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ABSTRACT

We experimentally study the transmission of subjective expectations into actions. Sub-

jects in our experiment report valuations that are far too insensitive to their expec-

tations, relative to the prediction from a frictionless model. We propose that the

insensitivity is driven by a noisy cognitive process that prevents subjects from pre-

cisely computing asset valuations. The empirical link between subjective expectations

and actions becomes stronger as subjective expectations approach rational expecta-

tions. Our results highlight the importance of incorporating weak transmission into

belief-based asset pricing models. Finally, we discuss how cognitive noise can provide

a microfoundation for inelastic demand in the stock market.
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Economists have spent the past several years using surveys to document facts about in-

vestors’ expectations of stock returns. A clear fact that emerges from this literature is that

the subjective expected returns that investors report on surveys systematically depart from

objective expected returns (Greenwood and Shleifer (2014), Adam and Nagel (2023), Nagel

and Xu (2023)). This fact rejects standard rational expectations models and has motivated

a new class of asset pricing theories aimed at matching both subjective expectations and

realized returns (e.g., Barberis et al. (2015), Hirshleifer, Li, and Yu (2015), Barberis et al.

(2018), Bordalo et al. (2019), Jin and Sui (2022), Nagel and Xu (2022)). These models for-

malize the subjective expectation formation process in a psychologically grounded manner,

but retain the standard assumption that investors fully act on their subjective expectations.

In a parallel strand of research, several authors have highlighted a puzzling disconnect

between measured subjective expectations and investor actions. Using data from a sample of

wealthy retail investors, Giglio et al. (2021a) document that the sensitivity of equity portfolio

shares to subjective return expectations is an order of magnitude weaker than predicted by

standard frictionless models. This weak transmission of beliefs to actions appears to be a

robust phenomenon that is observed in a variety of other settings (Amromin and Sharpe

(2014), Drerup, Enke, and Von Gaudecker (2017), Ameriks et al. (2020), Liu and Palmer

(2021)). Even in times of a market crash, when investors arguably pay a lot of attention to

the stock market, actions remain too insensitive to subjective beliefs (Giglio et al. (2021b)).1

In this paper, we conduct a series of controlled lab experiments to investigate why investor

actions do not fully reflect the subjective beliefs reported on surveys. We test the hypothesis

that the insensitivity between beliefs and actions is driven by a noisy cognitive process that

prevents investors from precisely forming asset valuations, conditional on reported beliefs.
1The subjective beliefs reported on surveys clearly contain valuable information about portfolio choice

and aggregate outcomes, such as fund flows (Greenwood and Shleifer (2014)). The puzzle raised in the recent

literature is about the quantitative strength of the relationship between beliefs and actions.
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Our hypothesis is motivated by a recent agenda in behavioral economics which argues that

the decision-making process is subject to inherent cognitive noise (see Woodford (2020) for

a recent review). The noise arises inside the investor’s mind and leads to systematic decision

biases. In particular, the investor is aware of this noise, and as a consequence, she optimally

shades her decision towards a “cognitive default” value.

To build intuition for our proposed cognitive noise mechanism, consider an investor who

is estimating the value of a risky asset. The investor will naturally lean on her beliefs about

the asset’s future payoffs, but she may find it difficult to compute her exact valuation given

these beliefs and her risk appetite. We model this difficulty by assuming the investor only

has access to a noisy cognitive signal about her true valuation. The noise could reflect

uncertainty about beliefs, uncertainty about her own risk aversion, or the noisy cognitive

process of translating beliefs and preferences into an asset valuation.

We further assume the investor is aware of the noise in her decision process, and she

therefore optimally compresses her valuation towards a cognitive default. The cognitive

default is the value that the investor would report before drawing her noisy cognitive signal.

The cognitive default could, for example, be driven by an investor’s past experience with

valuing similar assets. The compression of valuation towards a cognitive default may be

interpreted as a rule of thumb, but it can also be microfounded by Bayesian updating in the

presence of cognitive noise (Gabaix (2019)). For our purposes, the important implication

of cognitive noise is that compressing valuation towards a cognitive default immediately

dampens the transmission of stated beliefs to valuations.

In our experiments, we shut down all institutional frictions that operate in the field, and

we still uncover a weak transmission from beliefs to actions. This empirical result suggests

that a psychological mechanism is responsible for the weak transmission; we then provide two

targeted tests of the cognitive noise hypothesis. First, we exogenously reduce the complexity
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of the decision problem, which has been shown to reduce cognitive noise in the valuation

process (Enke and Graeber (2023)). We find that the reduction in cognitive noise causally

and substantially increases the passthrough from beliefs to actions. Second, we find that

subjects incorporate their cognitive default into reported valuations in a manner that is

quantitatively consistent with theory.

Our experiments contain a variety of novel design features that enable us identify the weak

transmission effect and probe its underlying mechanism. In our first experiment (Experi-

ment 1), subjects are given the opportunity to invest in a risky asset that has a time-varying

expected payoff. We elicit both subjective beliefs and valuations about the asset in an in-

centive compatible fashion. A frictionless model would predict that when a subject increases

her reported expected payoff by one unit, this should translate into a one unit increase in

her willingness to pay (WTP). Our experimental data strongly depart from this frictionless

benchmark: we find that a one unit increase in subjective expected payoff leads to only a 61%

increase in WTP. Thus, we recover the weak transmission of beliefs to actions, even in the

absence of any institutional frictions. Moreover, because we ask subjects for their WTP and

beliefs on the same experimental screen, beliefs should be readily accessible, which arguably

tilts the scales away from finding the weak transmission effect.

While the average subject in our first experiment does exhibit a weak transmission of

beliefs to actions, we find substantial heterogeneity on this dimension. This motivates an

important question: which subjects transmit their beliefs more vigorously into actions? We

find that subjects whose beliefs are closer to the rational (Bayesian) benchmark are the

ones who transmit their beliefs more strongly into valuations. Put differently, beliefs that

are farther from the rational benchmark are less likely to be incorporated into valuations –

though this is only correlational evidence.

In our second experiment (Experiment 2), we test whether cognitive noise causally affects
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the passthrough from beliefs to actions. To do so, we draw on the finding from Enke and

Graeber (2023) that subjects report higher levels of cognitive noise when decisions are more

complex. We argue that it is more complex to price an asset based on subjective beliefs that

are learned from past realized payoffs compared to objective beliefs that are endowed. We

therefore manipulate cognitive noise by varying whether beliefs are subjective or objective,

but we hold constant the beliefs themselves.

We implement the cognitive noise manipulation through a novel design feature. We

endow subjects in Experiment 2 with the beliefs reported by subjects from Experiment 1.

Specifically, each subject in Experiment 2 is endowed with an objective payoff distribution,

and we generate this payoff distribution from the subjective beliefs of a randomly matched

partner in Experiment 1. To help convey the critical design aspect, suppose that after

observing a sequence of realized payoffs, a subject from Experiment 1 reports a distribution

of beliefs denoted by b1 (and her associated WTP given these beliefs). In Experiment 2,

there is no learning and we instead endow the subject with beliefs b1 and ask her to price the

asset conditional on these objective beliefs. Our manipulation is grounded in the hypothesis

that cognitive noise is larger in settings where additional cognitive operations are needed,

such as learning from past data and forming subjective beliefs (Findling and Wyart (2021)).

By comparing the sensitivity of WTP to beliefs across Experiments 1 and 2, we can estimate

the causal effect of cognitive noise.

We find that endowing subjects with objective beliefs leads to a striking difference in pric-

ing behavior: for every unit increase in expected payoff, subjects in Experiment 2 increase

their WTP by 82%, compared to only 61% in Experiment 1. At the same time, the trans-

mission strength in Experiment 2 remains significantly below the frictionless benchmark,

suggesting that cognitive noise from other sources besides belief formation affect valuation.

Because we hold beliefs constant across experiments, our interpretation is that cognitive
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noise causally decreases the sensitivity of actions to beliefs. Moreover, to our knowledge,

this is the first piece of evidence indicating that valuation is substantially less sensitive to

subjective beliefs compared to objective beliefs.2

In our final experiment (Experiment 3), we test the core feature of the cognitive noise

mechanism. The key to generating weak transmission under this mechanism is that valuation

is compressed towards a cognitive default parameter. We develop a simple method for

eliciting the cognitive default in each period: we ask subjects to report their valuation of the

asset before observing the asset’s objective payoff distribution. We interpret this valuation

as the subject’s cognitive default, since it represents their valuation before observing the

objective payoff distribution, and thus before drawing their noisy cognitive signal. We then

additionally ask for the subject’s valuation after we present the objective payoff distribution;

this is the valuation that represents the subject’s WTP for the asset. Not only do we find

that the cognitive default is correlated with WTP, but subjects apply a decision weight to

their cognitive default that is quantitatively consistent with theory.

Overall, our experimental findings provide important guidance for the role of subjective

expectations data in asset pricing. Brunnermeier et al. (2021) point to the need for more

research on the interaction between beliefs and actions to better understand the role of ex-

pectations data for asset pricing. Our work highlights that the weak transmission of reported

beliefs to valuations can arise in a simple environment that is insulated from institutional

frictions. One lesson from our data is that researchers should be cautious when analyzing the

quantitative predictions of models that assume investors fully act on their reported beliefs.
2Our finding is similar to, but distinct from, the experimental result in Hartzmark, Hirshman, and Imas

(2021) where subjects react more strongly to information about goods that they own compared to those that

they do not own. In Hartzmark, Hirshman, and Imas (2021), the endowment of an asset is randomly varied

across treatments. In our setting, it is the endowment of beliefs that varies across treatments, and we find

that WTP reacts more strongly when beliefs are endowed rather than learned.
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At the same time, incorporating a weak transmission channel into existing belief-based asset

pricing models may provide an opportunity to further improve quantitative fits to the data.

In a related paper on weak transmission, Andries et al. (2022) conduct an experiment in

which they vary the signal informativeness about future returns. When subjects perceive the

signal to be less informative, subjective expectations deviate from the Bayesian benchmark

and allocations underreact to beliefs. To the extent that subjects in our experiment perceive

objective beliefs to be more informative than subjective beliefs, our results are consistent

with those of Andries et al. (2022). In contrast to their paper, a major focus of our analysis

is to uncover the psychological mechanism that generates weak transmission. Our proposed

cognitive noise mechanism may explain the underreaction of actions to beliefs observed by

Andries et al. (2022) in a different experimental paradigm.

The rest of this paper is organized as follows. Section I presents a conceptual framework

that illustrates how cognitive noise can generate the weak transmission of beliefs to WTP.

Sections II - IV present the main results from our three experiments. In Section V we discuss

alternative mechanisms for weak transmission and the broader implications of our results for

asset pricing. Section VI concludes with directions for future work.

I. Conceptual framework

We begin by stating the relationship between beliefs and WTP under the frictionless bench-

mark. We then introduce our key assumption of cognitive noise, and derive its implications

for valuation.

A. Frictionless benchmark

Suppose that at time t an agent can invest in an asset which delivers a stochastic payoff

Dt+1. The agent forms beliefs about the payoff’s conditional distribution, where the mean of
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this subjective distribution is given by E∗
t [Dt+1]. After forming expectations, and before the

payoff Dt+1 is realized, the agent decides what price Pt she is willing to pay for a claim on

Dt+1.3 The agent’s subjective expected return is therefore given by E∗
t [Rt+1] = E∗

t [Dt+1]/Pt.

We can rewrite this identity as

rt = dt − pt, (1)

where rt = logE∗
t [Rt+1], dt = logE∗

t [Dt+1], and pt = log Pt. Unless otherwise noted, through-

out the rest of this section we use WTP, subjective expected returns, and subjective expected

payoffs in logs which will simplify the predictions that we derive here and test in the next

three sections.

The subjective expected return rt is equivalent to the discount rate that the agent applies

to the subjective expected payoff dt, in order to generate her WTP, pt. This equivalence is

easily seen by rearranging (1) into:

pt = dt − rt. (2)

Equation (2) implies that a one unit increase in the subjective expected payoff should

translate into a one unit increase in WTP – controlling for her discount rate. This 1-1

relationship between beliefs and valuations will serve as the frictionless benchmark across all

three of our experiments. We assume that the agent applies the following discount to the

subjective expected payoff:

rt = γλt, (3)

where γ is the price of risk (e.g., risk aversion) and λt is the quantity of risk implied by the
3One can think of such an asset as a dividend strip. The one-period nature of the asset simplifies the

expectation formation process and is sufficient to convey our main conceptual insight.
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agent’s subjective beliefs (e.g., conditional volatility).4

B. Insensitive actions

We now consider a friction in the transmission of the agent’s reported beliefs to her actions.

The friction is motivated by a recent agenda in behavioral economics which argues that cog-

nitive noise corrupts the decision-making process and leads to systematic biases (Woodford

(2020)). As we will see, the main implication of this friction is that it induces an elasticity

between beliefs and actions that is less than the frictionless benchmark of 1.

We define the agent’s true valuation of the asset at time t as p∗
t = dt − γλt, where dt and

λt are the agent’s reported expected payoff and perceived risk, respectively. The variable p∗
t

is the benchmark price that is predicted by a frictionless model. Our key assumption is that

cognitive noise prevents the agent from accessing this frictionless valuation due to cognitive

and attentional constraints (Gabaix (2019), Enke and Graeber (2023)). Instead, she only

has access to a noisy cognitive signal p0
t = p∗

t + ϵt = dt − γλt + ϵt, where ϵt is drawn from

N(0, σ2
ϵ ). The investor herself generates the noisy cognitive signal when she is deliberating

about her valuation.

In our setting, cognitive noise may be interpreted as difficulty with the process of valuing

the asset conditional on beliefs, but it can also reflect uncertainty about valuation inputs

such as beliefs or risk aversion. The agent exhibits less cognitive noise as she becomes

more certain about her expectations. Yet, even when she is completely certain about her

expectations, noise can still arise in the decision process that transforms precise beliefs into
4We assume that the time increment is short enough such that the riskless rate is zero and the discount

rate only represents an instantaneous risk premium. We interpret this assumption as the agent perceiving

the stochastic payoff as an instantaneous gamble with no need for time discounting, which will be the case

in our experimental design.
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actions.5

Following Gabaix (2019) and Enke and Graeber (2023) we adopt a Bayesian perspective

whereby the agent has a prior over what her true valuation is: p∗
t is drawn from a normal

distribution N(p̄t, σ2
p). Here p̄t is a “cognitive default” parameter, which is the valuation she

would report before drawing her noisy cognitive signal. We emphasize that p̄t is a forward

looking variable, in the sense that it represents the expected valuation that the agent holds

before any further information about the asset is revealed. The agent then combines her

prior and signal to arrive at the posterior mean, which is the WTP that she reports:

pt = (1 − x)p̄t + xp0
t

= (1 − x)p̄t + xdt − xγλt + xϵt

(4)

where x = σ2
p/(σ2

p +σ2
ϵ ) is the weight she attaches to her noisy signal relative to the cognitive

default.6 It is important to highlight that p̄t does not represent some “irrelevant anchor” that

lowers the quality of the investor’s decision-making. Rather, because cognitive noise prevents

the investor from accessing her true valuation, she optimally incorporates information from

her prior to arrive at her perceived valuation. See Appendix A for a derivation. The crucial

implication encoded in Equation (4) is that a one unit increase in dt now leads to an increase

in pt by only x units, where 0 < x < 1.
5Our motivation for incorporating cognitive noise into a framework of asset valuation is partially driven by

previous experimental work which documents sizeable and systematic effects of cognitive noise in even simpler

environments (Woodford (2020)). For example, multiple studies have shown that experimental subjects

make systematic errors when judging which of two symbolic numbers is larger (Moyer and Landauer (1967),

Dehaene (2011), Frydman and Jin (2022)). Thus, given that cognitive noise operates in simple judgment

tasks, we believe cognitive noise is likely to also be active in the more complex environment of asset valuation.
6While we assume that p̄t can vary over time, we assume that σ2

p is constant. Together with the assumption

that σ2
ϵ is constant, this implies that x does not vary over time. In Internet Appendix IA.1, we report a test

of this implication, and our data support the idea that x does not vary over the course of each experiment.
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To help illuminate the mapping between our framework and applications, consider an

investor who is assessing her valuation of the aggregate stock market. If good fundamental

news is released about the market, then the investor updates her beliefs about future cash

flows, which corresponds to an increase in dt in our framework. But it may be very difficult

for the investor to figure out exactly how much this shift in cash flow expectations should

shift her WTP for the stock market. We model this friction as the additive noise term, ϵt.

The investor is aware of this difficulty, and when coming up with her WTP, she therefore

leans on a default price; we interpret the default price as the expected price the agent would

be willing to pay, without first incorporating the fundamental news. The default price is

represented by p̄t in our framework. If enough investors behave in this manner – and hold

a similar default – then the price of the stock market will adjust in the right direction, but

not by enough.

We note that Equation (4) also implies that WTP will sluggishly respond to perceived

risk. In other words, the weak transmission of beliefs to valuation is not confined to the first

moment of the subjective payoff distribution, but also operates over our assumed measure of

perceived risk. This is a testable prediction that we will take to our experimental data later

in the paper.

C. Predictions

Here we summarize the main implications of our conceptual framework and develop three

testable predictions that will guide our experimental design. Our first prediction summarizes

the basic implication of cognitive noise for valuation.

Prediction 1. If the investor has cognitive noise (i.e., σ2
ϵ > 0), then a 1 unit increase in

the expected dividend will lead to an increase in willingness to pay for the asset of only x < 1

units.
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Prediction 1 indicates that the weak transmission from beliefs to actions can persist

even in a controlled laboratory setting, where all plausible institutional reasons for the weak

transmission are shut down by design. Our next prediction provides comparative statics

about the level of cognitive noise and the insensitivity of actions to beliefs.

Prediction 2. If cognitive noise is exogenously decreased (i.e., σ2
ϵ > 0 is decreased) then the

the passthrough from beliefs to actions should become stronger. That is, x should increase as

we decrease cognitive noise.

Finally, as a deeper test of the psychological mechanism, we rely on a quantitative pre-

diction that is implied by Equation (4). Specifically, when forming asset valuations, the

investor attaches a positive decision weight to both her cognitive default and her reported

expectations, and these decision weights sum to 1.

Prediction 3. Suppose the investor has cognitive noise (i.e., σ2
ϵ > 0). When estimating

Equation (4), the coefficients on dt and p̄t should (i) both be positive and (ii) sum to 1.

Implementing a test of Prediction 3 requires observing p̄t; later in the paper we develop an

experimental method for measuring the cognitive default. In the next three sections, we

test our predictions in an experimental setting. Predictions 1, 2, and 3 will be tested in

Experiments 1, 2, and 3, respectively.

II. Experiment 1: Identifying weak transmission in a controlled lab setting

A. Experimental design

The goal of our first experiment is to cleanly test for the weak transmission of beliefs to

WTP. Importantly, our design shuts down several factors that can generate a low sensitivity

of actions to beliefs in the field, such as capital gains taxes, default options in retirement

plans, and costly portfolio monitoring. Additionally, and in contrast to standard survey
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methodologies, we incentivize the elicitation of beliefs and valuations.

In our design there is a stock that pays a dividend, Dt, in each of 30 periods. There are

five possible values for the dividend: {$60, $85, $115, $135, $150}. This five point distribution

of payoffs is similar to the distribution of returns that Giglio et al. (2021a) use to elicit beliefs

from their survey respondents.7 The conditional distribution of Dt is governed by a two-state

Markov chain. We denote the state in period t by st, which can take on one of two values,

either good or bad. In the bad state, the distribution of dividends is given by:

Pr(Dt|st = bad) ≡ ($60, 0.15; $85, 0.30; $115, 0.40; $135, 0.10; $150, 0.05) (5)

In the good state, the distribution of dividends is given by:

Pr(Dt|st = good) ≡ ($60, 0.05; $85, 0.10; $115, 0.40; $135, 0.30; $150, 0.15). (6)

The distribution in the good state has a higher mean and lower volatility, compared with

the distribution in the bad state. We initialize the state in period 1 to be either good or

bad with equal probability: Pr(s1 = good) = 50%. The states are persistent; the probability

of remaining in the same state from one period to the next is 80%. Therefore, with 20%

probability, the state switches in each period.

Subjects are given all the above information about the model of dividends; however, they

do not observe the identity of the state in each period. As such, subjects face a learning

problem in which they can use data on past dividends to infer the probability that the

current state is good. We choose the above stochastic process because it induces substantial

time series variation in the expected dividend. Moreover, the two-state switching process
7Giglio et al. (2021a) elicit a distribution over five different ranges of returns, whereas we elicit a distri-

bution over five different values of the dividend.
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guarantees that the variation does not decline over time (as would be the case in, say, a

model where the probability of switching from one state to the other is zero). For our

purposes, the substantial time series variation in expected dividends is useful for estimating

the passthrough from beliefs to WTP. While it is difficult to guarantee that subjective beliefs

will inherit this same amount of time series variation, we reason that the two-state switching

process gives us a good chance of observing large fluctuations in subjective beliefs. To

ease comparability of behavior across subjects, we use the same realized sequence of thirty

dividends for all subjects.8

In 8 randomly chosen periods, we elicit a subject’s full distribution of beliefs about the

next period’s dividend. In the other 22 periods, we do not elicit beliefs, and subjects simply

observe the realized dividend.9 Specifically, we ask subjects for the probability that they

attach to each of the five possible dividend outcomes. The ordering of the buckets (i.e.,

lowest to highest or highest to lowest) is randomized at the subject level, and we enforce

that the probabilities add up to 100%. We also ask subjects to report the price they are

willing to pay for the right to receive next period’s dividend, Dt+1. These two elicitations

enable us to test the relation between subjective payoff expectations and WTP as well as

how the subjective payoff distribution differs from the objective payoff distribution.

Importantly, we incentivize the expectations question and the WTP question. When we

elicit a subject’s beliefs about next period’s dividend, we pay subjects based on their accuracy

relative to how a Bayesian agent would respond. To see how a Bayesian agent would respond,

we derive the probability that the state is bad, conditional on all past dividends. We denote
8There is a tradeoff in using the same realized sequence of dividends for all subjects. On the one hand, the

particular sequence may not be representative of the true data generating process. On the other hand, fixing

the sequence for all subjects enables a more precise estimate of the cross-sectional variation in subjective

beliefs and in WTP – which we explore more deeply in the next subsection.
9We elicit beliefs in the same 8 (randomly chosen) periods for all subjects. See Internet Appendix IA.2

for screenshots of the experiment.
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this probability as qt = Pr(st = bad|Dt, Dt−1, ..., D1). Conditional on qt, the distribution

of dividends can be computed using the distributions in the good and bad states shown in

Equations (5) and (6). Because the stochastic process is Markovian, we can rewrite the

expression for qt as a function of the current period’s realized dividend and the prior belief:

qt(qt−1, Dt)

= Pr(Dt|st = bad) Pr(st = bad|qt−1)
Pr(Dt|st = bad) Pr(st = bad|qt−1) + Pr(Dt|st = good) Pr(st = good|qt−1)

= Pr(Dt|st = bad)(0.8qt−1 + 0.2(1 − qt−1))
Pr(Dt|st = bad)(0.8qt−1 + 0.2(1 − qt−1)) + Pr(Dt|st = good)(0.2qt−1 + 0.8(1 − qt−1)) ,

(7)

where the expressions Pr(Dt|st = bad) and Pr(Dt|st = good) are defined in Equations (5)

and (6) (Frydman et al. (2014)). Given the probability that the stock is in the bad state,

the expected dividend is just a weighted average of the expected dividend in each of the two

states: E[Dt+1|qt] = qtE[Dt+1|st = bad]+(1−qt)E[Dt+1|st = good]. Similarly, the probability

of each dividend outcome is a weighted average of the probability of that outcome in each of

the two states. For example, for a $60 dividend, Pr(Dt+1 = $60|qt) = qt Pr(Dt+1 = $60|st =

bad) + (1 − qt) Pr(Dt+1 = $60|st = good).

The calculations above establish the Bayesian benchmark, which we use to incentivize

subjects when they report their beliefs. We randomly pick one of the eight periods in which

we elicit beliefs and WTP, and we then pay subjects based on either the beliefs question or

the WTP question. If the beliefs question is randomly chosen, then we randomly select one

of the possible dividend outcomes and pay subjects a $3 bonus if their elicited probability

estimate is within one percentage point of the objective probability of that outcome. For

each percentage point that subjects deviate from the Bayesian prediction, we subtract 3

cents.

If instead the WTP question is randomly chosen, we implement a Becker-DeGroot-

Marschak (BDM) mechanism, which is designed so that it is in the subject’s best interest to
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accurately report their WTP. To implement the mechanism, we endow the subject with $210

in experimental wealth, which can be used to purchase the right to next period’s dividend.

After the subject reports their WTP for next period’s dividend, we draw a random price

between $60 and $150. If the price that we draw is equal to or smaller than the WTP,

the subject purchases the one period asset at the randomly drawn price. If the number is

larger than the stated WTP, the subject does not purchase the asset. Subjects receive their

remaining experimental wealth after any profits or losses from purchasing the asset. Each

dollar in the experiment converts to $0.01. Thus, subjects can receive a bonus of up to $3

for the WTP question.

While it may be difficult for subjects to implement the Bayesian updating rule in (7),

we emphasize that our main test in this experiment does not rely on subjects’ ability to

accurately compute qt. Specifically, Prediction 1 states that if a subject has cognitive noise,

then the elasticity between subjective expectations and WTP should be less than 1. Thus,

our main test is independent of the expectation formation process. At the same time, the

Bayesian benchmark is useful not only for eliciting incentive-compatible beliefs, but also

to study any systematic differences between objective and subjective beliefs. The wedge

between subjective and objective beliefs will turn out to be an an important predictor for

the weak transmission across subjects.

We recruit 300 subjects from the online data collection platform, Prolific. The sample

size and exclusion criteria are pre-registered on Aspredicted.org.10 Subjects received $2 for
10See https://aspredicted.org/6Z4_RLQ for the pre-registration document. After analyzing the data, the

emphasis of our analysis changed to the weak transmission of beliefs to actions. We believe that including

the initial pre-registration here is important for transparency, particularly about sample size and exclusion

criteria. See Internet Appendix IA.3 for additional pre-registered analyses. Our analyses in Experiment 1

provide crucial motivation for the design of Experiments 2 and 3, which we also pre-register; details are

provided in Sections III and IV.
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completing the experiment, in addition to their bonus payment. The average completion

time of the experiment was approximately 13 minutes, and the average earnings were $4.39,

including the $2 participation fee.

B. Experimental results

B.1. Summary statistics

Our experiment with 300 subjects produces a panel dataset with 2,400 total observations

(8 elicitations per subject). Table I provides summary statistics of the dataset where E∗

denotes expectations under subjects’ reported beliefs and Eb denotes the Bayesian expecta-

tion. Because all subjects face the same sequence of dividends, the time series of the Bayesian

distribution is identical across subjects.

Table I
Summary Statistics from Experiment 1

Mean p25 p50 p75 SD Min Max

Subjective expected payoff E∗[D] 112.61 105.50 113.00 120.50 12.04 65.00 150.00
Deviation from Bayesian E∗[D]/Eb[D] 1.01 0.96 1.02 1.08 0.10 0.59 1.32
Willingness to pay P 95.15 80.00 95.70 110.00 20.88 60.00 150.00
Perceived volatility Vol∗[D] 23.64 21.36 24.81 27.22 6.05 0.00 39.69
Bayesian volatility Volb[D] 25.37 24.70 25.73 26.02 0.84 23.96 26.07

This table presents summary statistics for the main variables in our sample. The sample consists of 300
subjects and 8 elicitation periods, yielding 2,400 observations. E∗[D] is the subjective expected payoff,
defined as the mean of a subject’s reported dividend distribution. Eb[D] is the Bayesian expected payoff,
defined as the mean of the Bayesian dividend distribution. P is the subject’s reported willingness to pay
for next period’s dividend. Perceived volatility, Vol∗[D], is the volatility of a subject’s reported dividend
distribution. Bayesian volatility, Volb[D], is the volatility of the Bayesian distribution.

Table I reveals that subjects are quite accurate about the expected payoff on average, but

some subjects report beliefs that strongly depart from the Bayesian benchmark. The average

deviation from the Bayesian expectation, which we compute as E∗[D]/Eb[D], is 1.01, where

a value of 1.00 corresponds to no deviation from Bayesian expectations. The prices that
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subjects are willing to pay are, on average, lower than expected payoffs, which is consistent

with risk aversion among our subjects. Because we elicit subjects’ beliefs about the entire

payoff distribution, we can measure perceived risk as the volatility of the elicited distribution.

The average and median perceived volatility are fairly close to that of the Bayesian investor.

For all subsequent empirical analyses, we transform WTP and expectations to logs in

order to be consistent with the conceptual framework in Section I. In particular, p denotes

log P , d denotes logE∗[D], λ denotes Vol∗[D], and r denotes logE∗[R].

B.2. Testing for weak transmission

We begin by examining the strength of transmission from expectations to WTP. Recall that

the frictionless benchmark outlined in Section I indicates that a 1-unit increase in d should

translate into a 1-unit increase in p. We assume that the price of risk (γ) and the degree

of weak transmission (x) are fixed over time within subjects – but can vary across subjects.

In particular, all of our empirical results are based on mixed effects regressions with random

slopes and a random intercept.

Column 1 of Table II reports that the sensitivity of WTP to payoff expectations is 0.634,

which is significantly below one (p < 0.001). Figure 1 illustrates this result by showing that

the best fitting line is much shallower than the 45-degree line. Column 2 indicates that the

responsiveness of WTP to beliefs remains significantly below one after controlling for our

assumed measure of risk, namely, conditional volatility.11 The specification in Column 2 also

confirms that subjects demand compensation for risk (γ > 0), as they are willing to pay less

when risk is higher, holding the subjective expected payoff constant.
11In Appendix B, we show that under mild assumptions, our empirical test of weak transmission is robust

to misspecifying the subject’s perceived level of risk. Specifically, we show that omitting λ in a regression

of p on d biases the estimate of x upward whenever (i) the price of risk is positive (e.g., subjects are risk

averse) and (ii) the correlation between subjective payoff expectations d and perceived risk λ is negative.
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Table II
Transmission of Expectations into Valuations

p (1) (2)

d 0.634∗∗∗ 0.610∗∗∗

(0.049) (0.050)
λ −0.195∗∗∗

(0.073)
Constant 1.539∗∗∗ 1.699∗∗∗

(0.233) (0.242)

Observations 2,400 2,400

This table presents results from mixed effects regressions of log(WTP) (p) on log subjective expected payoff
(d) and perceived volatility (λ). These regressions include a random effect for d and λ, as well as for the
intercept. Standard errors are clustered at the subject level and displayed in parentheses below the coefficient
estimates. The coefficients and standard errors for λ are multiplied by 100. ∗, ∗∗, and ∗∗∗ indicate statistical
significance at the 10%, 5%, and 1% levels, respectively.

We note that in this experiment, the cognitive default p̄t, is not observable. Thus, if

the true model of decision-making is governed by Equation (4), then there is a potential

omitted variable bias when regressing pt on dt and λt. In particular, our estimate of x will

be biased if p̄t and dt are correlated. However, there are two reasons to believe that this

potential omitted variable bias does not compromise our conclusion of a weak transmission.

First, if p̄t and dt are correlated, they are likely to be positively correlated. When subjects

report optimistic beliefs, they are likely to hold a high cognitive default. Conversely, when

subjects report pessimistic beliefs, they are likely to hold a low cognitive default. A positive

correlation between p̄t and dt will then induce an upward bias in our estimate of x, leading

to a conservative estimate of weak transmission.

Second, later in the paper (Section IV) we report results from an additional experiment

where we can directly observe p̄t. There, we find a zero correlation between p̄t and dt. Under

the assumption that the zero correlation is stable across experiments, the omission of p̄t from

our regression in Table II will not affect our estimate of x.
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Figure 1. Willingness to Pay and Subjective Expected Payoffs
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This figure is a binned scatter plot of log(WTP) (p) vs. log subjective expected payoff (d) controlling for
subject fixed effects. The sample size is 2,400 and the number of subjects is 300. The upper line is the
45-degree line.

B.3. Deviations from rational expectations and the link with weak transmission

When testing for weak transmission in the previous section, we do not impose any assump-

tions about whether subjective beliefs are rational or not. Because we have precise control

over the stochastic process that generates dividends, here we can assess (i) the extent to

which subjective beliefs depart from rational beliefs and (ii) whether beliefs that are closer

to the rational benchmark are transmitted more vigorously into actions. Given the large

literature on subjective expectation formation in finance (Adam and Nagel (2023)), it is

useful to explore whether the severity of expectation errors has any bearing on the degree

to which these errors are transmitted into investment actions.

For each subject we compute a measure of how well-calibrated their beliefs are using the

absolute error summed across the eight elicitation periods. In particular, for each subject s,
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we compute: calibration errors = ∑8
t=1 |dst − db

t | where ds is the subjective expected payoff

for subject s and db is the Bayesian expectation. The median calibration error across all

300 subjects is 0.552, and thus a substantial portion of our subjects report beliefs that have

sizeable deviations from the Bayesian benchmark.

More interestingly, we can assess whether cross-sectional variation in beliefs tells us any-

thing about cross-sectional variation in weak transmission. We define a dummy variable,

calibtot that takes the value of 1 if a subject’s calibration error is below the median – indi-

cating their beliefs are relatively well-calibrated. We then re-estimate our basic regression

of p on d, but allow for different slopes depending on whether the subject’s beliefs are well-

calibrated.

Column 1 of Table III shows that subjects with well-calibrated beliefs transmit their

beliefs into actions much more strongly than subjects whose beliefs are not well-calibrated.

The value of x for subjects with well-calibrated beliefs is 1.07, and we cannot reject the null

that this coefficient is equal to the frictionless benchmark of 1 (p = 0.363). In contrast, the

value of x for the sample of subjects whose beliefs are not well-calibrated is only 0.51, which

is significantly below the frictionless benchmark of 1 (p < 0.001). To our knowledge, this is

the first result demonstrating that the rationality of beliefs and the transmission of beliefs

into actions are correlated in the cross-section.

Next, to better understand the structure of the expectation errors, for each subject we

decompose the total calibration error into its fixed and variable components:

calibration errors =
8∑

t=1
|dst − db

t | =
∣∣∣∣∣

8∑
t=1

dst −
8∑

t=1
db

t

∣∣∣∣∣︸ ︷︷ ︸
fixed

+
8∑

t=1

[
|dst − db

t | − 1/8
∣∣∣∣∣

8∑
t=1

dst −
8∑

t=1
db

t

∣∣∣∣∣
]

︸ ︷︷ ︸
variable

The fixed component represents any optimism or pessimism bias across all eight elic-
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Table III
Weak Transmission is Modulated by Expectation Errors

p (1) (2)

d 0.506∗∗∗ 0.393∗∗∗

(0.053) (0.066)
d x calibtot 0.562∗∗∗

(0.092)
d x calibfix 0.339∗∗∗

(0.095)
d x calibvar 0.447∗∗∗

(0.098)
calibtot −2.661∗∗∗

(0.434)
calibfix −1.577∗∗∗

(0.445)
calibvar −2.124∗∗∗

(0.462)
Constant 2.148∗∗∗ 2.672∗∗∗

(0.253) (0.310)

Observations 2,400 2,400

This table presents results from mixed effects regressions of log(WTP) (p) on log subjective expected payoff
(d) interacted with dummies that indicate below-median calibration errors for the total error (calibtot), the
fixed error (calibfix), and the variable error (calibvar). Standard errors are clustered at the subject level and
displayed in parentheses below the coefficient estimates. ∗, ∗∗, and ∗∗∗ indicate statistical significance at the
10%, 5%, and 1% levels, respectively.

itations. The variable component captures overreaction or underreaction, and any other

time-varying errors. The median calibration error for the fixed component is 0.226, whereas

the median calibration error for the variable component is 0.256. We find that across sub-

jects, the fixed and variable components are significantly negatively correlated at −37%.

These results suggest that expectation errors are not exclusively driven by any one theory

of non-rational expectations, such as overreaction or pessimism. Instead, both the fixed and
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variable components systematically contribute to expectation errors.12

To understand whether one source is predominantly responsible for the empirical link

with weak transmission, we re-estimate the regression from Column 1 of Table III, but we

use two different dummy variables: calibfix and calibvar. The dummy variable calibfix takes

a value of 1 if the subject is below the median in their fixed calibration error. Similarly, the

dummy variable calibvar takes a value of 1 if the subject is below the median in their variable

calibration error. Column 2 shows that both components independently and significantly

explain variation in weak transmission.

To summarize, we find that there is substantial variation across subjects in the degree

to which their subjective expectations coincide with rational expectations. This variation is

empirically connected to the observed weak transmission: those subjects who report beliefs

closer to the Bayesian benchmark are the same subjects who transmit their beliefs more

strongly into actions. Moreover, there appear to be at least two sources of deviations from

rational expectations, which we capture by a fixed and variable component of expectation

errors. Both components explain a portion of the variation in weak transmission. In the

next section, we shut down the possibility that subjects hold non-rational expectations, and

assess whether this restriction causally increases the transmission of beliefs into actions.
12Because we do not elicit a term structure of beliefs, we cannot make strong statements about the precise

type of expectational error captured by the variable component. For example, in order to test for overreaction

or underreaction using the regression framework of Coibion and Gorodnichenko (2015), we would need data

on how beliefs evolve for a stochastic dividend at fixed maturity. Since the main goal in this section is to

test for weak transmission after expectations are formed, we elicit only subjects’ 1-period ahead beliefs and

the associated valuation.
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III. Experiment 2: Exogenous manipulation of cognitive noise

In this section, our goal is to measure the causal effect of cognitive noise on the transmission of

beliefs into actions. Our approach to manipulating cognitive noise is to experimentally reduce

the complexity of the decision environment. This method of manipulating cognitive noise

builds on recent work by Enke and Graeber (2023), who show that reducing the complexity

of a decision problem leads to lower self-reported measures of cognitive noise. We argue that

a decision environment in which subjects must learn from past data about the distribution

of future dividends is more complex than one in which subjects are endowed with objective

beliefs.

By comparing behavior in an environment where subjects are endowed with beliefs with

behavior from our first experiment, we can assess whether cognitive noise causally affects

transmission strength. Moreover, by testing whether the transmission strength remains be-

low the frictionless benchmark, we can assess whether other sources besides belief uncertainty

are important drivers of cognitive noise.

A. Experimental design

In Experiment 1, subjects face a learning problem in which realized dividends can be used

to form Bayesian beliefs about the next period’s dividend. While subjects are endowed with

all information about the data generating process, implementing the Bayesian updating rule

is complex. Thus, subjects may be cognitively uncertain about their own beliefs, and we

hypothesize that this cognitive uncertainty dampens the transmission of beliefs to WTP.

In order to test this hypothesis, here we conduct an experiment that is identical to Exper-

iment 1, except we endow subjects with objective beliefs about the next period’s dividend.

Subjects do not need to learn because we explicitly provide them with the objective payoff

distribution. Our manipulation is meant to reduce cognitive noise which, in turn, should
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increase the strength of the transmission of beliefs to WTP.

Perhaps the most natural experimental design would involve simply endowing subjects

with the Bayesian beliefs from Experiment 1. An issue however, is that the WTP elicited

in such a design would be based on beliefs that differ from the subjective beliefs reported

by subjects in Experiment 1. Any difference in behavior could thus be due to differences in

beliefs, rather than a difference in the objectivity of those beliefs. Thus, we would not be

able to identify cognitive noise as a channel through which WTP becomes more responsive

to beliefs.

To sidestep this concern, we design an experiment in which we recruit a new set of 300

subjects, and each subject is uniquely matched to a subject from Experiment 1. The new

subject in Experiment 2 inherits the beliefs reported by her matched partner. That is, the

subjective beliefs reported by the subject in Experiment 1 become the objective beliefs for the

subject in Experiment 2. Subjects in Experiment 2 are not told anything about the source

of such beliefs, or even about the existence of Experiment 1. Instead, we incentivize subjects

from Experiment 2 to report their WTP for an asset that pays a dividend according to the

objective distribution that we present them. We provide screenshots of this experiment in

Internet Appendix IA.2.

This design allow us to test Prediction 2: reducing cognitive noise will strengthen the

transmission of beliefs to WTP. As in our previous experiment, here subjects are incentivized

using the BDM mechanism, and we randomly select one of the questions for payment at

the end of the experiment. Note that subjects in Experiment 2 therefore answer only 8

questions (compared with 16 in Experiment 1). To keep the incentives per question similar

across experiments, we cut the bonus incentive in Experiment 2 in half compared with

Experiment 1. This is important because larger incentives could lead to lower cognitive

noise in Experiment 2.
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As in Experiment 1, we recruit subjects from Prolific and pre-register the experiment on

Aspredicted.org.13 Subjects received $2 for completing the experiment, in addition to their

bonus payment. The average completion time of the experiment was 6 minutes, and the

average earnings were $3.06 including the $2 participation fee.

B. Experimental results

We begin by testing whether our experimental manipulation strengthens the transmission of

beliefs to WTP. Column 1 in Table IV presents results from regressions of WTP on payoff

expectation using data from both experiments, where “Exp2” is a dummy variable that

equals one if and only if the observation is from Experiment 2. Consistent with Prediction

2, the transmission of beliefs to WTP is causally strengthened when we endow subjects with

objective beliefs, thereby eliminating the need for subjects to form their own beliefs based on

past data. Among subjects in Experiment 2, the coefficient on d is 0.877 (= 0.634 + 0.243),

which is significantly higher than 0.634 in Experiment 1.

The stronger transmission of payoff expectations to WTP remains significant after con-

trolling for risk as shown in Column 2 of Table IV. The coefficient on d significantly increases

from 0.610 in Experiment 1 to 0.817 in Experiment 2.14 These results suggest that cognitive

noise from expectation formation explains about half of the underreaction of WTP to payoff

expectations.

We also find that decreasing cognitive noise increases the reaction of WTP to risk percep-

tion. Column 2 of Table IV shows that the negative loading on risk increases in magnitude

when going from Experiment 1 to 2. The coefficient on risk more than doubles in magnitude,
13For pre-registration details, see: https://aspredicted.org/NWL_YML
14As discussed in Section II, there is a potential omitted variable bias because p̄t is not observable in

this experiment. However, under the assumption that the correlation between p̄t and dt is the same across

Experiments 1 and 2, there will be no bias in estimating the difference in x across Experiments 1 and 2.
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Table IV
Transmission Strength Increases When Beliefs are Endowed

p (1) (2)

d 0.634∗∗∗ 0.610∗∗∗

(0.049) (0.050)
d x Exp2 0.243∗∗∗ 0.207∗∗∗

(0.064) (0.066)
λ −0.188∗∗∗

(0.073)
λ x Exp2 −0.221∗

(0.121)
Exp2 −1.134∗∗∗ −0.910∗∗∗

(0.302) (0.322)
Constant 1.539∗∗∗ 1.695∗∗∗

(0.233) (0.242)

Observations 4,800 4,800

This table presents results from mixed effects regressions of log(WTP) (p) on log subjective expected payoff
(d) and perceived volatility (λ), combining data from Experiments 1 and 2. These regressions include a
random effect for d and λ, as well as for the intercept. Standard errors are clustered at the subject level
and displayed in parentheses below the coefficient estimates. The coefficients and standard errors for λ are
multiplied by 100. ∗, ∗∗, and ∗∗∗ indicate statistical significance at the 10%, 5%, and 1% levels, respectively.

though the effect is only statistically significant at the 10% level (the large standard error

here is due in part to the strong negative correlation between λ and d). This result is con-

sistent with our conceptual framework, as Equation (4) shows that the impact of perceived

risk on WTP is also dampened by a factor of x.

While Table IV reveals that the transmission of expectations to WTP is significantly

stronger in Experiment 2, we emphasize that the transmission strength is still not as strong

as predicted by the frictionless benchmark. In particular, the estimated value of x of 0.817

in Experiment 2 is still significantly below the frictionless benchmark of 1 (p < 0.001).

Thus, other features of the decision-making process besides belief formation – such as the

integration of beliefs with preferences – are likely to be implemented with cognitive noise,
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which in turn sustains the weak transmission of expectations into actions.

To summarize the main finding from Experiment 2, we provide causal evidence that

WTP is substantially more responsive to beliefs when subjects price an asset based on

objective – rather than subjective – beliefs. Our results suggest that subjects rely much

less on a cognitive default parameter when they are endowed with objective beliefs. In our

final experiment, we develop a method to measure the cognitive default parameter, and we

subsequently provide a novel test of the cognitive noise mechanism.

IV. Experiment 3: Measuring the cognitive default

In this section, we report results from a third experiment that employs a novel method for

eliciting the cognitive default. Armed with direct measures of the cognitive default at the

subject-period level, we can provide an additional and sharp test of theory.

The logic of the main empirical test we run in this section is as follows. According to

Equation (4), when the subject is forming her valuation of the asset, she applies a weight

of (1 − x) to the cognitive default p̄t, and she applies a weight of x to dt. In the previous

two sections, we were concerned with testing whether the estimated x is less than 1, and we

assumed that the subject must be putting weight (1 − x) on the cognitive default. Here, we

create a setting in which we can observe both dt and p̄t, which enables us to test whether

the weights on these two variables are both positive and sum to 1, as predicted by theory.

A. Experimental design

The design of this experiment is nearly identical to that in Experiment 2. The only difference

is that we add one additional question in each of the eight periods. Specifically, in each period,

before the distribution of dividends is revealed to the subject, we ask the subject to report
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their willingness to pay for the asset.15 This reported valuation represents the subject’s

cognitive default: it is the price she expects to pay, before drawing her noisy cognitive signal

about the specific problem she faces. Thus, for each subject and each period, we collect a

pair of valuations: {p̄t, pt}.16

We elicit both the cognitive default and the WTP in an incentive-compatible fashion. We

instruct subjects that we will randomly select one of the sixteen valuations they report (eight

WTPs and eight cognitive defaults). As in the previous two experiments, we then implement

a BDM mechanism given the subject’s reported valuation and the realized dividend from the

asset. Note that the BDM is plausible to implement, even if the distribution of dividends is

not yet displayed to subjects. This allows us to use the same BDM procedure regardless of

whether we randomly choose a cognitive default or a WTP for payment at the end of the

experiment.

We recruit a new set of 300 subjects from Prolific for Experiment 3. Each subject is then

uniquely matched to a subject from Experiment 2, and she sees the same sequence of eight

dividend distributions as her matched partner from Experiment 2. This feature of the design

enables us to test whether the act of eliciting the cognitive default affects WTP, since the

beliefs that are used to price the assets are identical across the two experiments.

We pre-registered the experiment on Aspredicted.org.17 Subjects received $2 for complet-

ing the experiment, in addition to their bonus payment. Since Experiment 3 contains sixteen

questions, we doubled the size of the bonus compared to Experiment 2 (which contains only
15We provide screenshots of this experiment in Internet Appendix IA.2.
16Note that we designed this third experiment by building on the simpler design of Experiment 2 – where

we still obtain weak transmission – rather than the more complex design of Experiment 1. We reasoned

that interpreting the cognitive default would be cleaner in an environment where beliefs are endowed to the

subject and where the elicitation of the cognitive default can be administered immediately before revealing

the objective payoff distribution to the subject.
17For pre-registration details, see: https://aspredicted.org/MYN_NMS.
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eight questions). This implies that the expected bonus per question should be similar across

Experiments 1, 2, and 3. The average completion time of the experiment was approximately

9 minutes, and the average earnings were $4.12 including the $2 participation fee.

B. Experimental results

Our goal in this section is to test whether the measured cognitive default correlates with

valuation in the manner predicted by theory. We estimate the regression model specified

in Equation (4), and we conduct two pre-registered empirical tests: (i) does the measured

cognitive default positively correlate with valuation? and (ii) do the estimated coefficients on

p̄t and dt sum to 1? Column 1 of Table V provides results from a regression of valuation on

expected payoff and the cognitive default. We find that the coefficient on p̄, which denotes

the log of the elicited cognitive default, is 0.220 and is significantly above 0 (p < 0.001).

This indicates that the willingness to pay that subjects report before seeing the dividend

distribution is a significant predictor of valuation even after the dividend distribution is

displayed. This is consistent with our main hypothesis, as cognitive noise corrupts the

subject’s ability to precisely report her valuation after the dividend distribution is displayed,

and thus she optimally shades her reported valuation towards the cognitive default.

We provide a second test of the mechanism by testing whether the coefficients on p̄ and

d sum to 1. Table V shows that the sum of the coefficients on p̄ and d is 1.07; we cannot

reject the null hypothesis that the sum is equal to 1 (p = 0.19). This result provides us with

greater confidence in interpreting the coefficient on d as a ratio of variances. Recall that in

our model, x = σ2
p/(σ2

p + σ2
ϵ ), and thus the coefficient on d represents the amount of noise in

the cognitive signal, relative to the total noise from the prior and the cognitive signal.

One potential concern with these results is that the elicitation of the cognitive default

may causally affect WTP. In particular, it is plausible that eliciting the cognitive default

immediately before asking subjects for WTP may artificially inflate the weight that subjects
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Table V
Valuation Depends on Cognitive Default

p (1) (2)

d 0.847∗∗∗ 0.829∗∗∗

(0.045) (0.045)
p̄ 0.220∗∗∗

(0.030)
d x Exp2 −0.010

(0.063)
λ −0.372∗∗∗ −0.368∗∗∗

(0.097) (0.099)
λ x Exp2 −0.033

(0.138)
Exp2 0.033

(0.304)
Constant −0.316 0.747∗∗∗

(0.242) (0.217)

Observations 2,400 4,800

This table presents results from mixed effects regressions. Column 1 regresses log(WTP) (p) on log subjective
expected payoff (d), the log cognitive default (p̄), and perceived volatility (λ) using data only from Experiment
3. Column 2 combines data from Experiments 2 and 3 and regresses log(WTP) (p) on log subjective expected
payoff (d) and perceived volatility (λ). All regressions include a random effect for d and λ, as well as for
the intercept. Column 1 additionally includes a random effect for p̄. Standard errors are clustered at the
subject level and displayed in parentheses below the coefficient estimates. The coefficients and standard
errors for λ are multiplied by 100. ∗, ∗∗, and ∗∗∗ indicate statistical significance at the 10%, 5%, and 1%
levels, respectively.

attach to the cognitive default when reporting valuations. Because the only difference across

Experiments 2 and 3 is the elicitation of the cognitive default, we can compare WTP across

experiments to gain insight on the causal effect of eliciting the cognitive default. If eliciting

the cognitive default caused subjects to inflate its weight when forming valuations, then this

should lead to a lower weight on d in Experiment 3. This, in turn, should be reflected in a

positive coefficient on the interaction term, d x Exp2. Instead, we find that the estimated

coefficient on the interaction is not significantly different from 0. Similarly, Column 2 shows

that subjects rely on volatility to the same extent in both Experiment 2 and Experiment
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3. In sum, the results in Column 2 provide reassurance that the elicitation of the cognitive

default is not artificially changing the valuation process.18

Given that the cognitive default does explain significant variation in reported valuations,

it is useful to explore which factors drive variation in the cognitive default. To start, we note

that the bulk of the variation in the cognitive default is explained by a subject fixed effect.

Specifically, we find that 77% of the variation of the cognitive default can be explained by a

subject level fixed effect (see Internet Appendix IA.4). However, the results in Table V are

identified off of within-subject variation, which suggests that time-varying observables may

explain additional variation in reported cognitive defaults.

To explore this direction, we regress the cognitive default on lagged d, lagged p, and the

current level of d. The results are shown in Table VI. We see that the lagged WTPs - but not

lagged d - significantly explain variation in the cognitive default. At the same time, including

these lagged variables in an OLS regression barely increases the explained variation in the

cognitive default. When analyzing elicitations 3 - 8 (the same sample used in Table VI),

the R2 from an OLS regression with only subject fixed effects is already at 85.4%, and this

increases to 85.8% when we add dt−1, dt−2, pt−1, and pt−2 to the regression (see Columns 2

and 3 of Table IA.2).

One way to interpret the above results is that the cognitive default reflects a wide variety
18As an alternative approach to understanding the impact of eliciting the cognitive default on subsequent

valuation, we pre-registered an exploratory analysis that examines whether the time series of cognitive

defaults from Experiment 3 can predict valuations from Experiment 2. To implement the test, we re-estimate

the regression from Column (1) of Table V, but replace the WTPs with those reported by subjects from

Experiment 2. When restricting to periods 5-8, as outlined in our pre-registration, we find that the estimated

coefficient on p̄ is 0.007 and is not significantly different from zero (p = 0.84). The fact that cognitive defaults

from Experiment 3 do not predict valuations in Experiment 2 is consistent with our finding, described in

more detail below, that most of the variation in the cognitive default is subject-specific and does not depend

on lagged d (which is common across Experiments 2 and 3).
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Table VI
Explaining Variation in the Cognitive Default

p̄t (1) (2) (3)

dt 0.019 0.024 0.028
(0.028) (0.028) (0.028)

dt−1 −0.035 −0.031
(0.033) (0.032)

dt−2 −0.005
(0.027)

pt−1 0.144∗∗∗ 0.144∗∗∗

(0.027) (0.026)
pt−2 0.090∗∗∗

(0.020)
Constant 4.379∗∗∗ 3.860∗∗∗ 3.430∗∗∗

(0.130) (0.213) (0.258)

Observations 1,800 1,800 1,800

This table presents results from mixed effects regressions of the log cognitive default (p̄) on current period
and lagged log subjective expected payoff (d) and lagged log(WTP)(p). The sample includes elicitation
periods 3-8. These regressions include a random effect for d and p, as well as for the intercept. Standard
errors are clustered at the subject level and displayed in parentheses below the coefficient estimates. ∗, ∗∗,
and ∗∗∗ indicate statistical significance at the 10%, 5%, and 1% levels, respectively.

of personal-level characteristics that are stable within our experiment: risk aversion, past

experience with investing, and any exposure to previous experiments. These stable features

explain nearly all of the variation in observed cognitive defaults. While the time-variation

in cognitive defaults is minimal, our result that lagged valuations significantly predict the

current cognitive default may prove useful in future research that seeks to provide a theory of

how the cognitive default evolves over time. We speculate that properties of human memory

will play an important role in understanding which features contribute to the time-varying

cognitive default (Bordalo, Gennaioli, and Shleifer (2020)).
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V. Discussion

In this section, we discuss the implications of our results for asset pricing models and draw

connections with the broader literature on survey data. We also discuss in more detail the

psychological source of weak transmission in our experiments, and we discuss limitations of

our experimental approach.

A. Implications for asset pricing models

A.1. Incorporating weak transmission into investor decisions

Over the past decade, there has been an enormous amount of theoretical and empirical work

on expectation formation in finance (Adam and Nagel (2023)). Several researchers have

proposed models with the goal of jointly explaining asset prices and survey expectations

(e.g., Barberis et al. (2015), Hirshleifer, Li, and Yu (2015), Jin and Sui (2022)). While these

models formalize the subjective expectation formation process in a psychologically grounded

manner, they retain the standard assumption that investors fully act on their subjective

beliefs.

To better place our contribution in this literature, it is useful to decompose the investor’s

decision process into two stages: (i) expectation formation and (ii) action selection. While

a bulk of the literature has studied the first stage, we take expectations as given and focus

on how these expectations propagate into actions. One key finding that emerges from all

three of our experiments is that the transmission of beliefs to actions is far below 1-to-1. We

believe that this result should motivate future theoretical work that explicitly incorporates

weak transmission into the investor’s decision process.19

One concern, however, is that injecting deviations from rationality into both expectation
19For related work in macroeconomics, see Khaw, Stevens, and Woodford (2017) for a theoretical model

that incorporates inattentive adjustment of actions.
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formation and expectation transmission gives the modeler too much flexibility. Indeed, the

number of non-rational expectations models is already large, and adding an extra degree

of freedom does not help the case for parsimony. However, there is an intriguing possi-

bility that departures from rational expectations are connected to how these expectations

propagate into actions. In Table III, we show that subjects who state beliefs closer to the

rational benchmark are the same subjects whose valuations are more sensitive to these be-

liefs. Furthermore, Andries et al. (2022) show that experimental subjects transmit beliefs

into actions less vigorously when they hold (overly) extrapolative expectations compared to

rational expectations. While more empirical data is needed, together, these results suggest

that the belief formation process can partially constrain the degree of weak transmission.

Our results also provide guidance for asset pricing models that feature learning and state

uncertainty. In Experiment 1, we implement an imperfect information environment in which

subjects receive noisy signals about the state in the form of realized dividends. Using these

signals, subjects are incentivized to form subjective beliefs about the conditional distribution

of payoffs. We find that subjects who report beliefs that are closer to the rational benchmark

also transmit these beliefs more vigorously into actions. This cross-sectional result may

provide useful insights for modeling the actions of investors depending on the rationality of

their belief formation process. For example, in models where investors learn through Bayesian

inference (e.g., Veronesi (1999), Johannes, Lochstoer, and Mou (2016), Ghaderi, Kilic, and

Seo (2022)), our results suggest that beliefs should be strongly transmitted into actions. On

the other hand, in models where learning departs from Bayesian inference or investors hold

perpetually misspecified models (e.g., Jin and Sui (2022), Nagel and Xu (2022)), our results

suggest that investor beliefs will be transmitted weakly into actions.20

20In Internet Appendix IA.5 we provide further results on the implication of weak transmission for basic

asset pricing tests.
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A.2. Cognitive noise as a source of inelastic demand

The data we produce connects to a recent literature which argues that inelastic demand can

explain important features of the aggregate stock market such as excess volatility (Koijen and

Yogo (2019), Gabaix and Koijen (2022)). While there are a variety of institutional reasons

why investors may exhibit inelastic demand, cognitive noise may provide one psychological

source of the inelasticity.

Here we build on our conceptual framework from Section I and sketch a simple alternative

specification that imposes cognitive noise over asset demand, rather than asset valuation.

We begin with a baseline case where there is a single asset in fixed supply. Following Haddad,

Huebner, and Loualiche (2022), we define the investor’s log demand as

q = q̄ − ζ(p − pe)

= q̄ − ζp∆,

(8)

where p is the log asset price, pe is a log baseline price, ζ is the elasticity of demand, and p∆

denotes the deviation between the log asset price and the log baseline price. The variable

q̄ captures the component of demand that is not driven by deviations between the market

price and the baseline price (e.g., the risk profile of the asset). When ζ is very high, investors

will absorb demand shocks by aggressively trading against p∆. Conversely, when ζ is very

low, idiosyncratic demand shocks will impact market prices as investors will not aggressively

trade against p∆.

Suppose now that the investor does not have access to her true demand q, but only

has access to a noisy cognitive signal of this demand: q0 = q + ω, where ω is distributed

according to N(0, σ2
ω). The cognitive noise term, ω, is meant to capture the difficulty that

the investor faces in computing her precise asset demand. This difficulty could stem from

uncertainty about how far the market price is from the baseline price. The investor may also
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be uncertain about her own optimal value of ζ, given her beliefs about the demand elasticity

of other market participants (Haddad, Huebner, and Loualiche (2022)).21 Finally, even if

the investor has precise access to the demand inputs, q̄, ζ, and p∆, she may find it difficult

to translate these inputs into an exact quantity of shares demanded.

Similar to the setup in Section I, we assume the investor has prior beliefs about her true

asset demand. We further impose that these beliefs are centered around q̄, and are given by

N(q̄, σ2
q ). Under this scenario, the investor’s demand is given by:

q = (1 − xq)q̄ + xqq
0

= (1 − xq)q̄ + xq(q̄ − ζp∆ + ω)

= q̄ − xqζp∆ + xqω,

(9)

where xq = σ2
q/(σ2

q + σ2
ω). Because 0 < xq < 1, Equation (9) implies that demand is

compressed towards q̄, relative to the noiseless demand in Equation (8). Moreover, as the

investor faces more cognitive noise (i.e., as σ2
ω increases), her demand becomes more inelastic.

Of course, a key assumption in the above argument is that the cognitive default coincides

with q̄. One interpretation of this assumption is that the investor believes that p∆ is closer

to 0 than its true value. For example, if pe represents the fundamental value of the asset,

then the assumption may be further interpreted as the investor having an overly strong belief

in market efficiency. A natural step for future research would be to measure the cognitive

default, as we do in Experiment 3, but in a situation where subjects report demand, rather
21In our experiments, subjects are price takers and their payoffs do not depend on the behavior of other

subjects in the experiment. In a more complex setting where investors need to form beliefs about the elasticity

of other traders, we hypothesize that cognitive noise would be even more pronounced. Some evidence for

this conjecture comes from Frydman and Nunnari (2023), who show experimentally that cognitive noise is

larger when a subject plays a strategic game against another human subject, compared to when she plays

the same game against a computerized opponent.
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than valuation.

B. Sources of the weak transmission

In the field, there are several potential reasons for the weak transmission of beliefs to actions.

For example, Giglio et al. (2021a) discuss frictions such as capital gains taxes, institutional

settings of retirement plans, and infrequent trading. Our experiment rules out such insti-

tutional frictions by design, and allows us to identify the weak transmission as driven by a

psychological friction. In Experiment 1, where subjects need to form subjective beliefs, it is

likely that a portion of cognitive noise arises from uncertainty about expectations, perhaps

because subjects have difficulty implementing Bayes’ rule (Kuhnen (2015)), Ben-David, Fer-

mand, Kuhnen, and Li (2023)). But importantly, in Experiments 2 and 3, we show that

shutting down uncertainty about beliefs still leads to weak transmission. We speculate that

the cognitive noise in Experiments 2 and 3 arises primarily from integrating beliefs about

payoffs with perceived risk to arrive at a valuation.

Another recently proposed source of weak transmission comes from Barberis and Jin

(2023). Those authors develop a model of investor behavior based on reinforcement learning

and argue that it can explain a variety of facts about financial markets, including the discon-

nect between beliefs and portfolios. While the psychology is quite different across models,

cognitive noise and reinforcement learning both provide a foundation for the belief-action

disconnect that arises from the investor’s decision process, rather than from institutional

constraints.

C. Limitations

The one period nature of the asset in our experiments is useful because it allows us to see

how valuation relates to expectations in a simple setting. Indeed, we find clear evidence of

a weak transmission of beliefs to actions, even when there is no need for subjects to form
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expectations over long horizons. Yet this simplicity also means that our analyses cannot

speak directly to other previously documented facts about subjective expectations from the

field.

For example, one of the most salient facts from the survey literature is that investors

extrapolate recent returns when forming expectations about future returns (Greenwood and

Shleifer (2014), Barberis et al. (2015)). One reason we do not analyze this dimension of

the data in our experiments is because the degree of extrapolation, and more generally,

expectational errors, may depend on the horizon of the forecast (Giglio and Kelly (2018),

Da, Huang, and Jin (2021), De Silva and Thesmar (2023)). One opportunity for future work

is to enrich the experimental design we present here by having subjects price an asset that

delivers a long stream of cash flows – rather than a one period dividend strip. For example,

one could integrate into our design the experimental method from Afrouzi et al. (2023),

which elicits expectations along the term structure. This would further enable testing of

other important phenomena, including the dividend-price ratio and its ability to predict

returns of long-duration assets such as aggregate equity.

Finally, our experiments are designed to probe the mechanism that generates the weak

transmission of beliefs to actions that has been observed in the field. The evidence we have

presented points to cognitive noise as an important driver of weak transmission in the lab.

As with most laboratory studies, we adopt the assumption that the mechanism we study in

a controlled environment is similar to the one that partially drives behavior in the field. Of

course, without further tests, we cannot rule out the possibility that the weak transmission

observed in the field may be driven by alternative mechanisms. On the other hand, because

investors arguably face more complex problems in the field, it is also possible that the role

of cognitive noise for investor decision-making is even larger outside the lab.
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VI. Conclusion

Survey data on subjective beliefs have recently opened up a vibrant area of research in asset

pricing (Adam and Nagel (2023)). Subjective beliefs data offer the promise of disciplining

models using the expectations that investors actually report, rather than the rational expec-

tations that investors are typically assumed to hold. Our paper contributes to this agenda

by experimentally studying why investors may not fully act on their reported beliefs. Our

results suggest that researchers should approach survey data with some caution, if the in-

tention is to use subjective expectations data to understand quantitative patterns in asset

prices.

At the same time, a better understanding of the mechanism that generates weak trans-

mission can aid in interpreting the implications of subjective beliefs data. Experiments 2

and 3 were designed precisely to provide such tests of the mechanism. Our results reveal

that a long-standing idea from psychology – cognitive noise – is at least partially responsible

for weak transmission. We interpret the cognitive noise in our experiments as arising from

a combination of uncertainty about expectations, uncertainty about perception of risk, and

the cognitive process of integrating these quantities to arrive at an asset’s valuation.

One potential direction for future research is to incorporate a weak transmission mech-

anism into belief-based asset pricing models. Under this approach, subjective expectations

data can still be harnessed, but the quantitative implications will be constrained by the

degree to which these expectations are actually incorporated into asset demand. Another

path forward is to better understand the relative importance that institutional frictions play

in generating weak transmission in the field. Because institutional frictions are shut down in

our experiments by design, it is plausible that the passthrough from beliefs to actions may

be even weaker outside the laboratory. Thus, any asset pricing implications that stem from

weak transmission may be even more pronounced when analyzing data from the field.
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APPENDIX

A. Gaussian signal extraction

We adapt the basic Bayesian signal extraction studied by Gabaix (2019) to our conceptual

framework. Suppose that the agent’s objective is to minimize the squared distance between

her true willingness to pay p∗ and the willingness to pay p conditional on her noisy signal

p0 = p∗ + ϵ, where ϵ is normally distributed with mean 0 and variance σ2
ϵ :

max
p

E[−1/2(p − p∗)2|po]. (A.1)

Hence the optimality condition is E[p−p∗|po] = 0. Because ϵ has a zero mean, the prediction

about p∗ conditional on the signal p0 is E[p∗|po] = (1−x)p̄+xpo where the dampening factor

is given by:

x =
σ2

p

σ2
p + σ2

ϵ

. (A.2)

As the variance of the noisy signal increases, the agent optimally puts more weight on the

default p̄.

B. Estimating x from willingness to pay and payoff expectations

In the following, we show that the univariate relation between p and d results in a upward-

biased estimate of x if payoff expectation d and perceived risk λ are negatively correlated.

Suppose that the relation between d and λ is affine and given by dt = α + βλt + ηt where α

and β are constants, and ηt represents variation in dt that is orthogonal to λt. Rearranging

results in

λt = −α

β
+ 1

β
dt − 1

β
ηt, (A.3)
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which can be plugged into (4) to obtain

pt = (1 − x)p̄t + xγα

β
+ x

[
1 − γ

β

]
dt + xγ

β
ηt. (A.4)

As a result, the coefficient of p on d is x
[
1 − γ

β

]
which is larger than x if γ > 0 and β < 0.

The following figure shows that β < 0 in the subjective beliefs data.

Figure A.1. Subjective Expected Payoffs and Perceived Risk
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This figure is a binned scatter plot of log subjective expected payoff (d) and perceived volatility (λ) controlling

for subject fixed effects. The reported slope results from a mixed effects regression of d on λ. The regression

includes a random effect for λ as well as for the intercept. The displayed coefficient and standard error for

λ are multiplied by 100. The standard error in parentheses is clustered at the subject level. The sample size

is 2,400 and the number of subjects is 300. The data are from Experiment 1.
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IA.1. Does the transmission strength vary over time?

In our conceptual framework, we assume that the prior variance, σ2
p, and the signal variance,

σ2
ϵ , are constant in the time series. An immediate implication of these assumptions is that

the transmission strength, x, is also constant over time.

It is plausible, however, that the cognitive signal precision may vary over time. For

example, if subjects become fatigued over the course of the experiment, σ2
ϵ , may be larger for

elicitations that occur later in the experiment. Alternatively, by gaining experience with the

task, cognitive noise may become smaller towards the end of the experiment, corresponding

to a decrease in σ2
ϵ . Thus, it is an empirical question as to whether x remains constant,

increases, or decreases over time.

Here we investigate the stability of transmission strength by re-estimating our main

regressions and allowing x to vary between the first and second half of our experiments.

Table IA.1 shows that in all three experiments, we cannot reject the null hypothesis that x is

constant over time. The dummy variable “Late” takes the value 1 if the elicitation is in the

second half of the experiment, and it takes the value 0, otherwise. None of the interaction

terms are significantly different from zero and they all have small magnitudes, suggesting

that transmission strength does not vary significantly over time.
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Table IA.1
Stability of Weak Transmission

Sample: Experiment 1 Experiment 2 Experiment 3
p (1) (2) (3)

d 0.579∗∗∗ 0.838∗∗∗ 0.846∗∗∗

(0.075) (0.071) (0.063)
d x Late 0.019 0.059 0.025

(0.085) (0.078) (0.065)
λ −0.219∗∗ −0.346∗∗∗ −0.319∗∗∗

(0.101) (0.111) (0.122)
λ x Late 0.049 −0.167 −0.115

(0.129) (0.119) (0.136)
Late −0.116 −0.212 −0.075

(0.417) (0.381) (0.313)
Constant 1.861∗∗∗ 0.662∗ 0.648∗∗

(0.369) (0.349) (0.306)

Observations 2,400 2,400 2,400

This table presents results from mixed effects regressions of log(WTP) (p) on log subjective expected payoff
(d) and perceived volatility (λ), interacted with a dummy variable (Late) that is equal to one for elicitation
periods 5-8. Columns 1, 2, and 3 use data from Experiments 1, 2, and 3, respectively. All regressions include
a random effect for d and λ, as well as for the intercept. Standard errors are clustered at the subject level
and displayed in parentheses below the coefficient estimates. The coefficients and standard errors for λ are
multiplied by 100. ∗, ∗∗, and ∗∗∗ indicate statistical significance at the 10%, 5%, and 1% levels, respectively.
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IA.2. Screenshots of instructions and decision screens

A. Experiment 1

A.1. Instructions
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[The distributions were displayed to subjects before the first dividend

realization and in each elicitation period.
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A.2. Decision screens
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IA: Page 11



[Slider after initiation]

IA: Page 12



B. Experiment 2

B.1. Instructions
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B.2. Decision screens

[Slider before initiation]
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C. Experiment 3

C.1. Instructions
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C.2. Decision screens
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[Slider before initiation]2

2The probabilities in Experiment 3 were displayed with one decimal, while the probabilities in Experiment

2 were displayed without decimals. We chose to include one decimal in Experiment 3 because some subjects in

Experiment 1, from which the probability distributions are sourced, reported probabilities with one decimal.

While we failed to display these decimals in Experiment 2, this occurred in only 25 of the 2,400 subject-

rounds, which corresponds to about 1% of subject-rounds. There were no cases in which subjects reported

probabilities with more than one decimal.
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IA.3. Additional pre-registered analyses

In this section, we present additional results from our pre-registration of Experiment 1,

available at https://aspredicted.org/6Z4_RLQ. First, in Figure IA.1, we show a binned

scatter plot of Eb[D]/E∗[D] and perceived disaster risk, using the subjective probability of

the lowest payoff ($60) as the measure of perceived disaster risk. This is a measure of tail risk

and is similar to the measure of disaster risk in Giglio et al. (2021a). Second, in Figure IA.2,

we show a binned scatter plot of E∗[D]/P and perceived disaster risk. Finally, in Figure

IA.3, we show a binned scatter plot of Eb[D]/P and perceived disaster risk.

Figure IA.1. Expected Cash Flows and Perceived Tail Risk
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This figure is a binned scatter plot of Eb[D]/E∗[D] and the perceived probability of the lowest payoff con-

trolling for subject fixed effects. The sample size is 2,400 and the number of subjects is 300. The data are

from Experiment 1.
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Figure IA.2. Subjective Expected Returns and Perceived Tail Risk
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This figure is a binned scatter plot of E∗[D]/P and the perceived probability of the lowest payoff controlling

for subject fixed effects. The sample size is 2,400 and the number of subjects is 300. The data are from

Experiment 1.
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Figure IA.3. Objective Expected Returns and Perceived Tail Risk
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This figure is a binned scatter plot of Eb[D]/P and the perceived probability of the lowest payoff controlling

for subject fixed effects. The sample size is 2,400 and the number of subjects is 300. The data are from

Experiment 1.
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IA.4. Variation in the cognitive default (Experiment 3)

Here we present results from OLS fixed effects regressions, showing that the bulk of the

variation in the cognitive default can be explained by a subject fixed effect.

Table IA.2
Variation in the Cognitive Default

p̄t (1) (2) (3)

dt 0.019
(0.029)

dt−1 0.005
(0.034)

dt−2 0.028
(0.027)

pt−1 0.088∗∗∗

(0.028)
pt−2 0.038∗

(0.022)

Subject FE Yes Yes Yes
Observations 2,400 1,800 1,800
R-squared 0.770 0.854 0.858

This table presents results from OLS fixed effects regressions of the log cognitive default (p̄) on subject fixed
effects. Column 1 uses all data from Experiment 3. Columns 2 and 3 restrict the sample to elicitation periods
3-8. Column 3 additionally includes current period and lagged log subjective expected payoff (d) and lagged
log(WTP)(p) as explanatory variables. Standard errors are clustered at the subject level and displayed in
parentheses below the coefficient estimates. ∗, ∗∗, and ∗∗∗ indicate statistical significance at the 10%, 5%,
and 1% levels, respectively.
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IA.5. Implications for the subjective risk-return relation

A. Omitted variable bias

A common finding that emerges from all three of our experiments is that there exists weak

transmission from beliefs to valuations. Here, we highlight the implications of weak trans-

mission for understanding properties of the subjective risk-return relation. We show theo-

retically, and provide supporting experimental evidence, that weak transmission will induce

a strong bias in estimating the subjective risk-return relation. The basic problem that arises

is as follows: even if an investor demands a higher risk premium as her perception of risk

increases, failing to account for weak transmission can lead the econometrician to measure

a negative subjective risk-return relation. This result, which we explain in more detail be-

low, stems from the fact that weak transmission will induce a positive correlation between

subjective expected payoffs and subjective expected returns.

Suppose the econometrician has data on the investor’s WTP and the investor’s subjective

beliefs about Dt+1. In this scenario, it is straightforward to implement tests of the relation

between perceived risk and subjective expected return shown in Equation (3) of the main

text. That is, the econometrician can measure rt as the difference between log expected

payoff and log WTP as in (1). The econometrician can then regress the measured subjective

rt on λt, where the latter is also computed based on the investor’s subjective beliefs about

Dt+1. For any risk averse agent, there will be a positive relationship between perceived

risk and subjective expected return, and the strength of this relationship is governed by the

investor’s risk aversion. However, this positive relationship need not hold if investors exhibit

a weak transmission from beliefs to WTP.

If we plug WTP from (4) into the expected return in (1), we obtain
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rt = −(1 − x)p̄t + (1 − x)dt + xγλt − xϵt. (IA.1)

When x < 1, the measured subjective expected return no longer depends only on the risk

premium γλt; instead, the measured subjective expected return will depend on both the risk

premium and the expectation dt.3

It follows that when there is weak transmission, the subjective expected return inferred

from the agent’s reported beliefs will differ from her risk-based discount rate. This difference

becomes larger as the transmission becomes weaker (i.e., as x → 0). Intuitively, when the

reported payoff expectation dt increases and pt does not fully respond to the increase, the

asset price becomes relatively “cheaper”. This leads to a higher subjective expected return.

Conversely, when an investor lowers her reported payoff expectation, she prices the asset

lower, but not as low as under the frictionless benchmark. Thus, the weak transmission

induces a positive correlation between subjective expected payoffs and subjective expected

returns.

Equation (IA.1) implies that the weak transmission of beliefs to actions gives rise to an

omitted variable bias in tests of the subjective risk-return relation. In particular, suppose

that perceived risk λt and payoff expectation dt are correlated and have an affine relation

given by:

dt = α + βλt + ηt, (IA.2)

where α and β are constants and ηt represents variation in dt that is orthogonal to λt.
3When x < 1, the measured subjective expected return will also depend on the cognitive default p̄t. In

Section C, we show that omitting the cognitive default from a regression of subjective expected return on

perceived risk will work against the findings we present here.
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Plugging (IA.2) into (IA.1), we obtain

rt = −(1 − x)p̄t + (1 − x)α + [(1 − x)β + xγ] λt + (1 − x)ηt − xϵt,

= −(1 − x)p̄t + (1 − x)α +

(1 − x)β − (1 − x)γ︸ ︷︷ ︸
bias

+γ

 λt + (1 − x)ηt − xϵt

(IA.3)

Hence, a univariate regression of r on λ generates a coefficient on risk equal to (1−x)β −

(1 − x)γ + γ. The term (1 − x)β − (1 − x)γ represents the omitted variable bias, which can

have a substantial effect on the estimated subjective risk-return relationship. The strength

of the bias depends on the degree of the weak transmission (x), the loading of expected

payoff on risk (β), and the price of risk (γ).

The coefficient on risk will be biased downward when the following conditions are met: (i)

there is weak transmission (0 < x < 1) (ii) there is a negative correlation between expected

payoff and risk (β < 0), and (iii) the price of risk is positive (γ > 0). For instance, suppose

the asset moves between two states: a bad state with low expected payoffs and high risk,

and a good state with high payoffs and low risk (as is the case in our experimental design).

When the asset enters the bad state, the subjective expected return rt increases because risk

(λt) is higher (and γ is positive by assumption). But this effect is offset by the negative term

[(1 − x)β − (1 − x)γ], which creates the downward bias in estimation. Fixing β and γ, the

downward bias becomes more severe as the transmission becomes weaker (x → 0).

Figure IA.4 illustrates the role that weak transmission plays for the measured subjective

risk-return relation in our experimental data. Each of the three panels plots the measured

subjective risk-return relation for each of our three experiments. The x-axis in each panel

is the conditional volatility of the dividend distribution, and the y-axis is the measured

subjective expected return. Recall that we use the same exact belief distributions in each of

the three experiments, and thus the x-axis in all panels is the same.

IA: Page 33



Figure IA.4. The Subjective Risk-Return Relation in the Three Experiments
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This figure shows binned scatter plots of subjective expected returns (r) and perceived risk (λ) in Experiments
1, 2, and 3 controlling for subject fixed effects. The sample size in each Panel is 2,400 and the number of
subjects is 300.

In Panel A, we find a negative subjective risk-return relation. At first glance, this suggests

that subjects discount the asset to a greater extent when there is less risk. However, our

theoretical analysis above suggests an alternative interpretation: when x < 1 and expected

payoffs and risk are negatively correlated (as they are in all experiments), the slope of the

subjective risk-return relation is biased downward. If x is sufficiently low, this can lead to

a negative subjective risk-return relation, even if subjects do apply greater discounts when

there is more risk. The estimated x from Experiment 1 is relatively low at 0.61, and thus

the weak transmission is likely responsible for the negative subjective risk-return relation.

Panels B and C provide the subjective risk-return relation for Experiments 2 and 3. These

two panels paint a very different picture, as they reveal a positive relation between risk and

measured subjective expected returns. Recall that the quantity of risk remains exactly the

same as we move from Experiment 1 to Experiments 2 and 3. Indeed, the only variable in

the bias term of Equation (IA.3) that changes across experiments is x. In particular, we find

that x increases significantly from 0.61 in Experiment 1, to 0.82 in Experiment 2 and 0.83

in Experiment 3. This increase in x is sufficiently large that it flips the sign of the measured

subjective risk-return relation.
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Equation (IA.1) from our conceptual framework also provides a recipe for how we can

restore the positive subjective risk-return relation in Experiment 1: by controlling for subjec-

tive expected payoffs (d) in a regression of subjective expected returns (r) on perceived risk

(λ). Table IA.3 shows that the sign of the coefficient on risk flips from negative to positive

when adding a control for subjects’ reported expected payoffs in Experiment 1. By “adding

back” the omitted variable (d) in Column 2, we can eliminate the bias in the coefficient on

λ.4

Table IA.3
The Subjective Risk-Return Relation in Experiment 1

r (1) (2)

d 0.390∗∗∗

(0.050)
λ −0.173∗∗ 0.195∗∗∗

(0.078) (0.073)
Constant 0.227∗∗∗ −1.699∗∗∗

(0.020) (0.242)

Observations 2,400 2,400

This table presents results from mixed effects regressions of subjective expected returns (r) on subjective
expected payoff (d) and perceived volatility (λ). These regressions include a random effect for d and λ, as
well as for the intercept. Standard errors are clustered at the subject level and displayed in parentheses below
the coefficient estimates. The coefficients and standard errors for λ are multiplied by 100. ∗, ∗∗, and ∗∗∗

indicate statistical significance at the 10%, 5%, and 1% levels, respectively. The data are from Experiment
1.

A further concern is that the relation between subjective payoff expectations and per-

ceived risk, represented by β in Equation (IA.2), might vary over time. As shown above, this

parameter plays a significant role in applications to the subjective risk-return relationship.

In particular, as illustrated in Equation (IA.3), β < 0 is a sufficient condition for a downward

bias in the risk-return relation if γ > 0 and x < 1.
4Suppose that p̄ and λ are correlated through d. In this case, controlling for d will eliminate any bias in

the coefficient on λ that results from omitting p̄ (also see Section C below.)
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Table IA.4 tests whether β varies over time by regressing d on λ, interacted with a

dummy variable (“Late”). This dummy variable takes the value 1 if the elicitation is in the

second half of the experiment, and it takes the value 0, otherwise. Note that the beliefs

data are identical across the three experiments; so it is sufficient to check this result in the

data generated in Experiment 1 only. We find that β remains negative in both halves of the

experiment but it is closer to zero in the latter half, as shown in table below. However, the

coefficient in the second half -0.875 + 0.547 = -0.328 is also statistically different from zero

(p < 0.001).

Table IA.4
Variation in β

λ −0.875∗∗∗

(0.045)
λ x Late 0.547∗∗∗

(0.066)
Late −0.187∗∗∗

(0.017)
Observations 2,400

This table presents results from mixed effects regressions of log expected payoff (d) on perceived volatility
(λ), interacted with a dummy variable (Late) that is equal to one for elicitation periods 5-8. All regressions
include a random effect for λ, as well as for the intercept. Standard errors are clustered at the subject level
and displayed in parentheses below the coefficient estimates. The coefficients and standard errors for λ are
multiplied by 100. ∗, ∗∗, and ∗∗∗ indicate statistical significance at the 10%, 5%, and 1% levels, respectively.

B. Connection to Giglio et al. (2021a)

The survey conducted by Giglio et al. (2021a) is similar to our experimental paradigm,

in that we also collect data on beliefs and actions at the individual level. As in Giglio

et al. (2021a), we regress actions on expectations and find that the empirical link is weaker

than predicted by frictionless models. It is also worth noting that, like us, Giglio et al.

(2021a) find a negative relationship between subjective expected returns and perceived risk.

Our explanation for this pattern (at least in Experiment 1), is driven by a combination of
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cognitive noise and omitted variable bias. We caution that such a mechanism cannot be used

to justify the negative relationship between subjective expected returns and perceived risk

that Giglio et al. (2021a) document. This is because our results rely on time series variation

in beliefs and actions within an individual. The results in Giglio et al. (2021a) rely on

cross-sectional variation in beliefs and actions, where all investors face the same equilibrium

asset price and form heterogeneous subjective return expectations conditional on that price.

Thus, while the insensitivity between actions and beliefs demonstrated in both studies may

derive from a common mechanism of cognitive noise, our data cannot speak directly to the

pattern of subjective expected returns uncovered by Giglio et al. (2021a).

C. The role of the cognitive default

The cognitive default p̄t is not observable in Experiments 1 and 2. Here, we discuss how

omitting p̄t affects our estimates of the subjective risk-return relation in Experiments 1 and

2. As discussed in Section B.2, it is possible that p̄t and dt are positively correlated. This

potential correlation along with the relation between dt and λt in Equation (IA.2) may give

rise to a correlation between p̄t and λt. Such a correlation might lead to omitted variable

bias in a univariate regression of rt on λt.

In what follows, we show that this bias works against our findings of (i) a negative

subjective risk-return relationship in Experiment 1 and (ii) a more positive subjective risk-

return relationship in Experiments 2 and 3 compared to Experiment 1. In particular, consider

the case where there is an affine relationship between p̄t and dt:

p̄t = a + bdt, (IA.4)

with b > 0. Plugging dt from Equation (IA.2) into Equation (IA.4) implies
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p̄t = a + bα + bβλt + bηt. (IA.5)

The correlation between p̄t and λt introduces a bias in the coefficient on λt in a univariate

regression of rt on λt. In particular, plugging Equation (IA.5) into Equation (IA.3) shows

that this bias is equal to

− (1 − x)bβ. (IA.6)

This bias is induced by the omission of p̄t from the regression of rt on λt. Note that β is

negative and identical across all three experiments, and 0 < x < 1 in all three experiments.

Therefore, when b > 0, the coefficient on λt is biased upward in the regression of rt on λt.

As a result, the omission of p̄t works against our finding that the risk-return relation is

negative in Experiment 1, and that it becomes positive in Experiments 2 and 3. The reason

is that x is smaller in Experiment 1, which leads to a larger upward bias in Experiment 1.

Further, since we elicit p̄t in Experiment 3, we can check whether omitting p̄t has an effect on

the measured subjective risk-return relation (at least in Experiment 3). The following table

shows that controlling for the cognitive default (p̄) in a regression of subjective expected

returns (r) on perceived risk (λ) does not materially change the coefficient on λ.
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Table IA.5
The Cognitive Default and the Subjective Risk-Return Relation

r (1) (2)

p̄ −0.232∗∗∗

(0.031)
λ 0.208∗∗ 0.240∗∗

(0.096) (0.094)
Constant 0.098∗∗∗ 1.125∗∗∗

(0.024) (0.144)

Observations 2,400 2,400

This table presents results from mixed effects regressions of subjective expected returns (r) on the log
cognitive default (p̄) and perceived volatility (λ). These regressions include a random effect for p̄ and λ, as
well as for the intercept. Standard errors are clustered at the subject level and displayed in parentheses below
the coefficient estimates. The coefficients and standard errors for λ are multiplied by 100. ∗, ∗∗, and ∗∗∗

indicate statistical significance at the 10%, 5%, and 1% levels, respectively. The data are from Experiment
3.
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