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Abstract
Mediation analysis learns the causal effect trans-
mitted via mediator variables between treatments
and outcomes, and receives increasing attention
in various scientific domains to elucidate causal
relations. Most existing works focus on point-
exposure studies where each subject only receives
one treatment at a single time point. However,
there are a number of applications (e.g., mo-
bile health) where the treatments are sequen-
tially assigned over time and the dynamic me-
diation effects are of primary interest. Propos-
ing a reinforcement learning (RL) framework,
we are the first to evaluate dynamic mediation
effects in settings with infinite horizons. We
decompose the average treatment effect into an
immediate direct effect, an immediate media-
tion effect, a delayed direct effect, and a de-
layed mediation effect. Upon the identification
of each effect component, we further develop ro-
bust and semi-parametrically efficient estimators
under the RL framework to infer these causal ef-
fects. The superior performance of the proposed
method is demonstrated through extensive numer-
ical studies, theoretical results, and an analysis
of a mobile health dataset. A Python implemen-
tation of the proposed procedure is available at
https://github.com/linlinlin97/MediationRL.

1. Introduction
Mediation analysis aims to understand the causal pathway
from an exposure (e.g., treatment or action) to an outcome
variable of interest. It is gaining increasing popularity re-
cently and has been frequently employed in a number of
domains including epidemiology (Richiardi et al., 2013; Ri-
jnhart et al., 2021), psychology (Rucker et al., 2011), genet-
ics (Chakrabortty et al., 2018; Zeng et al., 2021; Djordjilović
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et al., 2022), economics (Celli, 2022) and neuroscience (Li
et al., 2022; Shi & Li, 2022).

Our paper is motivated by the need to learn the dynamic
mediation effects in sequential decision making. One mo-
tivating example is given by the Intern Health Study (IHS,
NeCamp et al., 2020), which focuses on sequential mobile
health interventions to help improve the mental health of
medical interns who work in stressful environments. Par-
ticipants were randomly assigned to receive notifications
(e.g., tips and insights) throughout the study. For exam-
ple, some notifications remind participants to take a break
or enjoy a tasty treat, while others summarize the trends
of recent physical activity and sleep. All the notifications
are designed to improve participants’ mood scores (self-
reported via a custom-made study App) either directly or
indirectly through increased activity or sleep hours. In addi-
tion, it is essential to note that participants’ recent behavior
will not only influence their proximal mood but will also
influence their behavior and mood scores in the following
days. To design a more effective intervention policy in IHS,
it is necessary to understand how mobile prompts impact
mood scores. In particular, the mobile prompts may directly
impact the mood scores or encourage more physical activity
and sleep, which may then impact the mood scores. In addi-
tion, an individual’s past treatment sequence and behavior
trajectory may impact the mood score. Teasing out these
distinct sources of causal impacts on mood scores and their
relative magnitudes needs new definitions, identification
results, and inferential methods.

A fundamental question considered in this paper is how to
infer the dynamic mediation effects in the aforementioned
applications. Solving this question raises at least three chal-
lenges. First, the mediator at a given time affects both the
current and future outcomes, inducing temporal carryover
effects. As demonstrated in the case study in Section 8, the
delayed direct effect (DDE) and the delayed mediator effect
(DME) are significant and dominate the average treatment
effect for the intervention policy used in the IHS (Sen et al.,
2010; NeCamp et al., 2020). In contrast, the immediate
direct effect (IDE) and immediate mediator effect (IME)
are both insignificant. Nonetheless, most existing media-
tion analyses focus on estimating the indirect effect on the
immediate reward and are hence inappropriate to our ap-
plication. Second, the horizon (e.g., number of decision
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Figure 1. Mediated MDP.

stages) in the aforementioned applications is typically very
long or diverges with the sample size. Existing solutions
developed in finite horizon settings typically suffer from
the curse of horizon in the sense that the variances of the
proposed estimators grow exponentially fast with respect to
the horizon (Liu et al., 2018) and are hence inapplicable; see
Section 2 for details. Third, regardless of how the dynamic
effects may change during the sequential treatments (or lack
thereof), most works focus on examining the causal effects
on the final outcome obtained at the end of the treatment
process. However, in the context of behavioral change, the
goal is to encourage and maintain small improvements to
nudge individuals into generating sustained improvements
in outcomes like mood scores. Currently, there is a dearth
of methods to analyze causal effects for outcomes measured
at every decision point in the sequence.

To address these limitations, we propose formulating the
evaluation of dynamic mediation effects as a reinforcement
learning (RL) problem. In particular, we use the Markov
decision process (MDP) that is commonly employed in RL
to model the mediated dynamic decision process over an
infinite time horizon. Building upon the standard MDP,
we introduce four additional sets of causal relationships,
including state-mediator, action-mediator, mediator-state,
and mediator-reward, as shown in Figure 1. To evaluate the
effects of different treatment policies, we consider using
the off-policy evaluation (OPE, Dudı́k et al., 2014; Uehara
et al., 2022), which is widely used to avoid the difficulty of
rerunning trials by evaluating treatment policies based on
observational data.

Contributions. The main contributions are as follows. Mo-
tivated by the mobile health applications, we first construct
the mediation analysis within the framework of RL over an
infinite time horizon. Second, we propose to decompose the
average treatment effect between a target policy and a con-
trol policy into IDE, IME, DDE, and DME. While IDE and
IME have been extensively studied in single-stage settings,
we introduce the DDE and DME to quantify the carryover
effects of past actions and mediators. Third, upon the iden-
tification result of each effect component, multiply-robust
estimators are developed. In particular, each proposed es-
timator is consistent even when models such as mediator
distribution and reward distribution are misspecified (See
Section 7.1). Furthermore, we theoretically show the semi-
parametric efficiency of the proposed estimators and confirm

the theoretical prediction using numerical studies. Lastly,
we conclude by analyzing the IHS data and providing new
insights into guiding future designs of these behavioral in-
terventions.

2. Related Work
Mediation analysis is widely studied in point-exposure stud-
ies under the classical structure consisting of a treatment,
a mediator, and an outcome (Robins & Greenland, 1992;
Pearl, 2022; Petersen et al., 2006; van der Laan & Petersen,
2008; Imai et al., 2010; Tchetgen & Shpitser, 2012; Tchet-
gen Tchetgen & Shpitser, 2014; VanderWeele, 2015), de-
composing the average treatment effect into direct effect and
indirect effect. Recently, to address commonly observed
intermediate confounders that would be affected by the ex-
posure and then affect both mediator and outcome, multiple
methods have been developed to extend the classical me-
diation analysis (Robins & Richardson, 2010; Tchetgen &
VanderWeele, 2014; VanderWeele et al., 2014; Vansteelandt
& Daniel, 2017; Dı́az et al., 2021; Dı́az, 2022), among which
the random intervention (RI)-based approach (VanderWeele
et al., 2014; Dı́az, 2022) further sets the foundation for the
recent advancement of longitudinal mediation analysis.

There is a rich literature on longitudinal mediation anal-
ysis with no intermediate confounders (Selig & Preacher,
2009; Roth & MacKinnon, 2013). See also Preacher (2015)
for a detailed review. However, time-varying intermediate
confounders are ubiquitous in longitudinal data contexts.
For example, in the IHS, doing exercises may result in a
good mood, which may, in turn, increase the likelihood of
engaging in more activities the next day and then subse-
quently affect the mood that follows.

In the presence of time-varying intermediate confounders,
there are two major RI-based approaches. VanderWeele &
Tchetgen Tchetgen (2017) and Dı́az et al. (2022) proposed
to intervene in the mediator sequence by randomly draw-
ing mediators from the corresponding marginal distribution
and defined the longitudinal interventional indirect/direct
effect, which is different from the natural effect decompo-
sition. Our work is primarily related to the work of Zheng
& van der Laan (2017), which proposed to intervene in the
mediator by randomly drawing the mediator from its con-
ditional distribution and provided a natural decomposition
of the total effect. Using the efficient influence function
(EIF), they developed a multiply-robust estimator with less
reliance on the correct model specification. However, all
the aforementioned methods only focused on the treatment
impact on the final outcome in finite horizons and did not
consider immediate outcomes or infinite horizon settings.
In addition, the estimator developed by Zheng & van der
Laan (2017) is based on the product of importance sampling
ratios at all time points and suffers from the curse of horizon.
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Zheng & van der Laan (2012) also analyzed the longitudinal
mediation effect by drawing mediators from conditional
distribution but with a focus on single-exposure settings.

Using an RL framework for dynamic mediation analysis
over an infinite horizon, our work is also connected to the
line of research on OPE. Existing OPE-related research eval-
uates the discounted sum of rewards or average rewards for
a target policy using observational data gained by following
a different behavior policy. In general, there are three types
of estimation procedures. The first is known as the direct
method (DM, Le et al., 2019; Feng et al., 2020; Luckett
et al., 2020; Hao et al., 2021; Liao et al., 2021; Chen & Qi,
2022; Shi et al., 2022a), which directly learns Q-functions
and obtains value estimates based on their estimators. The
second category of approaches utilizes importance sampling
(IS, Precup, 2000; Thomas et al., 2015; Hallak & Mannor,
2017; Hanna et al., 2017; Liu et al., 2018; Xie et al., 2019;
Dai et al., 2020; Zhang et al., 2020), which re-weights the
rewards to eliminate the bias due to distributional shift. The
third category develops doubly robust (DR) estimators by
appropriately integrating DM with IS estimators (Jiang &
Li, 2016; Thomas & Brunskill, 2016; Farajtabar et al., 2018;
Liao et al., 2020; Tang et al., 2020; Uehara et al., 2020;
Kallus & Uehara, 2022). DR estimators are also known to
achieve the semiparametric efficiency bound (Bickel et al.,
1993). However, none of the above papers studied mediation
analysis. Recently, Shi et al. (2022b) proposed a consis-
tent DR estimator for OPE in the presence of unmeasured
confounders with the help of a mediator variable, which
is used to intercept each directed path from treatments to
reward/state. Our paper differs from theirs in that we de-
compose the off-policy value into the sum of IDE, IME,
DDE, and DME and focus on settings without unmeasured
confounding.

3. Preliminaries
3.1. Data Generating Process

We consider the observational data generated from a me-
diated Markov decision process (MMDP), as illustrated in
Figure 1. Suppose there exists an agent that tries to learn
from the data and interact with a given environment. At
each time t, the environment arrives at a state St ∈ S, and
the agent selects an action At ∈ A = {0, 1, · · · ,K − 1}
according to a behavior policy πb(•|St). Building upon
the usual MDP, to further analyze the mediation effect, we
consider an immediate mediator variable Mt ∈ M drawn
according to pm(•|St, At), which mediates the effect of
At on the environment. Subsequently, the agents would
receive an immediate Rt and the the environment transits to
a next-state St+1 according to ps′,r(•, •|St, At,Mt). Both
S and M are finite dimensional vector spaces. To sum-
marize, the observed data sequences consist of the state-

action-mediator-reward tuples (St, At,Mt, Rt)t≥0 satisfy-
ing the following Markov assumption: (Mt, Rt, St+1) ⊥⊥
(Sj , Aj ,Mj , Rj)j<t|(St, At) for any t.

3.2. Problem Formulation

Let N denote the number of trajectories. The ith trajectory
contains {(Si,t, Ai,t,Mi,t, Ri,t)}1≤i≤N,0≤t≤T where T is
the termination time. We assume that all these trajectories
are i.i.d. and follow the MMDP. Let π denote a generic
(stationary) policy which maps from S to a probability mass
function on A, and Eπ[·] denote the expectation of a random
variable under the policy π. Based on the observed data, our
goal is to analyze the average treatment effect (ATE) of a
target policy πe relative to a control policy π0, given by

ATE(πe, π0) = lim
T→∞

1

T

T−1∑
t=0

TEt(πe, π0),

where TEt(πe, π0) = Eπe [Rt]− Eπ0 [Rt].

To gain a better understanding of the mediated and delayed
effects, we consider decomposing TEt(πe, π0) into

IDEt(πe, π0)+IMEt(πe, π0)+DDEt(πe, π0)+DMEt(πe, π0).

Averaging over t for each component, we obtain a four-way
decomposition of ATE as IDE + IME + DDE + DME. We
formally define each of these effects in the next section.

4. Effect Decomposition
This section begins with a decomposition of TEt(πe, π0),
from which we define each component in ATE(πe, π0). We
first notice that TEt can be decomposed into two compo-
nents: i) the immediate treatment effect (ITEt) measuring
the impact of the current action-mediator pair (At,Mt) on
the immediate outcome Rt; ii) the delayed treatment effect
(DTEt) that measures the carryover effects of the histori-
cal action-mediator sequences (Aj ,Mj)j<t on Rt that pass
through St.

We next consider ITEt. Let πt
e,0 denote a nonstationary pol-

icy that follows πe at the first t−1 steps and then follows π0
at t. Mathematically, ITEt is defined as Eπe [Rt]−Eπt

e,0 [Rt].
Notice that πt

e,0 differs from the stationary policy πe only at
the current time t, then ITEt indeed measures the immediate
effect. Under the Markov assumption, we obtain

Eπe [Rt] =
∑
s,a,m

pπe
t (s)πe(a|s)pm(m|s, a)r(s, a,m),

Eπt
e,0 [Rt] =

∑
s,a,m

pπe
t (s)π0(a|s)pm(m|s, a)r(s, a,m),

where pπt (s) denotes the distribution of St under a policy
π, and r(•, •, •) denotes the conditional expectation of the
reward given the state-action-mediator triplet.
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Figure 2. Causal paths from actions to reward received in t = 1.

Notice that At has both a direct effect and an indirect ef-
fect (mediated by Mt) on Rt. This motivates us to further
decompose ITEt into IDEt and IMEt. Let Gt

e denote the
process in which πe is applied at the first t − 1 steps to
generate St, At is then generated according to π0, and Mt

is generated as if At were assigned according to πe, i.e.,

Mt ∼
∑
a

pm(•|a, St)πe(a|St). (1)

Then, EGt
e [Rt] equals∑

s,a,m

pπe
t (s)πe(a|s)pm(m|s, a)

∑
a′

π0(a
′|s)r(s, a′,m).

It follows that

ITEt = Eπe [Rt]− EGt
e [Rt]︸ ︷︷ ︸

IDEt(πe,π0)

+EGt
e [Rt]− Eπt

e,0 [Rt]︸ ︷︷ ︸
IMEt(πe,π0)

.

By definition, the IDEt quantifies the direct treatment effect
on the proximal outcome Rt whereas the IMEt evaluates
the indirect effect mediated by Mt. As an illustration, set
t = 1 and consider Figure 2. IDE1 measures the causal
effect along the path A1 → R1 whereas IME1 corresponds
to the effect along the path A1 →M1 → R1.

Next, we consider DTEt, defined as Eπt
e,0 [Rt]−Eπ0 [Rt]. By

definition, πt
e,0 differs from π0 at the first t− 1 time points.

As such, DTEt characterizes the delayed treatment effects
on the current outcomeRt. Similarly, we further decompose
DTEt into the sum of direct and mediation effects. To
characterize the delayed mediation effects, we follow the
RI-based approach developed by Zheng & van der Laan
(2017). Specifically, consider a stochastic process in which
at the first t− 1 time steps, the action is selected according
to π0, and the mediator is drawn assuming the action is
assigned according to πe (see Equation 1), whereas at time
t, the system follows π0. We provide more details on this
process in Appendix A. Let Gt

0 denote the resulting process
and EGt

0 [Rt] the expected value of Rt generated according
to Gt

0. This allows us to decompose DTEt as follows,

DTEt = Eπt
e,0 [Rt]− EGt

0 [Rt]︸ ︷︷ ︸
DDEt(πe,π0)

+EGt
0 [Rt]− Eπ0 [Rt]︸ ︷︷ ︸

DMEt(πe,π0)

.

Notice that in the three processes, the action selection and
mediator generation mechanisms at time t are the same. As

such, both DDEt and DMEt characterize the delayed effects.
At the first t− 1 time steps, the action selection mechanism
between Gt

0 and the process generated by πt
e,0 are different

whereas both processes have the same mediator generation
mechanism. As such, DDEt quantifies how past actions di-
rectly impact the current outcome. On the contrary, Gt

0 and
the process generated by π0 have the same action selection
mechanism. They differ in the way the mediator is gener-
ated. Hence, DMEt measures the indirect past treatment
effects mediated by {Mj}j<t. To elaborate, let us revisit
Figure 2. DDE1 captures the causal effect along the path
A0 → S1 → {A1,M1} → R1 whereas DME1 considers
the path A0 →M0 → S1 → {A1,M1} → R1.

We also remark that the proposed effects are consistent with
those in the existing literature. Specifically, when special-
ized to state-agnostic policies, IDE0 and IME0 are reduced
to the total direct effect and the pure indirect effect (Robins
& Greenland, 1992) in single-stage decision-making. Mean-
while, DDEt and DMEt are similar to those proposed by
Zheng & van der Laan (2017) developed in finite horizons.

Based on these effects, by aggregating IDEt, IMEt, DDEt

and DMEt over time, we obtain the following four-way
decomposition of ATE(πe, π0),

ηπe − ηGe︸ ︷︷ ︸
IDE(πe,π0)

+ ηGe − ηπe,0︸ ︷︷ ︸
IME(πe,π0)

+ ηπe,0 − ηG0︸ ︷︷ ︸
DDE(πe,π0)

+ ηG0 − ηπ0︸ ︷︷ ︸
DME(πe,π0)

,

where ηπ is the average reward of policy π.

Finally, we remark that to simplify the presentation, we
choose not to use the potential outcome framework (Ru-
bin, 2005) to formulate these causal effects of interest in
this section. The detailed potential outcome definitions are
relegated to Appendix A. In addition, we show that these po-
tential outcomes are identifiable and summarize the results
in the following theorem.

Theorem 4.1 (Identification). Under standard assump-
tions including consistency, sequential randomization
and positivity (Zheng & van der Laan, 2017; Luckett
et al., 2019), IDE(πe, π0), IME(πe, π0), DDE(πe, π0), and
DME(πe, π0) are all identifiable.

We refer readers to Appendix C for more details.

5. Dynamic Treatment Effects Evaluation
In this section, we first develop DM and IS estimators for
each defined dynamic treatment effect, whose consistencies
require a given set of nuisance functions to be correctly
specified. This motivates us to further develop doubly or
triply robust estimators in section 5.3, whose consistencies
only require either one of the two or three sets of nuisance
functions to be correctly specified. Finally, we discuss the
estimation methods for nuisance functions.
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5.1. Direct Method Estimators (DM)

The direct estimators are built upon the Q-functions. For
π ∈ {πe, π0}, we first define the conditional relative value
function Qπ(s, a,m) as∑

t≥0

Eπ[Rt − ηπ|S0 = s,A0 = a,M0 = m], (2)

which measures the expected total difference between re-
wards and the average reward of policy π, given that the
initial state-action-mediator triplet equals (s, a,m). No-
tably, (2) deviates slightly from the standard definition in
MDPs (i.e.,

∑
t≥0 Eπe [Rt − ηπe |S0 = s,A0 = a]) by in-

corporating the mediator in the conditioning set.

Next, we define QGe(s, a,m) as∑
t≥0

Eπe [r(St, π0,Mt)− ηGe |S0 = s,A0 = a,M0 = m],

where r(s, π0,m) is a shorthand for
∑

a π0(a|s)r(s, a,m).
QGe aggregates the difference between the expected re-
ward of the interventional process Gt

e starting from a given
state-action-mediator triplet and that averaged over different
initial conditions. It is crucial to note that QGe differs from
Qπ defined in (2), in that the observed reward Rt in (2)
is replaced by the reward function r(St, π0,Mt). This is
necessary as Gt

e uses different policies for action selection
and mediator generation at t.

Following the same logic, we define Qπe,0(s, a,m) as∑
t≥0

Eπe [r(St, π0)− ηπe,0 |S0 = s,A0 = a,M0 = m],

where r(s, π0) =
∑

a,m π0(a|s)pm(m|a, s)r(s, a,m). We
similarly define QG0(s, a,m) as∑
t≥0

EGt
0 [r(St, π0)− ηG0 |S0 = s,A0 = a,M0 = m].

We remark that all Q-functions are finite under the assump-
tion of aperiodicity even though the horizon is infinite (Put-
erman, 2014). This is because aperiodic Markov chains
would reach their steady-state exponentially fast. As such,
after a few iterations, the differences become very close to
zero. More importantly, the ηs and Qs are closely related
according to the well-known Bellman equation, which is
fundamental to deriving the DM estimator. To elaborate,
take the estimation of ηπe as an example. According to the
Bellman equation, we have that

ηπe +Qπe(St, At,Mt) = Eπe [Rt +
∑
a,m

πe(a|St+1)

×pm(m|a, St+1)Q
πe(St+1, a,m)|St, At,Mt]. (3)

Plugging in p̂m learned from observed data into (3), we can
construct estimation equations to learn Qπe and ηπe jointly.

See Section 5.4 for details. Let ηπd denote the resulting
DM estimator for ηπ. The DM estimator of each effect
component is then constructed by plugging in these ηds, the
consistency of which requires correct model specifications
of r, the Q-function and pm.

5.2. Importance Sampling (IS) Estimators

As commented earlier, standard IS estimators suffer from
the curse of horizon. In this section, we utilize the marginal
importance sampling (MIS) method proposed in Liu et al.
(2018) to break the curse of horizon. For a given policy π,
we first introduce the MIS ratio, given by

ωπ(s) = pπ(s)/pπb(s),

where pπ and pπb denote the stationary state distribution
under π and πb, respectively. Using the change of measure
theorem, it is immediate to see that, for π ∈ {πe, π0},

1

NT

∑
i,t

ωπ(Si,t)
π(Ai,t|Si,t)

πb(Ai,t|Si,t)
Ri,t (4)

is unbiased to ηπ. Similarly, using the change of measure
theorem again, it is straightforward to show that

1

NT

∑
i,t

ωπe(Si,t)
π0(Ai,t|Si,t)

πb(Ai,t|Si,t)
Ri,t, (5)

1

NT

∑
i,t

ωG0(Si,t)
π0(Ai,t|Si,t)

πb(Ai,t|Si,t)
Ri,t, (6)

are unbiased to ηπe,0 and ηG0 , respectively. Here, ωG0 is
a version of ωπ with the numerator equal to the stationary
state distribution when the data are generated according to
{Gt

0}t. These two MIS estimators (5 and 6) differ from (4)
in that their state and action ratios are associated with two
different interventional policies.

Lastly, we consider ηGe . Recall that at time t, Gt
e selects ac-

tion according to π0 and generates the mediator as if πe were
applied to determine At. To further account for this distri-
butional shift, we introduce a mediator ratio, ρ(S,A,M) =
p−1
m (M |S,A)[

∑
a πe(a|S)pm(M |S, a)], built upon which

the following unbiased estimator, denoted as MIS1, can be
derived,

1

NT

∑
i,t

ωπe(Si,t)
π0(Ai,t|Si,t)

πb(Ai,t|Si,t)
ρ(Si,t, Ai,t,Mi,t)Ri,t.

An alternative way to handle the distributional shift is to use
the reward function instead of the observed reward to derive
the IS estimator. This motivates the following estimator for
ηGe ,

(MIS2) :
1

NT

∑
i,t

ωπe(Si,t)
πe(Ai,t|Si,t)

πb(Ai,t|Si,t)
r(Si,t, π0,Mi,t),
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which avoids the use of the mediator ratio.

So far, we have discussed the MIS estimators for those
ηs. The subsequent MIS estimators for IDE(πe, π0),
IME(πe, π0), DDE(πe, π0), and DME(πe, π0) can be simi-
larly defined. Their consistencies require correct specifica-
tions of πb, pm, r, ωπe , ωπ0 , and ωG0 .

5.3. Multiply Robust (MR) Estimators

This section develops the MR estimators that combine the
DM and MIS estimators for efficient and robust OPE. These
estimators are derived based on the classical semiparametric
theory (see e.g., Tsiatis, 2006). See Appendix F for the
detailed derivation. Let O denote a tuple (S,A,M,R, S′).
For each η, the proposed MR estimator is built upon the
estimating function ηd + Iη(O), where ηd is the DM esti-
mator of η and Iη(O) denotes some augmentation term that
involves the MIS ratio. The purpose of introducing these
augmentation terms lies in debiasing the bias of the DM es-
timator, making the resulting estimator more robust against
model misspecification. Given the estimating function, its
empirical average over the data tuples produces the final MR
estimator. We present the detailed forms of these estimating
functions below.

First, consider ηπe and ηπ0 . For a given policy π ∈
{πe, π0}, Iηπ (O) is given by

ωπ(S)
π(A|S)
πb(A|S)

[
R + Qπ(S′, π) − Qπ(S,A) − ηπd

]
,

where Qπ(s, π) =
∑

a,m π(a|s)pm(m|a, s)Qπ(s, a,m)
and Qπ(s, a) =

∑
m pm(m|a, s)Qπ(s, a,m). Under the

MMDP model, the term in brackets corresponds to a tem-
poral difference error. Therefore, when Qπ , ηπd , and pm are
correctly specified, it is of mean zero given (A,S). Thus,
the resulting estimator is equivalent to DM which is con-
sistent under correct model specification. On the contrary,
when ωπ and πb are correctly specified, the final estimator
is equivalent to MIS, which is consistent under these config-
urations (Liao et al., 2020). As such, the resulting estimator
is doubly robust whose consistency relying on the correct
specification of (Qπ, ηπ, pm) or (ωπ, πb).

Next, consider ηGe . Let IηGe (O) denote

ωπe(S)
[π0(A|S)
πb(A|S)

ρ(S,A,M){R− r(S,A,M)}+ πe(A|S)
πb(A|S)

×
{
r(S, π0,M) +QGe(S′, πe)−QGe(S,A)− ηGe

d

}]
,

where ρ is the mediator ratio defined before. Similarly,
the second line is the temporal difference error with a zero
mean given (S,A,M) when models in (r, pm, Q

Ge , ηGe

d )
are correctly specified. In addition, when r is correctly spec-
ified, conditional on (S,A,M), {R − r(S,A,M)} is of

zero mean as well. As such, IηGe (O) has a zero mean when
(r, pm, Q

Ge , ηGe) are correctly specified. Further, one can
show that the final estimator based on ηGe

d + IηGe (O) is
unbiased to MIS1 or MIS2 introduced in Section 5.2 when
(pm, ω

Ge , πb) or (r, ωGe , πb) are correctly specified. As
such, the estimator is triply robust in the sense that its
consistency requires (r, pm, Q

Ge , ηGe), (pm, ωGe , πb) or
(r, ωGe , πb) to be correct.

Next, we consider ηπe,0 and introduce Iηπe,0 (O), defined as

ωπe(S)
[π0(A|S)
πb(A|S)

{R− r(S,A)}+ πe(A|S)
πb(A|S)

×
{
r(S, π0) +Qπe,0(S′, πe)−Qπe,0(S,A)− η

πe,0

d

}]
,

where r(s, a) =
∑

m pm(m|a, s)r(s, a,m). Following the
same logic, we can show that the resulting estimator is dou-
bly robust and requires either models in (r, pm, Q

Ge , ηGe

d )
or those in (ωπe , πb) are correctly specified.

Finally, we consider ηG0 and introduce IηG0 (O) as follows,

ωG0(S)
π0(A|S)
πb(A|S)

[{
R−r(S,A)

}
+ρ(S,A,M)

{
r(S, π0)

+QG0(S′, G0)−ηG0

d −QG0(S,A,M)
}]

+ωG0(S)
πe(A|S)
πb(A|S)

×
[
QG0(S, π0,M)−

∑
a,m

π0(a|S)pm(m|A,S)QG0(S, a,m)
]
,

where QG0(s, π0,m) is a shorthand of∑
a π0(a|s)QG0(s, a,m) and QG0(s,G0) equals∑
a,a′,m π0(a|s)πe(a′|s)pm(m|a′, s)QG0(s, a,m). The

resulting estimator’s doubly robustness property can be
similarly established.

So far, we have introduced all the MR estimators for es-
timating these average rewards ηs. We can plug in these
estimators to construct the corresponding MR estimators
for those dynamic treatment effects (i.e., MR-IDE(πe, π0),
MR-IME(πe, π0), MR-DDE(πe, π0), MR-DME(πe, π0)).
Their consistencies and robustness can be similarly derived.
We summarize and formally prove their robustness proper-
ties in Theorem 6.1.

5.4. Learning Nuisance Functions

Recall that the MR estimators require estimation of nuisance
functions including πb, r, pm, ω, Q, and η. While πb, r,
and pm can be estimated efficiently using state-of-the-art
nonparametric methods (i.e., regression/classification tree
(Breiman et al., 2017), random forest (Breiman, 2001), deep
learning (Schmidt-Hieber, 2020)) with convergence rates
faster than N− 1

4 , we focus on the methods used to learn ω,
Q, and η.

We first consider the estimation of ωπ for any stationary
policy π. Following the arguments in Liu et al. (2018) and

6
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Uehara et al. (2020), we can show that for any function f

E
[
ωπ(S){f(S)− π(A|S)

πb(A|S)
f(S′)}

]
= 0,

where the expectation is taken over the observed station-
ary distribution of (S,A, S′). Therefore, estimating ωπ is
equivalent to solving a mini-max problem such that

min
ωπ∈Ω

max
f∈F

E2

[
ωπ(S){f(S)− π(A|S)

πb(A|S)
f(S′)}

]
(7)

for some function classes Ω and F . In our implementation,
we consider linear function classes Ω and F , which yields
closed-form expressions. Specifically, let ωπ(s) = ξT (s)β
for some dω-dimensional β ∈ Rdω , where ξ(s) is the feature
vector generated by RBF sampler (Rahimi & Recht, 2007).
Then (7) is equivalent to obtain β by solving the equation

1

NT

∑
i,t

[
ξ(Si, t)−

π(Ai,t|Si,t)

πb(Ai,t|Si,t)
ξ(Si,t+1)

]
ξT (Si,t)β = 0.

Similarly, considering ωG, we can show that

E
[
ωG(S){f(S)− ρ(S,A,M)

π0(A|S)
πb(A|S)

f(S′)}
]
= 0,

where the expectation is taken over the distribution of
(S,A,M, S′). ωG can then be estimated following the same
steps.

We next consider the estimation of pairs of (Q, η). Tak-
ing (Qπe , ηπe) as an example, the estimation procedure is
motivated by the Bellman equation model, such that:

Qπe(St, At,Mt) = Eπe [Rt+Eπe
a,mQ

πe(St+1, a,m)−ηπ].
(8)

Similar to the work of Shi et al. (2022a), we approximate
the Q function using linear sieves. Specifically, we assume
that

Qπe(s, a,m) ≈ ΦT
L(s,m)βa,∀s ∈ S, a ∈ A,m ∈ M,

where ΦT
L(s,m) is a L-dimensional feature vector derived

using L sieve basis functions, such as splines (Huang, 1998).
Let β∗ = (βT

0 , · · · , βT
K−1, η

π)T . Let U(s, a,m) denotes

[ΦT
L(s,m)1(a = 0), · · · ,ΦT

L(s,m)1(a = K − 1), 1]T ,

and V (s) denotes

[Em|s,a=0Φ
T
L(s,m)πe(0|s), · · · ,
Em|s,a=K−1Φ

T
L(s,m)πe(K − 1|s), 0]T ,

where Em|s,aΦ
T
L(s,m) =

∫
m
ΦT

L(s,m)p(m|s, a) can be
approximated by Monte Carlo sampling in practice. Then,
the equation (8) can be rewritten as

EU(S,A,M)[R+ V (S′)Tβ∗ − U(S,A,M)Tβ∗] = 0.

Let Ui,t = U(Si,t, Ai,t,Mi,t) and Vi,t = V (Si,t). Based
on the observational data, the closed-form solution of β∗ is 1

NT

∑
i,t

Ui,t(Ui,t − Vi,t+1)
T

−1

1

NT

∑
i,t

Ui,tRi,t.

In practice, we add ridge penalty to the term within the
bracket to prevent overfitting, and let L grow with the sam-
ple size to improve the approximation precision.

6. Statistical Guarantees
In this section, we prove the robustness and semi-parametric
efficiency of the proposed MR estimator. We begin with
some notations. Let Q(·),Ω(·),Hm,Hr, and Πb respec-
tively denote the function class of Q(·), ω(·), pm, r, and πb.

Theorem 6.1. Multiply Robustness. Suppose the conditions
in Theorem 4.1 holds, the process {Si,t}t≥0 is stationary,
πb, π̂b, pm and p̂m are uniformly bounded away from 0, and
Q(·),Ω(·),Hm,Hr, and Πb are bounded VC-type classes
(Chernozhukov et al., 2014) with VC indices upper bounded
by O(Nk) for some k < 1/2. As NT → ∞,

1. MR-IDE(πe, π0) is consistent if either the set of models
in (ωπe , πb, r) or in (ωπe , πb, pm) or in (Qπe , QGe ,
ηπe

d , ηGe

d , r, pm) are consistently estimated;

2. MR-IME(πe, π0) is consistent if either the set of mod-
els in (ωπe , πb, r) or in (ωπe , πb, pm) or in (QGe ,
Qπe,0 , ηGe

d , ηπe,0

d , r, pm) are consistently estimated;

3. MR-DDE(πe, π0) is consistent if either the set of mod-
els in (ωπe , ωG0 , πb, pm) or in (Qπe,0 , QG0 , ηπe,0

d ,
ηG0

d , r, pm) are consistently estimated;

4. MR-DME(πe, π0) is consistent if either the set of mod-
els in (ωπ0 , ωG0 , πb, pm) or in (QG0 , Qπ0 , ηG0

d , ηπ0

d ,
r, pm) are consistently estimated.

Theorem 6.1 formally establish the triply robustness prop-
erties of MR-IDE(πe, π0) and MR-IME(πe, π0), as well as
the doubly robustness properties of MR-DDE(πe, π0) and
MR-DME(πe, π0), respectively. To save space, the proof of
this theorem is deferred to the Appendix D.

Theorem 6.2. Efficiency. Suppose the conditions in Theo-
rem 6.1 holds, and Q̂(·), ω̂(·), p̂m, r̂, π̂b, and η̂(·)d converges
to their oracle value in L2 norm at a rate of N−k∗

for some
k∗ > 1/4, respectively. The MR estimators are asymptot-
ically normal with an asymptotic variance achieving the
semiparametric efficiency bound.

To save the space, the proof of this theorem is differed to the
Appendix E with a sketch of the proof at the beginning. A
Wald-type Confidence Interval (CI) for each MR estimator
can be derived from Theorem 6.2.
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7. Numerical Examples
In this section, we evaluate the estimation performance
of the proposed methods through three simulation studies.
Specifically, we demonstrate the robustness of the proposed
MR estimator to model misspecification in the first simula-
tion. In the second simulation, we compare the DM, MIS,
and MR estimators to the classic direct/indirect estimator
(Pearl, 2022) to demonstrate the importance of longitudinal
mediation analysis, considering the policy effect on state
transition. The final simulation is a semi-synthetic study
that simulates the generation process of real data and demon-
strates the superiority of the proposed MR estimators. For
any effect X , let X̂ be an estimator. We define the logbias
as log |E(X̂ −X)| and logMSE as E[log(X̂ −X)2].

7.1. Toy Example I

We consider a simplified MMDP setting with binary
states, actions, mediators, and rewards. See Appendix
G.1 for specific data generation settings. Let M1 =
(ωπe , πb, r), M2 = (ωπe , ωπ0 , ωG0 , πb, pm), M3 =
({Qπ, ηπd }π∈{πe,Ge,πe,0,G0,π0}, r, pm). To investigate the
robustness of the MR estimator, we test its performance in
four scenarios: i) M1, M2, and M3 are all correctly spec-
ified; ii) only M1 is correctly specified; iii) only M2 is
correctly specified; iv) only M3 is correctly specified; and
v) all the models in M1, M2, and M3 are incorrectly speci-
fied by injecting non-negligible random noises. As shown in
Figure 3, MR-IDE(πe, π0) and MR-IME(πe, π0) are con-
sistent when either M1, M2, or M3 is correctly specified,
and MR-DDE(πe, π0) and MR-DME(πe, π0) are consistent
when either M2 or M3 is correctly specified.

Figure 3. Bias and the logMSE of MR estimators, aggregated over
200 random seeds. The error bars represent the 95% CI.

7.2. Toy Example II

As discussed in Section 2, most existing works focus on
a two-way decomposition of immediate treatment effects
under the setting with a single stage. In this section, we com-
pare the proposed estimators of IDE and IME to three base-
line estimators assuming i.i.d. samples (See Appendix H

for details). We first repeat the data generation process from
Section 7.1, in which the states are affected by the history
observations for each trajectory. Then, by modifying the
distribution of the next state, St+1, as Pr(St+1 = 1) = .2,
we consider a second scenario in which all observations of
states are i.i.d sampled. Note that there are two versions of
MIS estimators for IDE and IME. Let MIS2 denote the MIS
estimators using the MIS2 to estimate ηGe . According to
Figure 4, when states are i.i.d. sampled, all estimators pro-
duce consistent estimates. However, when policy-induced
state transitions occur, all baseline estimators yield biased
estimates, whereas the proposed estimators continue to pro-
vide consistent estimates, implying the necessity of account-
ing for the policy effect on the state transition.

Figure 4. Bias and the logMSE of estimators, under different data
generation scenarios. The results are aggregated over 200 random
seeds. The error bars represent the 95% CI. Nuisance functions
are estimated as discussed in Section 5.4.

7.3. Semi-Synthetic Data

In this section, we evaluate empirical performance of esti-
mators using a semi-synthetic dataset structured similarly to
the real dataset analyzed in Section 8. Specifically, we con-
sider an MMDP setting with continuous reward, state, and
mediator spaces and a binary action space. See Appendix
G.2 for more information on the data-generation process.
We compared the MR estimators to the DM estimators, the
MIS estimators, and three baseline estimators. As shown
in Figure 5 and Figure 6, the MR estimators outperform
all other estimators for all components of ATE, especially
when the sample size is large. We first focus on IDE(πe, π0)
and IME(πe, π0). On the one hand, the baseline and MIS
estimators are all biased, whereas the bias and MSE of the
proposed DM and MR estimators decay continuously as N
or T increases. On the other hand, the DM estimators yield
relatively more significant bias and MSE than MR estima-
tors. Considering the DDE(πe, π0) and DME(πe, π0), both
the DM and MIS estimators are biased with non-decreasing
MSE, whereas the MR estimators continue to provide es-
timates with low bias and low MSE that decrease with N
and T . The results are in line with our theoretical findings.
To further support the superior performance of the proposed
MR estimators, additional simulation studies are conducted
in Appendix J under different settings of data-generating
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mechanisms, all of which reach the same conclusion as in
this section.

Figure 5. The logbias and logMSE of various estimators, aggre-
gated over 100 random seeds. The error bars represent the 95% CI.
Fix T = 25.

Figure 6. The logbias and logMSE of various estimators, aggre-
gated over 100 random seeds. The error bars represent the 95% CI.
Fix N = 50.

8. Real Data Application
In this section, we apply the proposed MR estimators to
analyze the real dataset from the IHS (NeCamp et al., 2020),
which was discussed as a motivating example in Section
1. The study involved 1565 interns and lasted six months.
Every day, the participant would either receive a notification
(At = 1) or no notification (At = 0). Meanwhile, partic-
ipants’ mood score (Rt), step count (Mt,1), and hours of
sleep (Mt,2) were recorded. At each time step, we consider
the previous time step’s mood score as the current state (i.e.,
St = Rt−1).

Using the control policy π0 of no intervention, we are in-
terested in evaluating the treatment effects of the behavior
policy πb used throughout the study, which sends notifica-
tions to individuals randomly with a constant probability
of .75. According to NeCamp et al. (2020), pushing notifi-
cations has a negative impact on the mood condition when
participants are already in a good mood (i.e., St > 6). Given
that the majority of observations in the data have St > 6, the
ATE of πb is expected to be negative. As summarized in Ta-
ble 1, the ATE of πb is significantly negative with an effect
size of .1, which is consistent with our expectations. Further
investigation of the ATE composition reveals that the im-
mediate effects are all negligible. In contrast, the DDE and
DME are both significant and account for the majority of

the treatment effect, indicating the importance of learning
the delayed effects and mediator effects to understand the
entire mechanism from actions to outcomes.

Furthermore, given that the delayed effects are all passing
through St, rather than simply abandoning the treatment pro-
posal, it is recommended that we consider a state-dependent
policy to make more informed decisions based on the St and
hence to improve the overall treatment effect. To support
this claim, we further evaluate an optimal state-dependent
policy, π̂opt, which is estimated by using single-stage policy
estimation based on the observed data (See Appendix I for
more information). According to Table 1, in contrast to πb,
the estimated ATE of π̂opt is .090, with significantly posi-
tive direct effects. This further demonstrates the necessity
of analyzing dynamic treatment policies as opposed to fixed
action sequences, which have been the main focus of most
existing literature on mediation analysis.

πe IDE IME DDE DME ATE
πb -.007(.007) -.000(.001) -.085(.034) -.008(.004) -.100 (.041)
π̂opt .018(.006) -.001(.001) .077(.030) -.005(.005) .090 (.037)

Table 1. Estimated treatments effects (standard error) for πb and
π̂opt, compared to π0 with no intervention.

9. Conclusion
Motivated by the growing number of applications (e.g., mo-
bile health) with sequential decision-making over an infinite
number of decision points, we propose an MMDP frame-
work and a four-way decomposition of ATE of random
policies to analyze the dynamic mediation effects. For each
effect component, multiply-robust estimators with theoret-
ical and numerical support are provided. The proposed
framework can be extended in several aspects. First, the
proposed methods are limited to applications with discrete
action space. Meanwhile, problems such as dynamic pricing
and personalized dose finding typically involve a continu-
ous action space, which is worth studying in future work.
Second, the no unmeasured confounder assumption can
be violated from data collected from observational studies.
Therefore, a confounded MMDP is worth investigating.
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A. More Details about Effect Decomposition
A.1. Effect Decomposition in the Framework of Potential Outcomes

Let āt = (a0, · · · , at) denote a fixed treatment sequence up to time t. Let W ∗
t (āt) denote the potential covariates that would

be observed at t if āt were taken, and W̄ ∗
t (āt) = (W ∗

0 (ā0), · · · ,W ∗
t (āt)) for W ∈ {M,R}. We remark that the potential

states observed at t are defined analogously, but depend on the action sequence āt−1 instead of āt. Replacing the fixed
action sequence by any random policy π, W ∗

t (π) denotes the potential covariates if the actions were taken under π.

We first focus on the effects of action and mediator on their proximal outcome. Denotes πt
e,0 a policy where the first t− 1

steps follow πe and then follow π0 at t. For X ∈ {S,R}, X∗
t (π1, M̄

∗
t (π2)) denotes the potential covariate if π1 were used

to determine actions and the mediators were set to levels as if π2 were used. IDEt and IMEt are defined as

IDEt(πe, π0) = E
[
R∗

t (πe, M̄
∗
t (πe))−R∗

t (π
t
e,0, M̄

∗
t (πe))

]
,

IMEt(πe, π0) = E[R∗
t (π

t
e,0, M̄

∗
t (πe))−R∗

t (π
t
e,0, M̄

∗
t (π

t
e,0))].

Given that both Āt−1 and M̄t−1 were set to levels as if πe were used, IDEt(πe, π0) contrasts the impact of At generated by
πe and π0 on the proximal outcome Rt, fixing Mt to M∗

t (πe). IMEt(πe, π0) compares the effect of Mt at levels M∗
t (πe)

and M∗
t (π

t
e,0) on Rt, when At is set by π0.

Next, we focus on the delayed effects of the historical action sequence Āt−1 and mediator sequence M̄t−1 on Rt. Within
the MMDP framework, Āt−1 and M̄t−1 affect Rt through St. Noticing that E[R∗

t (π0, M̄
∗
t (π

t
e,0))] is unidentifiable due to

the presence of intermediate confounders S̄t (Tchetgen & VanderWeele, 2014), we adopt the RI-based approach proposed in
Zheng & van der Laan (2017).

We first define the conditional probability density of mediator at t,

G
ā′
t

t (·|s̄t, m̄t−1, r̄t−1) = pM∗
t (ā

′
t)|S̄∗

t (ā
′
t),M̄

∗
t−1(ā

′
t−1),R̄

∗
t−1(ā

′
t−1)

(·|s̄t, m̄t−1, r̄t−1),

if ā′t is assigned. At time t, given the historical trajectories s̄t, m̄t−1, and r̄t−1, we intervene in the mediator by randomly
drawing Mt ∼ G

ā′
t

t (·|s̄t, m̄t−1, r̄t−1). For brevity, we omit the conditionality and let Ḡā′
t

t = (G
ā′
0

0 , · · · , G
ā′
t

t ) denote the
process by which the mediator is set to a conditional random draw at each time t. Using a two-stage interventional process
as an illustration, we set Ā1 = ā1 and M̄1 ∼ Ḡ

ā′
1

1 . The generating process of R∗
1(ā1, Ḡ

ā′
1

1 ) is as follows: After observing an
initial state s0, we would first assign a treatment a0 and set M0 by randomly drawing m0 ∼ G

a′
0

0 (·|s0), and then measure
the resulting R∗

0(a0, Ḡ
a′
0

0 ) = r0 and S∗
1 (a0, Ḡ

a′
0

0 ) = s1. At t = 1, we then take action a1 and set M1 by randomly drawing
m1 ∼ G

ā′
1

1 (·|s0, s1,m0, r0), and finally observe R∗
1(ā1, Ḡ

ā′
1

1 ) as the outcome. Analogously, R∗
t (π1, Ḡ

π2
t ) is the potential

reward if π1 were used to determine Āt and M̄t were set to have the π2-driven conditional distributions Ḡπ2
t . We then define

the delayed effects as

DDEt(πe, π0) = E[R∗
t (π

t
e,0, M̄

∗
t (π

t
e,0))−R∗

t (π0, Ḡ
πt
e,0

t )],

DMEt(πe, π0) = E[R∗
t (π0, Ḡ

πt
e,0

t )−R∗
t (π0, M̄

∗
t (π0))].

Setting At and Mt to levels as if policy π0 were used at t, DDEt(πe, π0) compares the effects of Āt−1 generated by πe and
π0 on Rt when M̄t−1 is generated by πe, while DMEt(πe, π0) contrasts the effects of M̄t−1 generated by πe and π0 on Rt

when Āt−1 is set by π0. See Appendix A.3 for more discussion about the non-identifiability issue and Appendix A.2 for
graphical representations of each component.
Remark A.1. As suggested in Robins & Greenland (1992), there are two ways to decompose the total effect. The above
definitions of direct effects and mediator effects are analogous to the Total Direct Effect (TDE) and the Pure Indirect Effect
(PIE) (Robins & Greenland, 1992), while an alternative decomposition is provided in Appendix B. By replacing πe and π0
with ā′t and āt, IDE and IME are equivalent to TDE and PIE. Let ˜̄at = {ā′t−1, at}, we further replace πt

e,0 with ˜̄at to define
DDE and DME. When t > 0, if we set ˜̄at = ā′t, DDE and DME are analogous to the effect components defined in Zheng &
van der Laan (2017).
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R∗
t (πe, M̄

∗
t (πe)) R∗

t (π
t
e,0, M̄

∗
t (πe)) R∗

t (π
t
e,0, M̄

∗
t (π

t
e,0))

Table 2. Potential Outcomes Related to Immediate Effects.

R∗
t (π

t
e,0, M̄

∗
t (π

t
e,0))

R∗
t (π0, Ḡ

πt
e,0

t )

R∗
t (π0, M̄

∗
t (π0))

Table 3. Potential Outcomes Related to Delayed Effects.

A.2. Graphical Representation of Potential Outcomes

In Table 2 and Table 3, using causal graphs, we explicitly depict the process generating the potential reward terms involved
in the effect decomposition. Specifically, R∗

t (πe, M̄
∗
t (πe)) is the potential reward that would be observed if πe were used to

determine Āt and M̄t; R∗
t (π

t
e,0, M̄

∗
t (πe)) is the potential reward that would be observed if πe were used to determine the

historical sequences Āt−1 and M̄t−1, while At were determined by π0 and Mt were set to M∗
t (πe); R

∗
t (π

t
e,0, M̄

∗
t (π

t
e,0)) is

the potential reward if πe were used to determine Āt−1 and M̄t−1, while At and Mt are generated by π0; R∗
t (π0, Ḡ

πt
e,0

t )
is the potential reward if π0 were used to determine At and Mt, while the historical sequences Āt−1 and M̄t−1 were
determined by π0 and πe respectively; and R∗

t (π0, M̄
∗
t (π0)) is the potential reward that would be observed if π0 were used

to determine Āt and M̄t.

By definition, IDE(πe, π0) is the contrast between causal structures ofR∗
t (πe, M̄

∗
t (πe)) andR∗

t (π
t
e,0, M̄

∗
t (πe)); IME(πe, π0)

is the contrast between causal structures ofR∗
t (π

t
e,0, M̄

∗
t (πe)) andR∗

t (π
t
e,0, M̄

∗
t (π

t
e,0)); DDE(πe, π0) is the contrast between

causal structures of R∗
t (π

t
e,0, M̄

∗
t (π

t
e,0)) and R∗

t (π0, Ḡ
πt
e,0

t ); and DME(πe, π0) is the contrast between causal structures of

R∗
t (π0, Ḡ

πt
e,0

t ) and R∗
t (π0, M̄

∗
t (π0)).

A.3. Non-identifiability Issue

To understand the non-identifiability issue, we consider two fixed action sequences āt and ā′t and discuss the identification of
E[R∗

t (āt, M̄
∗
t (˜̄at))]. For simplicity, let the mediator and state be discrete values. Based on the definition, let ˜̄at = (ā∗t−1, at)

and t = 1, we have that

E[R∗
1(ā1, M̄

∗
1 (˜̄a1))] =

∑
a0,a1,a∗

0 ,m0,m1,s0,s1,s∗1

E(R|a0, a1,m0,m1, s0, s1)Pr(M∗
1 = m1|a∗0, a1,m0, s0, s

∗
1)

× Pr(S∗
1 (a0) = s1, S

∗
1 (a

∗
0) = s∗1|m0, s0)Pr(M∗

0 = m0|a∗0, s0)Pr(S0 = s0).
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While E(R|a0, a1,m0,m1, s0, s1), Pr(M∗
1 = m1|a∗0, a1,m0, s0, s

∗
1), Pr(M∗

0 = m0|a∗0, s0), and Pr(S0 = s0) are identifi-
able from the observational data, the joint distribution of Pr(S∗

1 (a0) = s1, S
∗
1 (a

∗
0) = s∗1|m0, s0) is not identified, leading to

the non-identifiability of E[R∗
1(ā1, M̄

∗
1 (˜̄a1))]. The non-identifiability of E[R∗

t (π0, M̄
∗
t (π

t
e,0))] is then followed.

B. Alternative Decomposition of ATE(πe, π0)

In this section, we provide an alternative decomposition of ATE(πe, π0). Let G̃ denote the stochastic process selecting
actions according to πe and drawing mediators assuming π0 was applied. Adopting the notations used in the main text, we
have that

ATE(πe, π0) = ηπe − ηG̃e︸ ︷︷ ︸
DME(2)(πe,π0)

+ ηG̃e − ηπ0,e︸ ︷︷ ︸
DDE(2)(πe,π0)

+ ηπ0,e − ηG̃0︸ ︷︷ ︸
IME(2)(πe,π0)

+ ηG̃0 − ηπ0︸ ︷︷ ︸
IDE(2)(πe,π0)

.

In the following subsections, we further written the alternative decomposition in the framework of potential outcomes along
with the corresponding MR estimators.

B.1. Decomposition in the Framework of Potential Outcomes

We follow the notations used in the Appendix A. Another classic decomposition of the total effect is well-known as natural
effect decomposition, which divides the total effect into Natural Direct Effect (NDE) (also named as Pure Direct Effect) and
Natural Indirect Effect (NIE) (also named as Total Indirect Effect) (Robins & Greenland, 1992; Pearl, 2022; VanderWeele,
2013). Denotes πt

0,e a policy where the first t − 1 steps follow π0 and then follow πe at t. Following the natural effect
decomposition , we alternatively decompose the TEt(πe, π0) as follows:

TEt(πe, π0) = DME(2)
t (πe, π0) + DDE(2)

t (πe, π0) + IME(2)
t (πe, π0) + IDE(2)

t (πe, π0),

where

DME(2)
t (πe, π0) = E[R∗

t (πe, M̄
∗
t (πe))−R∗

t (πe, Ḡ
πt
0,e

t )],

DDE(2)
t (πe, π0) = E[R∗

t (πe, Ḡ
πt
0,e

t )−R∗
t (π

t
0,e, M̄

∗
t (π

t
0,e))],

IME(2)
t (πe, π0) = E[R∗

t (π
t
0,e, M̄

∗
t (π

t
0,e))−R∗

t (π
t
0,e, M̄

∗
t (π0))],

IDE(2)
t (πe, π0) = E[R∗

t (π
t
0,e, M̄

∗
t (π0))−R∗

t (π0, M̄
∗
t (π0))].

Then, for X ∈ {IDE(2), IME(2),DDE(2),DME(2)}, we have that

X = lim
T→∞

1

T

T−1∑
t=0

Xt. (9)

By replacing πe and π0 with ā′t and āt, IDE(2) and IME(2) are equivalent to NDE and NIE derived in Pearl (2022). Let
˜̄at = {āt−1, a

′
t}, we further replace πt

0,e with ˜̄at to define DDE(2) and DME(2) for fixed action sequnces. When t > 0, if
we set ˜̄at = āt, DDE(2) and DME(2) are equivalent to NDE/NIE defined in Zheng & van der Laan (2017).

B.2. MR Estimators of the Alternative Decomposition

Similar to Section 5.3, we first define three additional Q functions:

QG̃0(s, a,m) =
∑
t≥0

Eπ0 [Eπe
a∗r(St, a

∗,Mt)− ηG̃0 |S0 = s,A0 = a,M0 = m],

Qπ0,e(s, a,m) =
∑
t≥0

Eπ0 [Eπe
a∗,m∗r(St, a

∗,m∗)− ηπ0,e |S0 = s,A0 = a,M0 = m],

QG̃e(s, a,m) =
∑
t≥0

EG̃[Eπe
a∗,m∗r(St, a

∗,m∗)− ηG̃e |S0 = s,A0 = a,M0 = m],
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where ηG̃0 is the expected value of Eπe
a∗r(St, a

∗,Mt) under policy π0, ηπ0,e is the expectation of Eπe
a∗,m∗r(St, a

∗,m∗) under
π0, and ηG̃e is the expectation of Eπe

a∗,m∗r(St, a
∗,m∗) under the treatment process and the intervened mediator process of

G̃.

Next, we construct three additional augmentation terms similar to the augmentation terms defined in the main text. Let
ρ(2)(S,A,M) =

∑
a π0(a|S)p(M |S,a)

p(M |S,A) . We define that

I6(O) = ωπ0(S)
π0(A|S)
πb(A|S)

{
Eπe

a′ r(S, a
′,M) + Eπ0

a,mQ
G̃0(S′, a,m)− EmQ

G̃0(S,A,m)− ηG̃0

}
+ ωπ0(S)

πe(A|S)
πb(A|S)

ρ(2)(S,A,M){R− r(S,A,M)},

I7(O) = ωπ0(S)
π0(A|S)
πb(A|S)

{
Eπe

a′,mr(S, a
′,m) + Eπ0

a,mQ
π0,e(S′, a,m)− EmQ

π0,e(S,A,m)− ηπ0,e

}
+ ωπ0(S)

πe(A|S)
πb(A|S)

{R− Emr(S,A,m)},

I8(O) = ωG̃(S)
πe(A|S)
πb(A|S)

ρ(2)(S,A,M)
{
Eπe

a′,mr(S, a
′,m) + EG̃

a,mQ
G̃e(S′, a,m)−QG̃e(S,A,M)− ηG̃e

}
+ ωG̃(S)

πe(A|S)
πb(A|S)

{
R− Emr(S,A,m)

}
+ ωG̃(S)

π0(A|S)
πb(A|S)

×
∑
a

πe(a|S)
[
QG̃e(S, a,M)−

∑
m

p(m|A,S)QG̃e(S, a,m)
]

Then the MR estimator of IDE(2)(πe, π0) is

MR-IDE(2)(πe, π0) =
1

NT

∑
i,t

ηG̃0 − ηπ0 + I6(Oi,t)− I5(Oi,t).

The MR estimator of IME(2)(πe, π0) is

MR-IME(2)(πe, π0) =
1

NT

∑
i,t

ηπ0,e − ηG̃0 + I7(Oi,t)− I6(Oi,t).

The MR estimator of DDE(2)(πe, π0) is

MR-DDE(2)(πe, π0) =
1

NT

∑
i,t

ηG̃e − ηπ0,e + I8(Oi,t)− I7(Oi,t).

The MR estimator of DME(2)(πe, π0) is

MR-IDE(2)(πe, π0) =
1

NT

∑
i,t

ηπe − ηG̃e + I1(Oi,t)− I8(Oi,t).

Following Theorem 6.1 and Theorem 6.2, we can show that MR-IDE(2), MR-IME(2), MR-DDE(2), and MR-DME(2) are
multiply robust and achieve the semi-parametric efficiency bound.

C. Proof of Theorem 4.1
This proof adheres strictly to the definitions of potential outcomes discussed in Appendix A.

We first clarify three standard assumptions, and then identify the potential rewards E
[
R∗

t (π, M̄
∗
t (π))

]
for any arbitrary

policy π and E
[
R∗

t (π0, Ḡ
πt
e,0

t )

]
using the observed data distribution, followed by the identification function for each of the

IDE(πe, π0), IME(πe, π0), DDE(πe, π0), and DME(πe, π0).
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C.1. Standard Assumptions

The decomposed effects are identifiable under three standard assumptions (Zheng & van der Laan, 2017; Luckett et al.,
2019):

Assumption 1 (Consistency). St = S∗
t (Āt−1), Mt = M∗

t (Āt), Rt = R∗
t (Āt), St = S∗

t (Āt−1, M̄t−1), and Rt =
R∗

t (Āt, M̄t) for all t.

Assumption 2 (Sequential Randomization). For all j ≥ t: i) (S∗
j+1(āj),M

∗
j (āj), R

∗
j (āj)) ⊥⊥ At|Āt−1, M̄t−1, S̄t; ii)

(S∗
j+1(āj , m̄j), R

∗
j (āj , m̄j)) ⊥⊥ At|Āt−1, M̄t−1, S̄t; and iii) (S∗

j+1(āj , m̄j), R
∗
j (āj , m̄j)) ⊥⊥Mt|Āt−1, M̄t−1, S̄t

Assumption 3 (Positivity). Let ht = (m̄t, r̄t, s̄t+1). For all t ≥ 0 and all (ht, āt, ā′t): i) if pπb(āt, ht) > 0, then
pπb(at+1|āt, ht) > 0; ii) if pπb(ā′t, ht) > 0, then pπb(a′t+1|ā′t, ht) > 0; iii) if pπb(rt, st+1|āt, ht−1,mt) > 0, then
pπb(rt, st+1|ā′t, ht−1,mt) > 0; and iv) if pπb(mt|ā′t, ht−1) > 0, then pπb(mt|āt, ht−1) > 0.

Assumption 1 states that the observed mediator, state, and reward are equivalent to their counterfactuals, which would be
observed if the observed actions were carried out, and that the observed reward and state are consistent with the potential
reward and state if the observed sequences of actions and mediators were taken. Assumption 2 requires that there are
no unmeasured confounders between At and all of its subsequent covariates and between Mt and all of its subsequent
covariates. Lastly, assumption 3 ensures that treatments and covariates are not exclusive to a specific stratum of covariates.
The identification result is summarized as follows.

C.2. Identification of E
[
R∗

t (π, M̄
∗
t (π))

]
Without loss of generality, we first consider the states and mediators in discrete values. By definition, we have that

E
[
R∗

t (π, M̄
∗
t (π))

]
=

∑
āt,m̄t,s̄t+1,r̄t

rtPr(S0 = s0)

t∏
j=0

π(aj |S∗
j (āj−1, M̄

∗
j−1(āj−1)) = sj)

× Pr[M∗
j (āj) = mj |S̄∗

j (āj−1, M̄
∗
j−1(āj−1)) = s̄j , M̄

∗
j−1(āj−1) = m̄j−1]

× Pr[S∗
j+1(āj , M̄

∗
j (āj)) = sj+1, R

∗
j (āj , M̄

∗
j (āj)) = rj |S̄∗

j (āj−1, M̄
∗
j−1(āj−1)) = s̄j , M̄

∗
j (āj) = m̄j ].

To identify the potential reward, we first consider t = 0 and observe that

π(at|S∗
t (āt−1, M̄

∗
t−1(āt−1)) = st) = π(a0|S0 = s0).

Next, we show that

Pr[M∗
0 (a0) = m0|S0 = s0] = Pr[M∗

0 (a0) = m0|A0 = a0, S0 = s0]

= Pr[M0 = m0|A0 = a0, S0 = s0],

where the first equality holds by Assumption 2 and the second equality follows from the Assumption 1. Similarly, using the
same arguments, we can show that

Pr[S∗
1 (a0,M

∗
0 (a0)) = s1, R

∗
0(a0,M

∗
0 (a0)) = r0|S0 = s0,M

∗
0 (a0) = m0]

= Pr[S∗
1 (a0,M

∗
0 (a0)) = s1, R

∗
0(a0,M

∗
0 (a0)) = r0|A0 = a0, S0 = s0,M

∗
0 (a0) = m0]

= Pr[S1 = s1, R0 = r0|A0 = a0, S0 = s0,M0 = m0].

Applying the same arguments for the subsequent potential covariates repeatedly, we can show that

E
[
R∗

t (π, M̄
∗
t (π))

]
=

∑
āt,m̄t,s̄t+1,rt

rtPr(S0 = s0)

t∏
j=0

π(aj |Sj = sj)Pr[Mj = mj |Āj = āj , S̄j = s̄j , M̄j−1 = m̄j−1]

× Pr[Sj+1 = sj+1, Rj = rj |Āj = āj , S̄j = s̄j , M̄j = m̄j ].

Finally, under the assumption that the data generating process satisfied the Markov property, such that i) the distribution of
At is independent of all the past history observations given St, ii) the distribution of Mt is independent of all the past history
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observations given (St, At), and iii) the distributions of Rt and St+1 are independent of all the past history observations
given (St, At,Mt), we have that

E
[
R∗

t (π, M̄
∗
t (π))

]
=

∑
āt,m̄t,s̄t+1,rt

rtPr(S0 = s0)

t∏
j=0

π(aj |Sj = sj)Pr[Mj = mj |Aj = aj , Sj = sj ]

× Pr[Sj+1 = sj+1, Rj = rj |Aj = aj , Sj = sj ,Mj = mj ].

Let τt denote the data trajectory {(sj , aj ,mj , rj , sj+1)}0≤j≤t. Replacing the probability mass functions by probability
density functions, we have that

E
[
R∗

t (π, M̄
∗
t (π))

]
=

∑
τt

rt

t∏
j=0

p(sj+1, rj |sj , aj ,mj)p(mj |sj , aj)π(aj |sj)ν(s0)

=
∑
τt

rtp(st+1, rt|st, at,mt)p(mt|st, at)π(at|st)
t−1∏
j=0

pπ(sj+1, rj ,mj , aj |sj)ν(s0),

the identifiability of which is guaranteed by Assumption 3.

When π = πe,

E
[
R∗

t (πe, M̄
∗
t (πe))

]
=

∑
τt

rtp(st+1, rt|st, at,mt)p(mt|st, at)πe(at|st)
t−1∏
j=0

pπe(sj+1, rj ,mj , aj |sj)ν(s0).

When π = π0,

E
[
R∗

t (π0, M̄
∗
t (π0))

]
=

∑
τt

rtp(st+1, rt|st, at,mt)p(mt|st, at)π0(at|st)
t−1∏
j=0

pπ0(sj+1, rj ,mj , aj |sj)ν(s0).

When π = πt
e,0,

E
[
R∗

t (π
t
e,0, M̄

∗
t (π

t
e,0))

]
=

∑
τt

rtp(st+1, rt|st, at,mt)p(mt|st, at)π0(at|st)
t−1∏
j=0

pπe(sj+1, rj ,mj , aj |sj)ν(s0).

Following the same arguments, we can show that

E
[
R∗

t (π
t
e,0, M̄

∗
t (πe))

]
=

∑
τt

∑
s∗,r∗,a′

r∗p(s∗, r∗|st, a′,mt)π0(a
′|st)p(mt|st, at)πe(at|st)

t−1∏
j=0

pπe(sj+1, rj ,mj , aj |sj)ν(s0).

C.3. Identification of E[R∗
t (π0, Ḡ

πt
e,0

t )]

Without loss of generality, we first consider the states and mediators in discrete values. Let ˜̄at = (ā′t−1, at). By definition,
we have that

E[R∗
t (π0, Ḡ

˜̄at
t )] =

∑
āt,ā′

t−1,m̄t,s̄t+1,r̄t

rtPr(S0 = s0)

t−1∏
j=0

π(aj |S∗
j (āj−1, Ḡ

˜̄at
j−1)) = sj)π(a

′
j |S∗

j (āj−1, Ḡ
˜̄at
j−1)) = sj) (10)

× Pr[G˜̄at
j = mj |S̄∗

j (āj−1, Ḡ
˜̄at
j−1) = s̄j , Ḡ

˜̄at
j−1 = m̄j−1] (11)

× Pr[S∗
j+1(āj , Ḡ

˜̄at
j ) = sj+1, R

∗
j (āj , Ḡ

˜̄at
j ) = rj |S̄∗

j (āj−1, Ḡ
˜̄at
j−1) = s̄j , Ḡ

˜̄at
j = m̄j ] (12)

× π(at|S∗
t (āt−1, Ḡ

˜̄at
t−1)) = st)Pr[G˜̄at

t = mt|S̄∗
t (āt−1, Ḡ

˜̄at
t−1) = s̄t, Ḡ

˜̄at
t−1 = m̄t−1] (13)

× Pr[S∗
t+1(āt, Ḡ

˜̄at
t ) = st+1, R

∗
t (āt, Ḡ

˜̄at
t ) = rt|S̄∗

t (āt−1, Ḡ
˜̄at
t−1) = s̄t, Ḡ

˜̄at
t = m̄t]. (14)
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For j < t, By the definition of Ḡ˜̄at
j , we have that

Pr[G˜̄at
j = mj |S̄∗

j (āj−1, Ḡ
˜̄at
j−1) = s̄j , Ḡ

˜̄at
j−1 = m̄j−1] = Pr[M∗

j (ā
′
j) = mj |S̄∗

j (ā
′
j) = s̄j , M̄

∗
j−1(ā

′
j−1) = m̄j−1]. (15)

Using the same arguments in C.2, we can show that equation (15) equals

Pr[Mj = mj |Āj = ā′j , S̄j = s̄j , M̄j−1 = m̄j−1],

which is identifiable under Assumption 3.

Further, to show the identification of equation (12), we prove it at j = 0 as follows:

Pr[S∗
1 (a0, G

˜̄at
0 ) = s1, R

∗
0(a0, G

˜̄at
0 ) = r0|S0 = s0, G

˜̄at
0 = m0]

= Pr[S∗
1 (a0,m0) = s1, R

∗
0(a0,m0) = r0|S0 = s0, G

˜̄at
0 = m0]

= Pr[S∗
1 (a0,m0) = s1, R

∗
0(a0,m0) = r0|S0 = s0]

= Pr[S1 = s1, R0 = r0|A0 = a0, S0 = s0,M0 = m0].

The second equality holds by the definition of the process G˜̄at
t , in which we randomly draw M0 from G

˜̄at
0 . Specifically,

given S0 = s0, G˜̄at
0 is independent of S∗

1 (a0,m0) and R∗
1(a0,m0). The last equality follows from Assumption 1 and 2. A

similar proof can be found in Zheng & van der Laan (2017).

Then, following the steps in C.2, we can show that

E
[
R∗

t (π0, Ḡ
πt
e,0

t )

]
=

∑
τt,ā∗

t−1

rtp(st+1, rt,mt|st, at)π0(at|st)

t−1∏
j=0

p(sj+1, rj |sj , aj ,mj)π0(aj |sj)p(mj |sj , a∗j )πe(a∗j |sj)ν(s0),

the identifiability of which is guaranteed by Assumption 3.

C.4. Identification of IDE(πe, π0), IME(πe, π0), DDE(πe, π0), DME(πe, π0)

Using the above identification results, the identification functions of IDE(πe, π0), IME(πe, π0), DDE(πe, π0), DME(πe, π0)
are directly induced. Specifically,

IDE(πe, π0) = lim
T→∞

1

T

T−1∑
t=0

∑
τt

{
rtp(st+1, rt|st, at,mt)−

∑
s∗,r∗,a′

r∗p(s∗, r∗|st, a′,mt)π0(a
′|st)

}
× p(mt|st, at)πe(at|st)

t−1∏
j=0

pπe(sj+1, rj ,mj , aj |sj)ν(s0),

IME(πe, π0) = lim
T→∞

1

T

T−1∑
t=0

∑
τt

rtp(st+1, rt|st, at,mt)π0(at|st)[
∑
a′

p(mt|st, a′)πe(a′|st)− p(mt|at, st)]

×
t−1∏
j=0

[pπe(sj+1, rj ,mj , aj |sj)] ν(s0),

DDE(πe, π0) = lim
T→∞

1

T

T−1∑
t=0

∑
τt

rtp(st+1, rt|st, at,mt)p(mt|st, at)π0(at|st)

×
{ t−1∏

j=0

pπe(sj+1, rj ,mj , aj |sj)−
∑
ā∗
t−1

t−1∏
j=0

p(sj+1, rj |sj , aj ,mj)π0(aj |sj)p(mj |sj , a∗j )πe(a∗j |sj)
}
ν(s0),
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and

DME(πe, π0) = lim
T→∞

1

T

T−1∑
t=0

∑
τt

rtp(st+1, rt|st, at,mt)p(mt|st, at)π0(at|st)

×
{ ∑

ā∗
t−1

t−1∏
j=0

p(sj+1, rj |sj , aj ,mj)π0(aj |sj)p(mj |sj , a∗j )πe(a∗j |sj)−
t−1∏
j=0

pπ0(sj+1, rj ,mj , aj |sj)
}
ν(s0).

The proof of Theorem 4.1 is thus completed.

D. Proof of Theorem 6.1
The proof of the triply robustness property of the proposed estimator is similar for IDE(πe, π0), IME(πe, π0), DDE(πe, π0)
and DME(πe, π0). Here, we take the estimator of IDE as an example. Let O denote a data tuple (S,A,M,R, S′),
ρ(S,A,M) =

∑
a πe(a|S)p(M |S,a)

p(M |S,A) , and δπ(S,A) = ωπ(S) π(A|S)
πb(A|S) for any policy π. Without loss of generality, we let

Ti = T , ∀i = 1, · · · , N . We first reorganize the estimator of IDE into four parts. Recall that ηd = η. Let

ϕ1(O) = ηπe − ηGe ,

ϕ2(O) = δπe(S,A)

[
R+ E a∼πe(•|S′)

m∼p(•|a,S′)

Qπe(S′, a,m)− Em∼p(•|A,S)Q
πe(S,A,m)− ηπe

]
,

ϕ3(O) = δπe(S,A)ρ(S,A,M)
π0(A|S)
πe(A|S)

{R− r(S,A,M)},

ϕ4(O) = δπe(S,A)

[
Ea∼π0(•|S)r(S, a

′,M) + E a∼πe(•|S′)
m∼p(•|S′,a)

QGe(S′, a,m)− Em∼p(•|S,A)Q
Ge(S,A,m)− ηGe

]
.

Then the proposed MR estimator of IDE is

MR-IDE(πe, π0) =
1

NT

∑
i,t

[ϕ̂1(Oi,t) + ϕ̂2(Oi,t)− ϕ̂3(Oi,t)− ϕ̂4(Oi,t)].

The proof of robustness can be divided into four parts. In part I, we show that when π̂b and ω̂πe are consistent, the sum
of terms involving Qπe , QGe , ηπe , and ηGe converges to zero by the stationary property. Then, the remaining part of
MR-IDE(πe, π0) is

1

NT

∑
i,t

δ̂πe(Si,t, Ai,t)
[
Ri,t − Ea∼π0(•|S)r̂(Si,t, a

′,Mi,t)
]︸ ︷︷ ︸

ϕ̂5(Oi,t)

−ϕ̂3(Oi,t). (16)

In part II, we consider the condition M1, where π̂b, ω̂πe , and r̂ are consistent. We show that 1
NT

∑
i,t ϕ̂3(Oi,t) converged

to 0, and 1
NT

∑
i,t ϕ̂5(Oi,t) is unbiased to the IS estimator with correctly specified πb, ωπe , and r and thus unbiased and

consistent to IDE(πe, π0), using the arguments used in part I. Together with the results from part I, the consistency of our
estimator is proved.

In part III, we focus on the condition M2, where π̂b, ω̂πe , and p̂m are consistent. We show that (16) is consistent to
IDE(πe, π0). The consistency is then completed, together with part I.

Finally, in part IV, applying similar arguments in part I, we observe that 1
NT

∑
i,t ϕ̂2(Oi,t), 1

NT

∑
i,t ϕ̂3(Oi,t), and

1
NT

∑
i,t ϕ̂4(Oi,t) converge to 0 respectively, when Q̂πe , Q̂Ge , η̂πe , η̂Ge , r̂, and p̂m are consistent. Then, we show that

MR-IDE(πe, π0) = ϕ̂1 is consistent to IDE(πe, π0), with consistent η̂πe and η̂Ge . The consistency of the proposed estimator
is thus proved, and the proof of triply-robustness is thus completed.

We next detail the proof for each part.
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Part I. Condition: π̂b and ω̂πe are consistent.

First, we focus on the terms involving Qπe . Let f1(O;ωπe , πb, pm, Q
πe) denotes

δπe(A|S)

[
E a∼πe(•|S′)
m∼p(•|a,S′)

Qπe(S′, a,m)− Em∼p(•|A,S)Q
πe(S,A,m)

]
.

To show that 1
NT

∑
i,t f1(Oi,t; ω̂

πe , π̂b, p̂m, Q̂
πe) converges to 0, when πb and ωπe are consistent, we decompose it into

1

NT

∑
i,t

f1(Oi,t; ω̂
πe , π̂b, p̂m, Q̂

πe)− 1

NT

∑
i,t

f1(Oi,t;ω
πe , π̂b, p̂m, Q̂

πe)︸ ︷︷ ︸
Γ1

+
1

NT

∑
i,t

f1(Oi,t;ω
πe , π̂b, p̂m, Q̂

πe)− 1

NT

∑
i,t

f1(Oi,t;ω
πe , πb, p̂m, Q̂

πe)︸ ︷︷ ︸
Γ2

+
1

NT

∑
i,t

f1(Oi,t;ω
πe , πb, p̂m, Q̂

πe)︸ ︷︷ ︸
Γ3

.

It suffices to show that Γ1, Γ2, and Γ3 all converge to zero in probability.

Let us focus on Γ1 first. Under the assumptions that Ωπe , Qπe , Hm, and Πb are all bounded function classes and π̂b(Ai,t|Si,t)
is uniformly bounded away from zero, |Γ1| is upper bounded by

O(1)

NT

∑
i,t

|ω̂πe(Si,t)− ωπe(Si,t)|, (17)

where O(1) is some positive constant. By Markov’s inequality, to prove (17) converges to zero in probability, it suffices to
show that

1

NT
E
∑
i,t

|ω̂πe(Si,t)− ωπe(Si,t)| = o(1). (18)

For any sufficient small constant ϵ > 0, let Ωπe(ϵ) defines a set of function ω, such that,

Es∼p∞ |ω(s)− ωπe(s)|2 ≤ ϵ2, (19)

where p∞ denotes the limiting distribution of state under behavior policy. Since ω̂πe is consistent and converge to ωπe in
L2-norm, we can show that ω̂πe ∈ Ωπe(ϵ) with probability approaching to 1 (wpa1) for large NT , by Markov’s inequality.
Therefore, the right-hand side (RHS) of (18) is upper bounded by

1

NT
E sup

ω∈Ωπe (ϵ)

∑
i,t

|ω(Si,t)− ωπe(Si,t)|, (20)

wpa1. Then, it suffices to show that (20) is op(1).

Implementing the empirical process theory (Van Der Vaart & Wellner, 1996), we first decompose (20) into

1

NT
E sup

ω∈Ωπe (ϵ)

∑
i,t

|ω(Si,t)− ωπe(Si,t)| − E
∑
i,t

|ω(Si,t)− ωπe(Si,t)|

︸ ︷︷ ︸
Γ4

+
1

NT
sup

ω∈Ωπe (ϵ)

E
∑
i,t

|ω(Si,t)− ωπe(Si,t)|

︸ ︷︷ ︸
Γ5

.

By the definition of Ωπe(ϵ) and the Cauchy Schwartz inequality, E|ω(Si,t)− ωπe(Si,t)| ≤ ϵ for any ω ∈ Ωπe(ϵ). Thus, Γ5

is upper bounded by ϵ and converges to zero when ϵ→ 0 (i.e., Γ5 = o(1)).
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Next, we show that Γ4 converges to zero as well. Under the assumption that Ωπe(ϵ) is a VC-type classes with VC indices
upper bounded by O(Nk) for k < 1

2 and ϵ is sufficiently small, using the maximal inequality (See Section 4.2 in Dedecker
& Louhichi (2002) and Corollary 5.1 in Chernozhukov et al. (2014)), we can show that

√
NTΓ4 converges to zero (i.e.,√

NTΓ4 = op(1)). Therefore, we have that, Γ4 = op(
1√
NT

). The proof of Γ1 = op(1) is then completed.

Similarly, following the steps to prove Γ1 = op(1), we can show that Γ2 = op(1). Then, it remains to show that Γ3 = op(1).
By Markov’s inequality, it suffices to show that E(Γ3) = o(1). By the definition of Γ3, E(Γ3) is upper bounded by

1

NT
E sup

p̃∈Hm,Q∈Q

∑
i,t

f1(Oi,t;ω
πe , πb, p̃, Q). (21)

We first observe that, for any Q ∈ Qπe and p̃ ∈ Hm, the expectation of Γ3 is zero. Specifically,

E
[
ωπe(S)

πe(A|S)
πb(A|S)

E a∼πe(•|S′)
m∼p̃(•|a,S′)

Q(S′, a,m)− Em∼p̃(•|A,S)Q(S,A,m)
]

=
∑
a

∫
s,m,s′

p(m, s′|a, s)pπe(s)πe(a|s)
∑
a′

∫
m′
Q(s′, a′,m′)p̃(m′|a′, s′)πe(a′|s′)

−
∑
a

∫
s,m,s′

p(m, s′|a, s)pπe(s)πe(a|s)
∫
m′
Q(s, a,m′)p̃(m′|a, s)

=
∑
a′

∫
s′,m′

pπe(s′)πe(a
′|s′)Q(s′, a′,m′)p̃(m′|a′, s′)

−
∑
a

∫
s,m′

pπe(s)πe(a|s)Q(s, a,m′)p̃(m′|a, s)

=0.

Then, following the same steps we used to bound (20), we can show that (21) is o(1). Thus, Γ3 = op(1). Together with
Γ1 = op(1) and Γ2 = op(1), we finish the proof of 1

NT

∑
i,t f1(Oi,t; ω̂

πe , π̂b, p̂m, Q̂
πe) = op(1).

Then we focus on the terms involving QGe . Let f2(O;ωπe , πb, pm, Q
Ge) denotes

δπe(A|S)

[
E a∼πe(•|S′)
m∼p(•|a,S′)

QGe(S′, a,m)− Em∼p(•|A,S)Q
Ge(S,A,m)

]
.

Replacing Qπe(S,A,m) with QGe(S,A,m) in the proof of 1
NT

∑
i,t f1(Oi,t; ω̂

πe , π̂b, p̂m, Q̂
πe) = op(1), we can directly

show that 1
NT

∑
i,t f2(Oi,t; ω̂

πe , π̂b, p̂m, Q̂
Ge) = op(1) as well.

Finally, we need to show that the sum of terms involving ηπe and ηGe converges to zero. Let f3(O;ωπe , πb, η
πe , ηGe)

denotes [
1− ωπe(S)

πe(A|S)
πb(A|S)

]
(ηπe − ηGe).

For any η1 ∈ R and η2 ∈ R, 1
NT

∑
i,t f3(Oi,t;ω

πe , πb, η1, η2) has mean zero. Specifically,

E[η1 − η2 − ωπe(S)
πe(A|S)
πb(A|S)

(η1 − η2)]

=
{
1−

∑
a

∫
s

pπb(a, s)ωπe(s)
πe(a|s)
πb(a|s)

}
(η1 − η2)

=0× (η1 − η2)

=0.
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Applying the same arguments in showing that Γ3 = op(1), we can show that 1
NT

∑
i,t f3(Oi,t;ω

πe , πb, η̂
πe , η̂Ge) = op(1).

Then, following the same steps proving that Γ1 = op(1), we can show that

1

NT

∑
i,t

{
f3(Oi,t; ω̂

πe , π̂b, η̂
πe , η̂Ge)− f3(Oi,t;ω

πe , π̂b, η̂
πe , η̂Ge)

}
= op(1),

and

1

NT

∑
i,t

{
f3(Oi,t;ω

πe , π̂b, η̂
πe , η̂Ge)− f3(Oi,t;ω

πe , πb, η̂
πe , η̂Ge)

}
= op(1).

Therefore, 1
NT

∑
i,t f3(Oi,t; ω̂

πe , π̂b, η̂
πe , η̂Ge) = op(1). The proof of part I is thus completed.

Part II. Condition: π̂b(A|S), ω̂πe(S), and r̂ are consistent.

With true r, ωπe , and πb, we can show that Eϕ3(Oi,t;ω
πe , πb, p̂m, r) has a mean of zero, as E[R − r(s, a,m)|S =

s,A = a,M = m] = 0. Then, using the same arguments in showing that Γ3 = op(1) in part I, we can show that
1

NT

∑
i,t ϕ̂3(Oi,t;ω

πe , πb, p̂m, r) = op(1). Next, following the same steps proving that Γ1 = op(1), we can show that

1

NT

∑
i,t

ϕ̂3(Oi,t; ω̂
πe , π̂b, p̂m, r̂)−

1

NT

∑
i,t

ϕ̂3(Oi,t;ω
πe , πb, p̂m, r) = op(1).

Therefore, we finish the proof showing that 1
NT

∑
i,t ϕ̂3(Oi,t; ω̂

πe , π̂b, p̂m, r̂) = op(1). Then, it remains to show that
1

NT

∑
i,t ϕ̂5(Oi,t; ω̂

πe , π̂b, p̂m, r̂) is consistent to IDE(πe, π0). Again, applying the arguments used in showing that Γ1 =
op(1), we can show that

1

NT

∑
i,t

ϕ̂5(Oi,t; ω̂
πe , π̂b, p̂m, r̂)−

1

NT

∑
i,t

ϕ̂5(Oi,t;ω
πe , πb, p̂m, r) = op(1).

Then, it suffices to show that 1
NT

∑
i,t ϕ̂5(Oi,t;ω

πe , πb, p̂m, r) is consistent to IDE(πe, π0). Specifically,

1

NT

∑
i,t

ϕ̂5(Oi,t;ω
πe , πb, p̂m, r) =

1

NT

∑
i,t

ωπe
πe(Ai,t|Si,t)

πb(Ai,t|Si,t)

[
Ri,t −

∑
a

π0(a|Si,t)r(Si,t, a,Mi,t)

]
. (22)

Under the assumption of stationary state process, since the action space is finite, it suffices to show that,

Es∼p̂πe

m∼p̂m

ωπe
πe(a|s)
πb(a|s)

[
r −

∑
a′

π0(a
′|s)r(s, a′,m)

]
P−→ Es∼pπe

m∼pm

ωπe
πe(a|s)
πb(a|s)

[
r −

∑
a′

π0(a
′|s)r(s, a′,m)

]
(23)

for any a. By the weak law of large number, we can show that (23) holds when NT is sufficiently large. Together with the
results in part I, we thus complete the proof of Part II.

Part III. Condition: π̂b(A|S), ω̂πe(S), and p̂m are consistent.

Applying the same arguments used in showing that Γ1 = op(1), we can show that

1

NT

∑
i,t

ϕ̂5(Oi,t; ω̂
πe , π̂b, p̂m, r̂)−

1

NT

∑
i,t

ϕ̂5(Oi,t;ω
πe , πb, pm, r̂) = op(1),

and

1

NT

∑
i,t

ϕ̂3(Oi,t; ω̂
πe , π̂b, p̂m, r̂)−

1

NT

∑
i,t

ϕ̂3(Oi,t;ω
πe , πb, pm, r̂) = op(1).

Then, it suffices to show that

1

NT

∑
i,t

ϕ̂5(Oi,t;ω
πe , πb, pm, r̂)−

1

NT

∑
i,t

ϕ̂3(Oi,t;ω
πe , πb, pm, r̂)

p→ IDE(πe, π0). (24)
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The LHS of (24) can be decomposed into two parts. Specifically, it suffices to show that

1

NT

∑
i,t

δπe(Si,t, Ai,t)

{
Ea′∼π0(•|Si,t)r̂(Si,t, a

′,Mi,t)− ρ(Si,t, Ai,t,Mi,t)
π0(Ai,t|Si,t)

πe(Ai,t|Si,t)
r̂(Si,t, Ai,t,Mi,t)

}
= op(1),

(25)

and

1

NT

∑
i,t

δπe(Si,t, Ai,t)

{
Ri,t − ρ(Si,t, Ai,t,Mi,t)

π0(Ai,t|Si,t)

πe(Ai,t|Si,t)
Ri,t

}
P−→ IDE(πe, π0). (26)

Following the steps showing that Γ3 = op(1) in part I, since the expectation of the LHS of (25) is 0, we can show that (25)
holds. Furthermore, applying the arguments used in showing (23) in part II, we can show that (26) holds. Together with the
results in part I, we thus complete the proof of Part III.

Part IV. Condition: Q̂πe , Q̂Ge , η̂πe , η̂Ge , r̂, and p̂m are consistent.

As we discussed in the main context, with true Qπe , QGe , ηπe , ηGe , r, and pm, we can show that
Eϕ̂j(Oi,t;Q

πe , QGe , ηπe , ηGe , r, pm, ω̂
πe , π̂b) = 0 for j = 2, 3, 4. Then, using the same arguments in showing that

Γ3 = op(1) in part 1, we can show that

1

NT

∑
i,t

ϕ̂j(Oi,t;Q
πe , QGe , ηπe , ηGe , r, pm, ω̂

πe , π̂b) = op(1), for j = 2, 3, 4.

Then, applying the arguments used in showing that Γ1 = op(1), we can further show that

1

NT

∑
i,t

{
ϕ̂j(Oi,t; Q̂

πe , Q̂Ge , η̂πe , η̂Ge , r̂, p̂m, ω̂
πe , π̂b)− ϕ̂j(Oi,t;Q

πe , QGe , ηπe , ηGe , r, pm, ω̂
πe , π̂b)

}
= op(1),

for j = 2, 3, 4. These two results further yields that

1

NT

∑
i,t

ϕ̂j(Oi,t; Q̂
πe , Q̂Ge , η̂πe , η̂Ge , r̂, p̂m, ω̂

πe , π̂b) = op(1)

for j = 2, 3, 4. Then, it remains to show that ϕ̂1(η̂πe , η̂Ge) is consistent to IDE(πe, π0). Applying the arguments used to
show Γ1 = op(1) again, under the assumption that we have that η̂πe and η̂Ge are consistent,

ϕ̂1(η̂
πe , η̂Ge)

P−→ ϕ̂1(η
πe , ηGe) = IDE(πe, π0),

where the equation holds by definition. The proof of part IV is thus completed.

E. Proof of Theorem 6.2
First, we clarify the assumption of convergence. We required that each of Q̂(·), ω̂(·), p̂m, r̂, π̂b, and η̂(·) converges to its
corresponding oracle value in L2-norm at a rate of N−k∗

, for some k∗ > 1/4. Specifically, taking ω̂πe as an example, we
assume that √

Es∼p∞ |ω̂πe(s)− ωπe(s)| = Op(N
−k∗

).

The proof of the efficiency of the proposed estimator is similar for IDE(πe, π0), IME(πe, π0), DDE(πe, π0), and
DME(πe, π0). Here, we take the MR estimator of IDE as an example. Adopting the notation used in the Appendix
D, we have the proposed multiply robust estimator of IDE as

MR-IDE(πe, π0) =
1

NT

∑
i,t

[ϕ̂1(Oi,t) + ϕ̂2(Oi,t)− ϕ̂3(Oi,t)− ϕ̂4(Oi,t)].
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Taking the oracle values of the estimators (i.e., Qπe , QGe , ηπe , ηGe , r, pm, ω
πe , πb), we define the oracle estimator as

MR-IDE∗(πe, π0) =
1

NT

∑
i,t[ϕ̂

∗
1(Oi,t) + ϕ̂∗2(Oi,t)− ϕ̂∗3(Oi,t)− ϕ̂∗4(Oi,t)].

We decompose the proof into two parts. In part I, we show that the proposed estimator is asymptotically equivalent to the
oracle estimator, such that MR-IDE(πe, π0)− MR-IDE∗(πe, π0) = op(

1√
NT

). In part II, we show that the oracle estimator

is asymptotically normal such that
√
N [MR-IDE∗(πe, π0)− IDE(πe, π0)]

d−→ N(0, σ2
T ), where σ2

T is the semiparametric
efficiency bound. Noticing that ψ2(Oi,t), ψ3(Oi,t), and ψ4(Oi,t) are the martingale difference sequence with respect to
{Oi,t}0≤t≤T−1, under the assumption of stationarity, we have that

σ2
T =

1

T
V ar [ϕ2(Ot)− ϕ3(Ot)− ϕ4(Ot)] .

Therefore, we have that
√
NT [MR-IDE∗(πe, π0)− IDE(πe, π0)]

d−→ N(0, σ2),

where σ2 = V ar[ϕ2(Ot) − ϕ3(Ot) − ϕ4(Ot)]. Finally, by Slutsky’s theorem, the proposed estimator is asymptotically
normally distributed with mean 0 and a variance achieving the semiparametric efficiency bound. Specifically,

√
NT

[
MR-IDE(πe, π0)− IDE(πe, π0)

]
d−→ N(0, σ2).

In the following, we detail the proof of each part.

Part I. Let ψ̂ = {Q̂πe , Q̂Ge , η̂πe , η̂Ge , p̂m}. We first decompose the MR-IDE(πe, π0)− MR-IDE∗(πe, π0) in to three parts,
such that MR-IDE(πe, π0)− MR-IDE∗(πe, π0) = MR-IDE(1)(ψ̂) + MR-IDE(2)(ψ̂) + MR-IDE(3)(ψ̂, r̂), where

MR-IDE(1)(ψ̂) =
1

NT

∑
i,t

{ 2∑
j=1

[ϕ̂1(ψ̂, ω
πe , πb, r)− ϕ̂∗1(Oi,t)]−

4∑
j=3

[ϕ̂j(Oi,t; ψ̂, ω
πe , πb, r)− ϕ̂∗j (Oi,t)]

}
,

MR-IDE(2)(ψ̂) =
1

NT

∑
i,t

{ 2∑
j=1

[ϕ̂1(ψ̂, ω
πe , πb, r̂)− ϕ̂1(ψ̂, ω

πe , πb, r)]

−
4∑

j=3

[ϕ̂j(Oi,t; ψ̂, ω
πe , πb, r̂)− ϕ̂j(Oi,t; ψ̂, ω

πe , πb, r)]
}
,

and

MR-IDE(3)(ψ̂, r̂) =
1

NT

∑
i,t

{ 2∑
j=1

[ϕ̂1(ψ̂, ω̂
πe , π̂b, r̂)− ϕ̂1(ψ̂, ω

πe , πb, r̂)]

−
4∑

j=3

[ϕ̂j(Oi,t; ψ̂, ω̂
πe , π̂b, r̂)− ϕ̂j(Oi,t; ψ̂, ω

πe , πb, r̂)]
}
.

Following the arguments in part I and part II of the proof of Robustness in Appendix D, the expectation of MR-IDE(2)(ψ̂) is
zero. Then, applying the same arguments used in showing that Γ3 = op(

1√
NT

) in part I of the proof of Robustness, we can

show that MR-IDE(1)(ψ̂) = op(
1√
NT

) under the assumption that each component in ϕ̂ converges to its oracle value in L2

norm at a rate of N−k∗
for k∗ > 1

4 .

Then, we focus on showing that MR-IDE(2)(ψ̂) = op(
1√
NT

). Noticing that MR-IDE(2)(ψ̂) can be further decomposed as

MR-IDE(2)(ψ̂)− MR-IDE(2)(ψ) + MR-IDE(2)(ψ),

it suffices to show that MR-IDE(2)(ψ̂)−MR-IDE(2)(ψ) = op(
1√
NT

) and MR-IDE(2)(ψ) = op(
1√
NT

). First, similar to the

part III of the proof of Theorem 6.1, the expectation of MR-IDE(2)(ψ) is 0, for any r̂ ∈ Hr. Then, applying the arguments
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used in showing that Γ3 = op(
1√
NT

), we can show that MR-IDE(2)(ψ, r) = op(
1√
NT

) under the assumption that ω̂πe and

π̂b converge to their oracle values. Then, it remains to show that MR-IDE(2)(ψ̂)− MR-IDE(2)(ψ) = op(
1√
NT

). It suffices
to show that

1

NT

∑
i,t

[ϕ̂j(Oi,t; ψ̂, ω
πe , πb, r̂)− ϕ̂j(Oi,t; ψ̂, ω

πe , πb, r)]− [ϕ̂j(Oi,t;ψ, ω
πe , πb, r̂)− ϕ̂j(Oi,t;ψ, ω

πe , πb, r)] = op(
1√
NT

),

(27)

for j = 1, 2, 3, 4. Here, we prove that the above equation holds for j = 3 as an example. For j = 1, 2, 4, the proof can be
completed using similar arguments.

We first observe that the LHS of (27) is upper bounded by

1

NT

∑
i,t

|[ϕ̂j(Oi,t; ψ̂, ω
πe , πb, r̂)− ϕ̂j(Oi,t; ψ̂, ω

πe , πb, r)]− [ϕ̂j(Oi,t;ψ, ω
πe , πb, r̂)− ϕ̂j(Oi,t;ψ, ω

πe , πb, r)]|

=
1

NT

∑
i,t

|δπe(Si,t, Ai,t)||ρ̂(Si,t, Ai,t,Mi,t)− ρ(Si,t, Ai,t,Mi,t)|
π0(Ai,t|Si,t)

πe(Ai,t|Si,t)
|r(Si,t, Ai,t,Mi,t)− r̂(Si,t, Ai,t,Mi,t)|

≤ C

NT

∑
i,t

|ρ̂(Si,t, Ai,t,Mi,t)− ρ(Si,t, Ai,t,Mi,t)||r(Si,t, Ai,t,Mi,t)− r̂(Si,t, Ai,t,Mi,t)|

≤ C

2NT

∑
i,t

|ρ̂(Si,t, Ai,t,Mi,t)− ρ(Si,t, Ai,t,Mi,t)|2 +
C

2NT

∑
i,t

|r(Si,t, Ai,t,Mi,t)− r̂(Si,t, Ai,t,Mi,t)|2

=op(
1√
NT

),

where C is some positive constant. The first inequality holds under the assumption that Ωπe and Πb are bounded function
classes of ωπe and πb, respectively. The second inequality holds by applying the Cauchy-Schwartz inequality such that
ab ≤ a2+b2

2 . Using the similar arguments used to bound (18) in part I of the proof of Theorem 6.1, under the assumption
that p̂m and r̂ converge to their oracle values respectively in L2 norm at a rate of Op(N

−k∗
) for some k∗ > 1/4, we can

show that the final equality holds. Similarly, we can show that MR-IDE(3)(ψ̂, r̂) = op(
1√
NT

) as well. The proof of part I is
thus completed.

Part II. By Central Limit Theorem, when N → ∞, we can show that

√
N [MR-IDE∗(πe, π0)− IDE(πe, π0)]

d−→ N(0, σ2
T ),

for some variance σ2
T . Then it remains to show that σ2

T achieves the asymptotic semiparametric efficiency bound, which is
the supreme of the Cramer-Rao lower bounds for all parametric submodels (Newey, 1990).

We first introduce some additional notations. Let πb,θ, pm,θ and ps′,r,θ, and νθ be some parametric models parameterized
by θ for πb, pm and ps′,r, and ν, and M denotes the set of all such parametric models. Then, by Theorem 1, IDE(πe, π0)
can be represented as a function of θ. We denote the IDE(πe, π0) parameterized by θ as IDEθ(πe, π0). By definition, the
Cramer-Rao lower bound for an unbiased estimator is

CR(πb,θ, pm,θ, ps′,r,θ, νθ) =
∂IDEθ(πe, π0)

∂θ

(
E
{
∂l({Ot}0≤t≤T−1; θ)

∂θ

∂lT ({Ot}0≤t≤T−1; θ)

∂θ

})−1
∂IDEθ(πe, π0)

∂θ

T

,

where l({Ot}0≤t≤T−1; θ) is the log-likelihood function.

Suppose that there exists some parameter θ0 such that πb,θ0 , pm,θ0 and ps′,r,θ0 , and νθ0 are the corresponding true models.
Then the semiparametric efficiency bound is

sup
M

CR = sup
πb,pm,ps′,r,ν∈M

CR(πb, pm, ps′,r, ν) = CR(πb,θ0 , pm,θ0 , ps′,r,θ0 , νθ0). (28)

It suffices to show that σ2
T = supM CR.
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On the one hand, from Appendix F, we have that

∂IDEθ0(πe, π0)

∂θ
= E[(ηπe − ηGe)S(ŌT−1)] +D1(θ0)−D2(θ0), (29)

where ŌT−1 is the sequence of observations such that ŌT−1 = {O1, O2, · · · , OT−1}, S(·) is the gradient of the log-
likelihood function evaluated at θ = θ0 (i.e., ∂l({Ot}0≤t≤T−1;θ0)

∂θ ),

D1(θ0) = E

[
1

T

T−1∑
t=0

ωπe(St)
πe(At|St)

πb,θ0(At|St)
{Rt + Eπe

a∗,m∗;θ0
Qπe(St+1, a,m)− Em;θ0Q

πe(St, At,m)− ηπe}S(ŌT−1)

]
,

and

D2(θ0) = E
[ 1
T

T−1∑
t=0

ωπe(St)
{∑

a pθ0(Mt|St, a)πe(a|St)

pθ0(Mt|St, At)

π0(At|St)

πb,θ0(At|St)
[Rt − rθ0(St, At,Mt)] +

πe(At|St)

πb,θ0(At|St)

× {
∑
a′

rθ0(St, a
′,Mt)π0(a

′|St)− ηGe + Eπe

a,m;θ0
QGe(St+1, a,m)− Em;θ0Q

Ge(St, At,m)}
}
S(ŌT−1)

]
.

Adopting the notation used in Appendix E, (29) can be rewritten as

E

[{
1

T

∑
t

[ϕ1(Ot) + ϕ2(Ot)− ϕ3(Ot)− ϕ4(Ot)]

}
S(ŌT−1)

]
.

Furthermore, since the expectation of a score function is 0, we can show that E[IDEθ0(πe, π0) × S(ŌT−1)] =

IDEθ0(πe, π0)× E[S(ŌT−1)] = 0. Therefore, ∂IDEθ0
(πe,π0)

∂θ can be further represented as

E

[{
1

T

∑
t

[ϕ1(Ot) + ϕ2(Ot)− ϕ3(Ot)− ϕ4(Ot)]− IDEθ0(πe, π0)

}
S(ŌT−1)

]
.

By Cauchy-Schwartz inequality (Tripathi, 1999), we have that

sup
M

CR ≤E

{ 1

T

∑
t

[ϕ1(Ot) + ϕ2(Ot)− ϕ3(Ot)− ϕ4(Ot)]− IDEθ0(πe, π0)

}2


=V ar

{
1

T

∑
t

[ϕ1(Ot) + ϕ2(Ot)− ϕ3(Ot)− ϕ4(Ot)]− IDEθ0(πe, π0)

}
=σ2

T .

On the other hand, by Lemma 20 in Kallus & Uehara (2022), there exists model Mθ′ ∈ M with sufficiently large number
of parameters, having CR(πb,θ′ , pm,θ′ , ps′,r,θ′ , νθ′) = σ2

T . Therefore, we have that σ2
T = supM CR. The proof is thus

completed.

F. Derivation of Efficient Influence Functions (EIF)
In this section, we focus on deriving the efficient influence function for each component of the average treatment effect.
Without loss of generality, we assume that the state, action, mediator and reward are all discrete. While adopting the
notations used in the Appendix E, we omit the subscript in pm and ps′,r when there is no confusion. Let τt denote the data
trajectory {(sj , aj ,mj , rj , sj+1)}0≤j≤t.

F.1. EIF for Immediate Direct Effect

Let us first focus on the immediate direct effect (IDE). IDEθ0(πe, π0) can be represented as
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lim
T→∞

1

T

T−1∑
t=0

∑
τt

{
rtpθ0(st+1, rt|st, at,mt)−

∑
s∗,r∗,a′

r∗pθ0(s
∗, r∗|st, a′,mt)π0(a

′|st)
}
pθ0(mt|st, at)πe(at|st)

×
t−1∏
j=0

pπe

θ0
(sj+1, rj ,mj , aj |sj)νθ0(s0), (30)

where ν denotes the initial state distribution, and

pπe

θ0
(sj+1, rj ,mj , aj |sj) = pθ0(sj+1, rj |sj , aj ,mj)pθ0(mj |sj , aj)πe(aj |sj).

Taking the derivative of (30), we have

∂IDEθ0(πe, π0)

∂θ
= C1 +D1 −D2,

where

C1 = (30)× ▽θ log(νθ0(s0)),

D1 = lim
T→∞

1

T

T−1∑
t=0

∑
τt

rt

t∏
j=0

pπe

θ0
(sj+1, rj ,mj , aj |sj)

t∑
j=0

[
▽θ log p

πe

θ0
(sj+1, rj ,mj , aj |sj)] × νθ0(s0),

and

D2 = lim
T→∞

1

T

T−1∑
t=0

∑
a′,τt

rtpθ0(st+1, rt|st, at,mt)π0(at|st)pθ0(mt|st, a′)πe(a′|st)

×
t−1∏
j=0

pπe

θ0
(sj+1, rj ,mj , aj |sj)

{
▽θ log p

πe

θ0
(st+1, rt|mt, st, at) + ▽θ log pθ0(mt|st, a′)

+

t−1∑
j=0

[
▽θ log p

πe

θ0
(sj+1, rj ,mj |sj , aj)]

}
× νθ0(s0). (31)

In the following sections, we will derive C1, D1, and D2, respectively.

F.1.1. C1

We first focus on C1. Since the expectation of a score function is zero, we have that

C1 = E[IDEθ0(πe, π0)× ▽θ log(νθ0(s0))] = E[IDEθ0(πe, π0)× S(ŌT−1)] = E[(ηπe − ηGe)× S(ŌT−1)].

F.1.2. D1

We then focus on the derivation of D1. Notice that

lim
T→∞

1

T

T−1∑
t=0

∑
τt

ηπe

t∏
j=0

pπe

θ0
(sj+1, rj ,mj , aj |sj)

t∑
j=0

[
▽θ log p

πe

θ0
(sj+1, rj ,mj , aj |sj)] νθ0(s0),

= lim
T→∞

1

T

T−1∑
t=0

ηπeE[
t∑

j=0

▽θ log p
πe

θ0
(sj+1, rj ,mj , aj |sj)]× νθ0(s0),

=0,
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where the last equation holds using the fact that the expectation of a score function is 0. Therefore,

D1 = lim
T→∞

1

T

T−1∑
t=0

∑
τt

[r − ηπe ]

t∏
j=0

pπe

θ0
(sj+1, rj ,mj , aj |sj)

t∑
j=0

[
▽θ log p

πe

θ0
(sj+1, rj ,mj , aj |sj)] νθ0(s0).

Together with the trick of the equality ⋆ (See Appendix F.5 for a complete proof of it), we have that

D1
⋆
= lim

T→∞

1

T

T−1∑
j=0

∑
τj

[r − ηπe + Eπe
a∗,m∗Qπe(sj+1, a

∗,m∗)]

j∏
k=0

pπe

θ0
(sk+1, rk,mk, ak|sk)

× ▽θ log p
πe

θ0
(sj+1, rj ,mj , aj |sj)× νθ0(s0). (32)

Then, we note that

∑
s0

j∏
k=0

pπe

θ0
(sk+1, rk,mk, ak|sk)νθ0(s0)

⋆⋆
= pπe

θ0
(sj+1, rj ,mj , aj |sj)pπe(sj),

which is the probability of {Sj+1 = sj+1, Rj = rj ,Mj = mj , Aj = aj} under the target polity πe. Further, we notice that

▽θ log p
πe

θ0
(sj+1, rj ,mj , aj |sj) = ▽θ log pθ0(sj+1, rj ,mj |aj , sj)

Using the fact that the expectation of a score function is 0, we have∑
sj+1,rj ,mj

[pθ0(sj+1, rj ,mj |aj , sj)▽θ log p
πe

θ0
(sj+1, rj ,mj |aj , sj)] = 0

for any j, which follows that

lim
T→∞

1

T

T−1∑
j=0

∑
τj

Em∗Qπe(sj , aj ,m
∗)pπe

θ0
(sj+1, rj ,mj , aj |sj)pπe(sj)× ▽θ log p

πe

θ0
(sj+1, rj ,mj |aj , sj)

=

lim
T→∞

1

T

T−1∑
j=0

∑
τj−1,aj ,sj

Em∗Qπe(sj , aj ,m
∗)πe(aj |sj)pπe(sj)

×
∑

sj+1,rj ,mj

[pθ0(sj+1, rj ,mj |aj , sj)▽θ log p
πe

θ0
(sj+1, rj ,mj |aj , sj)]

=0

Thus, combined with the D1 in equation (32), we have that

D1 = lim
T→∞

1

T

T−1∑
j=0

∑
τj

[rj − ηπe + Eπe
a∗,m∗Qπe(sj+1, a

∗,m∗)− Em∗Qπe(sj , aj ,m
∗)]

×pπe

θ0
(sj+1, rj ,mj , aj |sj)pπe(sj)▽θ log pθ0(sj+1, rj ,mj |aj , sj),

= lim
T→∞

1

T

T−1∑
j=0

∑
τj

[rj − ηπe + Eπe
a∗,m∗Qπe(sj+1, a

∗,m∗)− Em∗Qπe(sj , aj ,m
∗)]

× πe(aj |sj)pπe(sj)

πb,θ0(aj |sj)pπb(sj)
pθ0(sj+1, rj ,mj |aj , sj)πb,θ0(aj |sj)pπb(sj)▽θ log pθ0(sj+1, rj ,mj |aj , sj),

= lim
T→∞

1

T

T−1∑
j=0

∑
τj

[rj − ηπe + Eπe
a∗,m∗Qπe(sj+1, a

∗,m∗)− Em∗Qπe(sj , aj ,m
∗)]

× πe(aj |sj)pπe(sj)

πb,θ0(aj |sj)pπb(sj)
pθ0(sj+1, rj ,mj |aj , sj)πb,θ0(aj |sj)pπb(sj)▽θ log p

πb

θ0
(sj+1, rj ,mj , aj , sj).
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The second equation holds by substituting pπe(sj) with pπe (sj)
pπb (sj)

pπb(sj) = ωπe(sj)p
πb(sj) and πe(aj |sj) with

πe(aj |sj)
πb,θ0

(aj |sj)πb,θ0(aj |sj). The last equation holds, using the definition of Qπe(s, a,m),

lim
T→∞

1

T

T−1∑
j=0

∑
τj−1,aj ,sj

πe(aj |sj)pπe(sj)

πb,θ0(aj |sj)pπb(sj)
πb,θ0(aj |sj)pπb(sj)× {▽θ log πb,θ0(aj |sj) + log pπb(sj)}

×
∑

sj+1,rj ,mj

[rj − ηπe + Eπe
a∗,m∗Qπe(sj+1, a

∗,m∗)− Em∗Qπe(sj , aj ,m
∗)]pθ0(sj+1, rj ,mj |aj , sj) = 0

Therefore, implementing the fact that the expectation of a score function is zero and utilizing the Markov property, we obtain
that,

D1 = E
[
ωπe(S)

πe(A|S)
πb,θ0(A|S)

{R+ Eπe
a,mQ

πe(S′, a,m)− EmQ
πe(S,A,m)− ηπe}S(ŌT−1)

]
.

Since (S,A,M,R, S′) is any arbitrary transaction tuple follows the corresponding distribution, we have that

D1 = E

[
1

T

T−1∑
t=0

ωπe(St)
πe(At|St)

πb,θ0(At|St)
{Rt + Eπe

a,mQ
πe(St+1, a,m)− EmQ

πe(St, At,m)− ηπe}S(ŌT−1)

]
.

F.1.3. D2

Finally, we focus on the derivation of D2. Note that in equation (31), D2 can be divided into two parts, where

D
(1)
2 = lim

T→∞

1

T

T−1∑
t=0

∑
τt

rtpθ0(st+1, rt|st, at,mt)π0(at|st)
∑
a′

pθ0(mt|st, a′)πe(a′|st)

×
t−1∏
j=0

pπe

θ0
(sj+1, rj ,mj , aj |sj)▽θ log p

πe

θ0
(st+1, rt|mt, st, at)× νθ0(s0),

and

D
(2)
2 = lim

T→∞

1

T

T−1∑
t=0

∑
at,mt,τt−1

pθ0(mt|st, at)πe(at|st)
∑

st+1,rt,a′

rtpθ0(st+1, rt|st, a′,mt)π0(a
′|st)

×
t−1∏
j=0

pπe

θ0
(sj+1, rj ,mj , aj |sj)

{
▽θ log pθ0(mt|st, at) +

t−1∑
j=0

[
▽θ log p

πe

θ0
(sj+1, rj ,mj |sj , aj)]

}
νθ0(s0),

note that here we switch the summation of a and a′ and change the subscript of the summation accordingly.

Part I (D(1)
2 ). Using the fact that the expectation of a score function is zero, we first obtain that

lim
T→∞

1

T

T−1∑
t=0

∑
τt

rθ0(st, at,mt)pθ0(st+1, rt|st, at,mt)π0(at|st)
∑
a′

pθ0(mt|st, a′)πe(a′|st)

×
t−1∏
j=0

pπe

θ0
(sj+1, rj ,mj , aj |sj)▽θ log p

πe

θ0
(st+1, rt|mt, st, at)× νθ0(s0)

=

lim
T→∞

1

T

T−1∑
t=0

∑
at,mt,τt−1

rθ0(st, at,mt)π0(at|st)
∑
a′

pθ0(mt|st, a′)πe(a′|st)
t−1∏
j=0

pπe

θ0
(sj+1, rj ,mj , aj |sj)

×
∑

st+1,rt

pθ0(st+1, rt|st, at,mt)▽θ log p
πe

θ0
(st+1, rt|mt, st, at)× νθ0(s0)

=0
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Therefore, it follows that

D
(1)
2 = lim

T→∞

1

T

T−1∑
t=0

∑
τt

[rt − rθ0(st, at,mt)]pθ0(st+1, rt|st, at,mt)π0(at|st)
∑
a′

pθ0(mt|st, a′)πe(a′|st)

×
t−1∏
j=0

pπe

θ0
(sj+1, rj ,mj , aj |sj)▽θ log p

πe

θ0
(st+1, rt|mt, st, at)× νθ0(s0).

Furthermore, since

lim
T→∞

1

T

T−1∑
t=0

∑
at,mt,τt−1

[
∑

st+1,rt

rtpθ0(st+1, rt|st, at,mt)− rθ0(st, at,mt)]π0(at|st)
∑
a′

pθ0(mt|st, a′)πe(a′|st)

×
t−1∏
j=0

pπe

θ0
(sj+1, rj ,mj , aj |sj)

t−1∑
j=0

▽θ log p
πe

θ0
(sj+1, rj |mj , sj , aj)× νθ0(s0) = 0,

D
(1)
2 can be further written as

D
(1)
2 = lim

T→∞

1

T

T−1∑
t=0

∑
τt

[rt − rθ0(st, at,mt)]pθ0(st+1, rt|st, at,mt)π0(at|st)
∑
a′

pθ0(mt|st, a′)πe(a′|st)

×
t−1∏
j=0

pπe

θ0
(sj+1, rj ,mj , aj |sj)

t∑
j=0

▽θ log p
πe

θ0
(sj+1, rj |mj , sj , aj)× νθ0(s0).

Then, following the same steps in the proof of the equality D1, we obtain that

D
(1)
2

⋆
= lim

T→∞

1

T

T−1∑
j=0

∑
τj

[rj − rθ0(sj , aj ,mj)]pθ0(sj+1, rj |sj , aj ,mj)π0(aj |sj)
∑
a′

pθ0(mj |sj , a′)πe(a′|sj)

×
j−1∏
k=0

pπe

θ0
(sk+1, rk,mk, ak|sk) νθ0(s0)▽θ log pθ0(sj+1, rj |sj , aj ,mj).

Similarly, using the equality ⋆⋆,

D
(1)
2

⋆⋆
= lim

T→∞

1

T

T−1∑
j=0

∑
sj ,aj ,mj ,rj ,sj+1

[rj − rθ0(sj , aj ,mj)]pθ0(sj+1, rj |sj , aj ,mj)π0(aj |sj)

×
∑
a′

pθ0(mj |sj , a′)πe(a′|sj)pπe(sj)▽θ log pθ0(sj+1, rj |sj , aj ,mj).

Replacing π0(aj |sj) with π0(aj |sj)
πb,θ0

(aj |sj)πb,θ0(aj |sj), pπe(sj) with pπe (sj)
pπb (sj)

pπb(sj) = ωπe(sj)p
πb(sj), and∑

a′ pθ0(mj |sj , a′)πe(a′|sj) with
∑

a′ pθ0
(mj |sj ,a′)πe(a

′|sj)
pθ0

(mj |sj ,aj)
pθ0(mj |sj , aj), we obtain that

D
(1)
2 = lim

T→∞

1

T

T−1∑
j=0

∑
sj ,aj ,mj ,rj ,sj+1

ωπe(sj)

∑
a′ pθ0(mj |sj , a′)πe(a′|sj)

pθ0(mj |sj , aj)
π0(aj |sj)
πb,θ0(aj |sj)

[rj − rθ0(sj , aj ,mj)]

× pθ0(sj+1, rj |sj , aj ,mj)pθ0(mj |sj , aj)πb,θ0(aj |sj)pπb(sj)▽θ log pθ0(sj+1, rj |sj , aj ,mj).

Further, since

lim
T→∞

1

T

T−1∑
j=0

∑
sj ,aj ,mj

ωπe(sj)

∑
a′ pθ0(mj |sj , a′)πe(a′|sj)

pθ0(mj |sj , aj)
π0(aj |sj)
πb,θ0(aj |sj)

pθ0(mj |sj , aj)πb,θ0(aj |sj)pπb(sj)

× ▽θ log p
πb

θ0
(mj , aj , sj)

∑
rj ,sj+1

[rj − rθ0(sj , aj ,mj)]pθ0(sj+1, rj |sj , aj ,mj) = 0,
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we have that

D
(1)
2 = lim

T→∞

1

T

T−1∑
j=0

∑
sj ,aj ,mj ,rj ,sj+1

ωπe(sj)

∑
a′ pθ0(mj |sj , a′)πe(a′|sj)

pθ0(mj |sj , aj)
π0(aj |sj)
πb,θ0(aj |sj)

[rj − rθ0(sj , aj ,mj)]

× pθ0(sj+1, rj |sj , aj ,mj)pθ0(mj |sj , aj)πb,θ0(aj |sj)pπb(sj)▽θ log p
πb

θ0
(sj+1, rj ,mj , aj , sj).

Then, combining the fact that the expectation of a score function is zero and the Markov property, we have that

D
(1)
2 = E

[
ωπe(S)

∑
a pθ0(M |S, a)πe(a|S)

pθ0(M |S,A)
π0(A|S)
πb,θ0(A|S)

[R− r(S,A,M)]S(ŌT−1)
]
. (33)

Part II (D(2)
2 ). Note that, taking the sum over rt and st+1, D(2)

2 can be equally represented as

lim
T→∞

1

T

T−1∑
t=0

∑
a′,at,mt,τt−1

rθ0(st, a
′,mt)π0(a

′|st)pθ0(mt|st, at)πe(at|st)
t−1∏
j=0

pπe

θ0
(sj+1, rj ,mj , aj |sj)

×
{
▽θ log pθ0(mt|st, at) +

t−1∑
j=0

[
▽θ log p

πe

θ0
(sj+1, rj ,mj |sj , aj)]

}
× νθ0(s0).

Taking the average over rt and st+1, and noticing that

lim
T→∞

1

T

T−1∑
t=0

∑
a′,at,mt,τt−1

rθ0(st, a
′,mt)π0(a

′|st)pθ0(mt|st, at)πe(at|st)
t−1∏
j=0

pπe

θ0
(sj+1, rj ,mj , aj |sj)

×
∑

st+1,rt

pθ0(st+1, rt|st, at,mt)▽θ log pθ0(st+1, rt|st, at,mt)νθ0(s0) = 0,

we can rewrite the D(2)
2 as

lim
T→∞

1

T

T−1∑
t=0

∑
a′,τt

rθ0(st, a
′,mt)π0(a

′|st)
t∏

j=0

pπe

θ0
(sj+1, rj ,mj , aj |sj)νθ0(s0)

t∑
j=0

▽θ log p
πe

θ0
(sj+1, rj ,mj |sj , aj).

Then, following the steps as we did in deriving D1, we first show that

lim
T→∞

1

T

T−1∑
t=0

∑
τt

ηGe

t∏
j=0

pπe

θ0
(sj+1, rj ,mj , aj |sj)νθ0(s0)

t∑
j=0

▽θ log p
πe

θ0
(sj+1, rj ,mj |sj , aj) = 0,

which follows that

D
(2)
2 = lim

T→∞

1

T

T−1∑
t=0

∑
a′,τt

[rθ0(st, a
′,mt)π0(a

′|st)− ηGe ]

t∏
j=0

pπe

θ0
(sj+1, rj ,mj , aj |sj)νθ0(s0)

t∑
j=0

▽θ log p
πe

θ0
(sj+1, rj ,mj |sj , aj).

Next, similarly, given the definition of QGe , following the steps in deriving D1 and combining with the trick of score
function together with the Markov property, we obtain that

D
(2)
2 = E[ωπe(S)

πe(A|S)
πb,θ0(A|S)

{
∑
a′

rθ0(S, a
′,M)π0(a

′|S)− ηGe + Eπe
a,mQ

Ge(S′, a,m)− EmQ
Ge(S,A,m)}S(ŌT−1)].

(34)
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Combining equation(33) and equation(34), we have that

D2 = E
[
ωπe(S)

{∑
a pθ0(M |S, a)πe(a|S)

pθ0(M |S,A)
π0(A|S)
πb,θ0(A|S)

[R− rθ0(S,A,M)] +
πe(A|S)
πb,θ0(A|S)

× {
∑
a′

rθ0(S, a
′,M)π0(a

′|S)− ηGe + Eπe
a,mQ

Ge(S′, a,m)− EmQ
Ge(S,A,m)}

}
S(ŌT−1)

]
.

Since (S,A,M,R, S′) is any arbitrary transaction tuple follows the corresponding distribution, we have that

D2 = E
[ 1
T

T−1∑
t=0

ωπe(St)
{∑

a pθ0(Mt|St, a)πe(a|St)

pθ0(Mt|St, At)

π0(At|St)

πb,θ0(At|St)
[Rt − rθ0(St, At,Mt)] +

πe(At|St)

πb,θ0(At|St)

× {
∑
a′

rθ0(St, a
′,Mt)π0(a

′|St)− ηGe + Eπe
a,mQ

Ge(St+1, a,m)− EmQ
Ge(St, At,m)}

}
S(ŌT−1)

]
.

F.1.4. DERIVATIVE OF IDEθ0(πe, π0)

Given C1, D1, and D2, the derivative of IDEθ0(πe, π0) is ηπe − ηGe + I1 − I2, where

I1 = E[ωπe(S)
πe(A|S)
πb,θ0(A|S)

{R− ηπe + Eπe
a,mQ

πe(S′, a,m)− EmQ
πe(S,A,m)}],

and

I2 = E
[
ωπe(S)

{∑
a pθ0(M |S, a)πe(a|S)

pθ0(M |S,A)
π0(A|S)
πb,θ0(A|S)

[R− rθ0(S,A,M)] +
πe(A|S)
πb,θ0(A|S)

× {
∑
a′

rθ0(S, a
′,M)π0(a

′|S) + Eπe
a,mQ

Ge(S′, a,m)− EmQ
Ge(S,A,m)− ηGe}

}]
.

F.2. EIF for Immediate Mediator Effect

Immediate Mediator Effect (IME) can be represented as

lim
T→∞

1

T

T−1∑
t=0

∑
τt

rtpθ0(st+1, rt|st, at,mt)π0(at|st)[
∑
a′

pθ0(mt|st, a′)πe(a′|st)− pθ0(mt|at, st)]

×
t−1∏
j=0

[
pπe

θ0
(sj+1, rj ,mj , aj |sj)

]
νθ0(s0). (35)

Taking the derivative of IMEθ0(πe, π0), we get that

∂IMEθ0(πe, π0)

∂θ0
= C2 +D2 −D3,

where

C2 = (35)× ▽θ log(νθ0(s0)) = E[IMEθ0(πe, π0)× S(ŌT−1)] = E[(ηGe − ηπe,0)× S(ŌT−1)],

D2 is derived in Appendix F.1.3, and

D3 = lim
T→∞

1

T

T−1∑
t=0

∑
τt

rtpθ0(st+1, rt|st, at,mt)pθ0(mt|st, at)π0(at|st)
t−1∏
j=0

[
pπe

θ0
(sj+1, rj ,mj , aj |sj)

]
×
[ t−1∑
j=0

[▽θ log pθ0(sj+1, rj ,mj |aj , sj)] + ▽θ log pθ0(st+1, rt,mt|st, at)
]
νθ0(s0),
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which can be represented as the sum of two parts. Specifically, D3 = D
(1)
3 +D

(2)
3 , where

D
(1)
3 = lim

T→∞

1

T

T−1∑
t=0

∑
τt

rtpθ0(st+1, rt|st, at,mt)pθ0(mt|st, at)π0(at|st)
t−1∏
j=0

[
pπe

θ0
(sj+1, rj ,mj , aj |sj)

]
× ▽θ log pθ0(st+1, rt,mt|st, at)νθ0(s0),

and

D
(2)
3 = lim

T→∞

1

T

T−1∑
t=0

∑
τt

rtpθ0(st+1, rt|st, at,mt)pθ0(mt|st, at)π0(at|st)
t−1∏
j=0

[
pπe

θ0
(sj+1, rj ,mj , aj |sj)

]
×

t−1∑
j=0

▽θ log pθ0(sj+1, rj ,mj |aj , sj)νθ0(s0).

F.2.1. D3

Part I (D(1)
3 ). First, using the fact that the expectation of a score function is 0, we notice that,

lim
T→∞

1

T

T−1∑
t=0

∑
τt

Em∗rθ0(st, at,m
∗)pθ0(st+1, rt|st, at,mt)pθ0(mt|st, at)π0(at|st)

×
t−1∏
j=0

[
pπe

θ0
(sj+1, rj ,mj , aj |sj)

]
▽θ log pθ0(st+1, rt,mt|st, at)νθ0(s0),

=

lim
T→∞

1

T

T−1∑
t=0

∑
at,τt−1

Em∗rθ0(st, at,m
∗)π0(at|st)

t−1∏
j=0

[
pπe

θ0
(sj+1, rj ,mj , aj |sj)

]
νθ0(s0)

×
∑

st+1,rt,mt

pθ0(st+1, rt,mt|st, at)▽θ log pθ0(st+1, rt,mt|st, at),

=0,

which follows that

D
(1)
3 =

lim
T→∞

1

T

T−1∑
t=0

∑
τt

[rt − Em∗rθ0(st, at,m
∗)]pθ0(st+1, rt|st, at,mt)pθ0(mt|st, at)π0(at|st)

×
t−1∏
j=0

[
pπe

θ0
(sj+1, rj ,mj , aj |sj)

]
νθ0(s0)▽θ log pθ0(st+1, rt,mt|st, at),

=
lim

T→∞

1

T

T−1∑
t=0

∑
st+1,rt,at,mt,st

[rt − Em∗rθ0(st, at,m
∗)]pθ0(st+1, rt,mt|st, at)π0(at|st)

×pπe(st)▽θ log pθ0(st+1, rt,mt|st, at).

Replacing the π0(at|st) with π0(at|st)
πb,θ0

(at|st)πb,θ0(at|st), and pπe(st) with pπe (st)
pπb (st)

pπb(st) = ωπe(st)p
πb(st), we obtain that

D
(1)
3 = lim

T→∞

1

T

T−1∑
t=0

∑
st+1,rt,at,mt,st

ωπe(st)
π0(at|st)
πb,θ0(at|st)

[rt − Em∗rθ0(st, at,m
∗)]

× pθ0(st+1, rt,mt|st, at)πb,θ0(at|st)pπb(st)▽θ log pθ0(st+1, rt,mt|st, at).
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Further, since

lim
T→∞

1

T

T−1∑
t=0

∑
at,st

ωπe(st)
π0(at|st)
πb,θ0(at|st)

πb,θ0(at|st)pπb(st)▽θ log p
πb

θ0
(at, st)

×
∑

st+1,rt,mt

[rt − Em∗rθ0(st, at,m
∗)]pθ0(st+1, rt,mt|st, at) = 0,

we have that

D
(1)
3 = lim

T→∞

1

T

T−1∑
t=0

∑
st+1,rt,at,mt,st

ωπe(st)
π0(at|st)
πb,θ0(at|st)

[rt − Em∗rθ0(st, at,m
∗)]

× pθ0(st+1, rt,mt|st, at)πb,θ0(at|st)pπb(st)▽θ log p
πb

θ0
(st+1, rt,mt, at, st).

Lastly, combining the fact that the expectation of a score function is 0 and the Markov property, we finalize the derivation of
D

(1)
3 with

D
(1)
3 = E

[
ωπe(S)

π0(A|S)
πb,θ0(A|S)

[R− Emrθ0(S,A,m)]S(ŌT−1)
]
. (36)

Part II (D(2)
3 ). We first rewrite the D(2)

3 as

lim
T→∞

1

T

T−1∑
t=0

∑
at,mt,τt−1

rθ0(st, at,mt)pθ0(mt|st, at)π0(at|st)
t−1∏
j=0

[
pπe

θ0
(sj+1, rj ,mj , aj |sj)

]
×

t−1∑
j=0

▽θ log pθ0(sj+1, rj ,mj |aj , sj)νθ0(s0).

Taking the additional average over s∗, r∗, m∗, and a∗, and noticing that

lim
T→∞

1

T

T−1∑
t=0

∑
at,mt,τt−1

rθ0(st, at,mt)pθ0(mt|st, at)π0(at|st)
t−1∏
j=0

[
pπe

θ0
(sj+1, rj ,mj , aj |sj)

]
×

∑
s∗,r∗,m∗,a∗

pθ0(s
∗, r∗,m∗|st, a∗)πe(a∗|st)▽θ log pθ0(s

∗, r∗,m∗|st, a∗)νθ0(s0) = 0,

we further represent D(2)
3 as

lim
T→∞

1

T

T−1∑
t=0

∑
τt

∑
m∗,a∗

pθ0(m
∗|st, a∗)rθ0(st, a∗,m∗)π0(a

∗|st)
t∏

j=0

[
pπe

θ0
(sj+1, rj ,mj , aj |sj)

]
×

t∑
j=0

▽θ log pθ0(sj+1, rj ,mj |aj , sj)νθ0(s0).

Note that we change the subscript of the summations accordingly. Then, following the steps we processed to derive the D1,
we first show that

lim
T→∞

1

T

T−1∑
t=0

∑
τt

ηπe,0

t∏
j=0

[
pπe

θ0
(sj+1, rj ,mj , aj |sj)

] t∑
j=0

▽θ log pθ0(sj+1, rj ,mj |aj , sj)νθ0(s0) = 0.

35



A Reinforcement Learning Framework for Dynamic Mediation Analysis

Therefore,

D
(2)
3 = lim

T→∞

1

T

T−1∑
t=0

∑
τt

[ ∑
m∗,a∗

rθ0(st, a
∗,m∗)pθ0(m

∗|st, a∗)π0(a∗|st)− ηπe,0

] t∏
j=0

[
pπe

θ0
(sj+1, rj ,mj , aj |sj)

]
×

t∑
j=0

▽θ log pθ0(sj+1, rj ,mj |aj , sj)νθ0(s0).

Next, using the equality properties ⋆ and ⋆⋆, together with the definition of Qπe,0(s, a,m) and the trick of score functions,
we can show that

D
(2)
3 = lim

T→∞

1

T

T−1∑
j=0

∑
τj

[ ∑
m∗,a∗

rθ0(st, a
∗,m∗)pθ0(m

∗|st, a∗)π0(a∗|st)− ηπe,0 + Eπe
a∗,m∗Qπe,0(sj+1, a

∗,m∗)

− Em∗Qπe,0(sj , aj ,m
∗)
] πe(aj |sj)pπe(sj)

πb,θ0(aj |sj)pπb(sj)
pθ0(sj+1, rj ,mj |aj , sj)

× πb,θ0(aj |sj)pπb(sj)▽θ log p
πb

θ0
(sj+1, rj ,mj , aj , sj).

Implementing the fact that the expectation of a score function is zero and utilizing the Markov property, we finally obtain
that,

D
(2)
3 = E

[
ωπe(S)

πe(A|S)
πb,θ0(A|S)

{
∑
a′

Em∼pθ0
(•|S,a′)rθ0(S, a

′,m)π0(a
′|S)

+ Eπe
a,mQ

πe,0(S′, a,m)− EmQ
πe,0(S,A,m)− ηπe,0}S(ŌT−1)

]
. (37)

Combining equation (36) and equation (37), we have that

D3 = E
[
ωπe(S)

{ π0(A|S)
πb,θ0(A|S)

[R− Emrθ0(S,A,m)] +
πe(A|S)
πb,θ0(A|S)

{
∑
a′

Em∼pθ0
(•|S,a′)rθ0(S, a

′,m)π0(a
′|S)

+ Eπe
a,mQ

πe,0(S′, a,m)− EmQ
πe,0(S,A,m)− ηπe,0}

}
S(ŌT−1)

]
.

Since (S,A,M,R, S′) is any arbitrary transaction tuple follows the corresponding distribution, we have that

D3 = E
[ 1
T

T−1∑
t=0

ωπe(St)
{ π0(At|St)

πb,θ0(At|St)
[Rt−Emrθ0(St, At,m)]+

πe(At|St)

πb,θ0(At|St)
{
∑
a′

Em∼p(•|St,a′)rθ0(St, a
′,m)π0(a

′|St)

+ Eπe
a,mQ

πe,0(St+1, a,m)− EmQ
πe,0(St, At,m)− ηπe,0}

}
S(ŌT−1)

]
.

F.2.2. EFFICIENT FUNCTION

Given C2, D2, and D3, the efficient influence function for IMEθ0(πe, π0) is ηGe − ηπe,0 + I2 − I3, where

I2 = E
[
ωπe(S)

{∑
a pθ0(M |S, a)πe(a|S)

pθ0(M |S,A)
π0(A|S)
πb,θ0(A|S)

[R− rθ0(S,A,M)] +
πe(A|S)
πb,θ0(A|S)

× {
∑
a′

rθ0(S, a
′,M)π0(a

′|S) + Eπe
a,mQ

Ge(S′, a,m)− EmQ
Ge(S,A,m)− ηGe}

}]
,

and

I3 = E
[
ωπe(S)

{ π0(A|S)
πb,θ0(A|S)

[R− Emrθ0(S,A,m)] +
πe(A|S)
πb,θ0(A|S)

{
∑
a′

Em∼pθ0
(•|S,a′)rθ0(S, a

′,m)π0(a
′|S)

+ Eπe
a,mQ

πe,0(S′, a,m)− EmQ
πe,0(S,A,m)− ηπe,0}

}]
.
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F.3. EIF for Delayed Direct Effect

Delayed Direct Effect (DDE) can be represented as

DDE(πe, π0) = lim
T→∞

1

T

T−1∑
t=0

∑
τt

rtp(st+1, rt|st, at,mt)p(mt|st, at)π0(at|st)

×
{ t−1∏

j=0

pπe(sj+1, rj ,mj , aj |sj)−
∑
ā∗
t−1

t−1∏
j=0

p(sj+1, rj |sj , aj ,mj)π0(aj |sj)p(mj |sj , a∗j )πe(a∗j |sj)
}
ν(s0). (38)

Taking the derivative of DDEθ0(πe, π0), we get that

∂DDEθ0(πe, π0)

∂θ0
= C3 +D3 −D4,

where

C3 = (38)× ▽θ log(νθ0(s0)) = E[DDEθ0(πe, π0)× S(ŌT−1)] = E[(ηπe,0 − ηG0)× S(ŌT−1)],

D3 is derived in Appendix F.2.1, and

D4 = lim
T→∞

1

T

T−1∑
t=0

∑
τt,ā∗

t−1

rtpθ0(st+1, rt,mt|st, at)π0(at|st)

t−1∏
j=0

pθ0(sj+1, rj |sj , aj ,mj)π0(aj |sj)pθ0(mj |sj , a∗j )πe(a∗j |sj)νθ0(s0)

{
▽θ log pθ0(st+1, rt,mt|st, at)︸ ︷︷ ︸

D
(1)
4

+

t−1∑
j=0

▽θ log pθ0(sj+1, rj |sj , aj ,mj)︸ ︷︷ ︸
D

(2)
4

+

t−1∑
j=0

▽θ log p
πe

θ0
(mj |sj , a∗j )︸ ︷︷ ︸

D
(3)
4

}
.

F.3.1. D4

Part I (D(1)
4 ). First, using the fact that the expectation of a score function is 0, we notice that,

lim
T→∞

1

T

T−1∑
t=0

∑
τt,ā∗

t−1

Em′rθ0(st, at,m
′)pθ0(st+1, rt,mt|st, at)π0(at|st)▽θ log pθ0(st+1, rt,mt|st, at)

t−1∏
j=0

pθ0(sj+1, rj |sj , aj ,mj)π0(aj |sj)pθ0(mj |sj , a∗j )πe(a∗j |sj)νθ0(s0),

=

lim
T→∞

1

T

T−1∑
t=0

∑
at,τt−1,ā∗

t−1

Em′rθ0(st, at,m
′)π0(at|st)

t−1∏
j=0

pθ0(sj+1, rj |sj , aj ,mj)π0(aj |sj)pθ0(mj |sj , a∗j )πe(a∗j |sj)∑
st+1,rt,mt

pθ0(st+1, rt,mt|st, at)▽θ log pθ0(st+1, rt,mt|st, at)νθ0(s0),

=0,
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which follows that

D
(1)
4 =

lim
T→∞

1

T

T−1∑
t=0

∑
τt,ā∗

t−1

[rt − Em′rθ0(st, at,m
′)]pθ0(st+1, rt,mt|st, at)π0(at|st)▽θ log pθ0(st+1, rt,mt|st, at)

t−1∏
j=0

pθ0(sj+1, rj |sj , aj ,mj)π0(aj |sj)pθ0(mj |sj , a∗j )πe(a∗j |sj)νθ0(s0),

=
lim

T→∞

1

T

T−1∑
t=0

∑
st+1,rt,mt,at,st

[rt − Em′rθ0(st, at,m
′)]pθ0(st+1, rt,mt|st, at)π0(at|st)pGθ0(st)

▽θ log pθ0(st+1, rt,mt|st, at).

The last equation holds, since∑
s0,τt−1,ā∗

t−1

t−1∏
j=0

pθ0(sj+1, rj |sj , aj ,mj)π0(aj |sj)pθ0(mj |sj , a∗j )πe(a∗j |sj)νθ0(s0) = pGθ0(st).

Replacing the π0(at|st) with π0(at|st)
πb,θ0

(at|st)πb,θ0(at|st), and pGθ0(st) with
pG
θ0

(st)

pπb (st)
pπb(st) = ωG

θ0
(st)p

πb(st), we obtain that

D
(1)
4 = lim

T→∞

1

T

T−1∑
t=0

∑
st+1,rt,mt,at,st

ωG
θ0(st)

π0(at|st)
πb,θ0(at|st)

[rt − Em′rθ0(st, at,m
′)]

pθ0(st+1, rt,mt|st, at)πb,θ0(at|st)pπb(st)▽θ log pθ0(st+1, rt,mt|st, at).

Further, since

lim
T→∞

1

T

T−1∑
t=0

∑
at,st

ωG
θ0(st)

π0(at|st)
πb,θ0(at|st)

πb,θ0(at|st)pπb(st)▽θ log p
πb

θ0
(at, st)

×
∑

st+1,rt,mt

[rt − Em′rθ0(st, at,m
′)]pθ0(st+1, rt,mt|st, at) = 0,

we have that

D
(1)
4 = lim

T→∞

1

T

T−1∑
t=0

∑
st+1,rt,at,mt,st

ωG
θ0(st)

π0(at|st)
πb,θ0(at|st)

[rt − Em′rθ0(st, at,m
′)]

× pθ0(st+1, rt,mt|st, at)πb,θ0(at|st)pπb(st)▽θ log p
πb

θ0
(st+1, rt,mt, at, st).

Lastly, combining the fact that the expectation of a score function is 0 and the Markov property, we finalize the derivation of
D

(1)
4 with

D
(1)
4 = E

[
ωG
θ0(S)

π0(A|S)
πb,θ0(A|S)

[R− Emrθ0(S,A,m)]S(ŌT−1)
]
. (39)

Part II (D(2)
4 ). Taking the additional average over s′, r′, a′, m′, and ã, and noticing that

lim
T→∞

1

T

T−1∑
t=0

∑
at,mt,τt−1,ā∗

t−1

rθ0(st, at,mt)pθ0(mt|st, at)π0(at|st)

×
t−1∏
j=0

pθ0(sj+1, rj |sj , aj ,mj)π0(aj |sj)pθ0(mj |sj , a∗j )πe(a∗j |sj)νθ0(s0)

×
∑

s′,r′,a′,m′,ã

pθ0(s
′, r′|st, a′,m′)π0(a

′|st)pθ0(m′|st, ã)πe(ã|st)▽θ log pθ0(s
′, r′|st, a′,m′) = 0,
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we further represent D(2)
4 as

lim
T→∞

1

T

T−1∑
t=0

∑
τt,ā∗

t

∑
m′,a′

pθ0(m
′|st, a′)rθ0(st, a′,m′)π0(a

′|st)

×
t∏

j=0

pθ0(sj+1, rj |sj , aj ,mj)π0(aj |sj)pθ0(mj |sj , a∗j )πe(a∗j |sj)

×
t∑

j=0

▽θ log pθ0(sj+1, rj |sj , aj ,mj)νθ0(s0).

Note that we change the subscript of the summations accordingly. Then, following the steps we processed to derive the D1,
we first show that

lim
T→∞

1

T

T−1∑
t=0

∑
τt,ā∗

t

ηG0

t∏
j=0

pθ0(sj+1, rj |sj , aj ,mj)π0(aj |sj)pθ0(mj |sj , a∗j )πe(a∗j |sj)

×
t∑

j=0

▽θ log pθ0(sj+1, rj |aj , sj ,mj)νθ0(s0) = 0.

Therefore,

D
(2)
4 = lim

T→∞

1

T

T−1∑
t=0

∑
τt,ā∗

t

[ ∑
m′,a′

pθ0(m
′|st, a′)rθ0(st, a′,m′)π0(a

′|st)− ηG0

]
t∏

j=0

pθ0(sj+1, rj |sj , aj ,mj)π0(aj |sj)pθ0(mj |sj , a∗j )πe(a∗j |sj)
t∑

j=0

▽θ log pθ0(sj+1, rj |aj , sj ,mj)νθ0(s0).

Similar to ⋆⋆, we have that∑
s0,τt−1,ā∗

t−1

t−1∏
j=0

pθ0(sj+1, rj |sj , aj ,mj)π0(aj |sj)pθ0(mj |sj , a∗j )πe(a∗j |sj)νθ0(s0)
⋆⋆⋆
= pGθ0(st).

Next, using the equality properties ⋆ and ⋆ ⋆ ⋆, together with the definition of QG0(s, a,m) and the trick of score functions,
we can show that

D
(2)
4 = lim

T→∞

1

T

T−1∑
j=0

∑
sj+1,rj ,aj ,sj ,mj ,a∗

j

[ ∑
m′,a′

pθ0(m
′|sj , a′)rθ0(sj , a′,m′)π0(a

′|sj)− ηG0 + EG
a,mQ

G0(sj+1, a,m)
]

× pθ0(sj+1, rj |sj , aj ,mj)π0(aj |sj)pθ0(mj |sj , a∗j )πe(a∗j |sj)pG(sj)▽θ log pθ0(sj+1, rj |aj , sj ,mj). (40)

Then, following the steps in deriving D1, we have that

D
(2)
4 = lim

T→∞

1

T

T−1∑
j=0

∑
sj+1,rj ,aj ,sj ,mj

ωG
θ0(sj)

∑
a′ pθ0(mj |sj , a′)πe(a′|sj)

pθ0(mj |sj , aj)
π0(aj |sj)
πb,θ0(aj |sj)

×
[ ∑
m′,a′

pθ0(m
′|sj , a′)rθ0(sj , a′,m′)π0(a

′|sj)− ηG0 + EG
a,mQ

G0(sj+1, a,m)−QG0(sj , aj ,mj)
]

× pθ0(sj+1, rj |sj , aj ,mj)pθ0(mj |sj , aj)πb,θ0(aj |sj)pπb(sj)▽θ log p
πb

θ0
(sj+1, rj ,mj , aj , sj).

Finally, combining the fact that the expectation of a score function is zero and the Markov property, we have that

D
(2)
4 = E

[{ ∑
m′,a′

pθ0(m
′|S, a′)rθ0(S, a′,m′)π0(a

′|S)− ηG0 + EG
a,mQ

G0(S′, a,m)−QG0(S,A,M)
}

× ωG
θ0(S)

∑
a′ pθ0(M |S, a′)πe(a′|S)

pθ0(M |S,A)
π0(A|S)
πb,θ0(A|S)

S(ŌT−1)
]
. (41)
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Part III (D(3)
4 ). Following the same steps used in deriving the equation (40), we can show that,

D
(3)
4 = lim

T→∞

1

T

T−1∑
j=0

∑
aj ,sj ,mj ,a∗

j

∑
sj+1,rj

[ ∑
m′,a′

pθ0(m
′|sj , a′)rθ0(sj , a′,m′)π0(a

′|sj)− ηG0 + EG
a,mQ

G0(sj+1, a,m)
]

× pθ0(sj+1, rj |sj , aj ,mj)π0(aj |sj)pθ0(mj |sj , a∗j )πe(a∗j |sj)pG(sj)▽θ log pθ0(mj |sj , a∗j ). (42)

Based on the definition of QG0 and the corresponding Bellman equation, we have that

E
[ ∑
m′,a′

pθ0(m
′|sj , a′)rθ0(sj , a′,m′)π0(a

′|sj)− ηG0 + EG
a,mQ

G0(sj+1, a,m)|sj , aj ,mj

]
= QG0(sj , aj ,mj).

Therefore, (42) can be rewritten as

lim
T→∞

1

T

T−1∑
j=0

∑
sj ,mj ,aj

[∑
a′

QG0(sj , a
′,mj)π0(a

′|sj)
]
pθ0(mj |sj , aj)πe(aj |sj)pG(sj)▽θ log pθ0(mj |sj , aj).

Notice that

lim
T→∞

1

T

T−1∑
j=0

∑
sj ,mj ,aj

{ ∑
a′,m∗

j

QG0(sj , a
′,m∗

j )pθ0(m
∗
j |sj , aj)π0(a′|sj)

}
pθ0(mj |sj , aj)πe(aj |sj)pG(sj)

×▽θ log pθ0(mj |sj , aj)

=
lim

T→∞

1

T

T−1∑
j=0

∑
sj ,aj

{ ∑
a′,m∗

j

QG0(sj , a
′,m∗

j )pθ0(m
∗
j |sj , aj)π0(a′|sj)

}
πe(aj |sj)pG(sj)

∑
mj

pθ0(mj |sj , aj)

×▽θ log pθ0(mj |sj , aj

)

=0.

Therefore, we have that

D
(3)
4 = lim

T→∞

1

T

T−1∑
j=0

∑
sj ,mj ,aj

{[∑
a′

QG0(sj , a
′,mj)π0(a

′|sj)
]
−

∑
a′,m∗

j

QG0(sj , a
′,m∗

j )pθ0(m
∗
j |sj , aj)π0(a′|sj)

}
× pθ0(mj |sj , aj)πe(aj |sj)pG(sj)▽θ log pθ0(mj |sj , aj).

Following the same steps we used in getting the final expression of D(1)
4 , we can show that

D
(3)
4 = E

[
ωG
θ0(S)

πe(A|S)
πb,θ0(A|S)

{
[
∑
a′

QG0(S, a′,M)π0(a
′|S)

]
−

∑
a′,m′

QG0(S, a′,m′)pθ0(m
′|S,A)π0(a′|S)

}
S(ŌT−1)

]
.

(43)

Combining D(1)
4 , D(2)

4 , and D(3)
4 , we have that

D4 = E
[
ωG(S)

π0(A|S)
πb(A|S)

[{
R− Emr(S,A,m)

}
+ ρ(S,A,M)

{
Eπ0

a′,mr(S, a
′,m) + EG

a,mQ
G0(S′, a,m)

−QG0(S,A,M)− ηG0

}]
+ ωG(S)

πe(A|S)
πb(A|S)

∑
a

π0(a|S)
{
QG0(S, a,M)−

∑
m

p(m|S,A)QG0(S, a,m)
}]
.

Since (S,A,M,R, S′) is any arbitrary transaction tuple follows the corresponding distribution, we have that

D4 = E
[ 1
T

T−1∑
t=0

ωG(St)
π0(At|St)

πb(At|St)

[{
Rt−Emr(St, At,m)

}
+ρ(St, At,Mt)

{
Eπ0

a′,mr(St, a
′,m)+EG

a,mQ
G0(St+1, a,m)

−QG0(St, At,Mt)− ηG0

}]
+ωG(St)

πe(At|St)

πb(At|St)

∑
a

π0(a|St)
{
QG0(St, a,Mt)−

∑
m

p(m|St, At)Q
G0(St, a,m)

}]
.
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F.3.2. EFFICIENT FUNCTION

Given C3, D3, and D4, the efficient influence function for DDEθ0(πe, π0) is ηπe,0 − ηG0 + I3 − I4, where

I3 = E
[
ωπe(S)

{ π0(A|S)
πb,θ0(A|S)

[R− Emrθ0(S,A,m)] +
πe(A|S)
πb,θ0(A|S)

{
∑
a′

Em∼pθ0
(•|S,a′)rθ0(S, a

′,m)π0(a
′|S)

+ Eπe
a,mQ

πe,0(S′, a,m)− EmQ
πe,0(S,A,m)− ηπe,0}

}]
,

and

I4 = E
[
ωG(S)

π0(A|S)
πb(A|S)

[{
R− Emr(S,A,m)

}
+ ρ(S,A,M)

{
Eπ0

a′,mr(S, a
′,m) + EG

a,mQ
G0(S′, a,m)

−QG0(S,A,M)− ηG0

}]
+ ωG(S)

πe(A|S)
πb(A|S)

∑
a

π0(a|S)
{
QG0(S, a,M)−

∑
m

p(m|S,A)QG0(S, a,m)
}]
.

F.4. EIF for Delayed Mediator Effect

Delayed Mediator Effect (DME) can be represented as

DME(πe, π0) = lim
T→∞

1

T

T−1∑
t=0

∑
τt

rtp(st+1, rt|st, at,mt)p(mt|st, at)π0(at|st)

×
{ ∑

ā∗
t−1

t−1∏
j=0

p(sj+1, rj |sj , aj ,mj)π0(aj |sj)p(mj |sj , a∗j )πe(a∗j |sj)−
t−1∏
j=0

pπ0(sj+1, rj ,mj , aj |sj)
}
ν(s0). (44)

Taking the derivative of DMEθ0(πe, π0), we get that

∂DMEθ0(πe, π0)

∂θ0
= C4 +D4 −D5,

where

C4 = (44)× ▽θ log(νθ0(s0)) = E[DMEθ0(πe, π0)× S(ŌT−1)] = E[(ηG0 − ηπ0)× S(ŌT−1)],

D4 is derived in Appendix F.3.1, and

D5 = lim
T→∞

1

T

T−1∑
t=0

∑
τt

rt

t∏
j=0

pπ0

θ0
(sj+1, rj ,mj , aj |sj)

t∑
j=0

[
▽θ log p

π0

θ0
(sj+1, rj ,mj , aj |sj)] × νθ0(s0),

Notice that D5 is similar as D1, and can be derived similarly as D1 by replacing the πe in D1 with π0. Therefore, with the
definition of Qπ0(s, a,m), we can show that

D5 = E
[
ωπ0(S)

π0(A|S)
πb,θ0(A|S)

{R+
∑
a′

EmQ
π0(S′, a′,m)π0(a

′|S′)− EmQ
π0(S,A,m)− ηπ0}S(ŌT−1)

]
.

Since (S,A,M,R, S′) is any arbitrary transaction tuple follows the corresponding distribution, we have that

D5 = E
[ 1
T

T−1∑
t=0

ωπ0(St)
π0(At|St)

πb,θ0(At|St)
{Rt +

∑
a′

EmQ
π0(St+1, a

′,m)π0(a
′|St+1)− EmQ

π0(St, At,m)− ηπ0}S(ŌT−1)
]
.

F.4.1. EFFICIENT FUNCTION

Given C4, D4, and D5, the efficient influence function for DMEθ0(πe, π0) is ηG0 − ηπ0 + I4 − I5, where

I4 = E
[
ωG(S)

π0(A|S)
πb(A|S)

[{
R− Emr(S,A,m)

}
+ ρ(S,A,M)

{
Eπ0

a′,mr(S, a
′,m) + EG

a,mQ
G0(S′, a,m)

−QG0(S,A,M)− ηG0

}]
+ ωG(S)

πe(A|S)
πb(A|S)

∑
a

π0(a|S)
{
QG0(S, a,M)−

∑
m

p(m|S,A)QG0(S, a,m)
}]
.

41



A Reinforcement Learning Framework for Dynamic Mediation Analysis

and

I5 = E
[
ωπ0(S)

π0(A|S)
πb,θ0(A|S)

{R+
∑
a′

EmQ
π0(S′, a′,m)π0(a

′|S′)− EmQ
π0(S,A,m)− ηπ0}

]
.

F.5. Proof of the Equality ⋆

The equality can be proved with the following three steps:

Step 1. We first exchange the summation of t and j in the first line of the equation D1, which yields that

D1 = lim
T→∞

1

T

T−1∑
j=0

T−1∑
t=j

∑
τt

[rt − ηπe ]

t∏
k=0

pπe

θ0
(sk+1, rk,mk, ak|sk)

×
[
▽θ log p

πe

θ0
(sj+1, rj ,mj , aj |sj)] × νθ0(s0). (45)

Step 2. Then we split the summation
∑T−1

t=j into t = j and
∑T−1

t=j+1, and split the product
∏t

k=0 into
∏j

k=0 and
∏t

k=j+1,
which leads to

D1 = lim
T→∞

1

T

T−1∑
j=0

{∑
τj

[rj − ηπe ] +

T−1∑
t=j+1

∑
τt

[rt − ηπe ]

t∏
k=j+1

pπe

θ0
(sk+1, rk,mk, ak|sk)

}

×
j∏

k=0

pπe

θ0
(sk+1, rk,mk, ak|sk)

[
▽θ log p

πe

θ0
(sj+1, rj ,mj , aj |sj)] × νθ0(s0). (46)

Step 3. By the definition of Qπe (see equation (2)), we have that

T−1∑
t=j+1

∑
τt

[rt − ηπe ]

t∏
k=j+1

pπe

θ0
(sk+1, rk,mk, ak|sk)

= Eπe
mj+1,aj+1

Qπe(sj+1, aj+1,mj+1)

= Eπe
a∗,m∗Qπe(sj+1, a

∗,m∗).

Substituting this equation, we conclude the proof of ⋆ with that

D1 = lim
T→∞

1

T

T−1∑
j=0

{∑
τj

[rj − ηπe ] + Eπe
a∗,m∗Qπe(sj+1, a

∗,m∗)
}

×
j∏

k=0

pπe

θ0
(sk+1, rk,mk, ak|sk)

[
▽θ log p

πe

θ0
(sj+1, rj ,mj , aj |sj)] νθ0(s0).

G. Settings for Numerical Examples
G.1. Toy Example 1 & Toy Example 2

Settings. We consider a scenario with discrete states, actions, mediators, and rewards. We set time T = 50, and
S0 for each trajectory is sampled from a Bernoulli distribution with a mean probability of 0.5. Denote the sigmoid
function as expit(·). Following the behavior policy, the action At ∈ {0, 1} is sampled from a Bernoulli distribution, where
Pr(At = 1|St) = expit(1.0−2.0St). Observing St andAt, the mediatorMt ∈ {0, 1} is drawn from a Bernoulli distribution
with Pr(Mt = 1|St, At) = expit(1.0−1.5St+2.5At). The distributions ofRt and St+1 are both Bernoulli and conditional
on St,At, andMt. Specifically, the reward distribution ofRt ∈ {0, 10} satisfies that Pr(Rt = 10|St, At,Mt) = expit(1.0+
2.0St − 1.0At − 2.5Mt), while the distribution of next state St+1 ∈ {0, 1} satisfies that Pr(St+1 = 1|St, At,Mt) =
expit(.5+3.0St−2.5At− .5Mt). We are interested in estimating the treatment effect of the target policy πe, which applies
a treatment with Pr(At = 1|St) = expit(1.5+1.0St), compared to the control policy π0, which always applies no treatment
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(i.e., Pr(At = 1) = 0). Monte Carlo (MC) simulations are used to calculate the oracle distributions of ω(·) and Q(·), and the
oracle values of η(·), IDE(πe, π0), IME(πe, π0), DDE(πe, π0), and DME(πe, π0). Based on 40K simulated trajectories with
1K observations each, we obtained that IDE = −1.277, IME = −1.222, DDE = −2.982, and DME = −.085. Considering
the true distributions of Qπe , Qπe,a0, Qπe,a0∗, QG, and Qa0 , we approximate each of them by assuming linear equation
models (Shi et al., 2022a).

Misspecification. To misspecify the ωπe , we add .25 to the ωπe(St = 1) and subtract .25 from the ωπe(St = 0). Similarly,
we subtract .3 from the ωa0(St = 1) (ωG(St = 1)) and add .3 to the ωa0(St = 0) (ωG(St = 0)). For Q(·), and r functions,
we inject Gaussian noises into each parameter involved in the true model. For the misspecification of pm and πb, we multiply
the true value by a random variable drawn from a bounded uniform distribution and then clip the probabilities to ensure that
they are within the range of .01 and .99.

G.2. Semi-Synthetic Data

The spaces for reward, state, and mediator are continuous, and the action space is binary. Specifically, the semi-synthetic
data is generated as follows. The initial states are i.i.d. sampled from the standard normal distribution. πb follows a Bernoulli
distribution, satisfying that Pr(At = 1) = Pr(At = 0) = .5. We consider a 2-dimensional mediator, where Mt,1 and Mt,2

are independent and normally distributed with a standard deviation of 2. While the mean of Mt,1 is
√
|St|+ (At − .5), the

mean of Mt,2 is .5(At − .5) ∗
√
|St| − .5St. We set Rt = St+1, and Rt is drwan from a normal distribution with a mean of

.75[St +
√
|St|+ (1 +

√
|Mt1|+ |Mt2|)(At − .5)] + 1.5(Mt1 +Mt2) and a standard deviation of 2. The control policy

always takes actionAt = 0, while the target policy follows a Bernoulli distribution with Pr(At = 1) = expit(.7∗St). Monte
Carlo (MC) simulations are used to calculate the oracle the oracle values of η(·), IDE(πe, π0), IME(πe, π0), DDE(πe, π0),
and DME(πe, π0). Based on 20K simulated trajectories with 6400 observations each, we obtained that IDE = 2.680,
IME = 3.654, DDE = 1.244, and DME = .689.

H. Baseline Estimators
H.1. Baseline DM

Following the definitions of the direct and indirect effect in Robins & Greenland (1992), the first set of baseline estimators we
considered are constructed by inputting estimated probability functions directly. Specifically, the estimator for IDE(πe, π0)
is

1

NT

∑
i,t,a,m

{
r(Si,t, a,m)−

∑
a′

r(Si,t, a
′,m)π0(a

′|Si,t)
}
p(m|Si,t, a)πe(a|Si,t),

and the estimator for IME(πe, π0) is

1

NT

∑
i,t,a,m

r(Si,t, a,m)
{∑

a′

p(m|Si,t, a
′)πe(a

′|Si,t)− p(m|Si,t, a)
}
π0(a|Si,t).

H.2. Baseline IPW

The inverse probability weighting estimators, proposed in Lange et al. (2012) and Hong et al. (2010), are the second set of
baseline estimators. Specifically, the estimator for IDE(πe, π0) is

1

NT

∑
i,t

πe(Ai,t|Si,t)− π0(Ai,t|Si,t)ρ(S,A,M)

πb(Ai,t|Si,t)
Ri,t

and the estimator for IME(πe, π0) is

1

NT

∑
i,t

π0(Ai,t|Si,t)

πb(Ai,t|Si,t)
{ρ(S,A,M)− 1}Ri,t.
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H.3. Baseline MR

Finally, the multiply robust estimators, proposed in Tchetgen & Shpitser (2012), are the third set of baseline estimators.
Specifically, the estimator for ηπ is

1

NT

∑
i,t

π(Ai,t|Si,t)

πb(Ai,t|Si,t)
[Ri,t − r(Si,t, Ai,t)] + r(Si,t, π)

and the estimator for ηGe is

1

NT

∑
i,t

{π0(Ai,t|Si,t)

πb(Ai,t|Si,t)
ρ(S,A,M)[Ri,t − r(Si,t,Mi,t, Ai,t)]+

πe(Ai,t|Si,t)

πb(Ai,t|Si,t)
[r(Si,t, π0,Mi,t)−

∫
m

p(m|Si,t, Ai,t)r(Si,t, π0,m)] + r(Si,t, π0, πe)
}
,

where r(Si,t, π0, πe) =
∑

a,a′,m r(Si,t, a
′,m)π0(a

′|Si,t)p(m|Si,t, a)πe(a|Si,t). Plugging in these estimators, we then get
the corresponding estimators for IDE(πe, π0) and IME(πe, π0).

I. Estimating Optimal Policy
To estimate the optimal policy, we first estimate a Q function based on the observational data, following the same methods
described in Section 5.4. Specifically, let

Q(s, a,m) =
∑
t≥0

E[Rt − η],

which leads to a Bellmen equation model, such that

Q(St, At,Mt) =
∑

E[Rt +
∑
a

∫
m

EQ(St+1, a,m)− η].

We then approximate the Q function using linear sieves. Finally, the estimated optimal policy is defined as

π̂opt(s) = argmax
a∈A

∑
a

∫
m

EQ̂(s, a,m).

It is worth noting that we used cross-validation to estimate the ATE of π̂opt. To be more specific, we divide the observed
trajectories into two folds. In each round k, we first estimate the π̂k

opt based on the trajectories within fold k, and then
estimate the ATE of π̂k

opt on another fold of trajectories.

J. Additional Numerical Experiments
In this section, we conducted additional numerical experiments to evaluate the estimation performance of the proposed
estimators under diverse settings.

J.1. Performance Under Tabular Setting

First, we investigate the estimation performance under the tabular setting as discussed in the toy examples (see Section 7.2).
Results are summarized in Figure 7. Similar to what we concluded from the semi-synthetic simulation in Section 7.3, all
three sets of the proposed estimators provide unbiased estimation for all four effect components, with the MSE decreasing
continuously as the sample size increases. In contrast, all baseline estimators ignoring the fact of state transition continue to
yield biased estimates no matter how large the sample size is.

J.2. Impact of Variance on Performance

Second, under the semi-synthetic data setting that we used in Section 7.3, we further vary the variances of the random noises
of states, mediators, and rewards. Specifically, we considered three settings where the standard deviation of the random
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Figure 7. The bias and logMSE of various estimators under the setting with discrete spaces. The results are aggregated over 200 random
seeds.

Figure 8. The logBias and the logMSE of estimators for IDE, under different data generation scenarios. Fix T = 50.

noise takes values of 1, 2, and 3, i.e., σm = σs = σr = 1, σm = σs = σr = 2, and σm = σs = σr = 3. Results are
summarized in Figure 8, Figure 9, Figure 10, and Figure 11. For each choice of the variance, the proposed MR estimators
always achieve the smallest bias and MSE. While all the baseline estimators and MIS estimators continue to provide biased
estimates with non-decreasing MSE, we observe that the difference between DM and MR estimators becomes smaller as the
variance increases.

J.3. Multidimensional State and Mediator

Finally, we investigate the estimation performance in a more complicated system where both the state and mediator are
multi-dimensional. Specifically, we set the number of state variables to be 2 and the number of mediators to be 2. The data
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Figure 9. The logBias and the logMSE of estimators for IME, under different data generation scenarios. Fix T = 50.

Figure 10. The logBias and the logMSE of estimators for DDE, under different data generation scenarios. Fix T = 50.

generating mechanism is as follows:

S0,i ∼ N (0, 1), for i ∈ {1, 2};
At ∼ πb = Bernoulli(.5);

Mt1 ∼ N
(
.5

(√
|St,1|+

√
|St,2|

)
+ (At − .5) , 1

)
;

Mt2 ∼ N
(
−.25 (St,1 + St,2) + .25 (At − .5)

(√
|St,1|+

√
|St,2|

)
, 1

)
;

St+1,1 ∼ N
(
.75

{
St,1 +

√
|St,1|+

(
1 +

√
|Mt1|+ |Mt2|

)
(At − .5)

}
+ 1.5 {Mt1 +Mt2} , 1

)
;

St+1,2 ∼ N
(
.75

{
St,2 +

√
|St,2|+

(
1 +

√
|Mt1|+ |Mt2|

)
(At − .5)

}
+ 1.5 {Mt1 +Mt2} , 1

)
;

Rt ∼ N
(
.75

{
.5

(
St,1 + St,2 +

√
|St,1|+

√
|St,2|

)
+

(
1 +

√
|Mt1|+ |Mt2|

)
(At − .5)

}
+

3

2
{Mt1 +Mt2} , 1

)
;

πe ∼ Bernoulli (expit (.3 (St,1 + St,2))) ;

a0 = 0.
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Figure 11. The logBias and the logMSE of estimators for DME, under different data generation scenarios. Fix T = 50.

Figure 12. The logBias and the logMSE of estimators, under settings with multidimensional state. Fix T = 100.

The results are summarized in Figure 12 and Figure 13, which show the same trend as the semi-synthetic simulation in
Section 7.3.
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Figure 13. The logBias and the logMSE of estimators, under settings with multidimensional state. Fix N = 100.
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