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Abstract
Let X be a linear diffusion taking values in (�, r) and consider the standard Euler
scheme to compute an approximation to E[g(XT )1{T <ζ }] for a given function g and
a deterministic T , where ζ = inf{t ≥ 0 : Xt /∈ (�, r)}. It is well known since Go-
bet (Stoch. Process. Appl. 87:167–197, 2000) that the presence of killing introduces
a loss of accuracy and reduces the weak convergence rate to 1/

√
N with N being

the number of discretisations. We introduce a drift-implicit Euler method to bring
the convergence rate back to 1/N , i.e., the optimal rate in the absence of killing, us-
ing the theory of recurrent transformations developed in Çetin (Ann. Appl. Probab.
28:3102–3151, 2018). Although the current setup assumes a one-dimensional set-
ting, multidimensional extension is within reach as soon as a systematic treatment of
recurrent transformations is available in higher dimensions.
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1 Introduction

Let X be a diffusion on some filtered probability space taking values in (�, r) and
solving

Xt = x +
∫ t

0
σ(Xs)dBs +

∫ t

0
b(Xs)ds, t < ζ, (1.1)
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where B is a Brownian motion and ζ := inf{t ≥ 0 : Xt /∈ (�, r)} is the first exit time
from the interval (�, r). The process is killed at ζ and sent to a cemetery state.

Let us assume that at least one of the boundaries is accessible and ζ is finite a.s.,
and consider E[g(XT )1{T <ζ }] for a given function g and a deterministic T . Such
computations appear very naturally in many applied problems of science, engineer-
ing and finance. For instance, in mathematical finance theory, such an expectation
corresponds to the price of a barrier option with payoff g and maturity T written on
a stock whose price process is given by X. The barrier feature renders the option
worthless if the stock price hits one of the accessible boundaries before the maturity
of the option.

A closed-form expression for E[g(XT )1{T <ζ }] is rarely available even in this one-
dimensional setting. Thus one needs to resort to an approximation scheme for an
answer. Arguably the easiest approach is to run a standard Euler–Maruyama scheme
on the SDE (1.1) by setting

X̄tn+1 = X̄tn + σ(X̄tn)(Btn+1 − Btn) + b(X̄tn)
T

N
,

where X̄0 = x, t0 = 0, N > 0 is an integer, tn = nT
N

for n = 1, . . . , N , and
compute E[g(X̄T )1{T <τ }], where τ is the first time that the discrete-time process
(X̄tn)n=0,1,...,N hits one of the barriers. Under standard regularity conditions on the
diffusion process and g, such a scheme indeed converges as N → ∞. However, it
converges at a rate much slower than a standard Euler–Maruyama scheme applied to
a diffusion process that is not killed at accessible boundaries.

Indeed it was shown by Gobet [21] that under standard hypotheses, the above
scheme for the killed diffusion converges weakly at rate N−1/2 as opposed to N−1,
which is the rate of weak convergence for the Euler–Maruyama scheme in the absence
of killing (see e.g. Talay and Tubaro [44] or Mikulevičius and Platen [34]). This rate
is optimal since it is reached when X is a Brownian motion and g is an indicator
function of a set strictly contained in (�, r) (see Siegmund and Yuh [43]).

Çetin [9] conjectured that using a recurrent transformation would bring the con-
vergence rate back to N−1. A recurrent transformation at heart is a change of mea-
sure that keeps the Markovian structure intact while transforming the process into a
recurrent one. In particular, X never touches the boundaries of (�, r) under the new
measure Q. The article [9] shows that Q is locally absolutely continuous with respect
to the original measure P, and X follows

dXt = σ(Xt )dWt +
(

b(Xt ) + σ 2(Xt )
h′

h
(Xt )

)
dt (1.2)

for some function h and a Q-Brownian motion W . That the above claim was a con-
jecture and not following immediately from the standard results on Euler–Maruyama
schemes is because h′

h
is explosive near boundaries and is not Lipschitz, which is in

fact needed for X not to touch the previously accessible boundaries after the measure
change. This can create significant difficulties with approximation and may even lead
to divergence (see e.g. the potential issues that may arise with non-Lipschitz drivers
and methods on how to resolve them in Hutzenthaler et al. [27, 28]).
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In this paper, we prove the above conjecture with a slight “twist”. Note that if
one applies the Euler–Maruyama scheme naively to (1.2), one obtains as usual a
Brownian motion with drift whose parameters change at the times of discretisation.
This process will hit finite boundaries with positive probability and therefore will
exit the state space of X with positive probability. One way to overcome this is to
impose an ad hoc reflection on the boundaries. However, this will introduce a local-
time term in computations requiring additional estimates on its convergence rate to 0.
Moreover, it is far from obvious that reflection is the optimal resolution of problems
arising from the discretised process exiting the domain.

We instead study a drift-implicit method that keeps the state space intact after
discretisation. To see how, suppose that b ≡ 0, which can be obtained by changing
the scale if necessary, and consider the backward Euler–Maruyama scheme

X̂tn+1 = X̂tn + σ(X̂tn)(Btn+1 − Btn) + T

N
σ 2(X̂tn)

h′

h
(X̂tn+1), (1.3)

where h becomes a concave function. Note that differently than what one would
expect from a backward scheme (see e.g. Mao and Szpruch [33], Alfonsi [3, 4] and
Neuenkirch and Szpruch [36], to name a few), the σ 2-term in the drift of (1.2) is still
evaluated at X̂tn . This stems from the fact that (1.2) with b ≡ 0 should be viewed as
a time-changed version of

dYt = dWt + h′

h
(Yt )dt,

where the time change is given by
∫ t

0 σ 2(Ys)ds. We make extensive use of this
correspondence in our proofs.

Our main result is Theorem 4.4 which proves that the rate of weak convergence
of the above backward Euler–Maruyama scheme is N−1 under standard assumptions
on the diffusion process. Moreover, there is no single function h that achieves this
rate. We show that any nonnegative concave h vanishing at accessible boundaries can
be used to obtain this convergence rate as long as it satisfies some mild growth con-
ditions. Such functions are easy to construct, and we study in Sect. 5 constructions
of some particular h-functions to compute approximate prices for barrier options in
a Black–Scholes framework. In fact, we observe fast convergence in our numerical
studies even in the absence of the growth conditions imposed by our theoretical anal-
ysis. Our numerical results are very promising, and error terms converge to 0 very
rapidly even with a small number of iterations. Moreover, in the case of a particu-
lar local volatility model with double barriers, our method yields smaller error terms
than the so-called Brownian bridge method when the number of discretisations is
reasonably large.

We are not the first to consider implicit schemes for studying diffusions with infi-
nite lifetime and taking values in a strict subset of R. Alfonsi [3, 4] and Neuenkirch
and Szpruch [36] consider such scalar processes whose SDE representation is
given by

dYt = dWt + f (Yt )dt, (1.4)
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with f satisfying the conditions of a Feller test ensuring that Y takes values in
(�, r) (see also Dereich et al. [15] in the special case of the Cox–Ingersoll–Ross
(CIR) process). The articles [4] and [36] show that the drift-implicit Euler scheme
for Y converges strongly with rate N−1 if f satisfies certain integrability conditions
including

E
Q

[ ∫ T

0

(
f ′(Yt )

)2
dt

]
< ∞. (1.5)

However, this condition cannot be satisfied by an h that paves the way for a recurrent
transformation rendering X recurrent and following (1.2). (See Proposition C.1 in
Appendix C for a proof in case b ≡ 0 and σ ≡ 1.)

The estimates obtained in [4] and [36] rely on the Burkholder–Davis–Gundy
(BDG) inequality and integrability of the relevant quadratic variation process, which
require the corresponding local martingale to be a true martingale. As 1

h(X)
is a strict

local submartingale under Q, one needs to develop new techniques to arrive at the
needed estimate for convergence theorems.

This brings to the fore another novelty of our paper. Given the impossibility of
the use of the BDG inequality, we use potential-theoretic methods that yield the
boundedness of inverse moments of h(X) under Q, which is crucial for obtaining
the weak convergence result in our paper (or strong convergence type results con-
sidered by [4, 36]). We use the theory of Kato class potentials to show the bound-
edness of the required moments. Kato potentials are one of the fundamental objects
in the study of Schrödinger operators (see e.g. Aizenman and Simon [1], Cranston
et al. [13], Chen [11] and Chen and Song [12]). We show in Theorem 2.6 that the
additive functional dAt = − 1

2
h′′(Xt )
h(Xt )

dt belongs to a particular Kato class defined

in [11], which in turn yields the boundedness of the inverse moment of 1
h
(X̂tn) (uni-

formly in N ) in conjunction with a comparison argument via Lemma 3.2. Potential
theory also helps us to prove uniform bounds on the moments of integral functionals
of h−2−p(X̂t ) (see Theorem 3.3 for an exact description).

Our methodology offers hope to study the convergence rates for CIR processes or
diffusions that live in a bounded interval or half space that do not satisfy (1.5). We
show in this paper that if one considers the 3-dimensional Bessel process

dXt = dWt + 1

Xt

dt,

the implicit scheme in (1.3) converges weakly at rate N−1. Clearly, (1.5) is violated
since the reciprocal of a 3-dimensional Bessel process is a prime example of a strict
local martingale. This process satisfies the conditions of Theorem 4.4 and one obtains
the optimal convergence rate for sufficiently smooth g.

To the best of our knowledge, the use of the BDG inequality seems to be almost the
only method to control the bounds of the moments in the literature concerning the nu-
merical analysis of SDEs. The novel potential-theoretic approach taken in the present
paper avoids the use of the BDG inequality in the computation of inverse moments
and instead makes use of the concept of Kato classes. As a result, the appearance of
local martingale terms does not introduce an extra difficulty in our framework. This
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is an important contribution in its own right and has the potential to be useful in other
contexts as well. We leave the investigation of the convergence rate for conservative
diffusions on (0,∞) satisfying (1.4) in the absence of condition (C.1) to future study.

Although our analysis assumes a one-dimensional framework, a close look into
our technical analysis reveals that our convergence result does not depend heavily
on this assumption apart from the comparison argument used in Lemma 3.2. In par-
ticular, it is relatively clear how to obtain a version of Theorem 2.9 in the multi-
dimensional case using well-known potential-theoretic arguments on Kato classes.
However, our main obstacle in extending our results to a multidimensional setting is
the absence of a systematic study of recurrent transformations in higher dimensions.
Also note that Lemma 3.2 is only used to obtain estimates on h(X̂), which is always
a one-dimensional object with X̂ referring to the continuous Euler scheme. Such a
study and its applications to Euler methods for killed diffusions will be the subject of
future research.

The outline of the paper is as follows. Section 2 fixes the setting, gives a brief sum-
mary of results for recurrent transformations needed for this paper together with novel
inverse moment estimates, and introduces the backward Euler–Maruyama scheme
that is tailored for our purposes. Section 3 obtains the moment estimates that are
needed for the weak convergence analysis performed in Sect. 4. Theoretical results
are confirmed via numerical studies in Sect. 5, and Sect. 6 concludes the paper.

2 Preliminaries

Let X be a regular diffusion on (�, r), where −∞ ≤ � < r ≤ ∞. We assume
that infinite boundaries are inaccessible, and if any of the boundaries are reached in
finite time, the process is killed and sent to the cemetery state �. This is the only
instance when the process can be ‘killed’; we do not allow killing inside (�, r). The
set I consists of entrance boundaries and all points that can be reached in finite time
starting from the interior of (�, r). That is, I is the union of (�, r) with the regular,
exit and entrance boundaries. The law induced on C(R+; I ), the space of I -valued
continuous functions on R+ = [0,∞), by X with X0 = x is denoted by P x as
usual, while ζ corresponds to its lifetime, i.e., ζ := inf{t > 0 : Xt /∈ (�, r)}. We
also introduce the set I� := I ∪ {�} and extend any I -valued Borel-measurable
function f to I� by setting f (�) = 0 unless stated otherwise. The filtration (F0

t )t≥0

is the natural filtration of X, F̃t is the universal completion of F0
t , and Ft = F̃t+

so that (Ft )t≥0 is a right-continuous filtration. We also set F := ∨
t≥0 Ft . We refer

the reader to Borodin and Salminen [8, Chaps. I and II] for a summary of results and
references on one-dimensional diffusions. The definitive treatment of such diffusions
is of course in Itô and McKean [30, Chap. 3].

Since we are only concerned with the diffusion process until it is killed, we can
assume without any loss of generality that X is on natural scale. The extra regularity
conditions imposed in the following assumption are standard in the theory of Euler
discretisations for SDEs.
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Assumption 2.1 X is a regular one-dimensional diffusion on (�, r) such that

Xt = X0 +
∫ t

0
σ(Xs)dBs, t < ζ,

where σ : (�, r) → (0,∞) is continuously differentiable with a bounded derivative,
B is a standard Brownian motion and ζ = inf{t > 0 : Xt ∈ {�, r}}. Moreover, σ(�+)

(resp. σ(r−)) exists and is finite if � (resp. r) is finite.

Note that the speed measure m associated with X is given by m(dx) = 2σ−2(x)dx

on the Borel subsets of (�, r).
Since we are interested in diffusions with killing, the following assumption is

needed to ensure that we are not dealing with a vacuous problem.

Assumption 2.2 P x[ζ < ∞] > 0 for each x ∈ (�, r).

Let I0 be the set of points in I that can be reached from its interior in finite time.
Note that under Assumptions 2.1 and 2.2, there are only two cases to consider:

Case 1. Both � and r are accessible, which in turn implies � and r are finite and
I0 = [�, r].

Case 2. Only one of � and r is accessible, which can be assumed to be � without
any loss of generality. In particular, I 0 = [�, r).

As � is always finite as a result of the above convention, the following is also
assumed for convenience.

Assumption 2.3 � = 0.

As a transient diffusion on (0, r), X has a finite potential density u : (0, r)2 → R+
with respect to its speed measure (see [8, Paragraph 11 in Sect. II.1]). That is, for any
nonnegative and measurable f vanishing at accessible boundaries, we have

Uf (x) :=
∫ ∞

0
Ex[f (Xt )]dt =

∫ r

0
f (y)u(x, y)m(dy).

The potential density is symmetric and explicitly known in terms of the scale function
and speed measure of X. This leads for the potential density to the specification

u(x, y) =
{

(x ∧ y)(1 − x∨y
r

), if r < ∞,

x ∧ y, otherwise.

Definition 2.4 Let S be the space of continuous functions f : (0, r) → (0,∞)

satisfying the integrability conditions
∫
(0,r)

f (y)m(dy) < ∞ and∫
(0,r)

yf (y)m(dy) < ∞. We define

H0 := {h : h = Uf, f ∈ S}.
Moreover, we denote by H the union of H0 and the identity function if r = ∞. If
r < ∞, then H = H0.
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Note that any h ∈ H0 is a concave function that is twice continuously differen-
tiable and satisfies on (�, r) that

1

2
σ 2h′′ = −f.

The following lemma, whose proof is relegated to Appendix A, lists some important
properties shared by the functions that belong to H.

Lemma 2.5 Let h ∈ H.
1) For any given z > 0, consider the function H defined by

H(x) = x − z
h′(x)

h(x)
, x ∈ (0, r).

Then H is strictly increasing and H((0, r)) = R.
2) The function h is increasing if r = ∞. However, h′ is bounded. In particular,

for h ∈ H0, we have

h′(0) =
{∫ ∞

0 f (y)m(dy), if r = ∞,∫ ∞
0

r−y
r

f (y)m(dy) > 0, otherwise,

h′(r) =
{

0, if r = ∞,

− 1
r

∫ r

0 yf (y)m(dy) < 0, otherwise.

3) For any α ≥ 0 and h ∈ H0, we have
∫

(0,r)

(
u(y, y) ∧ 1

)α|h′(y)| − h′′(y)

h(y)
dy < ∞. (2.1)

We are now ready to state the transformations that we use in the sequel.

Theorem 2.6 Suppose that Assumptions 2.1–2.3 are in force, and consider h ∈ H.
Then the following hold:

1) There exists a probability measure Qh,x on F that is locally absolutely contin-
uous with respect to P x such that

dXt = σ(Xt )dWt + σ 2(Xt )
h′(Xt )

h(Xt )
dt (2.2)

and W is a Qh,x-Brownian motion.
2) For any x ∈ (�, r), Qh,x[ζ < ∞] = 0.
3) Let g : I0 → R be a continuous function vanishing at accessible boundaries.

Then for any deterministic T > 0, we have

Ex[g(XT )1{T <ζ }] = h(x)Eh,x

[
g(XT )

h(XT )
exp

(
1

2

∫ T

0

σ 2(Xs)h
′′(Xs)

h(Xs)
ds

)]
, (2.3)

where Eh,x is the expectation operator associated with Qh,x .
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Proof If h ∈ H0, the claims follow from Çetin [9, Theorem 3.2]. When r = ∞
and h is the identity function, the stated transformation is the well-known Doob
h-transform, and the reader is referred to Evans and Hening [18, Theorem 6.2] for
a proof in a much more general setting. �

Remark 2.7 When h ∈ H0, [9] shows that h(X) exp(− 1
2

∫ ·
0

σ 2(Xs)h
′′(Xs)

h(Xs)
ds) is a

P x-martingale and X is a recurrent process under Qh,x , where Qh,x is as in The-
orem 2.6. This measure transformation via the excessive function h and the multi-
plicative functional exp(− 1

2

∫ ·
0

σ 2(Xs)h
′′(Xs)

h(Xs)
ds) is called a recurrent transformation.

Although similar to a Doob h-transform at heart, the concept of a recurrent trans-
formation is fundamentally different from an h-transform. By an h-transform, we
refer to a change of measure via an excessive function h : (0, r) → R+. In particular,
h(X) is at most a local martingale and can be a supermartingale that is not a local
martingale. The latter case leads to a loss of mass after the change of measure that
appears in the killing measure of the resulting diffusion (see Evans and Hening [18,
Sect. 6] for details).

In contrast, first, a recurrent transformation always yields a recurrent diffusion
while an h-transform yields a transient one. Indeed, when r = ∞ and one uses
the identity function in Theorem 2.6, QId,x[limt→∞ Xt = ∞] = 1 since the
corresponding scale function under QId,x is finite at ∞.

Second, the excessive function that is associated with an h-transform is in general
not harmonic. That is, h(X) is a strict P x-supermartingale. This leads to a killing,
i.e., a loss of probability mass, under Qh,x at some particular last passage time. We
refer the reader to Çetin [9, Sect. 3.1] for more details on this point and the potential-
theoretic connection between recurrent transformations and Doob h-transforms.

Finally, akin to what we are doing in the present paper, if one is interested in an
h-transform that does not involve any killing as in the preceding paragraph and pre-
vents the diffusion from hitting the boundaries, one needs to find an h-function such
that h is harmonic, i.e., h(X) is a P x-local martingale, and h vanishes at accessible
boundaries. However, the only harmonic functions of a diffusion on natural scale are
affine functions. Combined with the requirement that h should vanish at 0 and r , this
implies h ≡ 0. That is, there is no h-transform that yields a conservative diffusion
that does not hit boundaries when r < ∞. On the other hand, any function h ∈ H0
yields a recurrent diffusion process that avoids hitting the boundaries via a recurrent
transformation.

In order to approximate the expectation on the right-hand side of (2.3), we use
a backward Euler–Maruyama (BEM) scheme. Let N > 1 be an integer and define
tn := n

N
T for n = 0, . . . , N . Set X̂0 = X0 and proceed inductively by setting

X̂t = X̂tn + σ(X̂tn)(Wt − Wtn) + (t − tn)σ
2(X̂tn)

h′(X̂t )

h(X̂t )
(2.4)

for t ∈ (tn, tn+1] and n = 0, . . . , N −1. Note that in view of Lemma 2.5, the mapping
x 
→ x − zh′

h
(x) is one-to-one and onto for any given z > 0. Thus the above scheme

is well defined since σ(x) > 0 for all x ∈ (0, r).
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Remark 2.8 One may also consider an exact simulation method as in Beskos and
Roberts [6] to compute the right- or left-hand side of (2.3). However, the singularity
of the drift term in (2.2) violates the regularity conditions assumed in [6] and its
subsequent extensions. Thus one needs to consider the right-hand side and use the
original diffusion after assuming enough regularity on σ . Provided we can perform
an exact simulation, one can get an exact simulation of the minimum or maximum of
a path together with its terminal value. In [6], for T = 1 year, the time taking to run
50’000 simulations to compute the maximum of X on [0, 1] is about 3.1 seconds in
their C-language program. To get a good pricing accuracy (a few bps in errors), one
may need to run 0.5 or 1 million simulation paths, which may amount to 30 seconds
to 1 minute. In our numerical calculations for the BEM method, we have used the
Octave software, which is much slower than the C-language. On the other hand, the
numerical experiments have shown that we needed very few discretisation time steps
(20 or 30 steps) and very few paths to get comparable accuracy (see Sect. 5). As a
result, our simulations took about 20 seconds to complete.

Nevertheless, the development of an exact simulation method for the recurrent
transform to compute the right-hand side of (2.3) has the potential to significantly
reduce the computation time by avoiding calculations using an inverse function. This
interesting direction is left for future research.

As we shall see in Sect. 3, a crucial role will be played by diffusion processes on
(0, r) of the type

dYt = dWt +
(

h′(Yt )

h(Yt )
+ c

)
dt, t < ζ(Y ), (2.5)

where ζ(Y ) denotes the first hitting time of 0 or r . Note that c = 0 corresponds to the
transformations defined in Theorem 2.6.

Theorem 2.9 Suppose that Assumptions 2.1–2.3 are in force, h ∈ H and Y is a
process defined by (2.5) with Y0 = X0. Assume further that c ≤ 0 if r = ∞, and
c = 0 if h(x) = x for all x. Then the following statements are valid:

1) Qh,X0 [ζ(Y ) = ∞] = 1.
2) For any stopping time S that is Qh,X0 -a.s. bounded, there exists a constant K

that does not depend on X0 such that

Eh,X0

[
1

h(YS)

]
<

K

h(X0)
.

3) For any t > 0 and p ∈ [0, 1),

Eh,X0

[∫ t

0

1

h2+p(Ys)
ds

]
< ∞.

Proof 1) First observe that the scale function and speed measure for Y can be
chosen as

sy(x) =
∫ x

d

e−2cy

h2(y)
dy, my(dx) = 2h2(x) exp (2cx)dx,
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where d ∈ (0, r). Since sy(0) = −∞, 0 is an inaccessible boundary for Y . By the
same token, r is also an inaccessible boundary when sy(r) = ∞, which is valid when
r < ∞ or c ≤ 0.

2) Define Z by

Zt := 1

h(Yt )
exp

(
1

2

∫ t

0

2ch′(Ys) + h′′(Ys)

h(Ys)
ds

)

and note that Z is a nonnegative Qh,X0 -local martingale by a straightforward appli-
cation of Itô’s formula. By Sharpe [42, Theorem 62.19], there exists a probability
measure P̃ such that

dYt = dβt + cdt, t < ζ(Y ),

where β is a P̃ -Brownian motion, and whenever S is a stopping time that is finite
Qh,X0 -a.s., one has

Eh,X0

[
1

h(YS)

]
= 1

h(X0)
Ẽ

[
1{S<ζ(Y )} exp

(
− 1

2

∫ S

0

2ch′(Ys) + h′′(Ys)

h(Ys)
ds

)]

≤ 1

h(X0)
Ẽ

[
1{S<ζ } exp

(
1

2

∫ S

0

2(ch′(Ys))
− − h′′(Ys)

h(Ys)
ds

)]
,

where x− denotes the negative part of x and we drop the dependence on Y for ζ to
ease the exposition.

Suppose that S < R Qh,X0 -a.s., where R is a deterministic constant, and observe
that P̃ [S ≥ R, S < ζ ] = 0. Thus

Ẽ

[
1{S<ζ } exp

( ∫ S

0

2(ch′(Ys))
− − h′′(Ys)

2h(Ys)
ds

)]

≤ Ẽ

[
exp

( ∫ R∧ζ

0

2(ch′(Ys))
− − h′′(Ys)

2h(Ys)
ds

)]
.

Let Wc,y denote the law of the process Ỹ starting at y, where dỸt = dβt + cdt and
Ỹ gets killed at hitting 0 or r . Thus

Ẽ

[
exp

(∫ R∧ζ

0

2(ch′(Ys))
− − h′′(Ys)

2h(Ys)
ds

)]
= Wc,X0[exp(CR)],

where C is the positive continuous additive functional of Ỹ with

dCt = 1

2

2(ch′(Ỹt ))
− − h′′(Ỹt )

h(Ỹt )
1{t<ζ̃ }dt.

Note that the potential function uC of C is given by

uC(x) = Wx[C∞] =
∫ r

0
v(x, y)μC(y)

dm̃

dy
,
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where v is the potential density of Ỹ , μC(y) = 1
2

(2ch′(y))−−h′′(y)
h(y)

and m̃ is the as-

sociated speed measure of Y . As the scale function and speed measure of Ỹ can be
chosen as

s̃(x) = 1 − e−2cx

2c
, m̃(dx) = 2e2cxdx,

where s̃(x) = x if c = 0, we obtain for x ≤ y that

v(x, y) = s̃(x)(s̃(r) − s̃(y))

s̃(r)
,

with s̃(r)−s̃(y)
s̃(r)

being interpreted as 1 if s̃(r) = ∞.
First observe that v(x, y) = u(x, y) if c = 0. On the other hand, if r = ∞ and

c < 0, then

v(y, y)e2cy = e2cy − 1

2c
≤ y ∧ 1

2|c| . (2.7)

Similarly, for r < ∞,

v(y, y)e2cy = e−2cr

2c(1 − e−2cr )
(e2cy − 1)(e2c(r−y) − 1) ≤ K(c, r)y

(
1 − y

r

)
. (2.8)

Thus for some K < ∞,

∫ r

0
v(y, y)μC(y)2e2cydy ≤ K

∫ r

0

(
u(y, y)∧1

) (2ch′(y))− − h′′(y)

h(y)
dy < ∞ (2.9)

by an application of (2.1) due to the bounds obtained via (2.7) and (2.8), and the
assumption on the choice of c when r = ∞. As

uC(x) ≤
∫ r

0
v(y, y)μC(y)2e2cydy,

we deduce that uC is bounded. Now consider a decreasing sequence (Dn) of subsets
of (0, r) such that Dn → ∅. Since

∫ r

0
v(x, y)1{Dn}(y)μC(y)2e2cy ≤

∫ r

0
v(y, y)1{Dn}(y)μC(y)2e2cydy

and the right-hand side converges to 0 by the dominated convergence theorem due to
(2.9), we establish that μC ∈ K1(Ỹ ) (see Chen [11, Definition 2.2]) by [11, Propo-
sition 2.4]. Therefore, by Chen and Song [12, Proposition 2.3] we arrive at the es-
timate supy∈(0,r) Wc,y[exp(Ct )] ≤ d1e

d2t for some constants d1 and d2. This proves
the claim.
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3) Since the semigroup is self-dual with respect to the speed measure, denoting
the measure dy2h2(y) by ν(dy) gives for any nonnegative measurable f that

∫ r

0
ν(dy)e2cyf (y)Eh,y

[ ∫ t

0

e−s1{Ys∈D}
h2+p(Ys)

ds

]

=
∫

D

ν(dy)e2cy 1

h2+p(y)
Eh,y

[ ∫ t

0
e−sf (Ys)ds

]

≤
∫

D

dy
2e2cy

hp(y)
Eh,y

[ ∫ t

0
f (Ys)ds

]
,

where D := {y : h(y) < 1 ∧ 1
2‖h‖∞}. In particular, when f (y) = q(ε, y, y∗) for

some ε > 0, where q is the transition density of Y with respect to its speed measure,
we obtain

∫ r

0
ν(dy)e2cyq(ε, y, y∗)Eh,y

[ ∫ t

0

e−s1{Ys∈D}
h2+p(Ys)

ds

]

≤
∫

D

dy2e2cyh−p(y)Eh,y[Ly∗
t+ε]

≤ Eh,y∗ [Ly∗
t+ε]

∫
D

dy2e2cyh−p(y),

where Ly∗
is the diffusion local time with respect to the speed measure. Letting

ε → 0, we arrive at

Eh,y∗
[ ∫ t

0

e−s1{Ys∈D}
h2+p(Ys)

ds

]
≤ Eh,y∗ [Ly∗

t ]
∫

D

dy2e2cyh−p(y) < ∞,

provided that y 
→ Eh,y[∫ t

0
e−s1{Ys∈D}
h2+p(Ys)

ds] is lower semicontinuous. Note that the

finiteness of the integral on the right-hand side follows from the fact that |h′(y)| ≥ α

for some α > 0 on D.
Observe that

Eh,y

[ ∫ t

0

e−s1{Ys∈D}
h2+p(Ys)

ds

]
= φ(y) − e−tEh,y[φ(Yt )],

where

φ(y) := Eh,y

[ ∫ ∞

0
ds

e−s1{Ys∈D}
h2+p(Ys)

ds

]
=

∫
D

2e2czv1(y, z)

hp(z)
dz,

where v1 is the 1-potential density of Y . Since v1 is jointly continuous (see [8,
Paragraphs 10 and 11 in Chap. II]), the claimed semicontinuity follows. Finally, since

Eh,y∗
[ ∫ t

0

1

h2+p(Ys)
ds

]
≤ etEh,y∗

[ ∫ t

0

e−s1{Ys∈D}
h2+p(Ys)

ds

]
+ K

for some K , the claim follows from the arbitrariness of y∗. �
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3 Moment estimates for the continuous BEM scheme

In this section, we obtain some moment estimates, including inverse ones, that are
necessary to establish the weak rate of convergence (see Sect. 4). We start with the
following consequence of Itô’s formula.

Lemma 3.1 Suppose that h ∈ H is in C2
b((0, r); (0,∞)) and such that h(3) exists

and satisfies the growth condition |h(3)| ≤ K(1 + h−p) for some constants K and
p ∈ [0, 1). Consider the BEM scheme defined by (2.4). Then for all t ∈ (tn, tn+1],

dX̂t = σ(X̂tn)

Hx(tn, X̂tn; t, X̂t )
dWt

+ σ 2(X̂tn)

H 2
x (tn, X̂tn; t, X̂t )

(
h′

h
(X̂t ) + μ(tn, X̂tn; t, X̂t )

)
dt, (3.1)

where

H(tn, z; t, x) := x − σ 2(z)(t − tn)
h′

h
(x),

μ(tn, z; t, x) := (
Hx(tn, z; t, x) − 1

)h′

h
(x) + 1

2

σ 2(z)(t − tn)

Hx(tn, z; t, x)

(
h′

h

)′′
(x).

Consider the sets O1 := {x : h′(x) > 0} and O2 := {x : h′(x) < 0}. Then

inf
x∈O1

μ(tn, z; t, x) ≥ c1 and sup
x∈O2

μ(tn, z; t, x) ≤ c2

for some constants c1 ≤ 0 ≤ c2 that do not depend on tn, t or z. In particular, c1 = 0
when h(x) = x.

Proof The decomposition (3.1) follows from Itô’s formula and straightforward cal-
culations for the derivatives of the inverse function.

To prove the second assertion, first note that

Hx(t, x) − 1 := Hx(tn, z; t, x) − 1 = −σ 2(z)(t − tn)

(
h′

h

)′
(x) ≥ 0,

where we drop the dependence on tn and z to ease the exposition. Observe that

μ = −σ 2(z)(t − tn)(
h′
h
)′

Hx

(
Hx

h′

h
− 1

2

(h′
h
)′′

(h′
h
)′

)
, (3.2)

and that the claim follows immediately if h(x) = x since the term in parentheses in
(3.2) becomes nonnegative. Thus it remains to show the assertion when h ∈ H0.

First consider the case r = ∞. Let u := h′
h

and note that limx→∞ u′(x) = 0 by
Lemma 2.5. Moreover, |u′(x)| ≤ Kx−2 for some K < ∞, which in turn implies

lim
x→∞

log(−u′(x))

x
= 0 = lim

x→∞
u′′(x)

u′(x)
, (3.3)
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where the second equality is an application of L’Hospital’s rule. Thus

−1

2

(h′
h
)′′

(h′
h
)′

> c on

(
x∗

2
,∞

)

for some c < 0, where x∗ := inf{x : h′(x) = 0} > 0 by Lemma 2.5.
An alternative representation for μ is given by

μ = σ 2(z)(t − tn)

(
− h′

h

(h′

h

)′ 1 + Hx

Hx

+ 1

2Hx

h′′′h − h′′h′

h2

)
. (3.4)

Thus we are done if

w(t, x) := σ 2(z)(t − tn)

2Hx

h′′′h − h′′h′

h2

is bounded from below on (0, x∗
2 ). Indeed, as h′ is bounded away from 0 on this

interval, the hypothesis on h′′′ implies that

w(t, x) ≥ −K
σ 2(z)(t − tn)(

h′
h
)2

1 + σ 2(z)(t − tn)(
h′
h
)2

,

leading to the desired lower bound.
When r < ∞, we have in particular that σ is bounded. Moreover, we have the

estimate |w(t, x)| ≤ K
σ 2(z)(t−tn) 1

h2

2Hx
for some constant K which renders w bounded.

Observing that the remaining term in (3.4) has the correct sign completes the proof.
�

The next result is a key comparison result that relates the inverse moments of the
BEM scheme to those of the process (2.5) and thereby provide estimates that are valid
uniformly in N .

Lemma 3.2 Suppose that h satisfies the conditions of Lemma 3.1, σ is bounded,
r = ∞ and consider the BEM scheme defined by (2.4). Then for any nondecreasing
and measurable function φ that does not change sign, we have

Eh,X0[φ(X̂
A−1

t
)] ≥ Eh,X0[φ(Yt )],

where Y is the process defined by (2.5) with c = c1 as in Lemma 3.1 and A is a
continuous time change defined by A0 = 0 and

dAt = σ 2(X̂tn)

H 2
x (tn, X̂tn; t, X̂t )

dt, t ∈ (tn, tn+1].

Moreover, Qh,X0 [At ≤ t‖σ‖2∞] = 1.
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Proof Consider the process Ŷ defined by Ŷt = X̂
A−1

t
. The Dambis–Dubins–Schwarz

theorem (cf. Revuz and Yor [39, Theorem V.1.6]) yields

dŶt = dβt +
(

h′

h
(Ŷt ) + μt

)
dt, t ∈ (tn, tn+1],

where μt ≥ c1 and β is a standard Brownian motion adapted to (F
A−1

t
)t≥0. Then the

comparison theorem for stochastic differential equations (cf. Çetin and Danilova [10,
Theorem 2.10]) shows that

P h,X0 [Ŷt ≥ Yt , t ≤ T ] = 1,

where

Yt = X0 + βt +
∫ t

0

(
h′

h
(Ys) + c1

)
ds.

Since Hx ≥ 1, it follows that At ≤ t‖σ‖2∞. This completes the proof. �

The main moment estimates are collected in the following theorem.

Theorem 3.3 Suppose that h satisfies the conditions of Lemma 3.1, σ is bounded and
consider the BEM scheme defined by (2.4). Then for any T > 0 and p ∈ [0, 1), the
following statements are valid:

1) For each m ∈ N,

sup
t≤T ,N

Eh,X0

[
1

h
(X̂t ) +

N−1∑
n=0

∫ tn+1

tn

σ 2(X̂tn)h
−2−p(X̂t )

H 2
x (tn, X̂tn; t, X̂t )

dt + |X̂t |m
]

< ∞. (3.5)

2) For each n,

ess sup
τ∈Tn

Eh,X0

[
1

h
(X̂τ ) + Xm

τ

∣∣∣∣Ftn

]
< ∞, (3.6)

where m ≥ 0 is an integer and

Tn := {τ : τ is a stopping time valued in [tn, tn+1] Qh,X0 -a.s.}.

Suppose further that p ≤ 1
2 and h′′

h1−p is bounded. Then for each n ∈ N and m ≥ 0,

Eh,X0

[ N−1∑
n=0

∫ tn+1

tn

(
1 − exp

(
(s − tn)

σ 2h′′

2h
(X̂tn)

))
σ(X̂tn)

2(h−p(X̂s) + X̂m
s )

H 2
x (tn, X̂tn; s, X̂s)

ds

]

<
KT

N
, (3.7)

and K is independent of N .
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The proof of Theorem 3.3 is lengthy and is relegated to Appendix B. We end this
section with the following lemma that will be useful in our PDE approach to weak
convergence rates in Sect. 4.

Lemma 3.4 Suppose that h satisfies the conditions of Lemma 3.1, σ is bounded and
consider the BEM scheme defined by (2.4). Then for any T > 0, the following
statements are valid:

1) Let p ∈ [0, 1) and m ≥ 0 be an integer. For each n,

Eh,X0

[ ∫ tn+1

tn

∣∣∣h
1−p(X̂t )(1 + X̂m

t )μ(tn, X̂tn; t, X̂t )

H 2
x (tn, X̂tn; t, X̂t )

∣∣∣dt

∣∣∣∣Ftn

]

≤ KT

N
Eh,X0

[ ∫ tn+1

tn

σ 2(X̂tn)(h
−2−p(X̂t ) + X̂m

t )

H 2
x (tn, X̂tn; t, X̂t )

dt

∣∣∣∣Ftn

]
,

with K being a constant independent of n.
2) Assume further that h ∈ C4((0, r); (0,∞)). Consider p ∈ [0, 1) and suppose

|h(k)|
h

<
K

hk−2+p
, k ∈ {2, 3, 4},

for some K . Let f ∈ C2((0, r);R) be a bounded function such that

|f (k)(x)| ≤ K(1 + xm)h2−p−k(x), k ∈ {1, 2},
for some m ≥ 0. Then for each n and t ∈ [tn, tn+1],
∣∣∣∣Eh,X0

[
f (X̂t )

(
h′′

h
(X̂tn) − h′′(X̂t )

H 2
x (tn, X̂tn; t, X̂t )h(X̂t )

)∣∣∣∣Ftn

]∣∣∣∣

≤ KEh,X0

[ ∫ t

tn

σ (X̂tn)
2(h−(2+p)(X̂s) + X̂m

s )

H 2
x (tn, X̂tn; s, X̂s)

ds

∣∣∣∣Ftn

]

− Kh′′(X̂tn)

h(X̂tn)

× Eh,X0

[ ∫ t

tn

σ 2(X̂tn)((h
−p(X̂s) + X̂m

s ) + (s − tn)(h
−2(X̂s) + X̂m

s ))

H 2
x (tn, X̂tn; s, X̂s)

ds

∣∣∣∣Ftn

]

for some constant K independent of n.
3) Suppose f and h satisfy the conditions of part 2) and b ∈ C2

b((0, r);R). Then
for each n and t ∈ [tn, tn+1],

∣∣∣∣Eh,X0

[
f (X̂t )

(
b(X̂tn) − b(X̂t )

H 2
x (tn, X̂tn; t, X̂t )

)
dt

∣∣∣∣Ftn

]∣∣∣∣

≤ KEh,X0

[ ∫ t

tn

σ (X̂tn)
2(h−2−p(X̂s) + X̂m

s )

H 2
x (tn, X̂tn; s, X̂s)

ds

∣∣∣∣Ftn

]

for some constant K independent of n.
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Proof 1) It follows directly from the definition of μ and the hypothesis on h′′′ that

h1−p(X̂t )|μ(tn, X̂tn; t, X̂t )| ≤ Kσ 2(X̂tn)(t − tn)h
−2−p(X̂t ), t ∈ [tn, tn+1],

for some K . Also note that if m ≥ 1, there exist K and c ∈ (0, r) such that we have
xmh−(2+p) ≤ Khm−(2+p) for x ∈ [0, c]. Thus

xmh−(2+p) ≤ K(xm + h−(2+p)). (3.8)

2) Let μs := μ(tn, X̂tn; s, X̂s), u := h′
h

and ηs := Hx(tn, X̂tn; s, X̂s). Then Itô’s
formula yields

f (X̂t )

(
h′′

h
(X̂tn) − h′′(X̂t )

h(X̂t )η
2
t

)
= Mt + At,

where M is a local martingale with Mtn = 0 since ηtn = 1, and

At =
∫ t

tn

σ 2(X̂tn)f (X̂s)

2η4
s

(
2h′′h′

h2
(X̂s)μs + (h′′)2 − hh(4)

h2
(X̂s)

)
ds

−
∫ t

tn

σ (X̂tn)
2f (X̂s)

η4
s

h(3)

h
(X̂s)

(
μs + 2σ 2(X̂tn)(s − tn)

u′′(X̂s)

ηs

)
ds

−
∫ t

tn

σ 4(X̂tn)(s − tn)f (X̂s)h
′′(X̂s)

h(X̂s)η5
s

(
2μsu

′′(X̂s) + u(3)(X̂s)

)
ds

−
∫ t

tn

σ 4(X̂tn)(s − tn)f (X̂s)h
′′(X̂s)

h(X̂s)η5
s

3σ 2(X̂tn)(s − tn)(u
′′)2(X̂s)

ηs

ds

+
∫ t

tn

(
h′′

h
(X̂tn) − h′′(X̂s)

h(X̂s)η2
s

)
σ 2(X̂tn)

η2
s

(
f ′(X̂s)(u(X̂s) + μs) + 1

2
f ′′(X̂s)

)
ds

+
∫ t

tn

σ 2(X̂tn)f
′(X̂s)

η4
s

(
h′′h′ − hh(3)

h2
(X̂s)

− 2
σ 2(X̂tn)(s − tn)u

′′(X̂s)

ηs

h′′

h
(X̂s)

)
ds.

Observe that the hypothesis on h implies that

|u(k)| ≤ Kh−1−k, k ∈ {0, 1, 2, 3},
for some constant K . Moreover, for some other constant K that does not depend
on s, we have |μs | ≤ Kσ 2(X̂tn)(s − tn)h

−3 and σ 2(X̂tn)(s − tn)h
−2η−1

s ≤ K . Thus
combined with the assumption on f , we arrive at

|At | ≤ −K
h′′

h
(X̂tn)

∫ t

tn

σ (X̂tn)
2(1 + X̂m

s )

H 2
x (tn, X̂tn; s, X̂s)

(
h−p(X̂s)

(
1 + (s − tn)h

−2(X̂s)
))

ds

+ K

∫ t

tn

σ 2(X̂tn)(1 + X̂m
s )

H 2
x (tn, X̂tn; s, X̂s)h2+p(X̂s)

ds
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for some constant K . This in particular implies that M is a true martingale since we
can deduce from the estimates (3.5) and (3.6) that the set

{
f (X̂τ )

h′′(X̂τ )

h(X̂τ )η2
τ

: τ is a stopping time valued in (tn, tn+1]
}

is uniformly integrable as soon as we once again recall that |h′′/h| < Kh−p for some
p < 1. Hence the claim holds in view of (3.8).

3) Applying Itô’s formula and repeating similar estimates yields the claim. �

4 Weak convergence of the BEM scheme

Consider on a filtered probability space (
,G, (Gt )t∈[0,T ],P) satisfying the usual
conditions the stochastic differential equation

Xt = X0 +
∫ t

0
σ(Xs)dWs +

∫ t

0
μ(Xs)ds,

where X0 ∈ (0, r), σ and μ are bounded and Lipschitz on (0, r), and σ(x) > ε for
all x ∈ (0, r) and some ε > 0. Let τ := inf{t ≥ 0 : Xt /∈ (0, r)}. We are interested in
a numerical approximation for E[g̃(XT )1{T <τ }] for a sufficiently regular g̃.

Observe that by a Girsanov transformation, we can rewrite the above expression
in terms of a diffusion process satisfying the conditions in earlier sections. Indeed,
defining Q on G via

dQ

dP
= exp

(
−

∫ T

0

μ(Xs)

σ (Xs)
dWs − 1

2

∫ T

0

μ2(Xs)

σ 2(Xs)
ds

)

makes X solve dXt = σ(Xt )dBt for a Q-Brownian motion B. Therefore,

E[g̃(XT )1{T <τ }] = exp
( − F(X0)

)
E
Q

[
g(XT ) exp

( ∫ T

0
σ 2(Xt )b(Xt )dt

)
1{T <τ }

]
,

g(x) = g̃(x) exp
(
F(x)

)
,

F (x) =
∫ x

c

μ(y)

σ 2(y)
dy, b = −1

2

(( μ

σ 2

)′ + μ2

σ 4

)
,

and c ∈ (0, r). Thus we may assume μ ≡ 0 and consider

EX0

[
g(XT ) exp

( ∫ T

0
σ 2(Xt )b(Xt )dt

)
1{T <ζ }

]

= Eh,X0

[
h(X0)g(XT )

h(XT )
exp

( ∫ T

0
σ 2(Xt )

(
b(Xt ) + h′′(Xt )

2h(Xt )

)
dt

)]
,

where X is a process satisfying Assumption 2.1, b is bounded, ε < σ < Kσ and g is
sufficiently regular.
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We next introduce a set of conditions on the function h as well as the payoff g

that will be needed for our analysis. The following proposition motivates some of the
conditions stated in Assumption 4.2. Its proof is relegated to the end of this section.

Proposition 4.1 Suppose b ∈ C4
b((0, r);R), σ ∈ C4

b((0, r)), h ∈ H with

|h(k)|
h

<
Kh

hk−2+p
, k ∈ {2, 3, 4},

for some Kh and p ∈ (0, 1), g ∈ C6
b((0, r);R) is a bounded function with g(k)(0) = 0

(and g(k)(r) = 0 if r < ∞) for k ∈ {0, 1, 2, 3, 4}, and define for t ≤ T

v(T − t, x) := Eh,x

[
g(Xt )

h(Xt )
exp

( ∫ t

0
σ 2(Xs)

(
b(Xs) + h′′(Xs)

2h(Xs)

)
ds

)]
. (4.1)

Then

vt + σ 2

2
vxx + σ 2 h′

h
vx = −σ 2v

(
b + h′′

2h

)
. (4.2)

Moreover, v and vt are uniformly bounded and there exists a constant K such that

sup
t≤T

∣∣∣∣ ∂k

∂xk
vt (t, x)

∣∣∣∣ + sup
t≤T

∣∣∣∣ ∂k

∂xk
v(t, x)

∣∣∣∣ ≤ Kh2−p−k(x), k ∈ {1, 2}.

In view of Proposition 4.1 and for the convenience of the reader, we collect in
Assumption 4.2 below all the assumptions needed to prove our convergence result.

Assumption 4.2 The functions σ , b, h and g satisfy the following regularity condi-
tions:

1) h ∈ H ∩ C4((0, r); (0,∞)) is such that

|h(k)|
h

<
Kh

hp+k−2
, k ∈ {2, 3, 4},

for some Kh and p ∈ [0, 1
2 ].

2) σ ∈ C2
b((0, r); (0,∞)) is bounded away from 0, i.e., there is some ε > 0 such

that σ(x) > ε for all x ∈ (0, r).
3) b ∈ C2

b((0, r);R).
4) g ∈ C((0, r);R) is of polynomial growth with g(0) = 0 (and g(r) = 0 if

r < ∞).
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5) The function v defined by (4.1) belongs to C1,4((0, r);R) and satisfies (4.2) as
well as the growth conditions

sup
t≤T

∣∣∣∣ ∂k

∂xk
vt (t, x)

∣∣∣∣ + sup
t≤T

∣∣∣∣ ∂k

∂xk
v(t, x)

∣∣∣∣ ≤ K(1 + xm)h2−p−k(x), k ∈ {1, 2},

for some constant K and integer m ≥ 0.

Remark 4.3 The first condition on the derivatives of h is not restrictive for practical
purposes. Indeed, if a given h ∈ H ∩ C4((0, r); (0,∞)) does not satisfy this condi-
tion, one can always linearise this concave function near the boundaries at which h

vanishes to obtain a new concave function satisfying the stated condition.

Theorem 4.4 Consider the BEM scheme defined by (2.4) and the associated error

e(N) := g(X̂T )

h(X̂T )
exp

( N−1∑
n=0

T

N
σ 2(X̂tn)

(
b(X̂tn) + h′′(X̂tn)

2h(X̂tn)

))

− g(XT )

h(XT )
exp

( ∫ T

0
σ 2(Xt )

(
b(Xt ) + h′′(Xt )

2h(Xt)

)
dt

)
.

Then under Assumption 4.2, |Eh,X0 [e(N)]| ≤ KT
N

for some constant K independent
of N .

Proof Let π0(s) = 1,

πk(s) := exp

( k−1∑
n=0

sσ 2(X̂tn)
(
b(X̂tn) + h′′(X̂tn)

2h(X̂tn)

))
, k = 1, . . . , N,

with the convention that we set πk := πk(T N−1), and observe that

Eh,X0[e(N)]
= Eh,X0[v(T , X̂T )πN ] − v(0, X0)

=
N−1∑
n=0

Eh,X0[v(tn+1, X̂tn+1)πn+1 − v(tn, X̂tn)πn]

=
N−1∑
n=0

Eh,X0

[
πn

(
v(tn+1, X̂tn+1)

× exp
(T σ 2(X̂tn)

N

(
b(X̂tn) + h′′(X̂tn)

2h(X̂tn)

))
− v(tn, X̂tn)

)]
.
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Next observe that

Eh,X0

[
πn

(
v(tn+1, X̂tn+1)

× exp
(T σ 2(X̂tn)

N

(
b(X̂tn) + h′′(X̂tn)

2h(X̂tn)

))
− v(tn, X̂tn)

)∣∣∣∣Ftn

]

= πnE
h,X0

[(
v(tn+1, X̂tn+1)

× exp
(T σ 2(X̂tn)

N

(
b(X̂tn) + h′′(X̂tn)

2h(X̂tn)

))
− v(tn, X̂tn)

)∣∣∣∣Ftn

]
.

Moreover, using Itô’s formula and (4.2) after division by σ 2 gives

v(tn+1, X̂tn+1) exp

(
T σ 2(X̂tn)

N

(
b(X̂tn) + h′′(X̂tn)

2h(X̂tn)

))
− v(tn, X̂tn)

= Mtn+1 − Mtn +
3∑

j=1

Ij ,

where M is a local martingale and

I1 =
∫ tn+1

tn

πn+1(t − tn)

πn(t − tn)

σ 2(X̂tn)vx(t, X̂t )μ(tn, X̂tn; t, X̂t )

H 2
x (tn, X̂tn; t, X̂t )

dt,

I2 =
∫ tn+1

tn

πn+1(t − tn)

πn(t − tn)
σ 2(X̂tn)vt (t, X̂t )

×
(

1

σ 2(X̂tn)
− 1

σ 2(X̂t )H 2
x (tn, X̂tn; t, X̂t )

)
dt,

I3 =
∫ tn+1

tn

πn+1(t − tn)

πn(t − tn)
σ 2(X̂tn)v(t, X̂t )

×
(

b(X̂tn) + h′′(X̂tn)

2h(X̂tn)
−

b(X̂t ) + h′′(X̂t )

2h(X̂t )

H 2
x (tn, X̂tn; t, X̂t )

)
dt.

First note that M is a true martingale due to (3.5) by the hypothesis on v and the

boundedness of h. Moreover, Lemma 3.4 shows (for a generic constant K that may
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change from line to line, but remains bounded uniformly in N ) that

|Eh,X0[I1 + I2 + I3|Ftn]|

≤ K
T

N
Eh,X0

[ ∫ tn+1

tn

σ 2(X̂tn)(h
−2−p(X̂t ) + X̂m

t )

H 2
x (tn, X̂tn; t, X̂t )

dt

∣∣∣∣Ftn

]

+ KEh,X0

[ ∫ tn+1

tn

dt
πn+1(t − tn)

πn(t − tn)
σ 2(X̂tn)

×
∫ t

tn

σ (X̂tn)
2(h−2−p(X̂s) + X̂m

s )

H 2
x (tn, X̂tn; s, X̂s)

ds

∣∣∣∣Ftn

]

− KEh,X0

[ ∫ tn+1

tn

dt
πn+1(t − tn)

πn(t − tn)

σ 2h′′

h
(X̂tn)

×
∫ t

tn

σ (X̂tn)
2(h−p(X̂s) + X̂m

s )

H 2
x (tn, X̂tn; s, X̂s)

ds

∣∣∣∣Ftn

]

− KEh,X0

[ ∫ tn+1

tn

dt
πn+1(t − tn)

πn(t − tn)

σ 2h′′

h
(X̂tn)

×
∫ t

tn

σ 2(X̂tn)(h
−2(X̂s) + X̂m

s )(s − tn)

H 2
x (tn, X̂tn; s, X̂s)

ds

∣∣∣∣Ftn

]

≤ K
T

N
Eh,X0

[ ∫ tn+1

tn

σ 2(X̂tn)(h
−2−p(X̂t ) + X̂m

t )

H 2
x (tn, X̂tn; t, X̂t )

dt

∣∣∣∣Ftn

]

+ Eh,X0

[ ∫ tn+1

tn

(
1 − exp

(
(t − tn)

σ 2h′′

2h
(X̂tn)

))

× σ(X̂tn)
2(h−p(X̂t ) + X̂m

t )

H 2
x (tn, X̂tn; t, X̂t )

dt

∣∣∣∣Ftn

]

+ K
T

N
Eh,X0

[ ∫ tn+1

tn

σ (X̂tn)
2(h−2(X̂t ) + X̂m

t )

H 2
x (tn, X̂tn; t, X̂t )

dt

∣∣∣∣Ftn

]
,

where we have used the boundedness of πn+1/πn several times, and the last two lines
follow from interchanging the order of integration on the third and fourth lines. This
proves the assertion in view of Theorem 3.3 and in particular of (3.5) and (3.7), since
the πn are nonnegative and uniformly bounded and Hx ≥ 1. �

We end this section with the

Proof of Proposition 4.1 Note that v(T − t, x) = u(T −t,x)
h(x)

, where

u(T − t, x) := Ex

[
g(Xt ) exp

(∫ t

0
σ 2(Xs)b(Xs)ds

)
1{t<ζ }

]
.
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Note that u(t, 0) = 0 for t ≤ T . Moreover, Ladyženskaja et al. [32, Theorem IV.5.2]
yields that u is the unique solution of

ut + 1

2
σ 2uxx + σ 2ub = 0 (4.3)

and that

sup
t≤T ,x∈(0,r)

∣∣∣∣ ∂j

∂xj

∂k

∂tk
u

∣∣∣∣ < ∞, 0 ≤ 2k + j ≤ 5. (4.4)

Also note that since

Ex

[
g(Xt ) exp

( ∫ t

0
σ 2(Xs)b(Xs)ds

)
1{t<ζ }

]

= g(x) + 1

2
Ex

[ ∫ t

0
σ 2(Xu) exp

( ∫ u

0
σ 2(Xs)b(Xs)ds

)

× (
g′′(Xu) + 2g(Xu)b(Xu)

)
1{u<ζ }du

]
,

we have

ut (t, x) = −1

2
Ex

[
σ 2(XT −t ) exp(CT −t )

× (
g′′(XT −t ) + 2g(XT −t )b(XT −t )

)
1{T −t<ζ }

]
, (4.5)

where Ct = ∫ t

0 σ 2(Xs)b(Xs)ds. In particular, ut ( · , 0) = 0, which in turn implies
uxx( · , 0) = 0. Analogous boundary conditions also hold at r if r is finite.

Let w := ut and note that w solves (4.3) with the boundary condition w(t, 0) = 0
and w(T , · ) = − 1

2σ 2g′′ − σ 2gb. Using the stochastic representation in (4.5) and
analogous arguments, we again arrive at wt vanishing at finite boundaries.

Using the PDE for u, it is straightforward to establish that v solves (4.2) and is
bounded. Moreover, as vx = hux−uh′

h2 , integration by parts gives

vx(t, x) =
∫ x

0 (h(y)uxx(t, y) − u(t, y)h′′(y))dy

h2(x)
.

Since h′(0) < ∞ and u and uxx vanish at 0 and are jointly continuous near t = T ,
there exists a neighbourhood of 0 in which we have |h′′|(y) ≤ Kh1−p(y) ≤ K2y,
|u( · , y)| + |uxx( · , y)| < Ky (due to Lipschitz-continuity) and h(y) > cy. Thus
whenever x belongs to this neighbourhood, we have

vx(t, x)

h1−p(x)
≤ K

∫ x

0 (y(Ky + K2y1−p))dy

c3−px3−p
= K2/3x3 + K3/(3 − p)x3−p

c3−px3−p
.

Thus vx/h1−p is bounded near 0. Analogous considerations when r < ∞ show that
the ratio is bounded over (0, r).
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Next observe that vt is bounded since ut vanishes at finite boundaries and utx is
bounded. In particular, vth

p remains bounded near finite boundaries (uniformly in t).
Multiplying (4.2) by hp and using the fact that vx/h1−p is bounded demonstrates
that

sup
t≤T ,x∈(0,r)

|vxx(t, x)hp(x)| < ∞.

Finally, since vt = w
h

, repeating the above arguments and using the fact that wxx

vanishes at finite boundaries and is Lipschitz-continuous in view of (4.4), we deduce
that vtx/h1−p is bounded. Similar arguments (due to the boundedness of wtx = uttx

in view of (4.4)) also lead to

sup
t≤T ,x∈(0,r)

|vtxx(t, x)hp(x)| < ∞. �

5 Numerical analysis

This section is dedicated to the numerical experiments illustrating the above techni-
cal analysis. As we shall see, one does not really need to satisfy all the conditions
assumed in Theorem 4.4 in order to achieve the advertised convergence rate in prac-
tice. The experiments below compare our methodology developed in this paper to
standard numerical approaches for pricing barrier options (see also the symmetrisa-
tion technique from Akahori and Imamura [2] and Imamura et al. [29] for another
approach to barrier option pricing).

We consider the classical Black–Scholes model in the first part. As barrier op-
tion values are quite sensitive to the market skew/smile of volatility, the time-
homogeneous hyperbolic local volatility model is also studied in the second part.

Remark 5.1 In this one-dimensional setting, the value function of a “plain” knock-out
option, i.e., Ex[g(XT )1{T <ζ }], can be found rather easily by applying a finite differ-
ence scheme to the associated PDE with vanishing boundary conditions at accessible
boundaries.

The Monte Carlo BEM scheme introduced in this paper will have a clear advantage
over the PDE method in higher dimensions. However, already in the one-dimensional
case, it is quite flexible with respect to additional complications compared to the PDE
method. In practice, a barrier-type payoff can be combined with various features like
Asianing and forward starting. As an example, one can consider

1{ζ>T }
(

1

m

m∑
i=1

XTi
− XT0

)+

with 0 < T0 < T1 < · · · < Tm = T , where the strike is not fixed today but at
a future date T0. A computation of the price of the above derivative can be made
without much extra effort by using the BEM method, provided the discretisation in-
cludes the time points Ti for i = 0, . . . , m. While the pricing of such a derivative can
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still be done via a PDE approach using a finite difference scheme, its implementa-
tion is relatively complex and involves essentially a 3-d PDE solver: one needs one
dimension for the spot price X, one to capture the possible values of the Asianing
1
m

∑m
i=1 XTi

, and another to incorporate the possible values of the strike value at T0
(see e.g. Wilmott [45, Chap. 25], Musiela and Rutkowski [35, Sects. 6.2 and 7.1.10]
or De Weert [14, Sect. 11]). Besides, this can be intensive in computation time.

5.1 Black–Scholes model for barrier options

For expository purposes, we assume the log-price Xt = ln St under the risk-neutral
probability P is given by

Xt = x − 1

2
σ 2t + σWt, t < ζ, (5.1)

where ζ = inf{t > 0 : Xt ∈ {�, r}} and σ > 0 is constant. Deterministic inter-
est rates, a dividend yield or borrowing costs can be incorporated without difficulty.
Above, ζ represents the time of hitting a pre-specified barrier at which the option
becomes worthless. Consequently, the value of the barrier option with payoff g̃ is

price = E
P[g̃(XT )1{ζ>T }]. (5.2)

To remove the drift in (5.1), we follow the Girsanov transformation, described at
the beginning of Sect. 4, and obtain

dXt = σdWt, X0 = x (5.3)

under Q, where

dQ

dP
= e

1
2 σWT − 1

8 σ 2T = e
1
2 (XT −x+ 1

2 σ 2T )− 1
8 σ 2T = e− 1

2 + 1
8 σ 2T e

1
2 XT .

Consequently, with g(x) = g̃(x)e− 1
2 x , we get

price = e
1
2 x− 1

8 σ 2T
E
Q[g(XT )1{ζ>T }].

We shall perform a path transformation method as described earlier that either
produces a recurrent process or generates a transient process with infinite lifetime
(see Theorem 2.6). A lower barrier will be called s, an upper barrier s.

5.1.1 Specification of the recurrent transformation

For a single barrier with � finite and r = ∞, we choose h(x) = e−� − e−x with
h′(x) = e−x and h′′(x) = −e−x . Note that with this choice of h, condition 1) of
Assumption 4.2 is not satisfied for k = 2 and any p ∈ [0, 1

2 ]. Nevertheless, we apply
the implicit scheme (2.4) so that the price (5.2) is approximated by

price ≈ e
1
2 x− 1

8 σ 2T h(x)Eh,x

[
g

h
(X̂tN )e

σ2
2

T
N

∑N−1
n=0

h′′
h

(X̂tn )

]

and still obtain the optimal convergence rate in the numerical experiments.
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Remark 5.2 In the Black–Scholes model with Xt = ln St , the function H is identical
at each time step and needs to be computed once. In the implementation, we introduce
a dense grid covering the interval (�, r), calculate the values of H on these points and
H−1 is computed by piecewise constant approximation.

5.1.2 The transient transformation

In the single barrier case of a down-and-out option, we can also consider a transfor-
mation via h(x) = x −� when � is finite and r = ∞, as in Theorem 2.6. Under Qh,x ,
the process X defined in (5.3) follows

dXt = σdWt + σ 2

Xt − �
dt, X0 = x.

One advantage of this transformation is that the inverse of the function H appearing
in the implicit scheme (2.4) can be computed analytically and is given by

H−1(x) = 1

2

(√
4σ 2 T

N
+ (x − �)2 + x + �

)
.

5.2 Down-and-out put option

For a down-and-out put barrier option, the payoff is given by max(K − ST )+1{ζ>T },
where r = ∞ and � = log s, K is the option strike and T the maturity. As mentioned
at the beginning of this section, to put our methodology in perspective, we have also
implemented two other approaches to the numerical pricing of the barrier option:

– Standard Euler without hitting probability. This consists of discretising the SDE
(5.1) according to the Euler scheme

⎧⎨
⎩

X̂0 = ln S0,

X̂ti+1 = X̂ti − 1

2
σ 2 T

N
+ σ(Wti+1 − Wti ).

(5.4)

and evaluating g̃(XT )1{ζ>T } by g̃(X̂tN )1{ζN>T }, where

ζN = inf{ti > 0 : X̂ti /∈ (� = log s,∞)}.

This numerical scheme for barrier option pricing has been studied in Gobet [21],
where it was shown to have a convergence rate of O( 1√

N
). This loss of accuracy is

mainly due to the fact that it is possible for X to cross the barriers � or r at some time
t between grid points ti and ti+1 and never be below the barrier at any of the dates ti
for i = 1, . . . , N .

– Standard Euler with hitting probability. Although this is still based on the Euler
scheme simulation (5.4), it applies a further correction to remove the barrier cross-
ing biases via the conditional no-hitting probability p̂i using the Brownian bridge
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technique (see e.g. [21, Sect. 1.1]). More precisely, the p̂i are defined and can be
computed analytically as

p̂i := P
[
X̂t > �,∀t ∈ [ti , ti+1]

∣∣X̂ti = xi, X̂ti+1 = xi+1
] = 1 − e

−2
(xi−�)(xi+1−�)

σ2(ti+1−ti ) ,

where the process (X̂t )0≤t≤T is the continuous Euler scheme which interpolates
(X̂ti )0≤i≤N via

X̂t = X̂ti − 1

2
σ 2(t − ti ) + σ(Wt − Wti ), t ∈ [ti , ti+1).

It then corrects the payoff g̃(XT )1{ζ>T } by considering instead g̃(X̂tN )
∏N−1

i=0 p̂i . As
shown in Gobet [22], this bias correction brings the convergence rate back to the
order N−1, which is the rate of weak convergence for the Euler–Maruyama scheme
in the absence of killing. Moreover, in this specific Black–Scholes implementation,
the simulation is exact, i.e., no discretisation error occurs due to constant σ .

We next summarise the experiment details and comparison results.

5.2.1 Set of parameters

The numerical experiments are conducted using for the parameters the values S0 = 1,
T = 1 year, � = log(s = 0.8), r = ∞ and σ = 20%. For thoroughness, we have
considered in-the-money (K = 1.2), at-the-money (K = 1) and out-of-the-money
(K = 0.9) options. To reduce statistical noise, the simulations are run with 1’000’000
Monte Carlo paths. The benchmark price is calculated analytically (see e.g. Haug [23,
Sect. 4.17.1]).

As our final results do not show any significant dependence on the moneyness of
the option, we only report the results for at-the-money (ATM) options. In particular,
the discrepancy between benchmark prices and the numerical value for ATM down-
and-out put options is shown in Fig. 1. We have not observed any stability issues with
any of our h-transformation schemes. As discussed earlier, the standard Euler scheme
with the hitting probability method has no discretisation error. The discrepancy is
therefore essentially the statistical noise.

Our numerical results show a rapid convergence of the numerical approximation
of prices given by the recurrent and transient transforms via the implicit scheme and
demonstrate clearly its effectiveness over the standard Euler scheme without any hit-
ting probability correction. This confirms the findings of our theoretical analysis even
without satisfying all the conditions of Theorem 4.4.

Moreover, the prices given by the recurrent and transient transforms are quite com-
parable as predicted by the theoretical analysis. Figure 2 show the log–log plot of
the discrepancy associated to the recurrent and transient transforms, respectively, for
an ATM down-and-out put option. The respective numerical rates of convergence
observed are 0.95 and 0.9.

5.3 Time-homogeneous hyperbolic local volatility model

Empirical asset return distributions tend to exhibit fat tails (kurtosis) and skewness
(asymmetric distribution). The skew or smile in implied volatility surfaces observed
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Fig. 1 Absolute discrepancy between the benchmark price for an ATM down-and-out put and those cal-
culated with different numerical schemes when S0 = 1, K = 1, T = 1 year, � = log(s = 0.8), r = ∞
and σ = 20%

Fig. 2 Log-log plot of the absolute discrepancy for an ATM down-and-out put price with recurrent and
transient transform numerical schemes when S0 = 1, K = 1, T = 1 year, � = log(s = 0.8), r = ∞ and
σ = 20%
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Fig. 3 Impact of the value β on the hyperbolic local volatility for fixed volatility level ν = 0.3

across various asset classes are a market reality (see e.g. Gatheral [19, Chap. 1], Over-
haus et al. [37, Sect. 1.2] or Wilmott [46, Sect. 22.4]) and a manifestation of these
stylised facts. We need more convenient models than Gaussian models for the asset S

to reproduce more closely the implied volatility surfaces. Local volatility models, ei-
ther parametric or non-parametric (see e.g. Dupire [17], Derman and Kani [16] or
Rubinstein [41]) arguably capture the surface of implied volatilities more precisely
than other approaches such as stochastic volatility models (see e.g. Ren et al. [38] or
Romo [40]). Needless to say, the volatility surface has a significant impact on barrier
option valuation.

For our analysis, we consider the time-homogeneous hyperbolic local volatility
model (HLV) where the dynamics of the spot price under the risk-neutral measure is
given by

dXt = σ(Xt )dWt , X0 = 1

with

σ(x) = ν

(
(1 − β + β2)

β
x + (β − 1)

β

(√
x2 + β2(1 − x)2 − β

))
. (5.5)

Here ν > 0 is the level of volatility, and β ∈ (0, 1] is the skew parameter. First in-
troduced in Jäckel [31], this behaves similarly to the constant elasticity of variance
(CEV), this model and has been widely used in quantitative finance for numerical
experiments in Hok et al. [25, 26, 24]. A practical advantage of this model is that
zero is not an attainable boundary, which in turn avoids some numerical instabilities
present in the CEV model when the underlying asset price is close to zero (see e.g.
Andersen and Andreasen [5]). It corresponds to the Black–Scholes model for β = 1
and exhibits a skew for the implied volatility surface when β �= 1. Figure 3 illus-
trates the impact of the parameter β on the skew of the volatility surface. We observe
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that the skew increases significantly with decreasing value of β. For example with
ν = 0.3, β = 0.2, the difference in volatility between strikes at 50% and at 100% is
about 15%.

5.3.1 Down-and-up-out double barrier call option

In this implementation, we set h(x) = (x−�)(r−x)

2(r−�)2 with the functions

h(1)(x) = �+r−2x

2(r−�)2 , h(2)(x) = − 1
(r−�)2 and h(3)(x) = h(4)(x) = 0. Note that with

this choice of h, Condition 1) in Assumption 4.2 is not satisfied for k = 2 and any
p ∈ [0, 1

2 ]. The associated BEM scheme is then solved by using a bisection method
with Octave vectorisation for faster code execution. Consequently, the price is
approximated by

price ≈ h(x)Eh,x

[
(X̂tN − K)+

h(X̂tN )
e

1
2

T
N

∑N−1
n=0 σ 2(X̂tn ) h′′

h
(X̂tn )

]
.

For comparison, we also compute the numerical price given by the standard Euler
scheme (5.4) with series hitting probability correction, where the expression is given
by an infinite series in Gobet [21]1 as

p̂i := P
[
X̂t ∈ (�, r),∀t ∈ [ti , ti+1]

∣∣X̂ti = xi, X̂ti+1 = xi+1
]

= 1{�<xi ,xi+1<r}
∞∑

n=−∞

(
e

−2n(r−�)(n(r−�)+xi+1−xi )

σ2(ti+1−ti ) − e

−2(n(r−�)+xi−r)(n(r−�)+xi+1−r)

σ2(ti+1−ti )

)
. (5.6)

Here σ is computed using the parametric local volatility function (5.5). A numerical
study of (5.6) suggests that it suffices to calculate the leading two or three terms for
most cases. To be conservative, in our tests, the p̂i are estimated using n from −5
to 5. Experiment details and comparison results are described below.

5.3.2 Set of parameters

The numerical experiments are conducted using for the parameters the values S0 = 1,
ν = 20%, β = 0.5, T = 1 year, s = 0.85, s = 1.25. For thoroughness, we consider
in-the-money (K = 0.9), at-the-money (K = 1) and out-of-the-money (K = 1.05)
options. The benchmark prices for each numerical method are computed by the
method itself with a very dense time grid and a high number of Monte Carlo paths.

In this case, we observed some differences regarding the moneyness of the option
in our numerical results. More precisely, the method performed relatively poorly for
the ATM option. For this reason, we report below the results in all three cases and
provide an explanation for the seemingly poor performance for the ATM option.

The discrepancies between benchmark prices and numerical methods for ITM,
ATM and OTM double barrier call options are shown respectively in Figs. 4–6. Ta-
bles 1–3 provide the 95% confidence intervals associated to each considered numer-
ical method. For the same number of MC paths, i.e., 200’000, the recurrent trans-
form shows tighter confidence intervals, which match the confidence intervals of the

1with a typography correction.
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Fig. 4 Absolute discrepancy between the benchmark price and those calculated by different numerical
schemes for an ITM double barrier call when S0 = 1, K = 0.9, ν = 20%, β = 0.5, T = 1 year, s = 0.85,
s = 1.25

Fig. 5 Absolute discrepancy between the benchmark price and those calculated by different numerical
schemes for an ATM double barrier call when S0 = 1, K = 1, ν = 20%, β = 0.5, T = 1 year, s = 0.85,
s = 1.25

Fig. 6 Absolute discrepancy between the benchmark price and those calculated by different numerical
schemes for an OTM double barrier call when S0 = 1, K = 1.05, ν = 20%, β = 0.5, T = 1 year,
s = 0.85, s = 1.25
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Table 1 ITM double barrier call: numerical prices and confidence intervals as functions of the num-
ber of time steps. Recurrent transform with 200’000 paths, Euler with series hitting probability with
1’000’000 paths (Euler+ (1M)) and Euler with series hitting probability with 200’000 paths (Euler+
(200K)). Benchmark price = 0.0462

Time steps Recurrent transform Euler+ (1M) Euler+ (200K)

2 0.0489 ± 0.00012 0.0435 ± 0.00012 0.0438 ± 0.00026

6 0.0481 ± 0.00014 0.0451 ± 0.00014 0.0449 ± 0.00031

10 0.0475 ± 0.00014 0.0456 ± 0.00014 0.0455 ± 0.00032

16 0.0472 ± 0.00015 0.0458 ± 0.00015 0.0458 ± 0.00033

20 0.0471 ± 0.00015 0.0459 ± 0.00015 0.0460 ± 0.00033

30 0.0468 ± 0.00015 0.0460 ± 0.00015 0.0455 ± 0.00034

40 0.0468 ± 0.00015 0.0461 ± 0.00015 0.0459 ± 0.00034

60 0.0466 ± 0.00016 0.0462 ± 0.00015 0.0460 ± 0.00035

100 0.0463 ± 0.00016 0.0460 ± 0.00016 0.0457 ± 0.00035

Table 2 ATM double barrier call: numerical prices and confidence intervals as functions of the num-
ber of time steps. Recurrent transform with 200’000 paths, Euler with series hitting probability with
1’000’000 paths (Euler+ (1M)) and Euler with series hitting probability with 200’000 paths (Euler+
(200K)). Benchmark price = 0.0193

Time steps Recurrent transform Euler+ (1M) Euler+ (200K)

2 0.0183 ± 0.00009 0.0176 ± 0.00006 0.0177 ± 0.00014

6 0.0194 ± 0.00010 0.0185 ± 0.00008 0.0185 ± 0.00017

10 0.0195 ± 0.00011 0.0189 ± 0.00008 0.0188 ± 0.00018

16 0.0195 ± 0.00011 0.0190 ± 0.00008 0.0190 ± 0.00018

20 0.0195 ± 0.00011 0.0191 ± 0.00008 0.0192 ± 0.00019

30 0.0194 ± 0.00011 0.0192 ± 0.00008 0.0189 ± 0.00019

40 0.0195 ± 0.00012 0.0192 ± 0.00009 0.0192 ± 0.00019

60 0.0194 ± 0.00012 0.0193 ± 0.00009 0.0192 ± 0.00019

100 0.0193 ± 0.00012 0.0192 ± 0.00009 0.0191 ± 0.00019

Table 3 OTM double barrier call: numerical prices and confidence intervals as functions of the num-
ber of time steps. Recurrent transform with 200’000 paths, Euler with series hitting probability with
1’000’000 paths (Euler+ (1M)) and Euler with series hitting probability with 200’000 paths (Euler+
(200K)). Benchmark price = 0.0103

Time steps Recurrent transform Euler+ (1M) Euler+ (200K)

2 0.0085 ± 0.00006 0.0092 ± 0.00004 0.0093 ± 0.00009

6 0.0100 ± 0.00008 0.0098 ± 0.00005 0.0098 ± 0.00011

10 0.0101 ± 0.00008 0.0100 ± 0.00005 0.0100 ± 0.00012

16 0.0103 ± 0.00008 0.0101 ± 0.00005 0.0101 ± 0.00012

20 0.0103 ± 0.00008 0.0102 ± 0.00005 0.0102 ± 0.00012

30 0.0103 ± 0.00008 0.0102 ± 0.00006 0.0101 ± 0.00012

40 0.0104 ± 0.00009 0.0102 ± 0.00006 0.0102 ± 0.00013

60 0.0104 ± 0.00009 0.0103 ± 0.00006 0.0103 ± 0.00013

100 0.0103 ± 0.00009 0.0102 ± 0.00006 0.0101 ± 0.00013
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Fig. 7 Log–log plot of the absolute discrepancy for double barrier call prices for ITM (K = 0.9), ATM
(K = 1) and OTM (K = 1.05) with the recurrent transform numerical scheme when S0 = 1, T = 1 year,
s = 0.85, s = 1.25, ν = 20% and β = 0.5

benchmark scheme with 1’000’000 paths. Overall, note that the size of the interval is
about a few bps. We have not observed any stability issues with the recurrent trans-
form scheme. Interestingly, our recurrent transformation has a much smaller error
than the explicit Euler method with a hitting probability correction when the number
of discretisations is reasonably large. More importantly, this outperformance is still
valid even if the number of Monte Carlo simulations for the explicit Euler method is
increased five times. Having said that, one should still treat such a conclusion with
caution as our benchmark price and hitting probabilities are calculated by apply-
ing a truncation and thus subject to error. Nevertheless, the outperformance is still
promising as our truncation is no coarser than the common industry practice.

Figure 7 shows the log–log plot of the discrepancy associated to the recurrent
transform method for ITM, ATM and OTM double barrier call options. The numer-
ical rates of convergence are respectively 0.91, 0.63 and 1, using 200’000 Monte
Carlo simulations. Although the rate of convergence for the ATM option is far from
the theoretical rate of 1, a closer look at Fig. 5 reveals a clue. Note that the error of
the approximation converges very rapidly to zero after a few iterations, and further
discretisations do not significantly alter the already very small error term. This in-
dicates that the observed error in this case can be mostly attributed to the statistical
noise, and the simple regression to obtain the convergence rate does not work well.

When we run the same experiment for the Euler scheme with a hitting probability
correction with 200’000 Monte Carlo simulations, we observe a similar drop in the
performance, and the convergence rates are found to be 0.50, 0.59 and 0.61, respec-
tively. However, the convergence rates for the latter scheme increase to 0.83, 0.83 and
0.77, respectively, when the number of simulations are increased five times.
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Fig. 8 Absolute discrepancy between the benchmark price and those calculated by different numerical
schemes for an ITM double barrier call when S0 = 1, K = 0.9, ν = 20%, β = 0.5, T = 1 year, s = 0.8,
s = 1.3

Fig. 9 Absolute discrepancy between the benchmark price and those calculated by different numerical
schemes for an ATM double barrier call when S0 = 1, K = 1, ν = 20%, β = 0.5, T = 1 year, s = 0.8,
s = 1.3

As complements, some variations of barrier levels are considered and their impact
on numerical results is quantified:

– Low barrier s = 0.8 and high barrier s = 1.3: widening of barrier levels.
– Low barrier s = 0.8 and high barrier s = 1.15: tightening of barrier levels.

Here, we increase the number of MC samples from 200’000 to 500’000 for the BEM
method and keep the same number of MC paths at 1’000’000 for the standard Euler
scheme with series hitting probability. The 95% confidence intervals for both meth-
ods are comparable and of the order 2–3 bps. For each barrier level configuration,
we have considered in-the-money (K = 0.9), at-the-money (K = 1) and out-of-the-
money (K = 1.05) options. The discrepancies between benchmark prices and nu-
merical methods with respect to the number of time steps are presented in Figs. 8–13.
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Fig. 10 Absolute discrepancy between the benchmark price and those calculated by different numerical
schemes for an OTM double barrier call when S0 = 1, K = 1.05, ν = 20%, β = 0.5, T = 1 year, s = 0.8,
s = 1.3

Fig. 11 Absolute discrepancy between the benchmark price and those calculated by different numerical
schemes for an ITM double barrier call when S0 = 1, K = 0.9, ν = 20%, β = 0.5, T = 1 year, s = 0.8,
s = 1.15

Fig. 12 Absolute discrepancy between the benchmark price and those calculated by different numerical
schemes for an ATM double barrier call when S0 = 1, K = 1, ν = 20%, β = 0.5, T = 1 year, s = 0.8,
s = 1.15
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Fig. 13 Absolute discrepancy between the benchmark price and those calculated by different numerical
schemes for an OTM double barrier call when S0 = 1, K = 1.05, ν = 20%, β = 0.5, T = 1 year, s = 0.8,
s = 1.15

Overall, both methods show comparable convergence results which are in accordance
with the theoretical analysis.

6 Conclusion

We have introduced a novel backward Euler–Maruyama method to increase the weak
convergence rate of approximations in the presence of killing. The numerical exper-
iments confirm our theoretical result that the convergence rate is of the order 1/N ,
where N is the number of discretisation steps. This corresponds to an order-1 weak
convergence rate, which is the best rate that one can achieve (see Gobet [21]).

Moreover, the numerical studies suggest that one does not need a large N to obtain
a sufficiently close approximations as all numerical studies indicate error terms di-
minishing very rapidly with a small number of iterations. The numerical experiments
also suggested that our method outperforms the Brownian bridge method in certain
cases, although such a statement currently does not have any theoretical backing.

We suggest a couple of interesting avenues for future research in addition to the
extension of the BEM scheme to higher dimensions as discussed in the introduction:

– The transform method with BEM has the potential to achieve a higher order
of weak convergence. Indeed, one possibility of improvement is to combine the
BEM scheme with the Romberg extrapolation method (see e.g. Glasserman [20,
Sect. 6.2.4]). Some preliminary tests are encouraging, showing that the Romberg
method generates significantly lower errors compared to the Euler hitting probability
method and BEM. We believe that we can expand further the weak error to justify
the use of the Romberg method, and a higher order weak convergence analysis is
currently under investigation.

– Exact simulation of diffusions. Especially in a multidimensional setting, it
is a challenge to keep the simulated values of X in its domain even though it
should not touch its boundaries in theory. The implicit scheme considered in this
paper is one way out. Exact simulation, introduced in Beskos and Roberts [6] for
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the one-dimensional case, may be another way to resolve this issue. It involves a
rejection-sampling algorithm and, when applicable, returns exact draws from any
finite-dimensional distribution of the solution to the SDE. The method has been fur-
ther extended to multivariate diffusions in Blanchet and Zhang [7], although some
open questions remain regarding the speed of convergence of the algorithm. It will be
interesting to study exact simulations for the recurrent transformations that may lead
to a decrease in computation time by avoiding implicit schemes, especially in higher
dimensions.

Appendix A: Proof of Lemma 2.5

Proof 1) Since h is concave, H ′(x) > 1, which shows the desired strict monotonicity.
If r = ∞ and h(x) = x, it is immediate that H((0,∞)) = R.

Next suppose h ∈ H0. Then dominated convergence implies h(0) = 0 as well
as h(r) = 0 if r < ∞ as the potential density vanishes at finite endpoints. More-
over, as h is strictly concave and never vanishes in the interior of the state space,
h′(0) > 0. Thus

lim
x→0

h′(x)

h(x)
= ∞.

This proves the desired range for H when r = ∞. Indeed, in this case, h is increasing
which in turn yields

h′(x)

h(x)
≤ h′(1)

h(1)
, x ≥ 1.

If r < ∞, similar considerations imply h′(r) < 0 and therefore

lim
x→r

h′(x)

h(x)
= −∞.

This completes the proof of the first assertion.
2) If r = ∞ and h(x) = x, then h′(x) = 1 for all x ≥ 0. If h ∈ H0, then

h′(x) =
∫ ∞

x

f (y)m(dy),

which is nonnegative and finite by the assumption on f . In particular, we obtain that
h′(0) = ∫ ∞

0 f (y)m(dy) and h′(∞) = 0.
If r < ∞, then

h(x) = r − x

r

∫ x

0
yf (y)m(dy) + x

∫ r

x

r − y

r
f (y)m(dy).

Thus

h′(x) =
∫ r

x

f (y)m(dy) − 1

r

∫ r

0
yf (y)m(dy).

This yields the desired boundedness and the boundary levels for the derivatives.
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3) First suppose r < ∞. Since h′ does not vanish at the boundaries, the ratio
u(y, y)/h(y) is bounded. Moreover,

−
∫

(0,r)

h′′(y)dy =
∫

(0,r)

f (y)m(dy).

This proves the claim when r < ∞ since h′ is clearly integrable by the finiteness of
h and it changes sign only once.

Now suppose that r = ∞. Thus u(y, y) = y and

−
∫

(0,∞)

y
h′′(y)

h(y)
dy =

∫
(0,1)

y
f (y)

h(y)
m(dy) +

∫
(1,∞)

y
f (y)

h(y)
m(dy).

The first integral on the right-hand side is finite since f is m-integrable and y/h(y)

is bounded on [0, 1] as h′(0) > 0. The second integral is also finite since h(∞) > 0
and

∫
yf (y)m(dy) < ∞ by assumption. Moreover, noting that h′ ≥ 0, we get

∫ ∞

0
(y ∧ 1)

h′(y)

h(y)
dy =

∫ 1

0

yh′(y)

h(y)
dy +

∫ ∞

1

h′(y)

h(y)
dy

≤ K

∫ 1

0
h′(y)dy + log

h(∞)

h(1)
< ∞. �

Appendix B: Proof of Theorem 3.3

The proof is divided into several steps, considering first the case r = ∞ and making
use of the comparison result used in the proof of Lemma 3.2. In what follows, K

denotes a generic constant independent of N .
1) First suppose r = ∞. Since 1/h is decreasing, Lemma 3.2 and Theorem 2.9

imply supt≤T ,N Eh,X0[ 1
h
(X̂t )] < ∞. Moreover, Lemma 3.2 also yields that

Eh,X0

[ N−1∑
n=0

∫ tn+1

tn

σ 2(X̂tn)h
−2−p(X̂t )

H 2
x (tn, X̂tn; t, X̂t )

dt

]
≤ Eh,X0

[ ∫ AT

0

1

h2+p(Yt )
dt

]

≤ Eh,X0

[ ∫ ‖σ‖2∞T

0

1

h2+p(Yt )
dt

]
< ∞,

where Y is a process with the same law as the process in Theorem 2.9 with c = c1
and the last inequality follows from Theorem 2.9. Similarly, by considering instead
the time change

dAt = σ 2(X̂tn)

H 2
x (tn, X̂tn; t, X̂t )

dt, t ∈ (tn, tn+1), Atn = tn,

we obtain h−p(X̂τ ) ≤ h−p(YAτ ), where Y is a process such that Ytn = X̂tn and

dYt = dβt +
(

h′

h
(Yt ) + c1

)
dt, t ≥ tn,
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with β a standard Brownian motion. Consequently, Theorem 2.9 yields

ess sup
τ∈Tn

Eh,X0

[
1

h
(X̂τ )

∣∣∣∣Ftn

]
< ∞

since Aτ ≤ tn + ‖σ‖2∞ T
N

a.s. for τ ∈ Tn.
2) For the case r < ∞, we first define the constants x1 := inf{x ≥ 0 : h′(x) = 0}

and x2 := inf{x ≥ x1 : h′(x) < 0}. Then there exist functions h1 and h2 such that
h = h1h2 and h1 (resp. h2) is nondecreasing (resp. nonincreasing) and constant on
(x1, r) (resp. (0, x2)). Now define the processes Ŷ i , where Ŷ i

0 = X0 and

dŶ i
t = σ(X̂tn)

Hx(tn, X̂tn; t, Ŷ i
t )

dWt

+ σ 2(X̂tn)

H 2
x (tn, X̂tn; t, Ŷ i

t )

(
h′

i

hi

(Ŷ i
t ) + ci

)
dt, t ∈ (tn, tn+1].

Applying Itô’s formula to ((x2 − Ŷ 1
t )+)2 and ((x2 − X̂t )

+)2, the comparison theorem
used in the proof of Lemma 3.2 shows that

P h,X0 [Ŷ 1
t ∧ x2 ≤ X̂t ∧ x2, t ≤ T ] = 1.

An analogous argument shows that we also have

P h,X0 [Ŷ 2
t ∨ x1 ≥ X̂t ∨ x1, t ≤ T ] = 1.

As h1 is nondecreasing, h2 is nonincreasing and h
h1

(resp. h
h2

) is constant on (0, x2)

(resp. (x1, r)), the above comparisons imply that we have 1
h(X̂t∧x2)

≤ 1
h(Ŷ 1

t ∧x2)
and

1
h(X̂t∨x1)

≤ 1
h(Ŷ 2

t ∨x1)
. So the same time-change argument as in the proof of Lemma 3.2

yields that

sup
t≤T ,N

Eh,X0

[
1

h
(X̂t )

]
< ∞

by another application of Theorem 2.9. More precisely, note that Lemma 3.2 is
not immediately applicable to h2 and Ŷ 2 since the former is decreasing and the
latter’s state space is not (0,∞). However, if one considers instead the function
hr

2(x) = h2(r − x) and the process Ŷ 2,r = r − Ŷ 2, the new function hr
2 becomes

increasing on the state space of Ŷ 2,r , which now equals (0,∞). By applying Lemma
3.2 to hr

2 and Ŷ 2,r , we obtain the estimate above. Note that this reasoning actually
implies that

sup
t≤T ,N

Eh,X0

[
1

h(X̂t )

]
≤ K ′

h(X0)
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for some K ′ that depends only on T . Similarly, in view of Theorem 2.9 again,

sup
N

Eh,X0

[ N−1∑
n=0

∫ tn+1

tn

σ 2(X̂tn)h
−2−p(X̂t )

H 2
x (tn, X̂tn; t, X̂t )

dt

]
< ∞.

Finally, analogous considerations also yield ess supτ∈Tn
Eh,X0[ 1

h
(X̂τ )|Ftn ] < ∞.

3) We now show the boundedness of the moments. Note that there is nothing to
show when r < ∞. So assume that r = ∞. Recall that

X̂t = X̂tn + σ 2(X̂tn)(t − tn)
h′

h
(X̂t ) + σ(X̂tn)(Wt − Wtn).

Thus

Eh,X0[X̂t ] ≤ Eh,X0[X̂tn] + K(t − tn)

for some K due to the boundedness of σ and h′ as well as the uniform bound on the
inverse moment of h(X̂t ). This shows that supt≤T ,M Eh,X0[X̂t ] ≤ X0 + KT . Now
suppose that E(m) := supt≤T ,N Eh,X0[X̂m

t ] < ∞ and deduce from (3.1) that

dX̂m+1
t = dZt + (m + 1)

X̂m
t σ 2(X̂tn)

H 2
x (tn, X̂tn; t, X̂t )

(
h′

h
(X̂t ) + μ(tn, X̂tn; t, X̂t )

)
dt

+ 1

2
m(m + 1)

X̂m−1
t σ 2(X̂tn)

H 2
x (tn, X̂tn; t, X̂t )

dt,

where Z is a local martingale. Next observe that for m ≥ 1,

xm/h ≤ K(1 + xm−1) (B.1)

as h(0) = 0, h′(0) > 0 and h′/h ≤ 1
x

. This last identity follows from the fact that

h(x) = −
∫ x

0
yh′′(y)dy + xh′(x).

Moreover, the representation (3.2) of μ and (3.3) show that

|μ| ≤ K(Hx + 1)
1

h
(B.2)

since the term in front of the parentheses in (3.2) is bounded.
Now observe that τk := inf{t ≥ tn : X̂t ≥ k}, k ∈ N, is a localising sequence

for Z. Therefore a standard localisation argument, (B.1) and (B.2) together imply for
t ∈ (tn, tn+1] that in view of Fatou’s lemma,

Eh,X0[X̂m+1
t ] ≤ Eh,X0[X̂m+1

tn
] + (t − tn)KE(m − 1)

for some constant K , which in turn yields

E(m + 1) ≤ Xm+1
0 + KT E(m − 1).
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Finally, note that this in particular implies that Z is a true martingale. Thus for τ ∈ Tn

and m ≥ 2, we obtain

X̂m
τ ≤ X̂m

tn
+ Mτ + K

∫ tn+1

tn

X̂m−1
t dt.

Taking conditional expectations yields (3.6) because

Eh,X0[X̂m
τ |Ftn ] ≤ X̂m

tn
+ KEh,X0

[ ∫ tn+1

tn

X̂m−1
t dt

∣∣∣∣Ftn

]
. (B.3)

To establish (3.7), we need the following result.

Lemma B.1 Suppose that h satisfies the conditions of Lemma 3.1, σ is bounded
and consider the BEM scheme defined by (2.4). For any p ∈ [0, 1), any n and
tn ≤ s ≤ t < tn+1, we have

Eh,X0[h−p(X̂t )|Fs] ≤ h−p(X̂s) exp
(
K(t − s)

)

for some constant K > 0 that is independent of n.

Proof Let μt := μ(tn, X̂tn; t, X̂t ). A straightforward application of Itô’s formula
yields

h−p(X̂u) − h−p(X̂s)

= Mu − Ms

−
∫ u

s

σ 2(X̂tn)ph−p(X̂t )

H 2
x (tn, X̂tn; t, X̂t )

(
2μth

′(X̂t ) + h′′(X̂t )

2h(X̂t )
+ 1 − p

2

(h′

h
(X̂t )

)2
)

dt

≤ Mu − Ms −
∫ u

s

σ 2(X̂tn)

H 2
x (tn, X̂tn; t, X̂t )

ph−p(X̂t )

(
− α1

h(X̂t )
+ (1 − p)α2

h2(X̂t )

)
dt

where M is a local martingale and α1 and α2 are positive constants depending on the
bounds on h′ and h′′ since μt > c1 (resp. μt < c2) whenever h′(X̂t ) > 0 (resp.
h′(X̂t ) < 0) by Lemma 3.1 and h′ never vanishes at the same time as h. Thus there
exists a constant K that depends only on h, p and c1 and c2 such that

h−p(X̂u) − h−p(X̂s) ≤ Mu − Ms +
∫ u

s

K
σ 2(X̂tn)h

−p(X̂t )

H 2
x (tn, X̂tn; t, X̂t )

dt,

since −α1x + (1 − p)α2x
2 is bounded from below.

Next note that τk := inf{t ≥ tn : X̂t < 1/k}, k ∈ N, is a localising sequence for M .
Using the optional stopping theorem, Fatou’s lemma and monotone convergence, we
thus arrive at

Eh,X0[h−p(X̂t )|Fs]

≤ h−p(X̂s) + KEh,X0

[ ∫ t

s

h−p(X̂u)du

∣∣∣∣Fs

]
, tn ≤ s ≤ t ≤ tn+1,
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for some constant K in view of the boundedness of σ . We deduce the claim by
Gronwall’s lemma. �

Now we return to the proof of the estimate (3.7). Observe that the hypothesis on h′′
implies

1 − exp

(
(s − tn)σ

2(X̂tn)
h′′

2h
(X̂tn)

)
≤ K

T

N

1

hp
(X̂tn)

for some K > 0. Without loss of generality, we also suppose that h ≤ 1. Thus

Eh,X0

[ ∫ tn+1

tn

(
1 − exp

(
(s − tn)σ

2(X̂tn)
h′′

2h
(X̂tn)

))
σ 2(X̂tn)h

−p(X̂s)

H 2
x (tn, X̂tn; s, X̂s)

ds

]

≤ K
T

N
Eh,X0

[ ∫ tn+1

tn

h−p(X̂tn)h
−p(X̂s)ds

]

≤ K
T

N
Eh,X0

[ ∫ tn+1

tn

h−2p(X̂tn)ds

]

≤ K
T 2

N2
Eh,X0[h−1(X̂tn)],

where the second line follows from Lemma B.1 and Hx ≥ 1.
Next suppose m ≥ 1. Note that calculations similar to those leading to (B.3) yield

Eh,X0[X̂m
t |Ftn] ≤ X̂m

tn
+ KEh,X0

[ ∫ tn+1

tn

X̂m−1
s ds

∣∣∣∣Ftn

]
.

Thus the elementary inequality xm−1 ≤ 1 + xm and Gronwall’s lemma imply that

Eh,X0[X̂m
t |Ftn ] ≤ K

(
X̂tn + T

N

)
.

Therefore we get

Eh,X0

[ ∫ tn+1

tn

(
1 − exp

(
(s − tn)σ

2(X̂tn)
h′′

2h
(X̂tn)

))
σ 2(X̂tn)X̂

m
s

H 2
x (tn, X̂tn; s, X̂s)

ds

]

≤ K
T

N
Eh,X0

[
(X̂tn + T

N
)

(
1 − exp

(
− T

N

a

h
(X̂tn)

))]

≤ K
T 2

N2
Eh,X0

[
(X̂tn + T

N
)h−1(X̂tn)

]

≤ K
T 2

N2 Eh,X0[X̂tn + h−1(X̂tn)],

where the last line follows from (3.8). Combining the above estimates, we arrive at
the claimed result (3.7) via (3.5). �
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Appendix C: Relationship with Alfonsi [4] and Neuenkirch and
Szpruch [36]

The purpose of this short section is to show that the results of [4] and [36] do not
apply to the simulation of the recurrent diffusion process in (1.2). We impose below
Assumptions 2.1–2.3.

Proposition C.1 Let X be given by (1.2), where h is a function satisfying the condi-
tions of Çetin [9, Theorem 3.2]. Suppose further that b ≡ 0 and σ ≡ 1. Then

E
Q

[ ∫ T

0

((h′

h

)′
(Xt )

)2

dt

]
= ∞.

Proof Suppose to the contrary that

E
Q

[ ∫ T

0

((h′

h

)′
(Xt )

)2

dt

]
< ∞. (C.1)

First observe that

d

(
1

h
(Xt )

)
= − h′

h2
(Xt )dWt + dCt , (C.2)

where C is an adapted, continuous and increasing process. Moreover, h is concave
since X is on natural scale under P, and we also have

(
h′

h

)′
= h′′

h
−

(
h′

h

)2

.

In particular, |(h′
h
)′| > (h′

h
)2. Thus

E
Q

[(
h′

h

)4

(Xt )

]
≤ E

Q

[((h′

h

)′
(Xt )

)2]

Also note that h′ never vanishes at the boundary points where h does, and it does
vanish at r if r = ∞, where h does not. Consequently,

(h′)2

h4
≤ K1

(
h′

h

)4

+ K2

for some K1 and K2, which in conjunction with (C.1) implies that

E
Q

[ ∫ T

0

(
h′

h2

)2

(Xt )dt

]
< ∞.

Therefore, the local martingale term in (C.2) is a true Q-martingale, which in turn
yields that 1

h
exp(−A) is a true Q-martingale, where dAt = − 1

2
h′′(Xt )
h(Xt )

dt . In partic-
ular, P � Q when restricted to Ft . This further implies that P ≈ Q when restricted
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to Ft since Q � P on the same restriction by [9, Theorem 3.2]. However, this is a
contradiction since for any t > 0, P[ζ < t] > 0 while Q[ζ < t] = 0 because X is a
recurrent process under Q. �
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