41) (-1.41) (-1.09) (0.86) (0.57) (0.43) (-0.69) (-0.74) (-0.83)

15yrs 5.98 1.59 -2.14 -15.31 -21.19 -27.18 0.337 6.09 8.25 4.49 -4.13 -5.32 -11.41 0.609
("price") (0.49) (0.23) (-0.16) (-1.08) (-1.26) (-0.96) (0.48) (0.71) (0.41) (-1.14) (-0.52) (-0.51)

Panel B. Risk-neutral δ

B/M Quality

δ ×100 δ ×100

J Lo 2 3 4 Hi Hi - Lo p(Hi - Lo) Lo 2 3 4 Hi Hi - Lo p(Hi - Lo)

1mo 0.02 0.04 -0.09 -0.13 -0.24 -0.25 0.027 0.15 0.03 0.08 -0.03 -0.12 -0.26 0.008
("return") (0.38) (0.95) (-1.84) (-1.94) (-2.84) (-2.21) (2.00) (0.63) (1.92) (-0.73) (-3.07) (-2.66)

15yrs 5.50 -0.90 -5.93 -13.25 -24.44 -29.94 0.123 -13.32 0.17 2.73 -4.21 6.27 19.58 0.186
("price") (0.64) (-0.18) (-0.70) (-1.24) (-2.11) (-1.54) (-1.46) (0.02) (0.37) (-1.12) (0.98) (1.32)
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Table 5: Pricing Adjusted-value-sorted Portfolios: Returns vs. Prices

The table shows that adjusted value, our proxy for the value-to-price ratio (V/P), generates cross-sectional
variation in price levels (the last rows) and returns (the first row) not explained by the CAPM. Adjusted
value combines B/M, profitability, and beta by taking the sum of their z scores: Adjusted value = z(B/M)+
z(Prof)− z(Beta). We form value-weight quintile portfolios based on NYSE breakpoints for adjusted value
and track post-formation returns for 15 years. In the first “return” row, δ measures −1 times the average
one-month abnormal return:

δ (1) = −E
[
M̃tRe

t

]
.

Positive (negative) δ here means negative (positive) one-month abnormal return. The reported δ s in the last
row are estimated values of abnormal price defined as

δ = E
[

Pt−Vt
Pt

]
≈ δ (180) =−E

[
∑

180
j=1M̃t− j,t

P(t− j),t−1
P(t− j),t− j

Re
(t− j),t

]
,

where (t − j) denotes the portfolio formation month and t denotes the month in which returns are
realized. In the remaining rows, the reported δ estimates illustrate how the estimated δ (J) =

−E
[
∑

J
j=1M̃t− j,t

P(t− j),t−1
P(t− j),t− j

Re
(t− j),t

]
changes as J takes values less than 180. We use the candidate SDF im-

plied by the CAPM, M̃t− j,t = exp
(

b0 j−b1 ∑
j−1
s=0 rmkt

t−s

)
, where rmkt

t is log market returns and b0 and b1 are
chosen to make the market portfolio’s prices (δ = 0) and returns (δ (1) = 0) correct in sample. We report
t-statistics (in parentheses) and p-values based on GMM standard errors that account for time-series and
cross-sectional covariances in the data and uncertainty in estimating the parameters of the candidate SDF.
The sample period is 1948m6–2022m12.

δ ×100

J Lo 2 3 4 Hi Hi - Lo p(Hi - Lo) [Hi - Lo]RN

1mo 0.29 -0.00 -0.17 -0.23 -0.46 -0.75 0.000 -0.39
("return") (5.46) (-0.01) (-3.43) (-4.01) (-6.11) (-6.88) (-3.82)

1yr 3.24 0.10 -1.96 -3.04 -5.02 -8.26 0.000 -4.12
(4.39) (0.16) (-3.01) (-3.51) (-5.24) (-5.75) (-3.03)

3yrs 7.08 0.76 -4.91 -8.06 -12.28 -19.37 0.000 -6.98
(3.54) (0.44) (-2.24) (-3.35) (-4.34) (-4.69) (-1.74)

5yrs 9.34 2.45 -6.90 -12.17 -18.92 -28.26 0.000 -8.95
(3.59) (1.05) (-2.03) (-3.66) (-3.57) (-4.15) (-0.05)

10yrs 14.72 0.44 -9.04 -20.74 -26.88 -41.60 0.000 -11.17
(3.79) (0.13) (-2.07) (-3.49) (-3.05) (-3.63) (-0.62)

15yrs 18.45 2.32 -13.15 -29.92 -33.41 -51.86 0.002 -8.54
("price") (3.33) (0.47) (-2.80) (-2.46) (-2.69) (-3.14) (-0.47)
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Table 6: Pricing Anomaly-sorted Portfolios

The table reports estimated abnormal price with respect to the CAPM for portfolios sorted on characteristics
conceptually linked to abnormal price or prominent return anomaly characteristics. For each characteristic,
we form value-weight quintile portfolios based on NYSE breakpoints and track post-formation returns for
15 years. Hi (Lo) denotes stocks with the highest (lowest) value of the characteristic. The reported δ s are
estimated values of abnormal price defined as δ = E

[
Pt−Vt

Pt

]
. We report t-statistics (in parentheses) and p-

values based on GMM standard errors that account for time-series and cross-sectional covariances in the data
and uncertainty in estimating the parameters of the candidate SDF. The sample period is 1948m6–2022m12
except for investment, accruals, and profitability, which have a sample period of 1972m6–2022m12.

δ ×100

Sort Lo 2 3 4 Hi Hi - Lo p(Hi - Lo) [Hi - Lo]RN

Net issuance -16.45 -4.24 2.02 -0.18 7.22 23.67 0.006 8.62
(-2.67) (-0.40) (0.52) (-0.03) (1.08) (2.72) (0.93)

Investment -17.61 -17.82 -2.96 8.99 11.80 29.41 0.035 16.68
(-2.33) (-2.50) (-0.68) (1.67) (1.43) (2.11) (1.08)

Accruals 0.18 -11.66 0.18 4.88 20.89 20.71 0.222 9.40
(0.02) (-1.97) (0.03) (0.93) (1.98) (1.22) (0.59)

Beta -22.63 -15.89 -4.95 5.28 18.21 40.85 0.029 -26.86
(-1.88) (-2.19) (-1.11) (1.00) (2.05) (2.18) (-1.21)

Size -13.44 -16.91 -20.64 -13.50 3.54 16.98 0.549 54.62
(-0.53) (-0.92) (-1.19) (-1.14) (1.04) (0.60) (1.91)

Momentum -16.49 -7.67 -3.68 2.56 4.31 20.80 0.136 22.48
(-1.15) (-1.89) (-1.10) (0.53) (0.74) (1.49) (1.85)

Profitability 13.35 -9.30 -14.43 -4.96 4.37 -8.98 0.805 2.25
(0.63) (-0.66) (-1.27) (-0.41) (0.24) (-0.25) (0.08)
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Table 7: Incremental Information About Prices: Adjusted Value vs. Others

The table shows that controlling for adjusted value, our proxy for the value-to-price ratio (V/P), subsumes the ability of other characteris-
tics to predict CAPM abnormal price. In contrast, adjusted value retains its ability to predict CAPM abnormal price when controlling the
other characteristic in question. To draw this conclusion, we form nine value-weight portfolios based on 30% and 70% NYSE breakpoints
for adjusted value and, independently, the 30% and 70% NYSE breakpoints for the second sorting characteristic specified in column one.
We study the five characteristics that do not comprise adjusted value. Adjusted value combines B/M, profitability, and beta by taking the
sum of their z scores: Adjusted value = z(B/M)+ z(Prof)− z(Beta). The left-hand side of the table reports the estimated δ and associated
t-statistic for each portfolio. The right-hand-side of the table reports the δ s associated with the combination of the portfolios that results in
either a characteristic-neutral portfolio that bets on adjusted value or a adjusted-value-neutral portfolio that bets on the second character-
istic. We report t-statistics (in parentheses) and p-values based on GMM standard errors that account for time-series and cross-sectional
covariances in the data and uncertainty in estimating the parameters of the candidate SDF. The sample period is 1948m6–2022m12 except
for investment and accruals, which has a sample period of 1972m6–2022m12.

Adj val sort Second sort
Adjusted value sort (Second sort neutral) (Adj val neutral)

Low 2 High 1
3 ∗ ((H1+H2+H3) 1

3 ∗ ((L3+23+H3)

Second sort → 1 2 3 1 2 3 1 2 3 −(L1+L2+L3)) −(L1+21+H1))

Net issuance 10.68 16.63 11.63 -18.61 -8.66 -6.78 -37.70 -33.00 -28.97 -46.20 7.17
(1.26) (3.40) (1.45) (-2.53) (-1.39) (-1.12) (-3.16) (-2.63) (-1.80) (-2.80), [0.005] (0.83), [0.408]

Investment 0.55 16.97 19.88 -25.06 -10.01 -3.90 -44.06 -41.42 -35.40 -52.76 16.39
(0.05) (2.17) (2.29) (-2.95) (-1.42) (-0.44) (-2.80) (-2.67) (-2.16) (-2.95), [0.003] (1.62), [0.106]

Accruals 8.33 12.13 26.95 -14.54 -11.05 -1.05 -43.42 -33.93 -46.72 -57.16 9.60
(0.79) (1.90) (2.46) (-1.86) (-1.23) (-0.10) (-1.94) (-2.58) (-2.16) (-2.80), [0.005] (0.81), [0.416]

Size 4.71 -3.82 15.69 -8.55 -24.56 -9.37 -41.36 -36.79 -33.66 -42.80 5.95
(0.18) (-0.25) (3.25) (-0.36) (-1.49) (-1.32) (-1.49) (-1.99) (-2.34) (-2.66), [0.008] (0.25), [0.804]

Momentum 2.56 15.06 16.37 -25.54 -12.59 -4.44 -48.68 -33.60 -29.43 -48.56 18.06
(0.34) (2.26) (2.54) (-2.35) (-2.09) (-0.63) (-2.06) (-2.76) (-2.28) (-2.78), [0.005] (1.61), [0.107]
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Internet Appendix

A Supplementary Literature Review

A.1 Additional related work

An important motivation for studying price levels is the link between stock price levels and cor-

porate financing or investment decisions as explored by Stein (1996), Baker and Wurgler (2002),

Baker, Stein, and Wurgler (2003), Shleifer and Vishny (2003), Cohen, Polk, and Vuolteenaho

(2009), Polk and Sapienza (2009), van Binsbergen and Opp (2019), and Whited and Zhao (forth-

coming) among others. For example, Polk and Sapienza (2009) study how price distortion relates

to corporate investment, using discretionary accruals to proxy for price distortion, and van Binsber-

gen and Opp (2019) study the link in a quantitative model of a production economy to study how

abnormal returns on anomaly characteristics affect output. Dessaint, Olivier, Otto, and Thesmar

(2021) find evidence that the beta anomaly’s CAPM abnormal price as perceived by firm managers

affects the M&A decision. Gormsen and Huber (2023) and Gormsen and Huber (2022) explore

how firms’ perceived costs of capital relate to factor models and affect corporate investment.38

The asset pricing literature also explored the difference in the type of information that expected

returns and price levels have about capital market efficiency. Shiller (1984) writes, “because real

returns are nearly unforecastable, the real price of stocks is close to the intrinsic value . . . is one of

the most remarkable errors in the history of economic thought” (pp. 458–459). Summers (1986)

provides a numerical example that illustrates this argument and Campbell (2018) shows how an

expected return that follows a persistent AR(1) process may leave little room for return predictabil-

ity despite a large variance in the dividend-price ratio. Pastor and Veronesi (2003) show that high

price levels may not be a signal of capital market inefficiency but of increased uncertainty about

future profitability. More recently, Liu, Moskowitz, and Stambaugh (2021) use a restriction on the

price distortion process to revisit factor models of expected returns and Baba Yara, Boons, and Ta-

38Taking the link between price distortion and equity financing as given, Cho and Salarkia (2020) show that firms’
equity issuance and repurchases in the face of apparent model-specific price distortion reveals the CAPM as the model
most likely used by firms.
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moni (2020) study the extent to which the permanent and transitory components of characteristics

differently describe the cross-section of long-horizon average returns.39

Other strands of literature study price levels and long-horizon returns for different reasons.

First, these quantities are important for the portfolio decision of long-term investors. For instance,

Cochrane (2014) develops a mean-variance characterization of a stream of long-run payoffs that

is useful even when risks and expected returns vary through time.40 Second, Vuolteenaho (2002),

Cohen, Polk, and Vuolteenaho (2003), Cochrane (2011), De La O and Myers (2021), and Cho et al.

(forthcoming) among many others study valuations, expected returns, and cash flows through the

lens of an identity in the spirit of Campbell and Shiller (1988). Third, Lee, Myers, and Swami-

nathan (1999), Bartram and Grinblatt (2018), Gerakos and Linnainmaa (2018), Asness, Frazzini,

and Pedersen (2019), Golubov and Konstantinidi (2019), and Favero, Melone, and Tamoni (2020)

take different approaches to come up with proxies for price distortion. Finally, Koijen, Richmond,

and Yogo (2022) use a structural demand-based approach to study how different types of investors

affect equity valuations.

Cumulative abnormal returns (CARs) or buy-and-hold abnormal returns (BHARs) are used

extensively in the corporate finance literature. Barber and Lyon (1997), Kothari and Warner (1997),

Fama (1998), Lyon, Barber, and Tsai (1999), Brav (2000), and Bessembinder, Cooper, and Zhang

(2018) have critically evaluated these approaches.

A.2 Detailed Response to van Binsbergen et al. (2023)

Internet Appendix C of van Binsbergen, Boons, Opp, and Tamoni (2023) (vBBOT) compares their

dividend-based event-time approach to our calendar-time, (excess) return-based approach. This

type of comparison is useful, as it allows us to reflect further on the advantages and (potential)

disavantages of our proposed method. However, the first two (out of three) issues they point out

apply to methodological aspects of an older version of our paper (Dec 2020) that are not present

39Other recent papers on the topic of market efficiency and price levels include Bai, Philippon, and Savov (2016),
Dávila and Parlatore (2020), Joel, Schmid, and Zeke (2020), and Jiang, Lustig, Van Nieuwerburgh, and Xiaolan
(2020).

40See also Kandel and Stambaugh (1996), Campbell and Viceira (1999), Barberis (2000), and Viceira (2001)
among several others.
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in our analysis. The third issue they point out is a weakness particular to their dividend-based

approach and only helps highlight the strength of our excess-return-based approach. The last issue

they point out is a matter of taste as to whether one prefers a simple or log measure of abnormal

price and has little empirical consequence. We explain these points in further detail below.

1. Risk-free rate in the candidate SDF.

First, vBBOT argue that our candidate SDF does not discount returns more in times of high risk-

free rates. They base this critique on an older version of our paper (Dec 2020) that used the excess

return on the market as a factor in the candidate SDF:

M̃t = b0 −b1Rmkt,e
t , (31)

where Rmkt,e
t denotes market return in excess of the risk-free rate.

However, since that draft, we have switched to using the the gross return on the market in our

loglinear SDF setup employed by Korteweg and Nagel (2016).

M̃t = exp(b0 −b1 log(1+Rmkt
t )), (32)

Since the gross market return includes the risk-free rate as a component, this candidate SDF does

apply a large discount on returns in times of high risk-free rates, not just in times of high risk

premium.41

The candidate SDF in vBBOT follows

M̃t = exp(− log(1+R f ,t)+b0 −b1

(
log(1+Rmkt

t )− log(1+R f ,t])
)
), (33)

where R f ,t is the risk-free rate known at time t−1 and realized at time t. Whereas the risk-free rate

component is embedded in the gross market return in equation (32), equation (33) disentangles the

risk-free rate and the (log) market risk premium components of the SDF. However, we find that

41In earlier drafts, e.g., Apr 2021, we used a linearized SDF based on the gross market return: M̃t = b0 −b1Rmkt
t ,

where Rmkt
t is the gross market return.
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empirically using the candidate SDF in equation (33) has little effect on either the estimates of δ

or their associated p-values.

2. Computing excess returns with respect to the risk-free rate vs. market return

The second critique of vBBOT also does not apply to our paper’s methodology. They argue that

computing excess returns with respect to the Treasury bill rate as part of our identity,

δ ≡ E
[

Pt −Vt

Pt

]
= −

∞

∑
j=1

E
[
M̃t,t+ j

Pt+ j−1
Pt

Re
t+ j

]
, (34)

requires the candidate SDF to explain the T-bill rate conditionally. However, since the Dec 2020

draft, we have switched to using the market rather than the Treasury bill as the base asset with

which to compute excess returns Re
t+ j. Since we estimate CAPM-based δ ’s, computing excess

returns against the market is a natural methodological choice, given that the CAPM implies that the

market is correctly priced, and follows other research (e.g., Campbell et al. (2018) and Korteweg

and Nagel (2022)) that also prices returns in excess of the market.

3. Inability of vBBOT to price Treasury bill strategies

vBBOT argue that both their dividend-based event-time framework and our framework are subject

to a large bias that results from having to estimate SDF parameters in a finite sample. They rely

on a back-of-the-envelope calculation to show that using their dividend-based method means that

the strategy of rolling over T-bill investments for 15 years has an estimated δ of more than 50%,

despite the fact that their candidate SDF is designed to price T-bill rates conditionally (Internet

Appendix D.1 of vBBOT). We confirm that in our sample, applying an event-time gross-return

approach to a strategy that rolls over T-bills results in an estimated δ of 0.497 (49.7%), similar to

the number in vBBOT (which they then hope to correct through a bootstrapping adjustment).

We find that this source of bias has little effect on δ estimates based on our approach. When we

apply our novel calendar-time, excess-return approach, the same roll-over strategy that is dramati-

cally mispriced by vBBOT has an estimated δ of only 0.1% in our full sample (1948m6–2022m12)

and 2.3% in the modern subsample (1972m6–2022m12). This finding is consistent with Figure 2A
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in our main paper, which confirms, based on Monte Carlo analysis, that our δ estimates are close

to being unbiased.42

What is it about our approach ensures that strategies such as rolling over the T-bill do not have

an artificially inflated δ estimate? Our method is not vulnerable to this defect in vBBOT’s method

primarily because our estimated δ aggregates future excess returns Re
t+ j (see equation (33) above)

rather than gross returns.43 To see why our approach is immune to this concern, suppose, for the

sake of argument, that we bring equation (34) to data by computing excess returns against the T-bill

rate. Then, by definition, the T-bill roll-over strategy earning the T-bill rate in each period has zero

excess return in all periods and must have an estimated δ of zero.

In practice, of course, we compute excess returns against the market rather than the T-bill.

Even so, the use of excess returns rather than gross returns in this way helps reduce the impact of

measurement errors in a candidate M̃ on our δ estimates. We explain this in detail in Section 3.2

of the main paper.

4. Log vs. simple mispricing

vBBOT choose to estimate the log abnormal price of Cohen, Polk, and Vuolteenaho (2009) (equa-

tion (6)) rather than the simple abnormal price measure estimated in our paper. They implicitly

acknowledge, however, that one definition is not inherently superior to another. We prefer work-

ing with simple abnormal price measure, as it allows us to develop a nonparametric estimator of

abnormal price with several desirable properties, whereas log abnormal price does not.

42Note that in our Monte Carlo, the interest rate is held fixed for the sake of tractability. We leave a generalization
of our Monte Carlo model to allow for time-varying interest rates for future research.

43Note that the evidence in Figure A6 only confirms the equivalence between the event-time, dividend-based ap-
proach and an event-time, gross-return approach. Our main approach uses the calendar-time excess-return expression,
which helps minimize the bias as well as serial correlations.
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B Empirical Appendix

B.1 Basic data adjustments

We use domestic common stocks (CRSP share code 10 or 11) listed on the three major exchanges

(CRSP exchange code 1, 2, or 3). We replace missing prices with the average bid-ask price when

available and drop observations with missing share or price information in the previous month.

We code missing returns as zero returns and add delisting returns to returns. If delisting returns

are missing, but the CRSP delisting code is 500 or between 520 and 584, we use −35% (−55%)

as the delisting returns for NYSE and AMEX stocks (for NASDAQ stocks) (Shumway (1997) and

Shumway and Warther (1999)). To compute capital gains, we use the CRSP split-adjustment factor

(CFACPR) to ensure that capital gains are not affected by split events. We use NYSE breakpoints

when sorting stocks throughout the analysis and always study value-weight portfolios.

B.2 Characteristics and portfolios

An important stock characteristic is the book-to-market-equity (B/M) ratio computed each year in

June. B/M ratio is the stock’s book value of equity in the previous fiscal year divided by its market

value of equity in December of the previous calendar year. Book value of equity is defined as

stockholders’ equity SEQ (Compustat item 144) plus balance sheet deferred taxes and investment

tax credit T XDITC (item 35) minus book value of preferred stock (BE = SEQ + T XDITC −
BPST K). Book value of preferred stock BPST K equals the preferred stock redemption value

PST KRV (item 56), preferred stock liquidating value PST KL (item 10), preferred stock PST K

(item 130), or zero depending on data availability. If SEQ is unavailable, we set it equal to total

assets AT (item 6) minus total liabilities LT (item 181). If T XDITC is unavailable, it is assumed to

be zero. In the pre-Compustat period, we use the book equity data from Davis, Fama, and French

(2000). We treat zero or negative book values as missing.

Another stock characteristic used in our preliminary analysis is the quality measure of Asness,

Frazzini, and Pedersen (2019) defined as a z-score based on four characteristics—profitability,

growth, safety, and payout ratio—that determine the market-to-book ratio in a Gordon growth
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model and in the absence of mispricing: quality = z
(
zprofitability + zgrowth + zsafety + zpayout ratio

)
.

The four characteristic z scores are in turn obtained as an equal weighted average of z scores based

different measures of each characteristic. When some of the underlying measures are missing, the

z score is taken over all available measures. In the pre-Compustat period, we use the book equity

numbers that Davis, Fama, and French (2000) collected from the Moody’s Industrial, Public Utility,

Transportation, and Bank and Finance Manuals to calculate measures that require book equity data.

Quality is computed once a year at the end of June and requires the past six years of data in order

to compute zgrowth. See Asness, Frazzini, and Pedersen (2019) for further details.

As discussed in the main body of the paper, our core analysis uses a three-characteristic model

of the value-to-price ratio named adjusted value. We simply add the z scores of B/M and prof-

itability and subtract the z score of beta. For profitability, we use the z score of gross profitability

when available, and the z score of return on equity otherwise.

We also examine portfolios sorted by seven additional characteristics: size, momentum, net

issuance, beta, profitability, investment, and accruals. The first four characteristics can be com-

puted in the pre-Compustat period, whereas the last three characteristics are available only in the

post-Compustat period. Size is market equity calculated at the end of each month. Momentum is

calculated is the cumulative gross return over the previous 12 months excluding the month before

the portfolio formation and is also computed at the end of each month. Net issuance is calculated

annually at the end of each June and is the split-adjusted growth in shares outstanding over the

previous 12 months. Beta is the trailing 3-year market beta (minimum of 2 years) calculated each

month based on overlapping 3-day returns.

Profitability is computed each year in June. Gross profitability (“profitability”) in calendar year

y equals sales SALE (Compustat item 12) minus cost of goods sold COGS (item 41) in fiscal year

y−1 over total assets in fiscal year y−1 Asset growth (“investment”) is also computed each year

in June, and investment in calendar year y is total assets in fiscal year y−1 divided by total assets

in fiscal year y−2. Accruals measures the degree to which earnings come from non-cash sources

and is defined according to Sloan (1996).
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B.3 The GMM

To estimate the deltas of characteristic-sorted portfolios, write the sample moments and the GMM

restriction as

gggT (bbb) =
1
T

T

∑
t=1

uuut (bbb)

AAAgggT (bbb) =

 0

0

 ,

where the first two moments set the market portfolio’s alpha and delta with respect to the candidate

SDF to be zero:

uuut (bbb) =
(

M̃tR
mkt,e
t −∑

J
j=1 M̃t− j,t−1

Pmkt
(t− j),t−1

Pmkt
(t− j),t− j

(
M̃t

(
1+Rmkt

(t− j),t

)
−1
)

δ̃1,t ... δ̃N,t

)′

AAA =

 J 0 0 ... 0

0 1 0 ... 0

 .

Recall that we model one-period candidate SDF as M̃t = exp
(
b0 −b1rmkt

t
)

with rmkt
t denoting

log market return and cumulative candidate SDF as M̃(t− j),t = exp
(

b0 j−b1rmkt
(t− j),t

)
with rmkt

(t− j),t

denoting log market return from t − j to t. Hence, the asymptotic variance-covariance matrices of

the parameters and the sample moments are

Var
(√

T b̂bb
)
= (AD)−1 ASA′ (AD)−1,′

Var
(√

T gggT

(
b̂bb
))

=
[
IN+2 −D(AD)−1 A

]
S
[
IN+2 −D(AD)−1 A

]′
and the finite-sample variance estimates are

V̂
(

b̂bb
)
=

1
T

(
AD̂
)−1 AŜA′ (AD̂

)−1,′

V̂
(

gggT

(
b̂bb
))

=
1
T

[
IN+2 − D̂

(
AD̂
)−1 A

]
Ŝ
[
IN+2 − D̂

(
AD̂
)−1 A

]′
,
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where S is the spectral density matrix and

D = E
[

∂uuut (bbb)
∂bbb′

]

is estimated by D̂, which equals

T−1
T

∑
t=1



M̃t(1+Rmkt
t ) −rmkt

t M̃t(1+Rmkt
t )

−∑
J
j=1 jM̃t− j,t

Pmkt
(t− j),t−1

Pmkt
(t− j),t− j

Rmkt,e
(t− j),t ∑

J
j=1 rmkt

t− j,tM̃t− j,t
Pmkt
(t− j),t−1

Pmkt
(t− j),t− j

Rmkt,e
(t− j),t

−∑
J
j=1 jM̃t− j,t

P1,(t− j),t−1
P1,(t− j),t− j

Re
1,(t− j),t ∑

J
j=1 rmkt

t− j,tM̃t− j,t
P1,(t− j),t−1
P1,(t− j),t− j

Re
1,(t− j),t

...
...

−∑
J
j=1 jM̃t− j,t

PN,(t− j),t−1
PN,(t− j),t− j

Re
N,(t− j),t ∑

J
j=1 rmkt

t− j,tM̃t− j,t
PN,(t− j),t−1
PN,(t− j),t− j

Re
N,(t− j),t


.

with rmkt
0,0 defined to be 0. The spectral density matrix is estimated as follows:

ŜT

(
b̂bb
)
= Γ̂0 +

B

∑
b=1

B−b
B

(
Γ̂b + Γ̂

′
b
)

where B is the Newey-West bandwidth and

Γ̂0 =
1
T

T

∑
t=1

(
uuut

(
b̂bb
)
−uuu
(

b̂bb
))′

×
(

uuut

(
b̂bb
)
−uuu
(

b̂bb
))

Γ̂b =
1
T

T

∑
t=b+1

(
uuut

(
b̂bb
)
−uuut≥b+1

(
b̂bb
))′

×
(

uuut−b

(
b̂bb
)
−uuut≤T−b

(
b̂bb
))

.

B.4 Adjusted value in a double sort

Recall that δ measures the percentage deviation of value from price, which can be written as a

product of book equity over market price (B/M) and the present value of cash flows over book

equity (V/B):

δt = 1− Vt

Pt
= 1− Bt

Mt
× Vt

Bt
, (35)

where for convenience we equate market value M with per-share price P. Hence, sorting stocks on

both B/M and V/B should generate a large variation in δ .
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Although V/B is unobserved, the loglinear present-value model of Vuolteenaho (2002) shows

that it can be written as a spread between future expected profitability and CAPM-implied discount

rates. Hence, we simply model V/B as the spread between the z-score of profitability and the z-

score of market beta today:

V
B

∝ Profitability Spread ≡ z(Prof)− z(Beta), (36)

Consistent with our prior, double sorting stocks based on B/M and profitability spread, our

simple proxy for V/B, resurrects the ability of these characteristics to explain larger variation in

δ s (Table A5). Furthermore, the variation in δ across the two dimensions of the table is consistent

with our conjecture in Figure A5.

Abnormal price δ declines as we move from left to right, which amounts to holding B/M

fixed while increasing profitability spread, and profitability spread appears to be an especially

informative predictor of CAPM abnormal price among low-B/M (growth) stocks. Similarly, δ

declines as we move from top to bottom, which amounts to holding profitability spread fixed

while increasing B/M, and this variation leads to statistically significant differences in abnormal

price among the middle tercile profitability spread stocks. Moving diagonally from the top left to

the bottom right generates the largest variation in δ s. We estimate low profitability spread, low-

B/M stocks to be 57.6 percentage points more overpriced than high profitability spread, high-B/M

stocks with a p-value of 0.0%.

B.5 Adjusted value based on expected future profitability

Equation (29) shows that, strictly speaking, the value-to-price ratio depends on expected future

profitability rather than current profitability. Hence, we estimate a VAR model in which

xt+1 = Axt
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where xt is a vector of z-scores of B/M, profitability, beta, and investment (which is the order we

use to form the column vector). The resulting VAR coefficients is as follows:

A =


.89 −.07 .02 .02

−.15 .80 .01 −.10

.00 −.01 .92 .03

−.22 −.02 .07 .31


It is easy to show that the discounted sum of future profitability can be written as a linear combi-

nation of the four current characteristics:

FuturePro f ≡ 1profA(I −ρA)−1 xt ,

where 1prof denotes a vector of zeros and the one in the row that corresponds to profitability. We use

the z-score of the last expression as our profitability z-score that feeds into an alternative adjusted

value measure in Table A4.

B.6 Other proxies of misvaluation

Although we use a relatively simple three-characteristic signal of abnormal price dubbed adjusted

value, one may wonder how well existing measures fare against adjusted value to predict abnormal

price in the data. We examine two characteristics having been suggested as proxies for abnormal

price: the analyst-forecast-based measure of Frankel and Lee (1998) and the market-multiples-

based measure of Golubov and Konstantinidi (2019). Both signals have a relatively short sample

period, and the signal based on analyst forecasts is limited by the availability of analyst forecast

data. The market-multiples-based approach requires within-industry cross-sectional regressions,

which can have a very small cross-section of data in the 1970s and earlier. Hence, our analysis

is restricted to (roughly) the same sample periods used in the original papers, starting in the mid

1970s, giving us post-formation return data from 1991m6 to 2022m12.44

44A related measure by Bartram and Grinblatt (2018) was defined from year 1987, which would lead to an even
shorter sample period, so we do not consider the measure.
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Table A12 shows that the V/P signal based on analyst forecasts does not predict CAPM mispric-

ing in the direction we expect, consistent with the observation of Chen and Zimmermann (2021)

that the (short-horizon) return performance reported in Frankel and Lee (1998) is difficult to repli-

cate: “The most notable likely predictors in terms of reproduction difficulty come from Frankel

and Lee (1998)” (p.23). The same table shows that although the signal based on market multiples

generates a larger variation in CAPM δ s, it is also not significant in such a short sample period.

It is possible that this signal proxies for mispricing in a longer sample, although even in Golubov

and Konstantinidi (2019), their market-multiples-based V/P signal is not a stronger signal of ab-

normal return than B/M itself (e.g., see the second panel of Figure 1 of their paper, which shows

the value-weight returns on their V/P signal—called firm-specific error—are lower than those of

B/M). Of course, part of their relatively weak performance could be a feature of the sample.

B.7 Incremental information about prices when controlling for adjusted value:
book-to-market, profitability, and beta

Table 7 studies the incremental information about prices contained in characteristics other than

ones used to construct adjusted value. Here, we also examine characteristics we do use to con-

struct adjusted value. Table A13 shows that controlling for adjusted value reduces the ability of the

other characteristic to predict CAPM mispricing. In particular, the δ variation associated with beta

drops dramatically. Controlling for adjusted value, however, increases the magnitude of mispricing

associated with profitability. On the other hand, controlling for one of the underlying character-

istics does not affect the economic magnitude or the statistical significance of δ associated with

adjusted value. However, the substantial correlation between the two signals means that controlling

for beta no longer makes adjusted value a statistically significant predictor of CAPM mispricing.
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C Theory Appendix

C.1 Mispricing identity: an illustrative example

An example shows how our identity correctly recovers the initial price deviation with respect to a

candidate SDF, even when there is no subsequent correction in mispricing.

An asset pays a perpetual dividend of Dt+ j = λ and has a constant price of Pt+ j = 1 in all

periods. We posit a candidate SDF that explains the constant risk-free rate R f > λ , even if it may

not explain the returns and prices of the asset in consideration:

M̃t+ j =
1

1+R f

Then, the asset’s present value of dividends with respect to M̃ is Vt = λ/R f , so the asset has a

positive abnormal price with respect to the candidate SDF:

δt =
Pt −Vt

Pt
=

R f −λ

R f
> 0.

That is, the asset is overpriced with respect to M̃.

Does our excess-return-based identity correctly recover the same level of overpricing? Apply-

ing our identity and using the risk-free asset as the base asset,

δt =−
∞

∑
j=1

M̃t,t+ j
Pt+ j−1

Pt
Re

t+ j =−
∞

∑
j=1

1(
1+R f

) j

(
λ −R f

)
=

R f −λ

R f
,

so the answer is yes!

Intuitively, how does our formula correctly recover initial overpricing even if overpricing does

not get corrected in the long run? The reason is that if price stays high, the dividend yield compo-

nent of future return is (abnormally) low, and our formula detects that as signal of initial overpric-

ing.
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To be more specific, overpricing with respect to M̃ lowers the dividend yield from R f to λ ,

which leads to lower return and lower excess return. The artificially low dividend yield is detected

by perpetually negative excess returns, which our identity discounts back to the present to arrive at

overpricing of one.

• Dividend yield with respect to the “correct” value of Vt+ j = λ/R f :

Dt+ j

Vt+ j−1
= R f

• Dividend yield with respect to market price Pt+ j = 1:

Dt+ j

Pt+ j−1
= λ

• Return: Rt+ j =
Pt+ j −Pt+ j−1

Pt+ j−1︸ ︷︷ ︸
capital gain

+
Dt+ j

Pt+ j−1︸ ︷︷ ︸
dividend yield

=
1−1

1
+λ = λ

• Excess return: Re
t+ j = λ −R f

• Return-identity-based δt =−∑
∞
j=1 M̃t,t+ j

Pt+ j−1
Pt

Re
t+ j =

R f −λ

R f

In the absence of overpricing, the dividend yield would be R f such that excess returns and

return-based delta would be zero.

In contrast, if the asset’s price does come down to be consistent with M̃, the capital gain com-

ponent of return is abnormally low, and our formula detects the corresponding low excess return

as a sign of initial overpricing.

As a sidenote, our formula also does not rely on the candidate SDF being the true SDF. However,

We need the base-asset return to satisfy the fundamental asset pricing equation with respect to the

candidate SDF.
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C.1.1 Mispricing identity: the special case of zero dividend

Our excess-return-based identity continues to be valid in the special case when an asset pays zero

dividend and there is permanent mispricing with respect to a candidate SDF. This amounts to

setting δ = 0 in the previous example.

Suppose we are still interested in computing abnormal price with respect to the candidate SDF,

M̃t+ j =
1

1+R f
. An “asset” with permanently zero dividend has a positive price Pt+ j > 0 in all j ≥ 0,

leading to a permanent overpricing of

δt+ j = 1−
Vt+ j

Pt+ j
= 1

in all periods, including the initial period at t.

Does our excess-return-based identity correctly recover the same level of overpricing? Apply-

ing our identity,

δt =−
∞

∑
j=1

1(
1+R f

) j

(
−R f

)
=

R f

R f
= 1,

so the answer is again a resounding yes. Intuitively, initial overpricing is reflected in subsequent

negative excess returns of −R f , which our identity correctly discounts to the present to find δt = 1.

C.2 The estimator in Cohen, Polk, and Vuolteenaho (2009)

CPV proposes estimating average log abnormal price. Based on the Campbell and Shiller (1988)

decomposition,

δ
log
t ≈−

∞

∑
j=1

ρ
j−1Et [rt+ j]−Et [rV,t+ j], (7)

where rt ≡ log(Pt +Dt)− log(Pt−1) and rV,t ≡ log(Vt +Dt)− log(Vt−1) denote log returns on price

and value, respectively, and ρ < 1 is a parameter. Since Et+ j−1[erV,t+ j+m̃t+ j ] = 1 and Et+ j−1[erb,t+ j+m̃t+ j ] =

1, the conditional joint normality of the log quantities implies

Et+ j−1[rV,t+ j] =Et+ j−1[rb,t+ j]+
1
2

Vart+ j−1(rb,t+ j)−
1
2

Vart+ j−1(rV,t+ j)+Covt+ j−1(re
V,t+ j,−m̃t+ j),

(37)
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where re
V denotes log return on value in excess of the base asset return. Plugging this into equation

(7), using the approximation Et+ j−1[Rt+ j] ≈ Et+ j−1[rt+ j] +
1
2Vart+ j−1(rt+ j), applying uncondi-

tional expectation, and rearranging,

E

[
∞

∑
j=1

ρ
j−1Rt+ j

]
≈ E

[
∞

∑
j=1

ρ
j−1Rb,t+ j

]
+E

[
∞

∑
j=1

ρ
j−1Covt+ j−1(re

V,t+ j,−m̃t+ j)

]

+
1
2

E
[
Vart+ j−1(rt+ j)−Vart+ j−1(rV,t+ j)

]
−δ

log. (8)

This decomposition motivates CPV to estimate δ log using a closely related equation (their Equa-

tion 9) in the cross-section of portfolios, where k indexes a portfolio and the horizon is capped at

J:

E

[
J

∑
j=1

ρ
j−1Rk,t+ j

]
= λ0 +λ1 β

CF
k +uk, (9)

where βCF
k is measured by regressing the portfolio’s long-horizon cash flows on that of the market.

Besides the potentially large measurement errors in estimated βCF
k , two additional difficulties

arise. First, under the null where rv = r, justifying equation (9) requires strong intertemporal

restrictions that guarantee

E

[
∞

∑
j=1

ρ
j−1Covt+ j−1(re

t+ j,r
mkt
t+ j)

]
=Cov

(
∞

∑
j=1

ρ
j−1re

t+ j,
∞

∑
j=1

ρ
j−1rmkt

t+ j

)
, (10)

in which case λ1 = b1Var
(

ρ j−1rmkt
t+ j

)
if the candidate SDF is given by m̃t = b0 − b1rmkt

t for log

market return rmkt . The simplest way to guarantee equation (10) is to assume that returns are

independently and identically distributed (i.i.d.). However, in a world with i.i.d. returns, it makes

little sense to explore the distinctions between abnormal price and short-horizon abnormal returns.

To quantify the extent of the problem, rewrite the conditional variance on the left-hand side of

equation (10) as re
t+ j = βt+ j−1rmkt

t+ j +ut+ j, which implies that the value of the left-hand side can be

estimated as

E

[
∞

∑
j=1

ρ
j−1

βt+ j−1σ
2
mkt,t+ j−1

]
(38)
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with βt+ j−1 and σ2
mkt,t+ j−1 denoting the portfolio’s time t+ j conditional return beta and the market

portfolio’s time t + j conditional variance, respectively. We estimate the conditional return beta

using past 36 months’ return data and realized market variance using daily market returns over the

month. The right-hand side of the equation can be estimated from the observed values of portfolio

and market returns.

We find that there is indeed a large empirical difference between the two sides of equation

(10), 0.192 (left-hand side) vs. 0.132 (right-hand side) for the high abnormal profitability quintile

portfolio. Since we estimate the log candidate SDF’s loading on the log market return to be larger

than 3, in the context of CPV’s equation (7), this translates into an estimation error in log abnormal

price of more than 18 percentage points. Two forces contribute to the left-hand side of equation

(10) being larger than the right-hand side in the high abnormal profitability portfolio. First, the

portfolio’s unconditional beta is less than one but tends to rise in times of high market volatility.

This fact makes the left-hand side larger (more positive) than it would be under i.i.d. Second,

the right-hand side of equation (10) involves cross-autocovariances between portfolio excess log

returns and market log returns that are likely to be negative due to the long-term reversal effect.

This fact pushes the right-hand side to be smaller.

Second, under the alternative where rv ̸= r, interpreting the error term u in equation (9) as δ log

in equation (8) requires that the long-horizon sum of volatility of log returns is the same for price

and value:

E

[
∞

∑
j=1

ρ
j−1Vart+ j−1(rt+ j)

]
= E

[
∞

∑
j=1

ρ
j−1Vart+ j−1(rV,t+ j)

]
. (39)

This fact can add to the bias in estimated δ log under the alternative in which mispricing shocks

with respect to M̃ makes r substantially more volatile than rV .45

C.3 Comparison to the abnormal return identity in van Binsbergen and Opp
(2019)

van Binsbergen and Opp (2019) use a different identity to link price to subsequent abnormal re-

45Having the correct estimate of abnormal price under the alternative is important, just as the error term in an asset
pricing regression for returns can be interpreted as abnormal returns under the alternative.
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turns:

Pt = Et

[∫
∞

t
M̃t,t+τe−

∫
τ

t α∗
u dudΠt

]
,

or in discrete time,

Pt =
∞

∑
j=1

Et

[
M̃t,t+ j

Π
j
k=1

(
1+α∗

t+k

)Dt+ j

]
, (40)

where 1+α∗
t+k ≡ Et

[
M̃t+1 (1+Rt+1)

]
. van Binsbergen and Opp use the term “mispricing wedge”

to refer to the stochastic cumulation of abnormal returns, 1/
[
Π

j
k=1

(
1+α∗

t+k

)]
, which is different

from the definition of ex-ante abnormal price δt = Et [1−Vt/Pt ] we introduce in our paper.

To derive their discrete-time identity in equation (40), begin with

1+α
∗
t+1 ≡ Et

[
M̃t+1 (1+Rt+1)

]
= Et

[
M̃t+1

Pt+1 +Dt+1

Pt

]
.

Rearranging terms and iterating forward,

Pt = Et

[
M̃t+1

1+α∗
t+1

Dt+1 +
M̃t+1

1+α∗
t+1

Pt+1

]
= Et

[
M̃t+1

1+α∗
t+1

Dt+1 +
M̃t+1M̃t+2

(1+α∗
t+1)(1+α∗

t+2)
Dt+2 + ...

]
= ∑

∞
j=1 Et

[
M̃t,t+ j

Π
j
k=1(1+αt+k)

Dt+ j

]
.

To see what equation (40) implies about unconditional ex-ante abnormal price we define, write

δ = E [1−Vt/Pt ] =
∞

∑
j=1

E

[
M̃t,t+ j

(
1

Π
j
k=1

(
1+α∗

t+k

) −1

)
Dt+ j

Pt

]
. (41)

Compared to the analysis based on the Campbell-Shiller approximation in equation (7), equation

(41) helpfully clarifies that the “mispricing wedge,” 1/
[
Π

j
k=1

(
1+α∗

t+k

)]
, has to be stochastically

discounted using with the cumulative SDF to arrive at ex-ante mispricing.

However, it is not obvious how to take equation (41) to data to estimate δ using returns. For
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instance, one could rewrite equation (41) in terms of returns,

δ =
∞

∑
j=1

E

M̃t,t+ j

 1

Π
j
k=1Et+k−1

[
M̃t+k (1+Rt+k)

] −1

Dt+ j

Pt

 , (42)

but the conditional expectation in the denominator, Et+k−1[ ], prevents one from taking equation

(42) to data without making additional assumptions about which state variables help forecast the

time series of conditional abnormal returns. Our identity circumvents this issue by making the

intentional decision to use a definition of mispricing that has price Pt in the denominator, which

results in subsequent abnormal returns appearing in the numerator and leads to our expression for

unconditional mispricing in equation (19) as well as our return-based calendar-time estimator in

equation (2).

C.4 Portfolio δ

In practice, one would typically estimate the δ of a portfolio of stocks, which requires expressing

the portfolio δ as a function of post-formation capital gains and returns on the portfolio. These

capital gains and returns should be those based on a buy-and-hold strategy that does not rebalance

the portfolio (or equivalently, use the original weight times the stock’s cumulative capital gain to

rebalance the portfolio every month). If wi,t is the portfolio weight on security i at the time of

portfolio formation t,

δt = ∑
N
i=1 wi,tδi,t

= ∑
N
i=1 wi,t

(
−∑

∞
j=1 Et

[
M̃t,t+ j

Pi,t+ j−1
Pi,t

Re
i,t+ j

])
= −∑

∞
j=1 Et

[
M̃t,t+ j ∑

N
i=1

(
wi,t

Pi,t+ j−1
Pi,t

Re
i,t+ j

)]
= −∑

∞
j=1 Et

[
M̃t,t+ j ∑i∈Nt+ j

(
wi,t

Pi,t+ j−1
Pi,t

Re
i,t+ j

)]
,

(43)

73



where Nt+ j denotes the set of firms surviving (not delisted) at the end of t + j− 1 and therefore

have return data for t + j. Hence,

δt = −∑
∞
j=1 Et

[
M̃t,t+ j

(
∑i∈Nt+ j wi,t

Pi,t+ j−1
Pi,t

)(
∑i∈Nt+ j

wi,t
Pi,t+ j−1

Pi,t
Re

i,t+ j

∑i∈Nt+ j wi,t
Pi,t+ j−1

Pi,t

)]
= −∑

∞
j=1 Et

[
M̃t,t+ j

Pt+ j−1
Pt

Re
t+ j

]
,

(44)

where

1. we normalize the time t portfolio price Pt to be 1.

2. the buy-and-hold time t + j−1 portfolio price is Pt+ j−1 = ∑i∈Nt+ j wi,t
Pi,t+ j−1

Pi,t
.

3. the buy-and-hold portfolio weight on asset i between t + j−1 and t + j is

wi,t+ j =
wi,t

Pi,t+ j−1
Pi,t

∑i∈Nt+ j wi,t
Pi,t+ j−1

Pi,t

4. the buy-and-hold portfolio excess return is then given by Re
t+ j = ∑i∈Nt+ j wi,t+ jRe

i,t+ j.

C.5 Monte Carlo analysis

We analyze our estimator’s statistical properties and compare them to those of alternative ap-

proaches by simulating the asset market. We do this by adopting the model used in the Monte

Carlo analysis of Korteweg and Nagel (2016) (KN) to our purposes.46

As in KN, the log one-period (candidate) SDF and log market returns follow, respectively,

m̃t = b0 −b1rmkt
t (45)

rmkt
t = r f +b1σ

2 − 1
2

σ
2 +σεt , (46)

where b0 and b1 are parameters, r f is the constant log risk-free rate, σ is the volatility of log

46We present the model in a similar manner to KN for an easy comparison and specify the cash flow and mispricing
processes.
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market return, and εt ∼ N (0,1) are i.i.d. so that rmkt
t also is. Given this setup, the candidate SDF

explains market returns and the risk-free rate if b0 =−r f +b1(r f +b1σ2 − 1
2σ2)− 1

2b2
1σ2, which

we assume.47 To keep the model lean, we assume that there is single market portfolio and do not

model how market portfolios formed in different periods could be different due to IPOs, delistings,

and net issuance.48

Since market returns are i.i.d., the market has a constant log price-dividend ratio ymkt , which

we define as the log of one plus the ratio of price to dividend. Then, the log dividend growth,

∆dmkt
t = log(Dmkt

t /Dmkt
t−1), follows49

∆dmkt
t = rmkt

t − ymkt + log
(

exp
(

ymkt
)
−1
)
, (47)

which allows us to back out ymkt from E[∆dmkt
t ]. The constant price-dividend ratio also implies

that the log capital gain follows the same process as the log dividend growth.

Next, we specify the returns on a characteristic-based portfolio’s present value. The portfolio

formed at (t − j) for j ≥ 1 has a time-t log return on value of

rv,(t− j),t = r f +βv(rmkt
t − r f )+

1
2

βvσ
2 − 1

2
(β 2

v σ
2 +σ

2
η)+η(t− j),t , (48)

where ηηη t =
(

η(t−1),t · · · η(t−J),t

)′
∼ MV N

(
0,σ2

ηΓη

)
and Γη is a J-by-J cross-sectional cor-

relation matrix with ρ
|i1−i2|+| j1− j2|
η as the correlation between entries (i1, j1) and (i2, j2) in the

matrix. ηηη t has zero time-series autocorrelations. This correlation structure ensures that cross-

sectional correlations among the portfolio’s post-formation returns fall as the difference in the

47Furthermore, equation (46) implies that b1 is pinned down by choosing r f , σ2, and the average log market return
E[rmkt

t ]: b1 = (E[rmkt
t ]− r f )/σ2 +1/2

48One can think of that as the market portfolio being a single Lucas tree. Practically, this assumption means that
investors in our model receive the same return and cash flows at each t regardless of when the investor began buying
and holding the market portfolio. Of course, this implication is not true in reality, but we find that it is a reasonable
approximation, since the correlation between market returns and post-formation market returns tends to be extremely
high. The sample correlation between returns on the market portfolio formed a month ago versus 15 years ago (the
largest gap) is 97.8% over 1948m6–2022m12.

49To see this, rmkt
t = log

(
Pmkt

t +Dmkt
t
)
− logPmkt

t−1 = log
(
1+Pmkt

t /Dmkt
t
)
+ log

(
Dmkt

t /Dmkt
t−1
)
− log

(
Pmkt

t−1/Dmkt
t−1
)
=

ymkt +∆dmkt
t − log

(
exp
(
ymkt

)
−1
)
.
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portfolio formation periods increases. It is easy to check that the expected return on rv,(t− j),t is

consistent with the candidate SDF and market return processes. We also assume that the portfo-

lio’s dividend growth has a βv exposure to the market dividend growth and an expected value of

βvE[∆dmkt
t ].

Since portfolio returns on value are i.i.d. over time (though not in the cross-section), the port-

folio should have a constant log value-dividend ratio of y. This means that the portfolio’s log

dividend growth follows

∆d(t− j),t = rv,(t− j),t − y+ log(exp(y)−1) . (49)

This equation and the fact that we assume E[∆d(t− j),t ] = βvE[∆dmkt
t ] pins down the value of y and

of ∆d(t− j),t . Under the null of a correct SDF, there is no mispricing such that the log return is the

return on value and price is the intrinsic value: r = rv and P = V . In this case, a constant price-

dividend ratio also means that capital gain again equals the dividend growth. This is the process

used to examine size.

To examine power, we need to allow for mispricing in the characteristic-based portfolio. We do

this by specifying log abnormal price, δ
log
t =− log(1−δt) = log(Pt/Vt). We allow the formation-

period abnormal price to be autocorrelated across time:

δ
log
(t),t = (1−φinit)δ

log
+φinitδ

log
(t−1),t−1 + et , (50)

where et ∼ N(0,σ2
e ) such that portfolio-formation period log abnormal price tends to mean revert

to δ
log

. In each simulation, we draw the first portfolio-formation period abnormal price δ
log
(0),0

from a normal distribution with mean δ
log

and variance (1−φ 2
init)

−1σ2
e . On the other hand, post-

formation log abnormal price tends to converge to zero:

δ
log
(t− j),t = φpostδ

log
(t− j),t−1 +u(t− j),t for j ≥ 1, (51)

where uuut =
(

u(t−1),t · · · u(t−J),t

)′
∼ MV N

(
0,σ2

u Γu
)

is cross-sectionally correlated across
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portfolios formed in different time periods (different j’s) and Γu is a J-by-J matrix with elements

ρ
|i1−i2|+| j1− j2|
u as the correlation between entries (i1, j1) and (i2, j2) in the matrix. We allow φinit

and φpost to be different. Both et and uuut have zero time-series autocorrelations. Simple algebra

implies that the return on price in the presence of mispricing is

r(t− j),t = ∆d(t− j),t + log
(

exp
(

δ
log
(t− j),t

)
(exp(y)−1)+1

)
−δ

log
(t− j),t−1 − log(exp(y)−1) (52)

and that the log capital gain is

log
(

Pt

Pt−1

)
= ∆dt +δ

log
t −δ

log
t−1. (53)

We choose the parameters of the model to match the key moments of the market portfolio and

the high abnormal profitability portfolio, which serves as our benchmark for the characteristic-

based portfolio under the alternative. Table A1 compares a number of key moments from simula-

tions and data.

C.6 Estimation in the presence of mispricing in firm-level returns

Cohen, Polk, and Vuolteenaho (2009) explain that tests of the CAPM may be distorted when there

is market-wide mispricing. Their use of a ROE CAPM, as motivated by the Vuolteenaho (2002)

decomposition, nicely avoids this. Of course, we can also use a ROE-based SDF in our return-

based identity approach. Mispricing in firm-level returns, on the other hand, does not hinder us

when using the distorted covariance between returns and the candidate SDF to estimate δ based

on our identity.

The easiest way to see that mispricing in firm-level returns does not hinder us from using the

covariance between distorted returns and the candidate SDF when estimating δ is to recognize that

the direct discount of cash flows is equivalent to an event-time, gross-return version of our return-

based-identity (i.e., a version of our identity that does not exploit the calendar-time reformulation

and the excess return restriction used in the paper). Therefore, the direct discount of cash flows is

not superior to our method in the presence of firm-level mispricing.
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The event-time return-identity-based formula for δ (J) can be written as

δ (J) =−
J

∑
j=1

E

[
M̃t,t+ j−1

P(t),t+ j−1

P(t),t
(M̃t+ j

[
(1+R(t),t+ j)− (1+Rb,(t),t+ j)

]
)

]
, (54)

where Rb denotes the return on the base asset (for which we use the market portfolio). This equation

is the basis for an event-time return-identity-based estimator of abnormal price that we could use

were it not for the serial correlation or the time discount issue:

− 1
T

T

∑
t=1

J

∑
j=1

[
M̃t,t+ j

P(t),t+ j−1

P(t),t
Re
(t),t+ j

]
. (55)

Since 1 = Et+ j−1

[
M̃t+ j(1+Rb,(t),t+ j)

]
by definition, we can also write

δ (J) = −
J

∑
j=1

E

[
M̃t,t+ j−1

P(t),t+ j−1

P(t),t
(M̃t+ j(1+R(t),t+ j)−1)

]
(56)

The sample analogue of equation (56) is

− 1
T

T

∑
t=1

J

∑
j=1

[
M̃t,t+ j−1

P(t),t+ j−1

P(t),t
(M̃t+ j(1+R(t),t+ j)−1)

]

= − 1
T

T

∑
t=1

J

∑
j=1

[
M̃t,t+ j

P(t),t+ j +D(t),t+ j

P(t),t
− M̃t,t+ j−1

P(t),t+ j−1

P(t),t

]

=
1
T

T

∑
t=1

[
1−

J

∑
j=1

M̃t,t+ j
D(t),t+ j

P(t),t
− M̃t,t+ j

P(t),t+J

P(t),t

]
, (57)

which is the sample delta expression for the cash-flow method. Figure A6 verify empirically that

the two methods generate identical point estimates.

Since equation (55) can be stated using returns or using cash flows, taking (57) to the data cannot

provide any additional advantage in terms of improving the point estimate. In contrast, using the

calendar-time expression for equation (55) has the advantage of having low serial correlation in its

time-series observations.
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To show exactly how this equivalence works, we next analyze a simple example. Consider a

three-period setting (t = 0,1,2) with two states at time 1 with equal probability (s1 = L,H) and

two cumulative states at time 2 due to the two time-1 states. The candidate SDF follows the

following dynamics:

M̃t =

t = 1

1+µ if s1 = H

1−µ if s1 = L

−→

t = 2

1 if s1 = H

1 if s1 = L

where µ > 0. The market return is the inverse of the candidate SDF: Rmkt
t = M̃−1

t −1.

There is a stock portfolio paying no cash flow other than a deterministic liquidating dividend of

V at time 2. Since M̃t has a conditional mean of one in all periods, the stock’s correct price with

respect to the candidate SDF is Vt =V in all periods.

Besides analyzing the case with no mispricing with respect to M̃, we also consider two cases

of mispricing. Case 1 is when there is an overvaluation by a factor of (1−µ)−1 (1+2ε) in the

low-M state at time 1, but the price is correct in all other periods and states. Hence, there is

no ex-ante mispricing at time 0. Case 2 is when there is the same overvaluation in the low-M̃

state at time 1, AND the time-0 price also takes the resulting distorted market beta into account:

P0 = E0

[
M̃1P1

]
= 0.5V +0.5(1−µ)

(
V (1−µ)−1 (1+2ε)

)
=V (1+ ε). Hence, in Case 2, there

is an initial overpricing of (P0 −V0)/P0 = ε/(1+ ε) at time 0.

t = 0 t = 1 t = 2

Dt 0 V

No mispricing V V 0

Pt Mispricing: Case 1 V
V

V (1−µ)−1 (1+2ε)

if s1 = H

if s1 = L
0

Mispricing: Case 2 V (1+ ε)
V

V (1−µ)−1 (1+2ε)

if s1 = H

if s1 = L
0

79



Now consider computing the initial abnormal price measured using either the conventional

cash-flow expression or our return-based identity:

δCF,t = 1−Et

[
M̃t+1

Dt+1

Pt

]
−Et

[
M̃t,t+2

Dt+2 +Pt+2

Pt

]
. (58)

δt =−Et

[
M̃t+1Re

t+1

]
−Et

[
M̃t,t+2

Pt+1

Pt
Re

t+2

]
, (59)

where the excess return is with respect to the market return. We want to check that one can rely

on either formula to correctly find the initial abnormal price, whether or not there is a distorted

covariance with the candidate SDF.

No mispricing

In this case,

δCF,0 = 1−Et

[
M̃t,t+2

Dt+2

Pt

]
= 1− V

V
= 0.

Also,

δ0 =−E0

[
M̃1

(
0−Rmkt

1

)]
=−1

2

[
(1+µ)

(
(1+µ)−1 −1

)
+(1−µ)

(
(1−µ)−1 −1

)]
= 0

so that we recover the initial abnormal price of zero in both cases.

Mispricing Case 1 (no initial mispricing)

In this case,

δCF,0 = 1−Et

[
M̃t,t+2

Dt+2

Pt

]
= 1− V

V
= 0.

80



Also,

δ0 =
−1

2

[
M̃1,s1=H

(
R1,s1=H −Rmkt

1,s1=H

)
+ M̃1,s1=L

(
R1,s1=L −Rmkt

1,s1=L

)]
−1

2M̃1,s1=L
P1,s1=L

P0

(
R1,s1=L −Rmkt

2,s1=L

)
=

− 1
2 [(1+µ)(0−((1+µ)−1−1))−(1−µ)(((1−µ)−1(1+2ε)−1)−((1−µ)−1−1))]

− 1
2 (1−µ)(1−µ)−1(1+2ε)

((
1

(1−µ)−1(1+2ε)
−1
)
−0
)

= 0

Hence, we recover an initial mispricing of zero in both cases in spite of the distorted covariance

with M̃ due to mispricing. Our identity neutralizes this distortion through the cumulative capital

gain term multiplying the cumulative candidate SDF and excess returns. Of course, this result

generalizes to the case with additional periods.

Mispricing Case 2 (initial overpricing)

In this case,

δCF,0 = 1−Et

[
Mt,t+2

Dt+2

Pt

]
= 1− V

V (1+ ε)
= 1− 1

1+ ε
=

ε

1+ ε
.

When applying the Cho-Polk identity, the difference from Case 1 arises in R1 and P1
P0

.

δ0 =
− 1

2 [(1+µ)(((1+ε)−1−1)−((1+µ)−1−1))−(1−µ)(((1+ε)−1(1−µ)−1(1+2ε)−1)−((1−µ)−1−1))]

− 1
2 (1−µ)(1+ε)−1(1−µ)−1(1+2ε)

((
1

(1−µ)−1(1+2ε)
−1
)
−0
)

=
− 1

2 (1+µ)((1+ε)−1−1)− 1
2 (1−µ)((1+ε)−1−1)(1−µ)−1(1+2ε)

− 1
2 (1−µ)((1+ε)−1−1)(1−µ)−1(1+2ε)

(
1

(1−µ)−1(1+2ε)
−1
)

= ε/(1+ ε)

Hence, we recover an initial abnormal price of ε/(1+ ε) in both cases in spite of the distorted

covariance with M̃ due to mispricing.
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D Additional Figure and Tables
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Figure A1: Estimated CAPM-implied Candidate SDF

The figure plots the time-series realizations of the CAPM-implied candidate SDF: M̃t = exp(b0 − b1rmkt
t )

with rmkt
t denoting log market returns
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Figure A2: Autocorrelation by Estimation Approach: B/M, Quality, and Adjusted value

The figure reports the 1- to 100-month autocorrelations in time-series δ s estimated based on the return-identity-
based approach (solid grey) and the dividend-based approach using event-time (dash orange). We provide the
comparison for the low-, high-, and high-minus-low quintile portfolios (in different columns) sorted on the book-
to-market, quality, and adjusted value (in different rows).
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Figure A3: GMM vs. Bootstrap Standard Errors: Monte Carlo
The figure shows the true standard deviation of the delta estimator (red solid line), median GMM standard
error (blue solid circle), median bootstrap standard error, and the 10% and 90% values for the two standard
errors based on Monte Carlo. The comparison shows that GMM standard errors have a median that almost
exactly matches the true standard deviation of δ̂ and a much narrower confidence interval than the bootstrap
standard error. Both GMM and bootstrap standard errors use a bandwidth / blocklength of 2 years.
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Figure A4: Estimated δ by the Choice of J

The left plot shows the way estimated δ changes as we vary the total number of post-formation months J
used in the estimate. The right plot shows the corresponding change in δ by J. The plotted lines are for
the high (dotted lines) and low (solid lines) quintile portfolios sorted on the market-to-book (blue), quality
(grey), and quality-to-price (orange). The two plots suggest that estimated δ s tend to plateau after J = 15
years (180 months).
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Figure A5: A Double Sort on B/M and Profitability Spread (V/B): Illustration

This diagram illustrates how a double sort on the book-to-market equity ratio and a proxy for the value-to-
book ratio should generate large cross-sectional variation in mispricing δ . We proxy the value-to-book ratio
with a two-characteristic signal dubbed profitability spread.
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Figure A6: Delta Based on the Return Identity vs. Cash Flows

The figure plots the delta estimate using two theoretically equivalent approaches: the direct discount of fu-
ture cash flows and a terminal value (price in 15 years; vertical axis) and the event-time, gross-return version
of the return-identity-based approach (horizontal axis). The two approaches yield very similar results, with
only differences of a few basis points due to measurement errors and estimation noise. The identity-based
point estimates reported in our main analysis differ from those reported here due to the use of the calendar
time rearrangement as well as the excess return restriction.
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I. Size: Returns J. Size: Price Levels
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Figure A7: The Risk-Return Relations in Returns and Price Levels (Other Return Anomalies)

The plots, for portfolios sorted on various return anomaly characteristics, the relation between long-horizon
risk and long-horizon return (the right panel) versus that between short-horizon risk and return (the left
panel). Risks are measured with respect to the market portfolio. See the description in Figure 3 for more
details. The sample period is 1948m6–2022m12.
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Figure A8: Delta vs. Cumulative State Adjustment

The figure plots the abnormal price estimate (horizontal axis) against the cumulative state adjustment (verti-
cal axis) for the twenty extreme quintile portfolios. The cumulative state adjustment component arises from
the three-way decomposition of long-horizon return presented in Corollary 4:

J

∑
j=1

ET
[
φ(t− j),t−1

]
ET

[
M̃t

]
ET

[
Re
(t− j),t

]
︸ ︷︷ ︸

“long-horizon return"

= − δ̂ +
J

∑
j=1

ET
[
φ(t− j),t−1

]
CovT

(
Re
(t− j),t ,−M̃t

)
︸ ︷︷ ︸

“long-horizon risk"

(60)

−
J

∑
j=1

ET
[
φ(t− j),t−1

]
CovT

(
φ(t− j),t−1

ET
[
φ(t− j),t−1

] ,M̃tRe
(t− j),t

)
︸ ︷︷ ︸

“cumulative state adjustment"

The plot shows that the cumulative state adjustment typically has an absolute magnitude below 10% and
does not have a clear univariate cross-sectional relation with abnormal price δ .
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Figure A9: Predicting Abnormal Price (δ ) with Short-horizon Alpha and Other Factors

The figures plot the cross-sectional relation between estimated delta and a fitted value based on the portfo-
lio’s short-horizon abnormal return (alpha), its interaction with a dummy variable for return reversal, short-
horizon beta, and cumulative state adjustment. Panel A uses only short-horizon alpha to predict abnormal
price, whereas Panel B adds the interaction of alpha and the return reversal dummy. Panel C adds short-
horizon beta and Panel D also adds the cumulative state adjustment. Short-horizon alpha is the one-month
abnormal return on the portfolio immediately following portfolio formation. Return reversal is a dummy
variable that takes the value of one if the average excess return in years three-to-15 following portfolio
formation is opposite in sign to the average excess return in the first post-formation month. Short-horizon
beta is the portfolio’s one-month market beta immediately following portfolio formation. Cumulative state
adjustment is as defined in Section 3.3. The sample period is 1948m6–2022m12.
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Table A1: Monte Carlo Moments

The table reports the key moments from simulations and data. The portfolio parameters are from the high
adjusted value decile portfolio.

Simulation

Portfolio parameter δ = 0 δ ̸= 0 Data Market-level parameter Simulation Data

δ 0 −0.366 n/a

E
[
δ̂

]
, δ̂ 0.003 −0.360 −0.335

σr 0.039 0.046 0.041 σmkt 0.043 0.043

r 0.008 0.010 0.010 rmkt 0.0087 0.0087

β 0.830 0.830 0.827 r f 0.0032 0.0032

ρ(r(t−1),t ,r(t−2),t) 0.999 0.997 0.996

ρ(r(t−1),t ,r(t−180),t) 0.875 0.778 0.817

Table A2: Estimated Candidate SDF Parameters

The table reports the estimated parameters of the model SDF, M̃t = exp(b0 −b1rmkt
t ) with rmkt

t denoting log
market returns, along with the 95% confidence intervals in brackets.

J b0 b1

1mo 0.015 3.294
[0.000,0.030] [1.518,5.070]

1yr 0.014 3.007
[-0.000,0.027] [1.251,4.764]

3yrs 0.014 3.127
[-0.002,0.030] [1.362,4.892]

5yrs 0.015 3.306
[-0.002,0.032] [1.548,5.064]

10yrs 0.014 3.184
[-0.002,0.031] [1.435,4.933]

15yrs 0.015 3.399
[-0.006,0.037] [1.634,5.165]
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Table A3: Autocorrelation by Estimation Approach: All Characteristics

The table reports the 1-month, 12-month, 60-month, and 180-month autocorrelations in time-series δ s estimated based on the return-
identity-based approach (“Return identity”) and the dividend-based approach using event time (“Cash flow”). We provide the comparison
for the low-, high-, and high-minus-low quintile portfolios sorted on all ten characteristics studied in the paper.

Low High Hi - Lo

Autocorrelation lag

Sort Approach 1 12 60 180 1 12 60 180 1 12 60 180

Book-to-market Cash flow 0.98 0.78 0.34 -0.86 0.98 0.77 0.18 -0.95 0.96 0.63 -0.14 -0.34
Return identity 0.15 0.15 -0.05 0.01 0.07 0.11 -0.01 0.00 0.11 0.14 -0.03 0.00

Quality Cash flow 0.98 0.77 0.26 -0.94 0.98 0.77 0.31 -0.80 0.93 0.32 0.03 -0.18
Return identity 0.23 0.11 -0.02 0.02 0.23 0.10 -0.05 -0.00 0.24 0.11 -0.03 0.01

Adjusted value Cash flow 0.98 0.80 0.32 -0.82 0.98 0.77 0.19 -0.95 0.97 0.70 0.04 -0.13
Return identity 0.15 0.07 -0.09 -0.05 0.01 0.01 -0.04 -0.05 0.08 0.03 -0.06 -0.06

Net issuance Cash flow 0.98 0.76 0.30 -0.76 0.98 0.79 0.35 -0.80 0.95 0.48 0.03 -0.32
Return identity 0.20 0.11 -0.04 -0.00 0.23 0.09 -0.10 0.04 0.20 0.11 -0.08 0.01

Investment Cash flow 0.98 0.82 0.24 -1.18 0.98 0.74 0.37 -0.71 0.97 0.66 -0.06 -0.24
Return identity 0.01 -0.00 0.02 0.04 0.02 0.12 -0.07 -0.05 -0.05 0.11 -0.02 -0.00

Beta Cash flow 0.97 0.75 0.24 -1.02 0.98 0.82 0.33 -0.80 0.96 0.65 0.01 0.07
Return identity 0.16 0.06 -0.05 -0.05 0.11 0.12 -0.09 -0.03 0.16 0.09 -0.08 -0.05

Accruals Cash flow 0.98 0.83 0.40 -0.70 0.98 0.77 0.30 -0.78 0.94 0.32 0.09 -0.29
Return identity 0.08 -0.02 -0.01 -0.02 0.21 0.06 -0.09 -0.03 0.12 -0.04 -0.02 0.01

Size Cash flow 0.98 0.80 0.23 -0.85 0.98 0.79 0.32 -0.84 0.96 0.60 -0.06 -0.51
Return identity 0.03 0.15 -0.04 0.03 0.02 0.12 -0.06 0.01 0.03 0.15 -0.05 0.03

Momentum Cash flow 0.97 0.76 0.17 -1.06 0.97 0.71 0.37 -0.77 0.94 0.45 -0.14 -0.44
Return identity 0.21 0.11 -0.05 0.01 0.20 0.05 -0.09 -0.01 0.09 0.16 -0.00 0.01

Profitability Cash flow 0.98 0.80 0.32 -0.55 0.98 0.77 0.35 -0.84 0.98 0.76 0.35 -0.08
Return identity 0.24 -0.00 -0.02 0.03 0.12 0.15 -0.02 0.01 0.22 0.08 -0.02 0.02

Average Cash flow 0.98 0.79 0.28 -0.87 0.98 0.77 0.31 -0.83 0.96 0.56 0.01 -0.25
Return identity 0.15 0.08 -0.03 0.00 0.12 0.09 -0.06 -0.01 0.12 0.09 -0.04 -0.00
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Table A4: Alternative Constructions of Adjusted Value

The table presents the deltas and p-values associated with alternative constructions of our adjusted value characteristic. p-values are based
on GMM standard errors with the Newey-West kernel and a 24-month bandwidth.

AdjVal zBM + zz(Pro f )−z(Beta) AdjVal (Future Prof) zBM + zz(FuturePro f )−z(Beta) zPro f − zBeta zBM − zBeta zBM + zPro f

delta difference -0.519 -0.508 -0.547 -0.552 -0.394 -0.352 -0.467
(p-value) 0.002 0.005 0.001 0.003 0.164 0.134 0.130
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Table A5: Pricing B/M-and-Profitability-Spread-sorted Portfolios: A Double Sort

The table shows that abnormal price relative to the CAPM is large for portfolios double-sorted on
the book-to-market equity ratio (B/M) and profitability spread, our proxy for the value-to-book ratio:
Profitability Spread = zprof − zbeta, where z is a z-score. We form nine value-weight portfolios by in-
dependently sorting stocks into three B/M bins and three profitability spread bins based on the asso-
ciated 30% and 70% NYSE breakpoints. We form portfolios and track post-formation returns for 15
years. The reported δ s are estimated values of abnormal price defined as δ = E

[
Pt−Vt

Pt

]
≈ δ (180) =

−E
[
∑

180
j=1M̃t− j,t

P(t− j),t−1
P(t− j),t− j

Re
(t− j),t

]
, where (t − j) denotes the portfolio formation month and t denotes the

month in which returns are realized. We use the candidate SDF implied by the CAPM, M̃t− j,t =

exp
(

b0 j−b1 ∑
j−1
s=0 rmkt

t−s

)
, where rmkt

t is log market returns and b0 and b1 are chosen to make the market
portfolio’s prices (δ ) and returns (δ (1)) correct in sample. We report t-statistics (in parentheses) and p-
values (in brackets) based on GMM standard errors that account for time-series and cross-sectional covari-
ances in the data and uncertainty in estimating the parameters of the candidate SDF. The sample period is
1948m6–2022m12.

δ ×100 (t-statistic) [p-value]

Profitability spread

Book-to-market Lo 2 Hi Hi - Lo

Lo 26.7 4.1 -11.7 -26.4
(3.04) (2.91) (1.61) (-1.95), [0.052]

2 18.6 -12.7 -33.1 -38.4
(1.50) (2.21) (1.96) (-1.54), [0.124]

Hi 0.3 -34.4 -31.0 -19.3
(1.49) (1.43) (1.92) (-0.74), [0.462]

Hi - Lo -38.4 -51.8 -31.2
(-1.63), [0.104] (-2.11), [0.035] (-1.93), [0.053]

δ difference t-statistic p-value δ RN diff (t-stat)

100× (δHH −δLL) -57.6 -3.61 0.000 -18.5 (-0.95)
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Table A6: Abnormal Price vs. Cumulative Abnormal Return (CAR)

The table compares the magnitudes and the p-values of abnormal price vs. CAR estimates. CAR is the
conventional calendar-time cumulative abnormal return with respect to the CAPM :

ĈAR =
J

∑
j=1

α̂ j.

When reporting CAR, we flip the sign for a better comparison with delta. To be consistent with the delta
estimates, CAR uses portfolio excess returns with respect to post-formation market returns. p-values are
based on GMM standard errors with the Newey-West kernel and a 24-month bandwidth.

Delta Cumulative abnormal return

δ p-value CAR ×−1 p-value

Sort Lo Hi Hi-Lo Lo Hi Hi-Lo Lo Hi Hi-Lo Lo Hi Hi-Lo

Book-to-market 0.060 -0.212 -0.272 0.625 0.206 0.337 -0.012 -0.100 -0.088 0.868 0.390 0.567

Quality 0.061 -0.053 -0.114 0.629 0.603 0.609 0.138 -0.129 -0.266 0.088 0.019 0.054

Adjusted value 0.184 -0.334 -0.519 0.001 0.007 0.002 0.243 -0.316 -0.559 0.000 0.000 0.000

Net issuance -0.164 0.072 0.237 0.008 0.278 0.006 -0.199 0.122 0.321 0.000 0.036 0.000

Investment -0.176 0.118 0.294 0.020 0.154 0.035 -0.114 0.102 0.216 0.089 0.176 0.089

Accruals 0.002 0.209 0.207 0.983 0.047 0.222 0.097 0.183 0.086 0.316 0.017 0.580

Beta -0.226 0.182 0.408 0.060 0.041 0.029 -0.311 0.302 0.613 0.001 0.000 0.000

Size -0.134 0.035 0.170 0.595 0.300 0.549 0.026 -0.009 -0.035 0.884 0.741 0.836

Momentum -0.165 0.043 0.208 0.248 0.460 0.136 -0.010 0.066 0.076 0.889 0.094 0.145

Profitability 0.133 0.044 -0.090 0.527 0.812 0.805 0.054 -0.025 -0.080 0.695 0.807 0.661
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D.1 Modern Subsample

Table A7: Pricing B/M- or quality-sorted Portfolios: Returns vs. Prices (Modern Subsample)

The table shows that B/M and V/B are weak signals of abnormal price relative to the CAPM (the last row), although
they tend to predict abnormal one-month returns better (the first row). It repeats Table 4 in the paper using the modern
subsample: 1972m6–2022m12. We report t-statistics (in parentheses) and p-values based on GMM standard errors that
account for time-series and cross-sectional covariances in the data and uncertainty in estimating the parameters of the
candidate SDF.

Panel A. CAPM δ

B/M Quality

δ ×100 δ ×100

J Lo 2 3 4 Hi Hi - Lo p(Hi - Lo) Lo 2 3 4 Hi Hi - Lo p(Hi - Lo)

1mo 0.06 -0.05 -0.12 -0.18 -0.27 -0.33 0.026 0.26 -0.06 0.03 -0.04 -0.16 -0.42 0.001
("return") (1.12) (-0.98) (-1.78) (-1.98) (-2.52) (-2.23) (2.76) (-0.77) (0.62) (-0.96) (-3.17) (-3.23)

1yr 0.82 -0.89 -1.12 -2.75 -3.69 -4.51 0.036 2.27 -0.34 0.17 -0.95 -1.53 -3.81 0.027
(1.02) (-1.30) (-1.02) (-2.04) (-2.52) (-2.10) (1.99) (-0.32) (0.23) (-1.84) (-2.15) (-2.22)

3yrs 1.73 -2.12 -2.15 -7.54 -10.28 -12.01 0.066 4.59 0.02 0.08 -1.81 -2.84 -7.43 0.136
(0.63) (-1.24) (-0.67) (-1.97) (-2.54) (-1.84) (1.48) (0.01) (0.05) (-1.17) (-1.27) (-1.49)

5yrs 4.16 -3.03 -4.64 -11.18 -16.26 -20.42 0.092 3.64 0.12 -0.69 -1.97 -2.38 -6.02 0.482
(0.82) (-1.15) (-0.89) (-1.72) (-2.22) (-1.69) (0.73) (0.02) (-0.21) (-0.87) (-0.58) (-0.70)

10yrs 8.69 -2.20 -4.08 -18.14 -23.81 -32.50 0.170 5.25 2.91 -0.22 -2.22 -2.74 -7.99 0.663
(0.90) (-0.46) (-0.38) (-1.55) (-1.65) (-1.37) (0.50) (0.30) (-0.03) (-0.76) (-0.33) (-0.44)

15yrs 10.96 -2.09 -5.97 -19.76 -28.78 -39.74 0.223 2.65 6.04 0.72 -4.61 -2.12 -4.77 0.856
("price") (0.79) (-0.29) (-0.41) (-1.23) (-1.48) (-1.22) (0.18) (0.45) (0.06) (-1.19) (-0.18) (-0.18)

Panel B. Risk-neutral δ

B/M Quality

δ ×100 δ ×100

J Lo 2 3 4 Hi Hi - Lo p(Hi - Lo) Lo 2 3 4 Hi Hi - Lo p(Hi - Lo)

1mo 0.04 -0.04 -0.08 -0.14 -0.25 -0.29 0.050 0.14 -0.06 0.04 -0.04 -0.10 -0.24 0.065
("return") (0.75) (-0.72) (-1.30) (-1.59) (-2.35) (-1.96) (1.49) (-0.81) (0.85) (-0.92) (-1.95) (-1.85)

15yrs 10.41 -5.18 -9.60 -15.92 -29.27 -39.68 0.129 -14.92 -1.14 -0.86 -5.04 9.50 24.42 0.172
("price") (0.92) (-0.95) (-0.92) (-1.16) (-1.90) (-1.52) (-1.37) (-0.11) (-0.10) (-1.11) (1.22) (1.37)
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Table A8: Pricing Portfolios Sorted on Adjusted Value: Returns vs. Prices (Modern Subsam-
ple)

The table shows that the adjusted value signal that combines B/M, profitability, and beta into single char-
acteristic is a strong signal of CAPM abnormal price (the last row) and abnormal returns (the first row).
It repeats Table 5 in the paper using the modern subsample: 1972m6–2022m12. We report t-statistics (in
parentheses) and p-values based on GMM standard errors that account for time-series and cross-sectional
covariances in the data and uncertainty in estimating the parameters of the candidate SDF.

δ ×100

J Lo 2 3 4 Hi Hi - Lo p(Hi - Lo) [Hi - Lo]RN

1mo 0.22 0.01 -0.14 -0.23 -0.49 -0.71 0.000 -0.38
("return") (3.19) (0.17) (-2.12) (-2.98) (-4.87) (-4.87) (-2.72)

1yr 2.63 0.21 -1.65 -3.15 -5.35 -7.99 0.000 -4.06
(2.90) (0.26) (-2.00) (-2.91) (-4.33) (-4.35) (-2.32)

3yrs 6.28 1.07 -4.10 -8.42 -13.12 -19.40 0.000 -7.75
(2.61) (0.52) (-1.55) (-2.90) (-3.83) (-3.84) (-1.56)

5yrs 9.41 3.07 -6.66 -13.01 -20.49 -29.90 0.000 -11.45
(2.99) (1.13) (-1.65) (-3.31) (-3.29) (-3.70) (-0.87)

10yrs 15.01 1.82 -9.59 -23.86 -30.64 -45.65 0.001 -15.21
(3.17) (0.51) (-1.89) (-3.61) (-2.94) (-3.40) (-0.45)

15yrs 18.92 4.26 -13.41 -33.96 -38.21 -57.12 0.002 -13.96
("price") (2.97) (0.78) (-2.53) (-2.70) (-2.69) (-3.10) (-0.60)
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Table A9: Pricing B/M-and-Profitability-Spread-sorted Portfolios (Modern Subsample)

The table shows that abnormal price relative to the CAPM is large for portfolios double-sorted on the book-
to-market equity ratio and our proxy for the value-to-book ratio. It repeats Table A5 using the modern
subsample: 1972m6–2022m12. We report t-statistics (in parentheses) and p-values based on GMM standard
errors that account for time-series and cross-sectional covariances in the data and uncertainty in estimating
the parameters of the candidate SDF.

δ ×100 (t-statistic) [p-value]

Profitability spread

Book-to-market Lo 2 Hi Hi - Lo

Lo 24.9 5.4 -6.0 -30.0
(2.42) (2.37) (1.31) (-1.91), [0.056]

2 15.3 -18.0 -39.4 -46.1
(1.24) (1.80) (1.70) (-1.59), [0.111]

Hi -5.2 -40.6 -37.2 -31.1
(1.25) (1.15) (1.52) (-1.02), [0.308]

Hi - Lo -30.9 -54.7 -32.0
(-1.14), [0.253] (-2.07), [0.038] (-1.77), [0.078]

δ difference t-statistic p-value δ RN diff (t-stat)

100× (δHH −δLL) -62.0 -3.32 0.001 -22.0 (-0.87)
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Table A10: Pricing Anomaly-sorted Portfolios (Modern Subsample)

The table reports estimated abnormal price with respect to the CAPM for portfolios sorted on characteristics
conceptually linked to abnormal price or on prominent return anomaly characteristics. This table repeats
Table 6 with the modern subsample, 1972m6–2022m12, and therefore the results for investment, accruals,
and profitability are the same as in Table 6. We report t-statistics (in parentheses) and p-values based on
GMM standard errors that account for time-series and cross-sectional covariances in the data and uncertainty
in estimating the parameters of the candidate SDF.

δ ×100

Sort Lo 2 3 4 Hi Hi - Lo p(Hi - Lo) [Hi - Lo]RN

Net issuance -16.45 -4.24 2.02 -0.18 7.22 23.67 0.006 8.62
(-2.67) (-0.40) (0.52) (-0.03) (1.08) (2.72) (0.93)

Investment -17.61 -17.82 -2.96 8.99 11.80 29.41 0.035 16.68
(-2.33) (-2.50) (-0.68) (1.67) (1.43) (2.11) (1.08)

Accruals 0.18 -11.66 0.18 4.88 20.89 20.71 0.222 9.40
(0.02) (-1.97) (0.03) (0.93) (1.98) (1.22) (0.59)

Beta -22.63 -15.89 -4.95 5.28 18.21 40.85 0.029 -26.86
(-1.88) (-2.19) (-1.11) (1.00) (2.05) (2.18) (-1.21)

Size -13.44 -16.91 -20.64 -13.50 3.54 16.98 0.549 54.62
(-0.53) (-0.92) (-1.19) (-1.14) (1.04) (0.60) (1.91)

Momentum -16.49 -7.67 -3.68 2.56 4.31 20.80 0.136 22.48
(-1.15) (-1.89) (-1.10) (0.53) (0.74) (1.49) (1.85)

Profitability 13.35 -9.30 -14.43 -4.96 4.37 -8.98 0.805 2.25
(0.63) (-0.66) (-1.27) (-0.41) (0.24) (-0.25) (0.08)
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Table A11: Incremental Information About Prices: Adjusted Value vs. Others (Modern Subsample)

The table studies the CAPM abnormal price of portfolios that bet on a particular characteristic while controlling for the adjusted value
characteristic and vice versa. The table studies the characteristics that do not comprise adjusted value based on the nine portfolios from a
3×3 independent sort. This table repeats Table 7 with the modern subsample, 1972m6–2022m12, and therefore the results for investment
and accruals are the same as in Table 7. We report t-statistics (in parentheses) and p-values based on GMM standard errors that account
for time-series and cross-sectional covariances in the data and uncertainty in estimating the parameters of the candidate SDF.

Adj val sort Second sort
Adjusted value sort (Second sort neutral) (Adj val neutral)

Low 2 High 1
3 ∗ ((H1+H2+H3) 1

3 ∗ ((L3+23+H3)

Second sort → 1 2 3 1 2 3 1 2 3 −(L1+L2+L3)) −(L1+21+H1))

Net issuance 13.37 18.60 10.28 -18.90 -7.71 -8.86 -40.57 -39.55 -31.23 -51.21 5.43
(1.39) (3.23) (0.96) (-2.34) (-1.01) (-1.26) (-3.12) (-2.89) (-1.78) (-2.84), [0.005] (0.53), [0.595]

Investment 0.55 16.97 19.88 -25.06 -10.01 -3.90 -44.06 -41.42 -35.40 -52.76 16.39
(0.05) (2.17) (2.29) (-2.95) (-1.42) (-0.44) (-2.80) (-2.67) (-2.16) (-2.95), [0.003] (1.62), [0.106]

Accruals 8.33 12.13 26.95 -14.54 -11.05 -1.05 -43.42 -33.93 -46.72 -57.16 9.60
(0.79) (1.90) (2.46) (-1.86) (-1.23) (-0.10) (-1.94) (-2.58) (-2.16) (-2.80), [0.005] (0.81), [0.416]

Size -3.37 -7.59 17.98 -16.99 -30.10 -8.55 -52.88 -41.92 -37.50 -46.44 15.06
(-0.11) (-0.40) (3.32) (-0.64) (-1.53) (-1.06) (-1.56) (-1.89) (-2.48) (-2.67), [0.007] (0.52), [0.602]

Momentum 0.84 15.76 17.21 -29.39 -13.32 -3.57 -55.13 -39.13 -33.22 -53.76 21.37
(0.09) (2.11) (2.29) (-2.43) (-1.96) (-0.46) (-2.12) (-2.96) (-2.32) (-2.85), [0.004] (1.75), [0.080]
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Table A12: Pricing Portfolios Sorted on Other Proxies for V/P (1991m6-)

The table reports estimated abnormal price with respect to the CAPM for portfolios sorted on characteristics
proposed in the literature to proxy for the value-to-price ratio. This table studies the analyst-forecast-based
measure of Frankel and Lee (1998) and the market-multiples-based measure of Golubov and Konstantinidi
(2019) using the sample period from 1991m6 (these signals are first available in 1976m7 and therefore
the entire 15 years of post-formation return data are first available in 1991m6. We report t-statistics (in
parentheses) and p-values based on GMM standard errors that account for time-series and cross-sectional
covariances in the data and uncertainty in estimating the parameters of the candidate SDF.

δ ×100

Sort Lo 2 3 4 Hi Hi - Lo p(Hi - Lo)

Analyst V/P -6.85 -0.12 13.66 -2.44 1.67 8.52 0.762
(-0.33) (-0.04) (0.84) (-0.27) (0.19) (0.30)

Multiples V/P 0.04 -16.76 -32.23 -12.78 -22.41 -22.45 0.368
(0.00) (-1.52) (-1.47) (-0.93) (-0.94) (-0.90)
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Table A13: Incremental Information About Prices: Adjusted Value vs. Others

The table studies the CAPM abnormal price of portfolios that bet on a characteristic while controlling for the adjusted value characteristic
and vice versa. This table studies the three characteristics comprising adjusted value using nine value-weight portfolios based on inde-
pendent 30% and 70% NYSE breakpoints for both adjusted value and the second sorting characteristic specified in column one. Adjusted
value combines the information in book-to-market, profitability, and beta using their z scores: zB/M +zPro f −zBeta. The left-hand side of the
table reports the estimated δ and associated t-statistic for each portfolio. The right-hand-side of the table reports the δ s associated with the
combination of the portfolios that results in either a characteristic-neutral portfolio that bets on adjusted value or a adjusted-value-neutral
portfolio that bets on the second characteristic. We report t-statistics (in parentheses) and p-values (in brackets) based on GMM standard
errors that account for time-series and cross-sectional covariances in the data and uncertainty in estimating the parameters of the candidate
SDF. The sample period is 1948m6–2022m12 except for profitability, which has a sample period of 1967m6–2022m12.

AdjVal sort Second sort
Adjusted value sort (Second sort neutral) (AdjVal neutral)

Low 2 High 1
3 ∗ ((H1+H2+H3) 1

3 ∗ ((L3+23+H3)

Second sort → 1 2 3 1 2 3 1 2 3 −(L1+L2+L3)) −(L1+21+H1))

Book-to-market 12.49 19.43 8.50 -9.00 -14.92 -11.87 -36.50 -35.37 -32.59 -48.29 -0.98
(1.93) (1.06) (0.30) (-0.60) (-1.26) (-0.72) (-2.04) (-2.58) (-2.15) (-2.31), [0.021] (-0.04), [0.970]

Beta 14.22 7.48 18.42 -17.04 -10.14 -12.82 -32.17 -41.34 -69.01 -60.88 -9.48
(0.75) (1.12) (2.60) (-1.74) (-1.65) (-0.73) (-2.64) (-1.83) (-0.78) (-1.39), [0.164] (-0.23), [0.817]

Profitability 23.55 -3.71 20.96 -11.38 -19.73 -3.31 -26.59 -54.01 -44.94 -55.45 -4.29
(1.08) (-0.36) (0.97) (-0.65) (-1.51) (-0.18) (-1.62) (-1.89) (-2.14) (-2.74), [0.006] (-0.14), [0.887]
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Table A14: Explaining Delta Using Short-horizon Alpha

The table explains the cross-section of CAPM abnormal price (δ ) based on short-horizon abnormal return
(α), its interaction with a dummy variable for return reversal, short-horizon beta (β ), and cumulative state
adjustment (Cumul. state adj.). Return reversal is a dummy variable that takes the value of one if the
average excess return in years three-to-15 following portfolio formation is opposite in sign to the average
excess return in the first post-formation month. All regressors are cross-sectionally standardized for the ease
of interpreting the point estimates. We use the extreme quintile portfolios for each characteristic, resulting
in a cross-section of twenty observations. We report t-statistics (in parentheses) based on heteroskedasticity-
robust standard errors.

(1) (2) (3) (4)
α -0.09 -0.17 -0.11 -0.05

(-1.79) (-5.00) (-2.34) (-1.95)

α ×Reversal 0.12 0.12 0.07
(2.74) (4.03) (4.78)

β 0.09 0.14
(2.27) (6.22)

Cumul. state adj 0.09
(9.93)

r2 0.33 0.59 0.70 0.94
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