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Abstract

The minimax theorem for zero-sum games is easily proved from the strong
duality theorem of linear programming. For the converse direction, the
standard proof by Dantzig (1951) is known to be incomplete. We explain and
combine classical theorems about solving linear equations with nonnegative
variables to give a correct alternative proof, more directly than Adler (2013).
We also extend Dantzig’s game so that any max-min strategy gives either an
optimal LP solution or shows that none exists.

1 Introduction and summary

LP duality (the strong duality theorem of linear programming) is a central result
in optimization. It helps proving many results with ease, such as the minimax
theorem for zero-sum games, first proved by von Neumann in 1928 [27]. In October
1947, George Dantzig explained his nascent ideas on linear programming to John
von Neumann [9, p. 45]. In response, he got an “eye-popping” lecture on LP
duality, which von Neumann conjectured to be equivalent to his minimax theorem.
This “equivalence” is commonly assumed (for example, Schrijver [22, p. 218]), but
on closer inspection does not hold at all.

“Equivalence” is actually not a good term — all theorems, as logical statements
without free variables, are equivalent, to “true”. We therefore say that theorem A
proves (rather than “implies”) theorem B, typically by a suitable but different use of
the variables in theorem A, and state straightforward proof relations of this kind
as propositions (see Proposition 1 for an example).

The classic proof by Dantzig [7] of LP duality from the minimax theorem needs
an additional assumption about the game solution, namely strict complementarity
in the last column of the game matrix that corresponds to the right-hand side of the
LPs. (We state Dantzig’s game in (35) below; it differs from the original in a trivial
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change of signs so that the primal LP is a maximization problem subject to upper
bounds, in line with the row player in a zero-sum game as the maximizer.) This
complementarity assumption, acknowledged by Dantzig [7][8, p. 291], applies only
to non-generic LPs and seems technical. Adler [1] fixed this “hole” in Dantzig’s
proof, and showed how an algorithm that solves a zero-sum game can be used to
either solve an LP or certify that it has no optimal solution. Recently, Brooks and
Reny [3] gave a zero-sum game whose solution directly provides such a solution
or certificate.

The aim of this article is to clarify the underlying problem, with two new
main results (explained later). Our narrative is self-contained, not least because LP
duality is so familiar that it can be overlooked as a silent assumption. For example,
reducing optimality of maximizing ¢ x subject to Ax < b, x > 0 to feasibility of
Ax <b,x>20,ATy > ¢,y >0,b"y < c"x assumes that there cannot be a positive
“duality gap” by — ¢ "x, which is the strong duality theorem. Our presentation
shows how one could prove, in full, LP duality via the minimax theorem, if one
were to take that route. Some of the presented less-known elegant proofs from the
literature are also of historical interest.

Dantzig’s assumption holds if a pure strategy that is a best response in every
solution of the zero-sum game has positive probability in some solution. As noted
by Adler [1, p. 167], this can be shown (e.g., [21, p. 742]) using a version of the
Lemma of Farkas [10]. However, the Lemma of Farkas proves LP duality directly.
Our first, easy observation is that Dantzig’s assumption amounts to the Lemma
of Tucker [25]. This, in turn, directly proves the Lemma of Farkas [25, p. 7], even
for the special case of Dantzig’s game (Proposition 6 below). The assumption is
therefore extremely strong and in a sense useless for proving LP duality from
the minimax theorem. Curiously, Tucker did not consider the converse that in
nearly the same way the Lemma of Farkas proves his Lemma (see Proposition 8
below). This suggests that Tucker thought he had proved a more general statement.
Tucker’s proof of his Lemma is indeed short and novel, but in this light we agree
with Adler’s view of Tucker’s Lemma as a “variant of Farkas’s Lemma” [1, p. 174].

LP duality and the minimax theorem are closely related to solving, respectively,
inhomogeneous and homogeneous linear equations in nonnegative variables. The
Lemma of Farkas characterizes when the inhomogeneous linear equations Ax = b
have no solution vector x such that x > 0. The Theorem of Gordan [14] characterizes
when the homogeneous equations Ax = 0 have no solution x > 0 other than the
trivial one x = 0. Gordan’s Theorem and its “inequality version” due to Ville [26]
prove the minimax theorem and vice versa.

Our first main result, Theorem 6 in Section 7, is a proper proof of LP duality
from the minimax theorem. Inspired by Adler [1, section 4], we use Gordan’s
Theorem to prove the Theorem of Tucker [25], an easy but powerful generalization of
his Lemma (like Broyden [4] we think that it deserves more recognition). Tucker’s



Theorem shows that any system of homogeneous equations Ax = 0 such that
x > 0 has a natural partition of its solution vector x into a set of variables that can
take positive values and the others that are zero in any nonnegative solution. It
is easy to see that one can drop the nonnegativity requirement for the variables
that can be positive. By eliminating these unconstrained variables from the system
Ax = 0 with a bit of linear algebra, applying Gordan’s Theorem to the variables
that are always zero in any nonnegative solution then gives Tucker’s Theorem.
Compared to the detailed computations of this variable elimination by Adler [1],
our proof is self-contained and more direct. Using Dantzig’s game (35), Tucker’s
theorem proves LP duality in a stronger version, namely the existence of a “strictly
complementary” solution to the LPs if they are feasible (Proposition 10 below).

Our second main result, Theorem 7 in Section 8, extends Dantzig’s elegant
game (35) with an extra row in (51) that “enforces” the desired complementarity in
the last column. Every max-min strategy of this game either gives an optimal pair
of solutions to the primal and dual LPs, or represents an unbounded ray for at
least one of the LPs if it is feasible, so that the other LP is therefore infeasible. This
result is similar to Adler’s “Karp-type” reduction of an LP to a zero-sum game
[1, section 3.1], but with the extra certificate of infeasibility. It is also similar to,
and inspired by, the main result of Brooks and Reny [3]. The proof of Theorem 7
(in a separate Theorem 8) does not rely on LP duality and was surprisingly hard
to find. Compared to either [1] or [3], our game (51) more naturally extends
Dantzig’s original game. Similar to both, it imposes an upper bound on the LP
variables that does not affect whether the LPs are feasible. This bound follows from
Carathéodory’s theorem [5] that nonnegative solutions x to Ax = b can be found
using only linearly independent columns of A (of which there are only finitely
many sets). That bound is determined apriori and of polynomial encoding size
from the sizes of the entries of A and b if these are integer or algebraic numbers,
otherwise abstractly from all “basic solutions” x to Ax = b.

We give a self-contained introduction to linear programming duality (for LPs
in inequality form) and to the minimax theorem in Section 2. Section 3 recalls
how LP duality is proved from the Lemma of Farkas. The theorems of Gordan
[14] and Ville [26] are the topic of Section 4. Stiemke [23] gave a two-page proof
of the Theorem of Gordan (without referencing it, even though published in the
same journal, presumably with no editor around to remember it). His proof
uses implicitly that the null space and row space of a matrix are orthogonal
complements. But there are no matrices in these papers — people manipulated
linear equations with their unknowns instead. For historical interest, and because
of its structural similarity to Tucker’s proof of his Lemma [25, p. 5-7], we reproduce
Stiemke’s proof in Section 5. We also present a most elegant half-page proof of the
minimax theorem due to Loomis [17], which then leads to Gordan’s Theorem as
an easy additional step. As we explain at the end of Section 5, it seems difficult to



extend the proof by Loomis to proving LP duality directly, which was the original
aim of this research.

Section 6 presents the classic derivation of LP duality from the minimax
theorem due to Dantzig [7]. Even though its additional assumption looks minor,
we show that it amounts to the Lemma of Tucker [25], which, as noted by Tucker
[25, p. 7], proves the Lemma of Farkas. This shows that the assumption is way too
strong to make Dantzig’s derivation useful.

Section 7 proves Tucker’s Theorem and thus LP duality from the minimax
theorem using Gordan’s theorem. As mentioned, this is distilled from Adler [1,
section 4]. In Section 8, we add another row to Dantzig’s game to obtain a new
game where every max-min strategy either gives a solution to the LP or a certificate
that no optimal solution exists. Theorems 6 and 7 in Sections 7 and 8 are the main
results of this paper.

Section 9 gives a detailed comparison of our work with the closely related
papers by Adler [1] and Brooks and Reny [3]

In the final Section 10 we present a little-known gem of a proof of the Lemma
of Farkas due to Conforti, Di Summa, and Zambelli [6]. Their theorem states
that a system of inequalities Ax < b is minimally infeasible if and only if the
corresponding equalities Ax = b are minimally infeasible. Because the linear
equations are infeasible, a suitable linear combination of them states 0 = —1, which

proves the Lemma of Farkas in this context.

2 LP duality and the minimax theorem

Throughout, m and n are positive integers, and [n] = {1,...,n}. All vectors are
column vectors. The jth component of a vector x is written x; . All matrices have
real entries. The transpose of a matrix A is written AT. Vectors and scalars are
treated as matrices of appropriate dimension, so that a vector x times a scalar «a is
written as xa, and a row vector x ' times a scalar a as ax . The matrix A with all
entries multiplied by the scalar « is written as «A. We usually transpose vectors
rather than the matrix, to emphasize that Ax is a linear combination of the columns
of A and yTA is a linear combination of the rows of A. The all-zero and the
all-one vector are written as 0 = (0,...,0)" and 1 =(1,...,1)7, their dimension
depending on the context, and the all-zero matrix just as 0. Inequalities between
vectors or matrices such as x > 0 hold between all components.

A linear program (LP) in inequality form is given by an m X n matrix A and
vectors b € R™ and ¢ € R" and states, with a vector x € R” of variables:

maximize ¢'x subjectto Ax <b, x>0. (1)
X



This LP is called feasible if there is some x € R" that fulfills the constraints Ax < b
and x > 0, otherwise infeasible. If there are arbitrarily large values of ¢ "x with
Ax < band x > 0, then the LP is called unbounded.

With (1) considered as the primal LD, its dual LP states, with a vector y € R™ of
variables:

minimize y'b subjectto y'A>c", y=>0, (2)
y

with feasibility and unboundedness defined accordingly. An equivalent way of
writing the dual constraints in (2) is ATy > ¢, which transposes only the matrix
and can be more readable.

The weak duality theorem states that if both primal and dual LP have feasible
solutions x and y, respectively, then their objective function values are mutual
bounds, that is,

c'x<y'b, (3)

which holds because feasibility implies ¢'x < yTAx < y'b. Hence, if there are
feasible solutions x and y so that the two objective functions are equal, c"x = y b,
then both are optimal. The (strong) LP duality theorem states that this is always
the case if the two LPs are feasible:

Theorem 1 (LP duality). If the primal LP (1) and the dual LP (2) are feasible, then there
exist feasible x and y with ¢"x = y b, which are therefore optimal solutions.

A zero-sum game is given by an m X n matrix A and is played between a row
player, who chooses a row i of the matrix, simultaneously with the column player,
who chooses a column j of the matrix, after which the row player receives the
matrix entry 4;; from the column player as a payoff (which is a cost to the column
player). That is, the row player is the maximizer and the column player the
minimizer. The rows and columns are called the players’ pure strategies.

The players can randomize their actions by choosing them according to a
probability distribution, called a mixed strategy. The other player may know the
probability distribution but not the chosen pure strategy. The row player is then
assumed to maximize his expected payoff and the column player to minimize her
expected cost. We denote the set of mixed strategies of the row player by

Y={yeR"|y>0 1"y =1}, (4)
and of the column player by
X={xeR"|x>0,1"x =1}, (5)

in order to stay close to the LP notation (normally row and column player are
considered as first and second player, respectively, so that the letters for their
mixed strategies should be in alphabetical order, but this is already violated with
the very common naming of the LP variables x € R"” and y € R™).

5



With mixed strategies y and x of row and column player, the expected payoft
to the maximizing row player and expected cost to the minimizing column player
isyTAx.

The minimizing column player who chooses a mixed strategy x should expect
that the row player responds with a mixed strategy y (called a best response)
that maximizes her payoff y ' Ax. That best-response payoff max,cy y ' Ax is the
weighted sum };cp,,1 yi(Ax); of the expected payoffs (Ax); for the rows i and
therefore equal to their maximum, which in turn is the least upper bound v of
these row payoffs. That is,

max y'Ax = max (Ax); = min{v eR|Ax <1v}. (6)
yeyY ie[m]
A min-max strategy x of the column player minimizes this worst-case cost v that he
has to pay, that is, it is an optimal solution to

minimize v subjectto Ax <1v, xe€X (7)
X,0

and then v is called the min-max value of the game.

Similarly, a max-min strategy y and the max-min value u is an optimal solution
to

maximize u subjectto y'A>ul", yevY. (8)
y,u

The minimax theorem of von Neumann [27] states
max min y'Ax = v = min max y'Ax )
yeYy xeX xeX yeY

where the unique real number v is called the value of the game. Via (6) and the

corresponding expression for minyex y ' Ax (the best-response cost to y € Y), we
state this as follows.

Theorem 2 (The minimax theorem). Consider optimal x,v for (7) and y, u for (8).
Then u = v (the value of the game), x is a min-max strategy, and y is a max-min strategy.

The LP (7) is in general form with an equation 1" x = 1 and an unconstrained
variable v (with —v to be maximized), and so is (8), which is the dual LP to (7) with
u as the unconstrained variable (with —u to be minimized) that corresponds to
the equation for X written as —1Tx = —1. Since both LPs are feasible, the strong
duality theorem (which also holds for LPs in general form) implies that their
optimal values are equal (—v = —u), which proves Theorem 2.

One can avoid stating LPs in general form by ensuring that the min-max value
is positive, by adding a constant « to the payoffs a;;, which defines a new payoff
matrix A + 1a1". Then for y € Y and x € X

Y (A+1al)x = yTAx+y'1lal’x = yTAx +a, (10)
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which shows that best responses and min-max and max-min strategies are un-
affected and the corresponding values just shifted by a. If all entries of A are
positive, then v > 0 for any feasible v in (7). Division of each row in (7) by v (where
we now maximize 1/v) then gives the LP

maximize 1'x subjectto Ax <1, x>0 (11)
X
with its dual
minimize y'1 subjectto y'TA>1", y >0. (12)
y

Both LPs are feasible with nonzero optimal solutions x and y, which give the
min-max and max-min strategies xv and yv withv =1/17x = 1/17y and game
value v.

These are the standard ways to derive the minimax theorem from LP duality

[8, section 13-2]. Section 6 describes the classical converse approach, which we
show to be incomplete.

3 The Lemma of Farkas and LP duality

The standard way to prove the LP duality theorem uses the Lemma of Farkas
[10], stated in (13) below, which characterizes when an inhomogeneous system
Ax = b of linear equations has no solution x > 0 in nonnegative variables. Two
related theorems are (14) and (15). The following proposition asserts how close
they are, by using the respective matrix in different ways (we say “proves” rather
than “implies” because it is not the same matrix).

Proposition 1. Let A € R™" and b € R™. Then each of the following three assertions
proves the others: The Lemma of Farkas with equalities and nonnegative variables

AxeR" : Ax=b, x>0 & JyeR":yTA>0", y'b<0, (13)
the Lemma of Farkas with inequalities and nonnegative variables
AxeR" : Ax<b, x20 © TyeR" :y'A>20", y>0, y'b<0, (14)
and the Lemma of Farkas with inequalities and unconstrained variables

AxeR" : Ax<b & 3JyeR" :y"A=0", y>0, y'b<O. (15)

Proof. In each of (13), (14), (15) the direction “«<" is immediate, for example in (13)
because yTA > 0" and Ax = b, x > 0imply y'b = y" Ax > 0 which contradicts
yTb < 0. We therefore only consider “=". Condition (13) proves (14) by writing
Ax <basAx +s =b,s > 0 for a vector of slack variables s € R™, and then applying
(13) to the matrix [A I]instead of A, where [ is the m X m identity matrix.
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Conversely, if there is no solution x > 0 to Ax = b, thatis, to Ax < b and
—Ax < —b, then by (14) there are nonnegative y*, y~ € R” with (y*)TA—-(y™)TA >
0" and (y*)"b — (y~)"b < 0. This shows (13) withy = y* —y~.

Condition (15) follows from (14) by writing Ax < b in (15) as Ax™ — Ax™ < b
with nonnegative x* and x~. The converse holds by writing Ax < b, x > 0in (14)
as Ax <b,—x < 0in (15). O

These versions of the Lemma of Farkas are “theorems of the alternative” in
that exactly one of two conditions is true, as in (13): Either there is a solution x to
Ax =b,x > 0,0rasolutionytoy™A > 07, yb <0, but not to both. We always
state such theorems so that “=" is the nontrivial direction.

The following is standard (e.g., Gale [11, p. 79]), and similar arguments as
used in the proof will be used repeatedly.

Proposition 2. The inequality version (14) of the Lemma of Farkas proves LP duality.

Proof. Suppose that the primal LP (1) has a feasible solution ¥ and the dual LP (2)
has a feasible solution  and that, contrary to the claim of the LP duality theorem,
there are no feasible x and y so that ¢"x = y"b. That is, the system of inequalities

Ax < b
—ATy < —c (16)
by —c’™x < 0

has no solution (v, x) € R™ x R" with y > 0 and x > 0. Hence, by (14) (written
transposed), there are nonnegative (7, £, t) € R” X R"” X R such that

- AX + bt >0
AT{ —ct>0 (17)
b'y — c™x <0.

If t > 0 then 52% and ﬁ% are feasible solutions to the primal (1) and dual (2) with
197b < cT£1 in violation of weak duality (3). If = 0 then A <0and jTA > 07.
The last inequality in (17) implies that at least one of the inequalities §'b < 0 or
0 < ¢ "% holds. Suppose the latter. For a € R we have A(X+Xa) < band ¥ +Xa > 0,
but ¢ (X + fa) — o0 as @ — oo, that is, the objective function of the primal LP
is unbounded, contradicting its upper bound i 'b from the dual LP. Similarly,
77b < 0 implies that the dual LP is unbounded and thus the primal LP infeasible,
again a contradiction. This shows that (16) has a nonnegative solution (y, x) with
y'b < c¢Tx and thus y b = ¢"x by weak duality, as claimed. O

The converse also holds, as well as a useful extension of LP duality.

Proposition 3. The LP duality Theorem 2 proves (14). Moreover, if the primal LP (1) is
infeasible and the dual LP (2) is feasible, then the dual LP is unbounded.



Proof. Suppose there is no x > 0 with Ax < b. Then the LP (with a new scalar
variable t)

maxir?ize —t subjectto Ax-1t<b, x>0,t>0 (18)
X,

(which is feasible by choosing t > —b; for all i € [m] and x = 0) has an optimum
solution with ¢t > 0. The dual LP to (18) states

minimize y'b subjectto y'TA>0", —y'1>-1, y>0, (19)
y
is feasible with y = 0, and therefore has an optimal solution y > 0 with equal
objective function value to the primal, thatis, y b = —t < 0. This shows (14).

To prove the second part, suppose ¥ 'AT > ¢ for some i > 0. Then with the
preceding y > 0 such that y"b < Owe have (§" +ay")A > c¢" and 7 + ya > 0 and
(T +ay")b - —ccasa — oo. O

4 The theorems of Gordan and Ville

The Lemma of Farkas with equalities (13) characterizes when the inhomogeneous
linear equations Ax = b have no solution x > 0 in nonnegative variables. The
following Theorem (20) of Gordan [14] for homogeneous equations characterizes
when the system Ax = 0 has no nontrivial solution x > 0. Its “inequality version”
(21) is known as the Theorem of Ville [26]. Ville’s Theorem essentially states the
minimax theorem for a game with positive value. To prove the minimax theorem
from Ville’s Theorem, the game should have its value normalized to zero. A
common way to achieve this is to symmetrize the game [12]. Instead, we shift the
payoffs as in (10) so that the max-min value is zero. Note that the min-max and
max-min values in (7) and (8) exist without having to assume LP duality.

Proposition 4. Let A € R™*". Then the following Theorem (20) of Gordan proves the
Theorem (21) of Ville and vice versa, and (21) proves the minimax theorem and vice versa:

AxeR" : Ax=0, x>0, x#0 & TJyeR" : yTA>0", (20)
AxeR" : Ax<0, x>0, x#0 & TJyeR" : yTA>0", y>0. (21)

Proof. Assume (20) holds. We prove (21). Suppose there is no x € R” with Ax <0,
x>0,x#0. Then thereisnox e R"and s € R" with Ax +s=0and x >0,s > 0,
and (x,s) # (0, 0) (this clearly holds if x # 0, and if x = 0 then s = 0). Hence, by
(20), there is some y € R” with yTA > 07 and y > 0 and thus y > 0. This shows
the nontrivial direction “=" in (21).

Conversely, suppose there isno x > 0, x # 0 with Ax = 0 and henceno x > 0,
x # 0 with Ax < 0and —Ax < 0. Then by (21) there exist y* > 0and y~ > 0



with (y*)TA+ (y7)"(-A) > 07, thatis, (y" —y~)"A > 07, which shows (20) with
y=yr-y

Assume the minimax Theorem 2 holds for the game matrix A. The left-hand
side of (21) states that the value v of the game is positive, because otherwise there
would be a mixed strategy x € X with nonpositive min-max value v in (7). With
the optimal y € Yand u > 0in (8) we have yTA > u1" > 07 as asserted in (21).

Conversely, assume (21) and consider a game matrix A. Let u be its max-min
value and y € Y be a max-min strategy as in (8). Let A’ = A —1ul". Then
yTA'=yTA—-ul" >07. We claim that A’x < 0 for some x € X. If not then there
isnox >0, x # 0 with A’x < 0 (otherwise scale x so that x € X), and therefore by
(21) we have yTA’ > 07 for some y > 0. Because y # 0, we can scale y such that
y € Y and choose ¢ > 0 such that yTA” > €17 and hence yTA > (u + ¢)17, which
contradicts the maximality of u in (8). Hence, there is x € X with A’x <0, so A’
has min-max value zero and therefore A has min-max value u, which proves the
minimax theorem. 0

5 The theorems of Stiemke and Loomis

This section is about two proofs of the minimax theorem, for example in order to
use it for proving LP duality. For historical interest, we first reproduce a short proof
of Gordan’s Theorem (20) by Stiemke [23]. In modern language, it uses the property
that the null space and row space of a matrix are orthogonal complements, as stated
in (25) below. We state this property as the following “theorem of the alternative”
about the solvability of linear equations without nonnegativity constraints, which
is well known (e.g., [15]). We also use this lemma in Section 10 for a short proof of
the Lemma of Farkas.

Lemmal. Let A € R™" and b € R™. Then
AxeR" : Ax=b o FJyeR":y"A=0", y'b#0. (22)

Proof. We show the nontrivial direction “=”. Assume that b is not a linear
combination of the columns A1, ..., A, of A. Let k be the column rank of A and
{A;}jek be a basis of the column space of A, with |[K| = k > 0, and let Ak be the
matrix of these columns. By assumption, the m X (k + 1) matrix [Ax b] has rank
k +1, which is also its row rank. Its rows span therefore all of R™*(**+1), in particular
the vector (07, 1), thatis, yTAx = 0" and y'b = 1 for some y € R™. Any other
column A; of A for j ¢ K is a linear combination of the basis columns, A; = A xzW
for some z\) € R¥, which implies y"A; = yTA xz") = 0. This shows that overall
yTA=0"and y'b # 0, as required. O

Theorem 3 (Stiemke [23]). Let A € R™ ", Then
AyeR” : yTA>20", y"A#20 & FTxeR":Ax=0, x>0. (23)
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Proof. Define
rowspace(A) = {yTA |y e R"},

nullspace(A) = {x e R" | Ax = 0}. 24)
We have for c € R"
c' €rowspace(A) &  Vx € nullspace(A) : ¢c'x =0 (25)
because this is equivalent to
Jy :y'A=c" & FHx:Ax=0, ¢c'x#0, (26)

which (with both sides negated) is the transposed version of (22).

The nontrivial direction in (23) is “=". It states: Suppose 0" is the only
nonnegative vector in rowspace(A). Then there is some x € nullspace(A) with x > 0.
We show this by induction on 7. If n = 1 then the single column of A is 0, and we
can choose x = 1. Let n > 1 and suppose the claim is true for n — 1.

Case 1. There is some a € R"!, a4 > 0,a # 0so that (1,-a™) € rowspace(A).
Consider a set of row vectors (1,-a"), (0,4, ), ..., (0,a,,) that span rowspace(A)
(easily obtained from the rows of A). There is no w € R"! such that ¢T =
Y, Wiz a;" is nonnegative and nonzero, because otherwise (0, ¢ ") is in rowspace(A)
and nonnegative and nonzero. Hence, by inductive hypothesis, there is some
z € R"™ 1, z > 0,such that aJz = 0for2 < i < m. Thenx; =a'z > 0,

and x = (le) € nullspace(A) by (25) because (1,—a")x = 0 and (0,4 )x = 0 for
2<i<m,and x > 0.

Case 2. Otherwise, consider any y € R™ and let (c1,¢T) = yTA with ¢ € R"~1,
Then ¢ > 0 implies ¢ = 0, which holds by assumption if c; > 0, and if ¢c; < 0
and ¢ > 0, ¢ # 0 then (1, %CT) € rowspace(A) and Case 1 applies. By inductive

hypothesis, there is some z € R™-1 7 > 0, such that A(g) =0 Ifx; =0

for all x € nullspace(A) then by (25) we have (1,0, ...,0) € rowspace(A) contrary
to assumption. So there is some x" € nullspace(A) with x] > 0, and therefore
x=x"e+ ((z)) > 0 for sufficiently small ¢ > 0, where Ax = 0. This completes the
induction. O

The preceding theorem is statement I of Stiemke [23], and Gordan’s Theo-
rem (20) is statement II.

Proposition 5. Stiemke’s Theorem 3 proves Gordan’s Theorem (20).

Proof. Let A € R™*" Let {by,...,bx} with k > 1 be a spanning set of nullspace(A)
and B = [by - - - bx]. Then for b and ¢ in R"

b € nullspace(A) < b' € rowspace(B") (27)
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and, using (25),
¢’ € rowspace(A)

&  Vx €nulispace(A) : ¢"x =0

& ¢'h;=0 (1<i<k) (28)
& ¢'B=07

=4

¢ € nullspace(B").

Stiemke’s Theorem (23) applied to BT instead of A states
AbT crowspace(BT), b>0, b#0 << dcenulspace(BT) : ¢ >0 (29)
which by (27) and (28) is equivalent to
Ab €nulispace(A), b>0, b#0 < Jc' €rowspace(A) : ¢ >0 (30)

which is Gordan’s Theorem (20). O

Via Propositions 4 and 5, Stiemke’s Theorem 3 therefore proves the minimax
theorem. Using symmetric games, this was also shown by Gale, Kuhn, and Tucker
[12].

Our favorite proof of the minimax theorem is based on the following theorem.

Theorem 4 (Loomis [17]). Let A and B be two m X n matrices with B > 0. Then there
existx € X,y € Y,and v € R such that Ax < Bxvand y'A > vy'B.

The case B = 117 gives the minimax theorem. Conversely, the minimax
theorem proves Theorem 4 [16, p. 19]: Because B > 0, the value of the game
A — aB is negative for sufficiently large a, positive for sufficiently negative «,
is a continuous function of a, and therefore zero for some a, which then gives
Theorem 4 with v = a.

The following is the proof by Loomis [17] of Theorem 4 specialized to the
minimax theorem. It is an induction proof about the min-max value v and max-min
value u (which exist, irrespective of LP duality). It is easy to remember: If the
players have optimal strategies that equalize v and u for all rows and columns,
then u = v. Otherwise (if needed by exchanging the players), there is at least one
row with lower payoff than v, which will anyhow not be chosen by the row player.
By omitting this row from the game, the minimax theorem holds (using a bit of
convexity and continuity) by the inductive hypothesis.

Proof of Theorem 2. Consider optimal solutions v, x to (7) and u, y to (8), where
u=ul"x<y'Ax <y'1v =v. (31)

We prove u = v by induction on m + n. It holds trivially for m + n = 2. If all
inequalities in (31) hold as equalities, then u = v. Hence, assume that at least one
inequality is strict, say (Ax)x < v for some row k € [m] (the case for a column is
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similar). Let A be the matrix A with the kth row deleted. By induction hypothesis,
A has game value 7 with A% < 15 for some ¥ € X, where it is easy to see that

v<v, v<u (32)

because compared to A the game A strengthens the minimizing column player.

We claim that o = v. Namely, if v < v,let 0 < ¢ < 1 and consider the strategy
x(e) = x(1 — €) + Xe where x € X because X is convex. Then

Ax(e) = A(x(1—¢e)+%e) <1v(1 — &) +10e =1(v — e(v — 7)) < 1v. (33)
For the missing row k of A where (Ax); < v we have for sufficiently small ¢
(Ax(e))k = (Ax)k(1 — &) + (AX)ke < D. (34)

Hence, Ax(¢) < 1v for some x(¢) € X, in contradiction to the minimality of v in (7).
This shows v = 7, and, by (32), o < u < v = ¥ and therefore u = v. This completes
the induction. O

The proof by Loomis [17] has been noted (in particular by von Neumann
and Morgenstern [28, p. vi]) but is not widely known, and should be a standard
textbook proof (as in [29, p. 216]). (A better title of Loomis’s paper would have
been “An elementary proof of the minimax theorem”, given that Theorem 4 is
not substantially more general.) It was, in essence, re-discovered by Owen [19].
However, Owen needlessly manipulates the max-min strategy y; the proof by
Loomis is more transparent. Owen’s proof is discussed further by Binmore [2].

The research in this paper originated with an attempt to extend the induction
proof by Loomis to a direct proof of LP duality, via the existence of a strictly
complementary pair of optimal strategies in a zero-sum game, applied to Dantzig’s
game in (35) below. This existence seems to be difficult to prove within this

10 2] has a max-min and min-max strategy

where every pure best response is played with positive probability (such as both
players mixing uniformly), but also the left column as a pure min-max strategy.
However, omitting the unplayed second or third column in an induction would
alter the game substantially, because then a strictly complementary pair has the
first column as a unique min-max strategy, with a positive slack in the column that
was not omitted.

1
induction. For example, the game l

6 The minimax theorem and LP duality

The following theorem assumes the minimax theorem.
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Theorem 5 (Dantzig [7]). Let A € R™", b € R™, c € R". Consider the zero-sum game
with the payoff matrix B (with k = m + n + 1 rows and columns) defined by

0 A -b
B=|-AT 0 c|. (35)
bT —cT 0

Then B has value zero, with a min-max strategy z = (y, x,t) € R™ X R" X R that is also a
max-min strategy, with Bz < 0. If zx =t > 0 then x% is an optimal solution to the primal
LP (1) and y% is an optimal solution to dual LP (2). If (Bz)x < 0 then t = 0 and at least
one of the LPs (1) or (2) is infeasible.

Proof. Because B = —B", this game is symmetric and its game value v is zero. Let
z=(y,x,t). Then Bz < Ostates Ax —bt <0,-ATy+ct <0,andb"y—c"x <0. If
t > 0 then x} and y1 are primal and dual feasible with bTy1 < ¢Tx1 and therefore
optimal.

If (Bz)r <0, thatis, by —c"x < 0, then t > 0 would violate weak duality,
sot = 0. Moreover, Ax <0and y"A > 0", and y'b <0or0 < c"x. As shown
following (17), this implies infeasibility of at least one of the LPs (1) or (2). O

Hence, Theorem 5 seems to show that the minimax theorem proves LP duality.
The known “hole” in this argument is that it is does not cover the case of a min-max
strategy z where z; = 0 and (Bz)x = 0, which is therefore uninformative, as noted
by Dantzig [8, p. 291]. Luce and Raiffa [18, p. 421] claim without proof (or forgot
a reference, e.g. to corollary 3A in their cited work [13]) that if (Bz)x = 0 for all
min-max strategies z, then z; > 0 for some max-min strategy z. Because B is
skew-symmetric (B = —BT), this would solve the problem with z as a min-max
strategy. We will show that this assumption is essentially the Lemma of Tucker
[25, p. 5] for the case of a skew-symmetric matrix. Already for the special case of B
in (35), this proves the Lemma of Farkas (14) (see also [4, theorem 1.1]), and this
defeats the purpose of proving LP duality from the minimax theorem.

Proposition 6. Consider B in (35) with ¢ = 0, and suppose that there is always some
z > 0 with Bz < 0 and zy — (Bz)x > 0. Then this proves (14).

Proof. Letz = (y, x,t) as described, where Ax —bt <0and -ATy <0andb'y <0
because Bz < 0, and zx — (Bz)y =t —bTy > 0. Then if t > 0 we have Ax% < b,and
ift=0theny™A >0" and y"b < 0, which proves (14). O

The Lemma of Tucker comes in several variants.

Proposition 7. Let A € R™". Then the following Lemma of Tucker
JyeR", xeR" : yTA>0", x>0, Ax=0, x,+@y"A), >0 (36)
proves the following inequality version and vice versa:

JyeR", xeR" : y>20, y’A>20", x>0, Ax<0, x,+(y'A), >0, (37)
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and similarly its version for a skew-symmetric matrix B € R*¥¥, that is, B = —B:

3zeRF:z2>0, Bz<0, zr—(Bz)>0. (38)

Proof. Applying (36) to the matrix [ A] with the identity matrix I gives (37). For
the converse, write Ax =0as Ax <0,-Ax <0.

Condition (38) follows from (37) with A = Band z = x + y because —Bz = z "B

o|andz= (). o

and y, > 0 and (x"B), > 0. For the converse, use B = [—SXT 0 e

Tucker [25, p. 7] used (36) to prove the Lemma of Farkas in its version (13).
Less known, but similarly easy, is that the converse holds as well.

Proposition 8. The Lemma of Farkas (13) proves Tucker’s Lemma (36).

Proof. Let A = [A1---Ay] € R™". By (13), either 2?2—11 Ajzj = —Ay for some
z € R" ! with z > 0, in which case let x = (i) and y = 0, or otherwise yTA; > 0

forl1 <j<nandy'(-Ay,) <0 for some y € R", in which case let x = 0. In both
cases we have Ax = 0and x, + y'A, > 0, and (36) holds. O

In the next section, we show a proper way of proving LP duality from the
minimax theorem.

7 Proving Tucker’s Theorem from Gordan’s Theorem

In Tucker’s Lemma (36), the last (nth) column of the matrix A plays a special
role, which can be taken by any other column. This proves the following stronger
version (39) known as the Theorem of Tucker [25, p. 8].

Proposition 9. Let A € R™". Tucker’s Lemma (36) proves Tucker’s Theorem

JyeR", xeR" : yTA>0", x>0, Ax=0, x'+y'A>0". (39)

Proof. Let j € [n]. By applying (36) to the jth column of A with j instead of n,
choose y/) € R™ and x/) € R" such that

yNTA20T, x>0, AP =0, )+ (y)TA) >0, (40)

Then y = ¥ cpy ¥y and x = Dietn] xU) fulfill (39). O

Tucker’s Theorem (39) is a very versatile theorem that proves a number of
theorems of the alternative (see [25]), for example immediately Gordan’s Theorem
(20) or Stiemke’s Theorem 3.

The main Theorem 6 of this section shows that Gordan’s Theorem (20) proves
Tucker’s Theorem (39). It is based on the following observation. If Ax = 0 and
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x > 0, then any y with y"A > 07 has the property that if x; > 0 then (y"A); =0
because otherwise 0 = y"Ax = };ep,)(y TA);x; > 0. Hence, (39) implies that the
support

§ = supp(x) = {j € [n] | x; > 0} (41)

of x is unique. The main idea is that the nonnegativity constraints for the variables
x;j for j € S can be dropped and these variables therefore be eliminated, which
allows applying Gordan’s Theorem to the remaining variables. The following
proof is distilled from the more complicated computational approach of Adler [1,
section 4].

Theorem 6. Gordan’s Theorem (20) proves Tucker’s Theorem (39).

Proof. Let A = [A1---A,]. Forany S C [n] and | = [n] — S write A = [A] As]
and x = (xj,xs) forx e R". If Ax =0,x >0, Ax’ =0,x" >0, then A(x + x’) =0,
x+x’ > 0,and supp(x +x”) = supp(x) Usupp(x”). Choose S as the inclusion-maximal
support of any x > 0 such that Ax = 0. Then any y with y"A > 07 fulfills
yTAs =07 (because otherwise yTAx = y T Asxs > 0).

On the other hand, (39) states x; + y"A; > 0 for all j € [n], which requires
y'A; > 0forje]=[n]-S. Wenow show that there indeed exist y € R™ and
x = (0, xg) such that

YA >0", yTAg=0", Ax=Asxs=0, xs>0, (42)

which implies (39). Consider some ¥ > 0 with maximum support S = supp(X)
such that AX = 0, thatis, Xs > 0. If S = [n] we are done. Let k be the rank of As.
Suppose k = m. We claim that then S = [n], which implies (39) with y = 0. Namely,
ifj € [n] - S, then A; = AsXs for some X5 because As has full rank, and therefore
Aj+ As(X¥sa — £s5) = 0 where X¥sa — £5 > 0 for sufficiently large a, which gives a
solution x > 0 to Ax = 0 with supp(x) = {j} U S in contradiction to the maximality
of S.

Hence, let k < m. In order to apply Gordan’s Theorem (20), we eliminate
the variables xs from the system Ax = Ajx; + Asxs = 0 by replacing it with an
equivalent system CAx = 0 with a suitable invertible m X m matrix C. Let a;s be
the ith row of Ag for i € [m]. Suppose for simplicity that the last k rows of As are
linearly independent and define the matrix F, and that fori =1,...,m — k we have
ais = zOF for some row vector z() in Rk, Then the m x m matrix

[(1...0 -z

0---1 _Z(;.n—k)
C= 0---01 --- 0 (43)

0---00 --- 1
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is clearly invertible, and any solution (xj, xs) to Ajx; + Asxs = 0 is a solution to

CAjxj+ CAsxs =0 (44)
and vice versa, with
CA; = b CAg = 0 (45)
I=1E|’ STIF

where D € R0=0XUUl E e R&XUI and F e R¥¥ISI,

Suppose there is some x; € RVl with
Dx;=0, x;20, x;#0. (46)

Because F has rank k there exists x5 so that Fxs = —Exj. Then Ex; + Fxs = 0 and
hence CAjx; + CAsxs = 0 and thus Ajxj + Asxs = 0. With x(a) = (xj, xs + ¥sa)
we have Ax(a) = 0 (because AgXs = 0) and x(a) > 0 for « — oo, where x(a) has
larger support that S, but S was maximal. Hence, there is no x; so that (46) holds.
By Gordan’s Theorem (20), there is some w € R~ ¥ with w™D > 07, that is,

(@",0") lg l ~07, (@',0M) m 0.

With y7 = (w',07)C and (45), this implies (42) with x = %, as claimed. O

Because the minimax theorem proves Gordan’s Theorem (see Proposition 4), it
proves Tucker’s Theorem (39) and Tucker’s Lemma (36) and the Lemma of Farkas
and therefore LP duality.

Instead of the minimax theorem we can by Proposition 5 use Stiemke’s
Theorem 3 to prove Gordan’s Theorem (20). The short proof by Tucker [25, p. 5-7]
of his Lemma (36) has some structural similarities to Stiemke’s proof but uses more
explicit computations.

We conclude this section to show how Tucker’s Theorem proves, as one of its
main applications [25, theorem 6], the condition of strict complementarity in linear
programming. For the LP (1) and its dual LP (2), a feasible pair x, y of solutions is
optimal if and only if we have equality in (3), thatis, c"x = y"Ax = y b, which
means

y'(b-Ax)=0, (yTA-c)x=0. (47)

This orthogonality of the nonnegative vectors y and b — Ax, and of yTA—¢" and x,
means that they are complementary in the sense that in each component at least
one of them is zero:

yilb—Ax);=0 (ie[m]), (yTA-c")jx;=0 (jeln]), (48)

also called “complementary slackness”. The following theorem asserts strict
complementarity, namely that if (1) and (2) are feasible, then they have feasible
solutions x and y where exactly one of each component in (48) is zero.

17



Proposition 10. If the LPs (1) and (2) are feasible, then they have optimal solutions x
and y such that (47) holds and

y+ (b -Ax) >0, xT+(yTA-c")>0". (49)

Proof. Optimality of x and y means ¢"x = y'b and therefore (47). Similar to
Proposition 7 and (38), Tucker’s Theorem (39) proves that for a skew-symmetric
matrix B there is some z such that

z>0, Bz<0, z-Bz>0. (50)

Applied to the game matrix B in (35), because the LPs