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Abstract
Reinforcement learning (RL) is a powerful tech-
nique that allows an autonomous agent to learn
an optimal policy to maximize the expected re-
turn. The optimality of various RL algorithms
relies on the stationarity assumption, which re-
quires time-invariant state transition and reward
functions. However, deviations from stationarity
over extended periods often occur in real-world
applications like robotics control, health care and
digital marketing, resulting in suboptimal poli-
cies learned under stationary assumptions. In this
paper, we propose a model-based doubly robust
procedure for testing the stationarity assumption
and detecting change points in offline RL settings
with certain degree of homogeneity. Our proposed
testing procedure is robust to model misspecifi-
cations and can effectively control type-I error
while achieving high statistical power, especially
in high-dimensional settings. Extensive compar-
ative simulations and a real-world interventional
mobile health example illustrate the advantages
of our method in detecting change points and op-
timizing long-term rewards in high-dimensional,
non-stationary environments.

1. Introduction
Reinforcement learning (RL, Sutton & Barto, 2018) has
become increasingly popular in various fields, including
video games (Mnih et al., 2015; Shao et al., 2019), robotics
(Kober et al., 2013; Kilinc & Montana, 2022), mobile health
(Liao et al., 2020; Luckett et al., 2020; Shi et al., 2022b) and
ridesharing (Xu et al., 2018; Shi et al., 2022a). However, the
fundamental online learning paradigm of RL, which requires
the agent to iteratively and extensively collect experience by
interacting with the environments, makes these algorithms
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inapplicable to real-world domains such as autonomous
driving (Shalev-Shwartz et al., 2016; Kiran et al., 2021) and
precision medicine (Murphy, 2003; Qian & Murphy, 2011;
Zhu et al., 2017; Raghu et al., 2017; Wang et al., 2018;
Kosorok & Laber, 2019; Qi et al., 2020; Liu et al., 2020;
Cai et al., 2021; Nie et al., 2021; Li et al., 2022), where
online data collection can be costly and risky. To address
this challenge, offline RL algorithms have emerged in recent
years. These algorithms allow an offline RL agent to learn
from a static dataset containing transition data collected by
a behavior policy without additional online interactions with
the environment (Fujimoto et al., 2019; Kumar et al., 2019;
Levine et al., 2020; Jin et al., 2021; Uehara & Sun, 2021;
Xie et al., 2021; Shi et al., 2022c; Bai et al., 2022; Rezaeifar
et al., 2022; Liao et al., 2022; Zhou et al., 2022; 2023).

Motivations Most of the state-of-art RL algorithms rely on
the assumption that the underlying Markov Decision Pro-
cess (MDP) is stationary, requiring the system dynamics
to be temporally invariant. However, this assumption can
be highly restrictive in many real-world problems, such as
traffic signal control (Padakandla et al., 2020; Alegre et al.,
2021) and mobile health (Liao et al., 2020; Li et al., 2022).
In traffic control, for example, traffic flow rates in different
lanes can be distinctive between peak and off-peak hours,
and queue lengths can vary significantly depending on dif-
ferent traffic patterns. Since traffic flow patterns change
dynamically over time, the stationarity assumption is likely
to be violated. Directly applying an RL algorithm derived
under stationarity assumptions may result in a suboptimal
policy, potentially causing longer waiting time and traffic
congestion.

Another motivating example is the Intern Health Study (IHS,
Sen et al., 2010; NeCamp et al., 2020), a one-year mo-
bile health-based mirco-randomized trial targeting first-year
training physician in the United States. One goal of this
study is to investigate the effectiveness of just-in-time push
notifications, including tips and life insights, on improv-
ing interns’ physical activity, sleep duration and mental
health, while minimizing user burden and expense. The
study collected data on interns’ daily step count and sleep
duration through wearable devices (i.e., Fitbit or Apple
Watch) and self-reported mood score through daily survey.
Non-stationarity is a serious issue in this study, due to the
waning intervention effect (i.e., the effect of intervention de-
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creases or change direction over time). Such phenomena are
commonly seen in interventional mobile health applications
(Hamari et al., 2014; Shcherbina et al., 2019; Klasnja et al.,
2019; NeCamp et al., 2020). Ignoring the non-stationary
nature of the interventional effects may lead to learning
ineffective or even harmful policies that send inopportune
prompts, overburdening users and leading to increased user
attrition.

There are two additional technical challenges in dealing
with modern sequential decision making problems. First,
with the fast development of new information technology,
the state vector is typically high-dimensional (Mnih et al.,
2015; Arulkumaran et al., 2017; Plaat et al., 2020; Kiran
et al., 2021), which poses a challenge to classical nonpara-
metric methods due to the curse of dimensionality. Second,
the real-world data can be very complex when the underly-
ing state transition and reward function is highly complex
(Mnih et al., 2015; Silver et al., 2018; Mahmood et al.,
2018). Although linear function approximation often has
sound theoretical guarantees, it has limited approximation
capacity in handling nonlinear and complicated environ-
ments. On the contrary, modern machine learning methods
have achieved significant empirical success in dealing with
nonlinearity and high-dimensionality by striking a balance
between regularization bias and overfitting. However, the
resulting estimator’s asymptotic distribution is often diffi-
cult to establish, hampering tractable statistical inference.
To address these challenges, in this paper, we develop a
novel offline procedure for testing the stationarity in the
MDP framework, bridging the gap between modern ML/RL
methods and valid statistical inference.

Related work Non-stationary RL has been studied exten-
sively in recent year (Da Silva et al., 2006; Auer et al., 2008;
Gajane et al., 2018; Cheung et al., 2020; Igl et al., 2020;
Padakandla et al., 2020; Fei et al., 2020; Mao et al., 2021;
Chen et al., 2021; 2022; Wei et al., 2022; Chen & Luo, 2022;
Feng et al., 2022). Several approaches have been proposed
to address non-stationarity in RL. For example, Gajane et al.
(2018) and Cheung et al. (2020) proposed model-based so-
lutions using slide windows to estimate the MDP models
to handle non-stationarity. Auer et al. (2008), Ortner et al.
(2020) and Mao et al. (2021) incorporated a “forgetting”
strategy by periodically restarting the learning algorithm
with estimators built on newly collected data. However,
these methods typically assume a discrete state and action
space, limiting their applicability in real-world applications
involving continuous states and actions. Jin et al. (2018)
and Jin et al. (2021) considered the episodic MDP setting
and tackle non-stationarity by learning a separate policy
for each time point. However, their single-time-based ap-
proaches may suffer from low sample efficiency when en-
countering MDPs with a certain degree of homogeneity (i.e.,
transition and reward functions are homogeneous across

some episodes and horizons), as each policy is learned per
time without borrowing information from other time points.
Moreover, their methods may encounter difficulties in cer-
tain studies with small number of episodes and long horizons
(Marling & Bunescu, 2020) due to the limited sample size
available per time.

Another related line of research focus on change point de-
tection algorithms as a means to address non-stationarity.
The central idea of these detection-based methods involves
first detecting environmental changes by testing the station-
arity assumption and subsequently applying policy learning
algorithms to the stationary segments of the data. There-
fore, these algorithms typically require a certain degree of
homogeneity in terms of MDP models across episodes and
horizons (e.g., piecewise stationary MDP). Several methods
have been proposed to test the stationarity assumption of
an MDP. Among those available, Hadoux et al. (2014) pro-
posed to use a CUmulative SUM (CUSUM) sequential statis-
tical test (Basseville et al., 1993) for change point detection
in MDPs. However, this approach requires prior knowledge
of the true MDP models, making it inapplicable in many
RL problems where the system dynamics are unknown;
Padakandla et al. (2020) developed a Context Q-learning
(Context QL) built upon the online Dirichlet change point
(ODCP) algorithm (KJ et al., 2021). This approach applies
the Dirichlet likelihood test to the state-reward-next-state
triplet to test the stationarity assumption. Li et al. (2022)
proposed a CUSUM-type test statistic to test the stationarity
of the optimal Q-function instead of directly tackling the
potential changes in the state transition or reward function.
Our method is closely related to their method, although
there are a few key distinctions. First, their approach is
model-free in the sense that they focused on the Q-function
whereas our method is model-based, which directly tests
the underlying components of the MDP model. Second,
their method requires linear function approximation, which
can be less favorable in high-dimensional complex environ-
ments. On the contrary, our method harnesses the power of
modern ML algorithms to handle high-dimensionality.

Our contributions Methodologically, we propose a novel
offline procedure to test the stationarity of MDPs in high-
dimensional settings. The proposed test is doubly robust in
the sense that it controls the type-I error as long as either the
transition function or the marginal state-action distribution
function is correctly specified – a key property that allows us
to utilize modern ML methods for hypothesis testing. Our
proposal shares similar spirits with the double ML (DML)
method for causal inference (Chernozhukov et al., 2018),
the double RL (DRL) method for policy evaluation (Kallus
& Uehara, 2022), and the double generative adversarial net-
works algorithm for conditional independence testing (Shi
et al., 2021b). These methods are developed via the classi-
cal semiparametric theory in the statistics literature (Tsiatis,
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2006). Nonetheless, it is highly nontrivial to derive a doubly
robust test procedure for the stationarity assumption, due
to the existence of absolute value operator in the CUSUM
statistic which makes the target parameter non-pathwise
differentiable (Kennedy, 2022). Therefore, existing techni-
cal tools are not directly applicable to constructing the test
statistic. Theoretically, we proved the size (i.e., type-I error
control) and double robustness property of the proposed test
under a general bidirectional asymptotic framework which
allows either the number of trajectories or the length of hori-
zon to diverge to infinity. Empirically, we demonstrate the
efficacy of our test in terms of change point detection and
policy learning in non-stationary environments through four
numerical studies and a real-world health example.

2. Preliminaries
2.1. Data and Problem Formulation

Consider a Markov Decision Process M ≡ (S,A, P,R, γ),
where S is the state space, A is the action space, P :
S×A×S → R≥0 is the transition function,R : S×A → R
is the reward function and γ ∈ [0, 1) is the discount factor.
The objective of RL is to learn a policy π : S ×A → R≥0,
which maximizes the expected discounted cumulative re-
ward: J (π) = E (

∑∞
t=0 γ

tr(st, at)), where s0 is sampled
from an initial state distribution ρ0 : S 7→ R≥0 (Sutton &
Barto, 2018).

We consider testing stationarity of MDPs in an of-
fline setting, where the dataset is fixed and collected
by some behavior policies, without further interaction
with the environment. The dataset can be summa-
rized as {(Si,j , Ai,j , Ri,j , Si,j+1)1≤i≤N,0≤j≤T−1} where
(Si,j , Ai,j , Ri,j , Si,j+1) is the experience tuple from sub-
ject i at time point j, N is the number of subjects and
T is the number of time points. A change point tcpt ∈
[1, 2, · · · , T −1] is defined as the location at which the state
transition or reward function changes. We assume all data
trajectories are i.i.d. so that the change points (if exist) are
homogeneous across all subjects in terms of their locations.
In other words, all the subjects have the same number and
locations of the change points.

Next, we formally formulate the hypothesis testing prob-
lem of interest. Without loss of generality, we include the
reward R into the set of the next state S′, as both tran-
sition and reward function depend on state S and action
A. Let pt(s′|s, a) denote the “new” transition function at
time t that combines the transition and reward function de-
fined earlier. In this paper, we focus on testing the null
hypothesis H0 : {pt(s′|a, s)}t are homogeneous over time
where t < T , that is, pt(s′|a, s) is a constant function
of time index t. The alternative hypothesis is given by
Ha : {pt(s′|a, s)}t has at least one change point.

To simplify the notation, for any quantity f , let f̂ denote the
estimator of f and f∗ denote the oracle version of f .

2.2. A Naive Plug-in Estimator

The following quantity forms the basis of the proposed test
procedure,∫ ∣∣∣∣ ∫

∑T−1
j=t h(s

′)pj(s
′|a, s)

T − t
ds′

−
∫ ∑t−1

j=0 h(s
′)pj(s

′|a, s)
t

ds′
∣∣∣∣g(a, s)λ(da, ds), (1)

where g is some reference density function and λ is the
Lebesgue or counting measure, depending on whether the
state-action pair is continuous or not. The function h in
Equation 1 is a test function from a rich function class.
There are a variety of choices for h. For example, if
h(s′) = r, we are comparing the difference in expected
reward before and after time point t. Alternatively, h can
be chosen to depend on the next state as well. We rewrite
Equation 1 as follows,∫ ∣∣∣E[t,T ][h(S

′)|a, s]− E[0,t][h(S
′)|a, s]

∣∣∣g(a, s)λ(da, ds),
(2)

where E[t1,t2][h(S
′)|a, s] =

∫
h(s′)p[t1,t2](s

′|a, s)ds′ for
0 ≤ t1 < t2 ≤ T and p[t1,t2] is the pooled transition
function (or a mixture of transition functions) from time t1
to t2 − 1,

p[t1,t2](S
′|s, a) = 1

t2 − t1

t2−1∑
j=t1

pj(S
′|s, a).

Notice that when t1 ≪ t2, it is much easier to accurately
estimate the pooled function p[t1,t2] than to accurately esti-
mate each individual pj , due to that we have a larger amount
of data in the interval [t1, t2].

Under H0, we have p[t1,t2] = p∗ for any 0 ≤ t1 < t2 ≤ T ,
where p∗ denotes the oracle transition function. Therefore,
Equation 2 equals 0 for any function h. Under Ha, there
exists certain test function h and t such that Equation 2 is
strictly positive. It can thus be used to detect non-stationarity.
This motivates us to consider the following plug-in estimator
for Equation 2,∫ ∣∣∣Ê[t,T ][h(S

′)|a, s]− Ê[0,t][h(S
′)|a, s]

∣∣∣g(a, s)λ(da, ds),
(3)

where Ê[t1:t2] denotes certain estimator for E[t1,t2] by replac-
ing p[t1,t2] with an estimated transition function, denoted as
p̂[t1,t2].
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Modern ML algorithms (e.g., lasso, neural networks) are
particularly well-suited to estimate p[t1,t2] even in high-
dimensional scenarios. These methods perform well through
regularization for variance reduction and balancing regular-
ization bias and overfitting. However, naively plugging these
ML estimators into Equation 2 will cause a heavy plug-in
bias, which invalids the subsequent testing procedure. On
the other hand, kernel smoothers or local polynomial re-
gression with properly chosen bandwidth parameter have
small plug-in biases. However, these methods suffer from
the curse of dimensionality, which makes them less suitable
in high-dimensional settings.

In the next section, we propose a doubly robust estimator
for Equation 2 to alleviate the plug-in bias. Specifically, we
proposed a sample augmented version of the naive estimator
Equation 3 which offers additional protection against po-
tential misspecification of the transition model. The doubly
robust property entitles us to enjoy the superior approxima-
tion capacity of modern ML methods, as well as to conduct
valid statistical inference (e.g., able to control type-I and
type-II errors).

3. Method
3.1. A Doubly Robust Estimator

To begin with, we introduce some notations. Define the
following random variable

ϕ[t1,t2](S,A, S
′;h) = sgn (∆(A,S;h, t))

×
[
h(S′)− E[t1,t2][h(S

′)|A,S]
]

g(A,S)

ω[t1,t2](A,S)
,

where ∆(a, s;h, t) = E[t,T ][h(S
′)|a, s]−E[0,t][h(S

′)|a, s],
sgn(·) denotes the sign function and ω[t1,t2] is the pooled
marginal state-action distribution from time t1 to t2 − 1.
Moreover, define

ψi =

∫ ∣∣∆(t, h; a, s)
∣∣g(a, s)λ(da, ds)

+
1

T − t

T−1∑
j=t

ϕ[t,T ](Si,j , Ai,j , Si,j+1;h)

− 1

t

t∑
j=0

ϕ[0,t](Si,j , Ai,j , Si,j+1;h), i = 1, . . . , N.

The first line on the right-hand-side corresponds to Equa-
tion 2. The last two lines form an augmentation term which
is of mean zero when the transition model is correctly speci-
fied. When the transition model is misspecified, however, it
offers additional protection to reduce the bias of ψi resulting
from the misspecification. More specifically, we present the
double robustness property in the following theorem.

Theorem 3.1 (Double robustness). Suppose H0 holds. For

any h ∈ H and t ∈ (0, T − 1), we have

Eψ∗
i = 0, i = 1, . . . , N, (4)

where ψ∗
i denotes a version of ψi with the oracle transition

and marginal state-action distribution functions. More-
over, the above equation is doubly robust, i.e., for any
p[t,T ], p[0,t], ω[t,T ] and ω[0,t], the following holds as long
as either p[t,T ] = p∗[t,T ] = p∗, p[0,t] = p∗[0,t] = p∗ or
ω[t,T ] = ω∗

[t,T ], ω[0,t] = ω∗
[0,t],

Eψi = 0, i = 1, . . . , N. (5)

Theorem 3.1 show that Eψi = 0 under the null, as long as
either the transition or the marginal state-action distribution
function is correct specified. An empirical estimator for
Eψi can thus be constructed to detect the deviation from the
null. Specifically, a large value of the estimator suggests
that the alternative hypothesis is likely to hold. To construct
this estimator, we propose to use some flexible modern ML
methods (e.g., random forest and neural network) to esti-
mate (p[t,T ], p[0,t]) and (ω[t,T ], ω[0,t]), and use (p̂[t,T ], p̂[0,t])
and (ω̂[t,T ], ω̂[0,t]) to denote the corresponding estimators.
Consider the following sample estimator,

1

N

N∑
i=1

ψ̂i. (6)

We make a few remarks. First, compared to the naive plug-
in estimator Equation 3, Equation 6 is doubly robust due to
the inclusion of the extra data augmentation term, making it
less sensitive to the impact of the biases of ML estimators.
Specifically, as we show in the proof of Theorem 3.1, the
bias of Equation 6 will decay at a faster rate than that of
the ML estimator. To the contrary, the bias of Equation 3 is
likely to be of the same order of magnitude as that of the
ML estimator, which can lead to invalid inference. Second,
as commented earlier, the presence of an absolute value
function in Equation 2 brings additional challenges in de-
riving the doubly robust estimator, leading to the violation
of the pathwise differentiability. It essentially prevents us
from construct the doubly robust estimator based on the
efficient influence function (EIF, see e.g., Kennedy, 2022) in
the classical semiparametric theory. We remark that many
of the existing doubly robust estimators (e.g., DML, DRL)
are obtained based on the EIF. Nonetheless, our approach
is inspired by these estimators which typically involve an
outcome regression-type model and a propensity score-type
model. Third, the proposed test statistic is based on a modi-
fied version of Equation 6 that involve both sample splitting
and cross fitting. These techniques enable us to derive the
limiting distribution of the estimator under minimal condi-
tions. We formally introduce our test statistic in the next
section. A pseudocode summarizing our proposal is given
in Algorithm 1.
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3.2. Test Statistic

Suppose we have at least two subjects, i.e., N ≥ 2. We
begin by randomly and evenly dividing the subject indices
{1, ..., N} into two disjoint sets I1 and I2, that is, |I1| =
⌈N/2⌉ and I2 = {1, ..., N} − I1. Let (p̂[t,T ], p̂[0,t]) and
(ω̂[t,T ], ω̂[0,t]) denote the corresponding modern ML estima-
tors trained on the subjects in I1. For t ∈ (0, T −1), h ∈ H,
define

Ŝ(t, h) = σ̂(t, h)−1 1

|I2|
∑
i∈I2

ψ̂i, (7)

where sampling variance estimator σ̂2(t, h) has the form

1

|I2|T − 1

∑
i∈|I2|

{t−1∑
j=0

(
ϕ̂[0,t](Si,j , Ai,j , Si,j+1;h)− µ̂

)2

+

T−1∑
j=t

(
ϕ̂[t,T ](Si,j , Ai,j , Si,j+1;h)− µ̂

)2
}
,

where µ̂ = 1
|I2|T

∑
i∈|I2|

{∑t−1
j=0 ϕ̂[0,t](Si,j , Ai,j , Si,j+1;h)

+
∑T−1

j=t ϕ̂[t,T ](Si,j , Ai,j , Si,j+1;h)
}

. The purpose of

including σ̂2(t, h) in Equation 7 is to normalize Ŝ(t, h) for
each different t and h, in order to make them comparable.

Our test statistic is given by

Γ̂ = max
ϵT≤t≤(1−ϵ)T

max
b∈{1,...,B}

√
t(T − t)/T 2Ŝ(t, hb). (8)

We make a few explanations here. First, the proposed test
statistic is an adaption to the CUSUM statistic, which is
popular in the field of change point detection (Csörgö et al.,
1997). Second, {hb}b=1,..,B are a set of test functions from
H. The number of test functions B is allowed to diverge
with the number of subjects N and the horizon T . In par-
ticular, the proposed test controls the type-I error as long
as B = O

(
(NT )c1

)
for any constant c1 > 0. Nonetheless,

considering a number of test functions instead of a single
one greatly increases the power of the resulting test. In order
to make the function class to be rich and flexible, we set
H to be the class of neural networks (NNs). Specifically,
we consider NNs with one hidden layer, a finite number
of hidden nodes, and sigmoid activation function.The pa-
rameters of the NNs are initialized by the standard normal
distribution. In general, the NNs with multiple layers can
be adopted in our approach, however, we opt to use a single
hidden layer since they produced similar performance in our
numerical studies. Third, ϵ ∈ (0, 0.5) denotes some user-
defined boundary removal parameter. The purpose of using
ϵ is to ensure that there is sufficient data at the boundary of
the trajectory so that the estimators can be trained well (Yu
& Chen, 2017). Fourth,

√
t(T − t)/T 2 is the weighting

factor commonly used in CUSUM statistic, which is used
to adjust the scales for different t.

3.3. Bootstrap for the p-value

In this section, we propose a Gaussian multiplier bootstrap
method to approximate the limiting distribution of Γ̂ and
compute the resulting p-value. First, define a bootstrapped
version of Ŝ(t, h) which approximates Ŝ(t, h) in distribu-
tion, denoted as Ŝq(t, h),

1

|I2|(T − t)

N∑
i∈I2

T−1∑
j=t

ei,j ϕ̂[t,T ](Si,j , Ai,j , Si,j+1;h)

− 1

|I2|t
∑
i∈I2

t∑
j=0

ei,j ϕ̂[0,t](Si,j , Ai,j , Si,j+1;h),

where {ei,j}i∈I2,0≤j≤T−1 are i.i.d. standard normal ran-
dom variables. q is the bootstrap sample index that takes
values from {1, ..., Q}, where Q is the total number of boot-
strap samples. The bootstrapped test statistic is given by

Γ̂q = max
ϵT≤t≤(1−ϵ)T

max
b∈{1,...,B}

√
t(T − t)/T 2Ŝq(t, h) (9)

We use these empirical bootstrap values to approximate the
distribution of Γ̂ under H0. The resulting p-value can be
calculated by p̂ =

∑Q
q=1 I(Γ̂ ≥ Γ̂q)/Q. We reject the null

when p̂ is smaller than a given significance level α.

Algorithm 1 Proposed testing procedure

1: Input: B, ϵ, α,Q and N observed data with horizon T .
2: Output: p-value p̂
3: Randomly generate B random testing functions {hb ∈
H}1≤b≤B

4: Randomly divide index set {1, ..., N} into I1 and I2,
where |I1| = ⌈N/2⌉ and I2 = {1, ..., N} − I1.

5: Estimate nuisance functions p̂[0,t], p̂[t,T ] and ω̂[0,t],
ω̂[t,T ] for each ϵT ≤ t ≤ (1− ϵ)T on I1.

6: Compute Ŝ(t, hb) according to Equation 7 for each
b = 1, ..., B and ϵT ≤ t ≤ (1− ϵ)T using samples in
I2. Compute Γ̂ according to Equation 8.

7: Using Gaussian multiplier bootstrap to calculate Γ̂q for
each q = 1, ..., Q according to Equation 9. Calculate
p̂ =

∑Q
q=1 I(Γ̂ ≥ Γ̂q)/Q.

3.4. Theoretical Analysis

In this section, we establish the size property of our test
(e.g., valid type-I error control) under the framework of
bidirectional asymptotics, which allows either N → ∞ or
T → ∞. We begin by introducing the following conditions.

Condition 3.2. The reference density function g is fully
supported on the intersection of the support sets of ω[0,t]

and ω[t,T ], that is, for all (a, s) ∈ A×S where g(a, s) > 0,
we have ω[0,t](a, s) > 0 and ω[t,T ](a, s) > 0.
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Condition 3.3. Under H0, {S0,t}t≥0 is a strictly stationary
Markov chain.

Condition 3.4. Under H0, the Markov chain {S0,t}t≥0 is
geometrically ergodic when T → ∞.

Condition 3.5. Suppose there exists some κ1, κ2, κ3, κ4 ∈
(0, 1/2) such that[

E
{
d2TV

(
p̂[t,T ], p

∗
[t,T ]

)}]1/2
= O

(
(NT )−κ1

)
,[

E
{
d2TV

(
p̂[0,t], p

∗
[0,t]

)}]1/2
= O

(
(NT )−κ2

)
,[

E
{
d2TV

(
ω̂[t,T ], ω

∗
[t,T ]

)}]1/2
= O

(
(NT )−κ3

)
,[

E
{
d2TV

(
ω̂[0,t], ω

∗
[0,t]

)}]1/2
= O

(
(NT )−κ4

)
,

where {κi}i=1,...,4 satisfy κ1 + κ3 > 1/2, κ2 + κ4 > 1/2.
In addition, suppose g

ω̂[t,T ]
and g

ω̂[0,t]
are uniformly bounded.

Condition (C3.2) requires careful selection of the reference
density g. The support of g should be a subset of the inter-
section of the support of ω[0,t] and ω[t,T ]. This ensures that
the ratios g

ω[0,t]
and g

ω[t,T ]
are bounded. Condition (C3.3)

is imposed to simplify the presentation. The proposed test
remains valid if condition (C3.3) violates (e.g., the behavior
policy is allowed to change). Similar assumptions are com-
monly imposed in the literature (see e.g., Kallus & Uehara,
2022). Condition (C3.4) is mild and strictly weaker than
the uniform ergodicity condition required for the existing
RL algorithms (Bhandari et al., 2018; Zou et al., 2019), al-
lowing us to establish the asymptotic distribution of our test
statistic when T → ∞. We also remark that most existing
theoretical analysis in the RL literature require the transition
tuples to be independent over time. Our framework is more
general in that it allows temporal dependence.

Condition (C3.5) requires that the total variation distance
between the oracle distribution and the estimated distribu-
tion satisfies certain nonparametric convergence rate (e.g.,
slower than (NT )−1/2). Under this condition, the bias of
the proposed test statistic decays at a rate of O((NT )−1/2),
much faster than those in Condition (C3.5). This is made
possible due to the double robustness property (Theorem
3.1), which ensures a zero bias if either one of two nui-
sance function estimators (p̂[0,t], p̂[t,T ]) or (ω̂[0,t], ω̂[t,T ]) is
replaced with its oracle value. Together with the Neyman or-
thogonality property (Chernozhukov et al., 2018) of the esti-
mating equation Equation 6, the bias term can be represented
as a product of the difference between two nuisance function
estimators and corresponding oracle values. Consequently,
as long as κ1 + κ2 > 1/2 holds, the test statistic converges
at a parametric rate, asymptotically controls the type-I error.

Besides, the condition for nonparametric convergence rates
can often be attainable for various modern ML methods
in high-dimensional settings, which is commonly used in
classical semiparametric literature (Biau, 2012; Hestness
et al., 2017; Kallus & Uehara, 2022; Chernozhukov et al.,
2018; Farrell et al., 2021). This rate assumption can be
further relaxed by introducing high-order influence func-
tion (Mukherjee et al., 2017; Robins et al., 2017; Shi et al.,
2021a). The boundedness assumption in condition (C3.5)
is reasonable since g is user-specified. In practice, we can
set g = 1

t ω̂[0,t] +
1

T−t ω̂[t,T ] to automatically satisfy this
condition.

Before presenting the theorem of the test consistency, we
define

ϕ̃[t1,t2](S0,j , A0,j , S0,j+1;h) = sgn
(
∆̂(A0,j , S0,j ;h, t)

)
[
h(S0,j+1)− E∗

[t1,t2]
[h(S′)|A0,j , S0,j ]

] g(A0,j , S0,j)

ω∗
[t1,t2]

(A0,j , S0,j)
.

Theorem 3.6 (Size). Assume (C3.2) - (C3.5) hold. Sup-
pose B = O((NT )c1) for any c1 > 0 and t = O(T )
for any t ∈ [ϵT, (1 − ϵ)T ]. In addition, suppose there
exists some ζ > 0 such that for any i ∈ I2, j ∈
[0, T − 1], the variance of ϕ̃[0,t](S0,j , A0,j , S0,j+1;h) and
ϕ̃[t,T ](S0,j , A0,j , S0,j+1;h) are both greater than ζ for
any h, t, then as either N → ∞ or T → ∞, we have
P(p̂ ≤ α|H0) = α+ o(1).

Theorem 3.6 implies that the size of the proposed test can be
controlled at the nominal level as eitherN → ∞ or T → ∞.
The proof of this theorem relies on the high-dimensional
martingale central limit theorem (Belloni & Oliveira, 2018),
which allows the use of Gaussian multiplier bootstrap to
acquire valid p-value.

4. Numerical Experiments
In this section, we conduct four numerical experiments
to assess the finite-sample performance of the proposed
testing procedure. A toy example (Section 4.2) illustrates
the double robustness property of the proposed test statis-
tic against model misspecification. Synthetic data (Sec-
tion 4.3) demonstrates that the proposed testing proce-
dure is superior to two existing offline stationarity tests
in high-dimensional RL setting. A grid-world example
(Section 4.4) demonstrates the usefulness of the proposed
test in the task of learning optimal policy. Semi-synthetic
data (Section 4.5) illustrates the usefulness of the pro-
posed test in the real world setting. Code is available at
https://github.com/jtwang95/Double CUSUM RL.

4.1. Implementation Details

To implement the proposed test, the boundary removal pa-
rameter ϵ is set to 0.1. 5000 bootstrap samples are gen-
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erated to compute p-values. We set the reference density
g = 1

T−t ω̂[t,T ]+
1
t ω̂[0,t]. To achieve a trade-off between the

computational complexity and accuracy, we do not test all
the t ∈ [ϵT, (1− ϵ)T ] in practice. Instead, we recommend
selecting a subset as the candidate change points.

When dealing with discrete-state-space MDP, we consider
the class of testing function H to be the cross table of states
and actions, where the function value of each state-action
pair is sampled from standard normal distribution. The
transition functions p[0,t], p[t,T ] and the marginal distribu-
tions ω[0,t] and ω[t,T ] are estimated through frequency tables.
In the context of continuous state-space MDP with binary
actions, H is set to be the class of feed-forward neural net-
works that contain a single hidden layer with 32 neurons and
the sigmoid function as the activation function. We use the
neural network to estimate the transition functions p[0,t] and
p[t,T ]. To be more specific, we assume each transition func-
tion is a multivariate normal distribution with mean µ(s, a)
and diagonal covariance matrix with diagonal elements be-
ing σ2(s, a), where µ(s, a = 0), µ(s, a = 1), σ2(s, a = 0)
and σ2(s, a = 1) are four separate neural networks. The
loss function is set to be the Gaussian negative log likeli-
hood. ω[0,t] and ω[t,T ] are learned through a combination
of Gaussian mixture model (GMM) and logistic regression
(LR), where the GMM is used to learn the marginal dis-
tribution of state S and the LR is to learn the conditional
distribution of action A given S. The number of mixture
components (n = 1, ..., 4) and the covariance type (full,
tied, diagonal, spherical) for GMM are selected with the
lowest Bayesian information criterion (BIC). Monte Carlo
integration with M = 100 Monte Carlo samples is used to
approximate values of the integrals and expectations.

4.2. A Toy Example

First, we consider a toy example with one-dimensional dis-
crete state and binary action to illustrate the doubly ro-
bust property. Specifically, we aim to demonstrate the
size and the power of the proposed test when either M1 =
(p[0,t], p[t,T ]) or M2 = (ω[0,t], ω[t,T ]) is corrected specified.
We consider the following four scenarios: (i) both M1 and
M2 are correct; (ii) onlyM1 is misspecified; (iii) onlyM2 is
misspecified; (iv)M1 andM2 are both misspecified. To mis-
specify M1 and M2, we inject some noise into the correct
models with noise level λ ∈ {0.1, 0.3, 0.5, 0.7, 0.9}, where
higher values correspond to higher noise. See Appendix
B.1 for more details about data generating mechanism and
model misspecification.

Figure 1 shows the empirical rejection probabilities of the
proposed test under a) stationary and b) non-stationary en-
vironments with different misspecification settings for M1

and M2. It can be seen that the proposed test can control
the type I error rate at the nominal level as long as either

M1 or M2 is correctly specified. Additionally, the proposed
test achieves the highest power when both M1 and M2 are
correctly specified.
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Figure 1. Empirical rejection probability of the proposed test under
stationary and non-stationary environments with different misspec-
ification settings for M1 and M2 (see Section 4.2 for details).
Results are aggregated over 500 replications.

4.3. Synthetic Data: Superiority under Higher
Dimensions

In this simulation, we compare the proposed test with two
existing stationarity tests in offline reinforcement learning,
which is ODCP (Padakandla et al., 2020) and CUSUM-RL
(Li et al., 2022). We consider two non-stationary scenar-
ios in this simulation: (i) the non-stationarity occurs in
the state transition function; (ii) the non-stationarity occurs
in the reward function. For each scenario, we consider
four settings where the dimension of the state variables dS
can take values from {1, 10, 20, 30}. In all scenarios, we
fix N = 100, T = 50, α = 0.05 and true change point
tcpt = 25. In this simulation, we set B = 100 and use a
multi-split version of the test with 10 random binary splits
and set γ = 0.15 to combine the p-values (see details in
Appendix A). Besides, we sequentially apply the proposed
test on time interval [T − κ, T ], where κ takes values from
sequence 10, 15, 20, 25, 30, 35, 40. This strategy together
with the stationarity test can be used to detect the location
of the single change point. According to the data generating
mechanism, the null hypothesis, where the MDP is station-
ary, is true when κ ≤ 25 and the alternative hypothesis is
true when κ > 25. See Appendix B.2 for more details about
the simulation settings.

Figure 2 shows the empirical rejection probability profiles of
the proposed test, ODCP and CUSUM-RL over different κ.
Note that two different test statistics are used for CUSUM-
RL, which are integral (int) and normalized (nor) version.
It can be seen that the proposed test and two CUSUM-
RL tests can properly control the type I error in all cases,
while the ODCP test fails to control the type I error in high-
dimensional settings. Power-wise, the proposed test and
CUSUM-RL can correctly identify the true change point
when dS = 1, while only the proposed test can identify the
true change point when dS ≥ 10.
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Figure 2. Empirical rejection probabilities (y-axis) over different κ (x-axis) under different simulation scenarios for state dimension
dS = 1, 10, 20, 30. The results are aggregated over 100 replications. See details in Section 4.3.

4.4. Grid World Example

In this section, we apply the proposed test to a grid world
example to illustrate the usefulness of the test for policy
learning. The grid size is set to be 4 ∗ 4 and the action space
is set to {right, up, left, down}. We manually introduce non-
stationarity to the environment and set the true change point
tcpt = 25, where N = 100 and T = 50. The environment
setting is detailed in Appendix B.3. To implement the test,
we set B = 100 and adapt a multi-split version of the test
(see details in Appendix A) with 10 random splits.

Empirical rejection probabilities over different κ are shown
in Appendix Figure B.1. It can be seen that the proposed test
can capture the true change point 25 correctly. Furthermore,
we evaluate the value of two policies: the first one is learned
based on the data points after the detected change point
([tcpt, T ]); the second one is based on the whole dataset
([0, T ]), which ignores the non-stationarity. To perform pol-
icy evaluation, we first use Q-learning to learn the ”optimal”
policy; we then simulate 100 trajectories with a length of
horizon 50 using the learned policies to calculate the av-
erage discounted (0.9) reward as the value. According to
Appendix Figure B.1, it can be seen that the learned policy
based on the data after the change point achieves a higher
value.

4.5. Semi-synthetic Data

In this simulation, we explore a batch online RL scenario
where the policy is periodically updated during data collec-
tion and updated policy is subsequently used to collect new
data. Unlike traditional online RL, the online learning agent

in batch online RL updates its policy only at pre-determined
time points, which has many real world applications. For in-
stance, in the context of mobile health, the sensor data is col-
lected from different wearable/mobile devices, which may
need regular human-in-the-loop data quality checks, linkage
and integration, making batch updating a practical and safer
choice in healthcare settings. We consider the presence of
change points in this setup, which violates the stationarity
assumption. The data generation process involves collecting
an initial offline dataset with a random policy, updating the
policy using a chosen policy update strategy, and using the
updated policy equipped with ϵ-greedy algorithm to collect
new data. This process is repeated periodically, aiming to
maximize the cumulative reward obtained. The simulated
semi-synthetic dataset has a similar structure to the real
world dataset in Section 5. In this simulation, we consider
two scenarios: (i) three change points , (ii) no change point.
See more details on simulation setup in Appendix B.4.

We compare the average reward obtained using four differ-
ent policy update strategies: (i) proposed, where the policy
is learned using the data after the most recent change point
identified by the proposed test; (ii) random, which uses an
unchanged random policy throughout the simulation; (iii)
slide, the policy that is updated using the most recent data
that falls into a slide window; (iv) stationary, where the
policy is only updated once using the initial offline dataset;
(v) oracle, where the policy is learned using data after true
change points. According to Figure 3, it can be seen that
the average reward received using the proposed strategy is
similar to oracle, slide and stationary when the environ-
ment is stationary, indicating that the proposed test brings
no harm to policy learning when dealing with stationary
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RL problems. However, in the non-stationary environment,
only proposed yield average rewards close to oracle, while
the other three strategies exhibit significantly lower average
rewards. This indicates that (i) policy learning is neces-
sary for RL problem (random v.s. oracle); (ii) ignoring
the non-stationarity can lead to poor performance of the
learned policy (stationary v.s. oracle); (iii) failure to detect
the change points can lead to poor performance of learned
policy (slide v.s. oracle).
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Figure 3. Boxplot of the difference in value between the proposed
and four other policy update strategies. See details in Section 4.5.

5. Real Data Application
In this section, we apply the proposed testing procedure to
a real-world mobile health dataset collected from a micro-
randomized trial (MRT) aiming at improving the health
outcomes of the medical interns in the United States by
sending the push notifications through mobile app to induce
and maintain healthy behaviors related to physical activity,
sleep and mood (NeCamp et al., 2020). For each week, each
intern has probability 0.75 to be randomized into the notifi-
cation arm, and the intern in this arm has probability 0.5 to
receive daily push notifications. Conversely, interns in the
no-notification arm receive no push notifications through
the week. The trial lasted for 21 weeks, during which wear-
able devices recorded daily measurements of step count,
sleep duration, and mood score. We model the data using
MDP, where St is the averaged step count, sleep duration
and mood score at week t and Rt is the average step count
at week t+ 1. At = 1 if the intern is randomized into the
notification arm at week t. We apply the proposed test to
assess the stationarity assumption for this dataset.

To implement the proposed method, we set ϵ = 0.1 and
search for change points between week 3 to 18. We set B =
1000,M = 100. See implementation details in Appendix
B.5. The p-values of the stationarity test for different κ
are shown in Figure 4. It can be seen that there exists a
change point for the interns in specialty Internal Medicine
at week 16 (= T − (κ∗ − 1) = 21− (6− 1); κ∗ is the first
κ with p-value < 0.05), while no change point is detected
for interns in specialty Family Practice.
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Figure 4. P-values of applying the proposed test to the IHS data
over different κ for two specialities. See details in Section 5.

6. Discussion
In this paper, we present a novel doubly robust testing proce-
dure to test the stationarity assumption in high dimensional
offline reinforcement learning. Our proposed test combines
the approximation capability of modern machine learning
methods with semiparametric techniques in statistical infer-
ence, resulting in a test with sound statistical property under
the bidirectional asymptotics. We demonstrate that the pro-
posed test has proper control of type I error and achieves
higher empirical power through both theoretical analysis
and extensive numerical studies.

However, policy learning based on our approach is applica-
ble only in the presence of some degree of homogeneity in
the dataset. Specifically, we require that 1) some episodes
share the locations of change points and 2) the MDPs are
piecewise constant. In contrast, single-time-based policy
learning approaches, such as those proposed by Jin et al.
(2018) and Jin et al. (2021), can handle completely hetero-
geneous setting where the MDP models for each time and
each episode are different. However, these methods may
be inferior to detection-based approaches in the presence
of homogeneity. In summary, both single-time based meth-
ods and detection-based methods have their own merits.
While single-time based methods are capable of handling
more general settings, detection-based methods demonstrate
greater sample efficiency when homogeneity is present. The-
oretical work on investigating the performance guarantee
of policy learning following detection-based methods and
the robustness under deviations from homogeneity warrant
future research.
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high-dimensional regression. Journal of the American
Statistical Association, 104(488):1671–1681, 2009.

Mnih, V., Kavukcuoglu, K., Silver, D., Rusu, A. A., Veness,
J., Bellemare, M. G., Graves, A., Riedmiller, M., Fidje-
land, A. K., Ostrovski, G., et al. Human-level control
through deep reinforcement learning. nature, 518(7540):
529–533, 2015.

Mukherjee, R., Newey, W. K., and Robins, J. M. Semipara-
metric efficient empirical higher order influence function
estimators. arXiv preprint arXiv:1705.07577, 2017.

Murphy, S. A. Optimal dynamic treatment regimes. Jour-
nal of the Royal Statistical Society: Series B (Statistical
Methodology), 65(2):331–355, 2003.

NeCamp, T., Sen, S., Frank, E., Walton, M. A., Ionides,
E. L., Fang, Y., Tewari, A., Wu, Z., et al. Assessing real-
time moderation for developing adaptive mobile health
interventions for medical interns: micro-randomized trial.
Journal of medical Internet research, 22(3):e15033, 2020.

Nie, X., Brunskill, E., and Wager, S. Learning when-to-treat
policies. Journal of the American Statistical Association,
116(533):392–409, 2021.

Ortner, R., Gajane, P., and Auer, P. Variational regret bounds
for reinforcement learning. In Uncertainty in Artificial
Intelligence, pp. 81–90. PMLR, 2020.

Padakandla, S., KJ, P., and Bhatnagar, S. Reinforcement
learning algorithm for non-stationary environments. Ap-
plied Intelligence, 50:3590–3606, 2020.

Plaat, A., Kosters, W., and Preuss, M. Deep model-based
reinforcement learning for high-dimensional problems, a
survey. arXiv preprint arXiv:2008.05598, 2020.

Qi, Z., Liu, D., Fu, H., and Liu, Y. Multi-armed angle-
based direct learning for estimating optimal individual-
ized treatment rules with various outcomes. Journal of
the American Statistical Association, 115(530):678–691,
2020.

Qian, M. and Murphy, S. A. Performance guarantees for
individualized treatment rules. Annals of statistics, 39(2):
1180, 2011.

Raghu, A., Komorowski, M., Ahmed, I., Celi, L., Szolovits,
P., and Ghassemi, M. Deep reinforcement learning for
sepsis treatment. arXiv preprint arXiv:1711.09602, 2017.

Rezaeifar, S., Dadashi, R., Vieillard, N., Hussenot, L.,
Bachem, O., Pietquin, O., and Geist, M. Offline rein-
forcement learning as anti-exploration. In Proceedings
of the AAAI Conference on Artificial Intelligence, vol-
ume 36, pp. 8106–8114, 2022.

Robins, J. M., Li, L., Mukherjee, R., Tchetgen, E. T., and
van der Vaart, A. Minimax estimation of a functional
on a structured high-dimensional model. The Annals
of Statistics, 45(5):1951 – 1987, 2017. doi: 10.1214/
16-AOS1515. URL https://doi.org/10.1214/
16-AOS1515.

Sen, S., Kranzler, H. R., Krystal, J. H., Speller, H., Chan, G.,
Gelernter, J., and Guille, C. A prospective cohort study
investigating factors associated with depression during
medical internship. Archives of general psychiatry, 67(6):
557–565, 2010.

Shalev-Shwartz, S., Shammah, S., and Shashua, A. Safe,
multi-agent, reinforcement learning for autonomous driv-
ing. arXiv preprint arXiv:1610.03295, 2016.

Shao, K., Tang, Z., Zhu, Y., Li, N., and Zhao, D. A survey
of deep reinforcement learning in video games. arXiv
preprint arXiv:1912.10944, 2019.

Shcherbina, A., Hershman, S. G., Lazzeroni, L., King, A. C.,
O’Sullivan, J. W., Hekler, E., Moayedi, Y., Pavlovic, A.,
Waggott, D., Sharma, A., et al. The effect of digital
physical activity interventions on daily step count: a ran-
domised controlled crossover substudy of the myheart
counts cardiovascular health study. The Lancet Digital
Health, 1(7):e344–e352, 2019.

Shi, C., Wan, R., Chernozhukov, V., and Song, R. Deeply-
debiased off-policy interval estimation. In Interna-
tional Conference on Machine Learning, pp. 9580–9591.
PMLR, 2021a.

Shi, C., Xu, T., Bergsma, W., and Li, L. Double Genera-
tive Adversarial Networks for Conditional Independence
Testing. Journal of Machine Learning Research, 22(285):
1–32, 2021b. ISSN 1533-7928.

Shi, C., Wang, X., Luo, S., Zhu, H., Ye, J., and Song,
R. Dynamic Causal Effects Evaluation in A/B Testing
with a Reinforcement Learning Framework. Journal of
the American Statistical Association, 0(0):1–13, January
2022a. ISSN 0162-1459. doi: 10.1080/01621459.2022.
2027776.

Shi, C., Zhang, S., Lu, W., and Song, R. Statistical inference
of the value function for reinforcement learning in infinite-
horizon settings. Journal of the Royal Statistical Society
Series B, 84(3):765–793, 2022b.

Shi, L., Li, G., Wei, Y., Chen, Y., and Chi, Y. Pessimistic
q-learning for offline reinforcement learning: Towards
optimal sample complexity. In International Conference
on Machine Learning, pp. 19967–20025. PMLR, 2022c.

12

https://doi.org/10.1214/16-AOS1515
https://doi.org/10.1214/16-AOS1515


A Robust Test for the Stationarity Assumption in Sequential Decision Making

Silver, D., Hubert, T., Schrittwieser, J., Antonoglou, I., Lai,
M., Guez, A., Lanctot, M., Sifre, L., Kumaran, D., Grae-
pel, T., et al. A general reinforcement learning algorithm
that masters chess, shogi, and go through self-play. Sci-
ence, 362(6419):1140–1144, 2018.

Sutton, R. S. and Barto, A. G. Reinforcement learning: An
introduction. MIT press, 2018.

Tsiatis, A. A. Semiparametric theory and missing data.
Springer, 2006.

Uehara, M. and Sun, W. Pessimistic model-based offline
reinforcement learning under partial coverage. arXiv
preprint arXiv:2107.06226, 2021.

Van Hasselt, H., Guez, A., and Silver, D. Deep reinforce-
ment learning with double q-learning. In Proceedings of
the AAAI conference on artificial intelligence, volume 30,
2016.

Wang, L., Zhou, Y., Song, R., and Sherwood, B. Quantile-
optimal treatment regimes. Journal of the American Sta-
tistical Association, 113(523):1243–1254, 2018.

Wei, C.-Y., Dann, C., and Zimmert, J. A model selection
approach for corruption robust reinforcement learning.
In International Conference on Algorithmic Learning
Theory, pp. 1043–1096. PMLR, 2022.

Xie, T., Cheng, C.-A., Jiang, N., Mineiro, P., and Agarwal,
A. Bellman-consistent pessimism for offline reinforce-
ment learning. Advances in neural information process-
ing systems, 34:6683–6694, 2021.

Xu, Z., Li, Z., Guan, Q., Zhang, D., Li, Q., Nan, J., Liu,
C., Bian, W., and Ye, J. Large-scale order dispatch in on-
demand ride-hailing platforms: A learning and planning
approach. In Proceedings of the 24th ACM SIGKDD
International Conference on Knowledge Discovery &
Data Mining, pp. 905–913, 2018.

Yu, M. and Chen, X. Finite sample change point infer-
ence and identification for high-dimensional mean vec-
tors. arXiv preprint arXiv:1711.08747, 2017.

Zhou, W., Zhu, R., and Qu, A. Estimating optimal infi-
nite horizon dynamic treatment regimes via pt-learning.
Journal of the American Statistical Association, accepted,
2022.

Zhou, Y., Qi, Z., Shi, C., and Li, L. Optimizing pessimism
in dynamic treatment regimes: A bayesian learning ap-
proach. In International Conference on Artificial Intelli-
gence and Statistics, pp. 6704–6721. PMLR, 2023.

Zhu, R., Zhao, Y.-Q., Chen, G., Ma, S., and Zhao, H. Greedy
outcome weighted tree learning of optimal personalized
treatment rules. Biometrics, 73(2):391–400, 2017.

Zou, S., Xu, T., and Liang, Y. Finite-sample analysis for
sarsa with linear function approximation. Advances in
neural information processing systems, 32, 2019.

13



A Robust Test for the Stationarity Assumption in Sequential Decision Making

A. A Multi-split Version of the Test
To mitigate the randomness introduced by a single binary split of the dataset, we propose a multi-split version of our test. The
multi-split version can have not only better reproducibility and asymptotic family-wise error control, but also helps improve
the power when the sample size is limited (Meinshausen et al., 2009). The main idea is to repeat the proposed single split
method multiple times with different split, and calculate a combined p-value from all the single p-values. To be more specific,
suppose we carry out the binary split on the samples {1, ..., N} for L times. Let {(I(1)

1 , I(1)
2 ), ..., (I(L)

1 , I(L)
2 )} denote each

binary split. We then apply Algorithm 1 on each split (I(l)
1 , I(l)

2 ) for l = 1, ..., L and acquire p-values {p̂(l)}l=1,...,L. Then
the combined p-value can be calculated following the idea of Meinshausen et al. (2009),

p̂combined = min

{
1, qγ

(
{p̂(l)/γ; l = 1, ..., L}

)}
.

where qγ is the empirical γ-quantile function. We can reject H0 if p̂combined is less than the pre-defined significance level α.

B. More on the numerical study
B.1. Simulation Setting for Toy Example

B.1.1. GENERAL SETTINGS

We consider two settings, which are stationary environment and non-stationary environment with one change point, in this
toy example. In both settings, we fix time T = 10 and sample size N = 30. The significance level α is set to 0.05. The
candidate pool of change points is set to be {3, 4, 5, 6, 7, 8}. We set the state space S = {0, 1}, action space A = {0, 1} and
reward space R = {0, 1}. The action is randomly sampled from a Bernoulli distribution with probability 0.5. To misspecify
M1 and M2, we inject noise to the corresponding true model with a specified noise level λ ∈ {0.1, 0.3, 0.5, 0.7, 0.9}. The
misspecified model can be written as Mmis = λMnoise + (1− λ)Mtrue where higher values of λ refer to more noise. We
apply the proposed test procedure to 500 randomly simulated data to calculate the empirical rejection probability in each
setting. Of note, under this toy example, we are able to derive the exact form of M1 and M2 theoretically. We plug in the
true models to the test statistic, without estimating them, so that we can directly assess the influence of misspecification on
the size and power by eliminating estimation error.

B.1.2. SETTING FOR STATIONARY ENVIRONMENT

We initiate the state variable from an independent Bernoulli distribution with support {0, 1} and satisfies that P(S0 =
0) = P(S0 = 1) = 0.5. The action is randomly sampled from Bernoulli distribution with binary support and satisfies that
P(At = 1) = P(At = 1) = 0.5 for all t ∈ [0, T ). We define the transition function P(St+1 = St|St, At) = 0.8I(At =
1) + 0.2I(At = 0) and reward function P(Rt = 1|St, At) = 0.8I(St = 1) + 0.2I(St = 0).

Recall that M1 = (p[0,t], p[t,T ]) and M2 = (ω[0,t], ω[t,T ]). The noise for M1 is shown in Table 1 and 2. The noise for M2 is
shown in Table 3.

Rt

0 1

St+1
0 0.45 0.05
1 0.45 0.05

(a) St = 0, At = 0

Rt

0 1

St+1
0 0.45 0.05
1 0.45 0.05

(b) St = 0, At = 1

Rt

0 1

St+1
0 0.45 0.05
1 0.45 0.05

(c) St = 1, At = 0

Rt

0 1

St+1
0 0.25 0.25
1 0.25 0.25

(d) St = 1, At = 1

Table 1. Injected noise for transition function p[0,t] under stationary situation depicted in Appendix B.1.2.

B.1.3. SETTING FOR NON-STATIONARY SITUATION

We consider piece-wise stationary situation. Denote the true location of the change point as tcpt ∈ (0, T ). The initial state
S0 is sampled from Bernoulli distribution with P(S0 = 1) = 0.5. The transition function is defined as:

P(St+1 = St|St, At) =

{
0.8I(At = 1) + 0.2I(At = 0) if t ∈ [0, tcpt)
0.7I(At = 1) + 0.3I(At = 0) if t ∈ [tcpt, T ]

,
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Rt

0 1

St+1
0 0.01 0.49
1 0.05 0.45

(a) St = 0, At = 0

Rt

0 1

St+1
0 0.05 0.45
1 0.05 0.45

(b) St = 0, At = 1

Rt

0 1

St+1
0 0.05 0.45
1 0.05 0.45

(c) St = 1, At = 0

Rt

0 1

St+1
0 0.05 0.15
1 0.05 0.75

(d) St = 1, At = 1

Table 2. Injected noise for transition function p[t,T ] under stationary situation depicted in Appendix B.1.2.

St

0 1

At
0 0.2 0.3
1 0.3 0.2

(a) t < ⌈T/2⌉

St

0 1

At
0 0.4 0.2
1 0.2 0.2

(b) t ≥ ⌈T/2⌉

Table 3. Injected noise for ω[0,t] and ω[t,T ] under stationary situation depicted in Appendix B.1.2.

and the reward function is defined as:

P(Rt = 1|St, At) =

{
0.8I(St = 1) + 0.2I(St = 0) if t ∈ [0, tcpt)
0.7I(St = 1) + 0.3I(St = 0) if t ∈ [tcpt, T ]

The noise model for M1 is shown in Table 4 and the noise model for M2 is shown in Table 5.

Rt

0 1

St+1
0 0.45 0.05
1 0.45 0.05

(a) St = 0, At = 0

Rt

0 1

St+1
0 0.45 0.05
1 0.45 0.05

(b) St = 0, At = 1

Rt

0 1

St+1
0 0.45 0.05
1 0.45 0.05

(c) St = 1, At = 0

Rt

0 1

St+1
0 0.25 0.25
1 0.25 0.25

(d) St = 1, At = 1

Table 4. Injected noise for transition functions p[0,t] and p[t,T ] under non-stationary situation depicted in Appendix B.1.3.

B.2. Simulation Setting for Synthetic Data

B.2.1. GENERAL SETTINGS

The date generating mechanism is described as follows. Denote dS as the dimension of the states. We set the state space
S = RdS , action space A = {0, 1} and reward space R = R. Before collecting data, we take burn-in step by discarding
first 1000 samples. During burn-in, the actions are generated from i.i.d. Bernoulli random variables with probability
P(A = 1) = 0.5. The data starts to be collected after burn-in step. The settings for two change point types are detailed in
Appendix B.2.2 and B.2.3. We also introduce the behavior policy change in the data generating mechanism, that is, the
action for time t < 0.7T is i.i.d. random variables sampled from Bernoulli distribution with P(A = 1) = 0.5 and the action
for time t ≥ 0.7T is generated from Bernoulli distribution with P(A = 1) = 0.8.

We set the neural network that used to learn (p[0,t], p[t,T ]) to have two hidden layers with 128 nodes in each layer along with
ReLU activation function. The corresponding learning rate is set to 0.001. The number of test functions B is set to 100. We
also clip the density ratios g/ω[0,t] and g/ω[t,T ] with maximum value being 100.

B.2.2. SCENARIO I: CHANGE IN REWARD FUNCTION

Transition function

P(St+1|St, At) = N (0.5At1dS
◦ St, IdS

).

Reward function before change point t∗

rt(St, At) = −1.51T
dS
St.
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St

0 1

At
0 0.2 0.3
1 0.3 0.2

Table 5. Injected noise for ω[0,t] and ω[t,T ] under non-stationary situation depicted in Appendix B.1.3.

Reward function after change point t∗

rt(St, At) = 1T
dS
St.

B.2.3. SCENARIO II: CHANGE IN STATE TRANSITION

Transition function before change point t∗

P(St+1|St, At) = N (−0.5At1dS
◦ St, IdS

).

Transition function after change point t∗

P(St+1|St, At) = N (0.5 ∗ [log10(dS) + 0.5] ∗At1dS
◦ St, IdS

).

Reward function

rt(St, At) = −0.25AtS̄
2
t + 4S̄t,

where S̄ is the average value over all dimensions.

B.3. Simulation Setting for Grid World Example

In this example, the grid size is to be 4 ∗ 4 and hence the number of states is 16 (S = {0, 1, ..., 15}). The agent is initialized
at location (0, 0) (s0 = 0). At each time point, the agent has four actions to take with equal probability, which are right, up,
left and down. The agent will not move if it chooses an action that causes itself to potentially step across the boundary. The
immediate rewards the agent receives are shown in Figure B.1(a). Next, we introduce the mechanism of non-stationarity
into the simulation. We set the length of horizon of collected trajectories to be T = 50, and the true change point is set
at time point tcpt = 25. Before tcpt, the agent has 0.8 probability to take a wrong move, which is the opposite direction
as instructed. For example, if the agent choose action right, it will move left with 0.8 probability and move right with 0.2
probability. On the contrary, the agent has 0.1 probability to take a wrong move after tcpt.

B.4. Simulation Setting for Semi-synthetic Data

The motivation for this simulation study is as follows. Consider an unknown environment, and the researcher wants to an
optimal policy so that the sum of future reward is maximized. The researcher may start to collect data by making interactions
with the unknown environment using a random policy (e.g., equal probability to perform action 0 or 1 if binary actions)
and then learn the optimal policy from this offline dataset. This is the usual setting for RL that assumes the environment
does not change, while the underlying model dynamics of the environment can change at some certain time points under
non-stationarity. To mimic this problem of interest, we consider the following simulation scheme.

First, we simulate an offline dataset with N subjects and T0 time points. The offline dataset serves as the initial experience
the researcher interacts with the environment, from which some policies can be learned. Note that there may exist some
change points in the offline dataset, therefore simply applying stationarity-assumed RL algorithm on the whole offline
dataset can lead to useless policy. Second, we update the policy based on the offline dataset based on different strategies.
For example, we can apply the proposed test to find the change points in the offline dataset and use the data points after the
most recent change points to learn the optimal policy. Or we can ignore the presence of change points and learn the policy
using whole offline dataset. Third, we combine the learned policy with ϵ-greedy algorithm for action selection to simulate
the next ∆T data points. We repeat this procedure until some stopping criteria. Then we can calculate the average reward,
which can serve as a performance metric for different policy update strategies.
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Figure B.1. a) The table shows the immediate reward the agent receives for each state. b) The table shows the values obtained by different
policy learning strategies through 100 simulated trajectories. c) Empirical rejection probabilities (y-axis) over different κ (x-axis) for the
grid world example. The results are aggregated over 100 simulations. See details in Section 4.4.

The setting of the simulation is described as follows. To mimic the characteristics of real-world data, we first use the data
from IHS study to learn an MDP generating model. The state St is defined as the concatenation of the cubic root of average
daily step count at week t, thus the dimension is 7. The reward Rt is defined as the cubic root of average weekly step count
at week t+ 1. The action At is a binary variable, which indicates whether the subjects receive the intervention (i.e., push
notification in IHS study) at week t+1. We assume the transition function p(St+1, Rt|St, At) follows a multivariate normal
distribution with mean µ(St, At) and diagonal covariance matrix Σ. We use a neural network with [32, 64, 32] structure
to approximate µ(St, At) and the diagonal elements of Σ are estimated using the sampling variance of the residuals of
each component. The number of subjects N is set to 200 and the length of offline dataset T0 is set to 20. The number of
newly collected time points ∆T is set to 20. The locations of the change points are pre-selected prior to each simulation
and we assume the length of the gap between two change points follows a Poisson distribution with parameter λ = 30.
Three types of change point are considered: (i) change in the mean (µ(St, At)) of the transition function; (ii) change in the
variance (Σ) of the transition function; (iii) change in the reward function. Each type of change point is selected with fixed
probability. We consider two scenarios in this numerical study: (i) there are 3 change points in the dataset; (ii) there is no
change point in the dataset. The structure of the neural network used to learn (p[0,t], p[t,T ]) is set to be two hidden layers
with 128 nodes in each layer along with ReLU activation function. We use double deep Q network (double DQN) (Mnih
et al., 2015; Van Hasselt et al., 2016) as the policy learning algorithm. The neural net with structure [32, 64, 128, 64, 32]
serves as the backbone of the Q network and the discount factor is set to 0.9.

B.5. Real World Example

To implement the test, we adapt a multi-split version of the test (see details in Appendix A) with 10 random splits. The
structure of the neural network used to learn the transition functions p[0,t] and p[t,T ] are set to [64, 64], where the number of
training epochs is set to 500.

C. Notes on Non-pathwise Differentiability of (1)
One common way to construct the doubly robust statistic is to use the Gateaux derivative. Here we try to use this way to
derive the DR statistic w.r.t. Equation 1 and show that Equation 1 is not pathwise differentiable.
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The Gateaux derivative is defined as
∂

∂ϵ
ψ{(1− ϵ)dP(z) + ϵδz′}

∣∣∣
ϵ=0

= ϕ(z′;P).

The equation holds due to the definition of the influence function.

The functional we used:

ψ(P) = Eg(A,S)

[∣∣∣ 1

T − t

T−1∑
j=t

∫
h(sp, r)dPj(Sp = sp, R = r|S = s,A = a)

−1

t

t−1∑
j=0

∫
h(sp, r)dPj(Sp = sp, R = r|S = s,A = a)

∣∣∣].
For the submodel Pϵ(Z = z) = (1− ϵ)P(Z = z) + ϵ1(δz′), we have

Pϵ(Sp = sp, R = r|S = s,A = a) =
Pϵ(Z = z)

Pϵ(S = s,A = a)
=

(1− ϵ)P(Z = z) + ϵ1(z = z′)

(1− ϵ)P(S = s,A = a) + ϵ1(s = s′, a = a′)
.

Therefore, the Gateaux derivative is

d

dϵ
ψ{(1− ϵ)P(z) + ϵδz′}

∣∣∣
ϵ=0

=
d

dϵ

∑
a,s

[∣∣∣∣∣ 1

T − t

T−1∑
j=t

∑
sp,r

h(sp, r)Pj,ϵ(Z = z|S = s,A = a)

−1

t

t−1∑
j=0

∑
sp,r

h(sp, r)Pj,ϵ(Z = z|S = s,A = a)

∣∣∣∣∣
]∣∣∣

ϵ=0

=
∑
a,s

dsgn(∆(t, h, ϵ; s, a,P))
dϵ

∆(t, h; s, a,P, ϵ)

+sgn(∆(t, h; s, a,P, ϵ))
d∆(t, h, ϵ; s, a,P)

dϵ

∣∣∣
ϵ=0

.

Here sgn(∆(t, h, ϵ; s, a,P)) is non-differentiable under H0.

D. Proof for Theorem 3.1
Theorem 3.1 involves two parts: first, Eψ∗

i = 0 if the transition functions p[0,t], p[t,T ] and marginal state-action distributions
ω[0,t], ω[t,T ] are both correctly specified; second, Eψi = 0 if one out of the transition functions p[0,t], p[t,T ] and marginal
state-action distributions ω[0,t], ω[t,T ] is correctly specified. First part is the direct consequence of the second part, therefore,
we focus on the second part in this proof.

Proof. When p[t,T ] = p[0,t] = p∗, for any t, h we have ∆(a, s;h, t) ≡ 0, thus Equation 5 holds since sgn(0) = 0. When
ω[t,T ] = ω∗

[t,T ], ω[0,t] = ω∗
[0,t],

E
{ 1

T − t

T−1∑
j=t

sgn (∆(A0,j , S0,j ;h, t))
[
h(S0,j+1, R0,j)− E[t,T ][h(S

′, R)|A0,j , S0,j ]
] g(A0,j , S0,j)

ω∗
[t,T ](A0,j , S0,j)

}
=

∫
sgn (∆(A,S;h, t))

[
E∗[h(S′, R)|A,S]− E[t,T ][h(S

′, R)|A,S]
]
g(A,S)λ(A,S).

Similarly, we have

E
{1

t

t−1∑
j=0

sgn (∆(A0,j , S0,j ;h, t))
[
h(S0,j+1, R0,j)− E[0,t][h(S

′, R)|A0,j , S0,j ]
] g(A0,j , S0,j)

ω∗
[0,t](A0,j , S0,j)

}
=

∫
sgn (∆(A,S;h, t))

[
E∗[h(S′, R)|A,S]− E[0,t][h(S

′, R)|A,S]
]
g(A,S)λ(A,S).

Combined two equations together, we show that Equation 5 holds. The doubly-robustness property thus follows.
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E. Proof for Theorem 3.6
Proof. Step 1. We begin by showing that any testing function h ∈ H is upper bounded by log(NT ). Recall that we set H to
be the class of neural network with one hidden layer, finitely many hidden nodes and sigmoid activation function. Suppose
h1(·) is random sample from H, we can have

h1(x) =

K∑
k=1

θ
(1)
1,ksigmoid(xT θ(2)1,k).

Since sigmoid function is bounded, therefore h1(·) is uniformly bounded by Kmaxk=1,..,K(|θ(1)1,k|). Since we sam-
ple B random samples from H, which denotes {hb}b=1,...,B , therefore, these functions are uniformly bounded by
Kmaxk=1,..,K;b=1,..,B(|θ(1)b,k |). Recall that the parameters in the neural network are initialized by standard normal distribu-
tion. For a standard normal random variable Y , we have P(Y ≥ t) ≤ exp(−t2/2)/

√
2π for any t > 1. Therefore we can

conclude that with probability approaching 1, maxk=1,..,K;b=1,..,B(|θ(1)b,k |) is upper bounded by logB. Since we assume
B = O((NT )c1), therefore we have the function h ∈ H is absolutely bounded by log(NT ).

Step 2. Note that the test statistic is calculated on the one binary split of the dataset I2 where |I2| = ⌊N/2⌋. To simplify the
notation, we assume the total sample size is 2N , then |I2| = N . Define ∆i,j,b,t = ∆(Ai,j , Si,j ;hb, t). Define

Γ∗ = max
ϵT≤t≤(1−ϵ)T

max
b∈{1,...,B}

√
t(T − t)/T 2S∗(t, hb),

where

S∗(t, hb) = σ∗(t, h)−1

{
1

N(T − t)

N∑
i=1

T−1∑
j=t

sgn
(
∆̂i,j,b,t

) [
h(Si,j+1)− E∗

[t,T ][h(S
′)|Ai,j , Si,j ]

] g(Ai,j , Si,j)

ω∗
[t,T ](Ai,j , Si,j)

− 1

Nt

N∑
i=1

t∑
j=0

sgn
(
∆̂i,j,b,t

) [
h(Si,j+1)− E∗

[0,t][h(S
′)|Ai,j , Si,j ]

] g(Ai,j , Si,j)

ω∗
[0,t](Ai,j , Si,j)

}
.

We want to prove Γ̂ = Γ∗+ op((NT )
−1/2 log−1/2(NT )). Note that in this proof we omit the normalization factor σ2(t, hb)

for simplicity. The reason is that we can define an intermediate test statistic Ŝ∗(t, hb) which replaces the σ∗(t, hb) in
S∗(t, hb) with σ̂(t, hb) and then use the similar steps described below to show that Ŝ∗(t, hb) is close to S∗(t, hb) and
Ŝ(t, hb) is close to S∗(t, hb).

In the next step, we show that

max
ϵT≤t≤(1−ϵ)T

max
b∈{1,...,B}

√
t(T − t)/T 2|Ŝ(t, hb)− S∗(t, hb)| = op((NT )

−1/2 log−1/2(NT )).

With some calculations, we can show that for any t ∈ [ϵT, (1− ϵ)T ] and b,

Ŝ(t, hb) = S∗(t, hb) +R1 +R2 +R3 +R4 +R5, (10)
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where the reminder terms Ri, i = 1, ..., 5 are given by

R1(t, hb) =

∫ ∣∣∣∆̂(a, s;hb, t)
∣∣∣g(a, s)λ(da, ds)

+
1

N(T − t)

N∑
i=1

T−1∑
j=t

sgn(∆̂i,j,b,t)
[
E∗
[t,T ][hb(S

′)|Ai,j , Si,j ]− Ê[t,T ][hb(S
′)|Ai,j , Si,j ]

] g(Ai,j , Si,j)

ω∗
[t,T ](Ai,j , Si,j)

− 1

Nt

N∑
i=1

t−1∑
j=0

sgn(∆̂i,j,b,t)
[
E∗
[0,t][hb(S

′)|Ai,j , Si,j ]− Ê[0,t][hb(S
′)|Ai,j , Si,j ]

] g(Ai,j , Si,j)

ω∗
[0,t](Ai,j , Si,j)

,

R2(t, hb) =
1

N(T − t)

N∑
i=1

T−1∑
j=t

sgn(∆̂i,j,b,t)
[
hb(Si,j+1)− E∗

[t,T ][hb(S
′)|Ai,j , Si,j ]

]

×

[
g(Ai,j , Si,j)

ω̂[t,T ](Ai,j , Si,j)
− g(Ai,j , Si,j)

ω∗
[t,T ](Ai,j , Si,j)

]
,

R3(t, hb) =
1

N(T − t)

N∑
i=1

T−1∑
j=t

sgn(∆̂i,j,b,t)
[
E∗
[t,T ][hb(S

′)|Ai,j , Si,j ]− Ê[t,T ][hb(S
′)|Ai,j , Si,j ]

]

×

[
g(Ai,j , Si,j)

ω̂[t,T ](Ai,j , Si,j)
− g(Ai,j , Si,j)

ω∗
[t,T ](Ai,j , Si,j)

]
,

R4(t, hb) = − 1

Nt

N∑
i=1

t−1∑
j=0

sgn(∆̂i,j,b,t)
[
hb(Si,j+1)− E∗

[0,t][hb(S
′)|Ai,j , Si,j ]

] [ g(Ai,j , Si,j)

ω̂[0,t](Ai,j , Si,j)
− g(Ai,j , Si,j)

ω∗
[0,t](Ai,j , Si,j)

]
,

R5(t, hb) = − 1

Nt

N∑
i=1

t−1∑
j=0

sgn(∆̂i,j,b,t)
[
E∗
[0,t][hb(S

′)|Ai,j , Si,j ]− Ê[0,t][hb(S
′)|Ai,j , Si,j ]

]

×

[
g(Ai,j , Si,j)

ω̂[0,t](Ai,j , Si,j)
− g(Ai,j , Si,j)

ω∗
[0,t](Ai,j , Si,j)

]
.

It suffices to show

max
Tϵ≤t≤T (1−ϵ)
b∈{1,...,B}

√
t(T − t)/T 2|Rm(t, b)| = op((NT )

−1/2 log−1/2(NT )) (11)

for m = 1, ..., 5. In the following, we show that 11 holds with m = 1, 2, 3. Using similar arguments, one can show that 11
holds with m = 4, 5.

Proof of Equation 11 with m = 1:
Under C3.3 and C3.4, it follows from Theorem 3.7 of Bradley (2005) that {S0,j}j≥0 is exponentially β-mixing. Denote
the resulting β-mixing coefficients by β0(q) that satisfies β0(q) = O(ρq) for some ρ < 1 and any q ≥ 0. Since
{S1,j}j≥0, {S2,j}j≥0, ..., {SN−1,j}j≥0 are i.i.d samples as {S0,j}j≥0, therefore, the β-mixing coefficient of

{S0,0, S0,1, ..., S0,T , S1,0, S1,1, ..., S1,T , ..., SN−1,0, SN−1,1, ..., SN−1,T }

satisfies β(q) = O(ρq) for any q ≥ 0. Define

ϕ̃[t1,t2](Si,j , Ai,j ;hb) = sgn(∆̂i,j,b,t)
[
E∗
[t1,t2]

[hb(S
′)|Ai,j , Si,j ]− Ê[t1,t2][hb(S

′)|Ai,j , Si,j ]
] g(Ai,j , Si,j)

ω∗
[t1,t2]

(Ai,j , Si,j)
.

20



A Robust Test for the Stationarity Assumption in Sequential Decision Making

To prove Equation 11 with m = 1, it suffices to show

max
Tϵ≤t≤T (1−ϵ)
b∈{1,...,B}

∣∣∣∣ 1√
N(T − t)

N∑
i=1

T−1∑
j=t

ϕ̃[t,T ](Si,j , Ai,j ;hb)− Eϕ̃[t,T ](Si,j , Ai,j ;hb)

∣∣∣∣ = op(log
−1/2(NT )), (12)

max
Tϵ≤t≤T (1−ϵ)
b∈{1,...,B}

∣∣∣∣ 1√
Nt

N∑
i=1

t−1∑
j=0

ϕ̃[0,t](Si,j , Ai,j ;hb)− Eϕ̃[0,t](Si,j , Ai,j ;hb)

∣∣∣∣ = op(log
−1/2(NT )), (13)

since max |a+ b| ≤ max |a|+max |b|. For brevity, we only show Equation 12 holds. Proof of Equation 13 is similar and
thus omitted.

Under the boundedness assumption, we have
∣∣∣ϕ̃[t,T ](Si,j , Ai,j ;hb)

∣∣∣ ≤ M for some positive value M and hence∣∣∣ϕ̃[t,T ](Si,j , Ai,j ;hb) − Eϕ̃[t,T ](Si,j , Ai,j ;hb)
∣∣∣ ≤ 2M . Similarly, for any t ≤ j ≤ T we have

max
i,j,b

E
[
ϕ̃[t,T ](Si,j , Ai,j ;hb)− Eϕ̃[t,T ](Si,j , Ai,j ;hb)

]2
≤ max

i,j,b
E
[
ϕ̃[t,T ](Si,j , Ai,j ;hb)

2
]
≡ Λ.

Note that Λ is a random variable that depends on {hb}1≤b≤B and {Ai,j , Si,j}i∈{1,...,N},0≤j≤T−1. Under the boundedness
condition, we have

max
i,j,b

E
[
ϕ̃[t,T ](Si,j , Ai,j ;hb)

2
]
≤ O(log2NT )E

{
d2TV

(
p̂[t,T ](S

′, R|S,A), p∗[t,T ]((S
′, R|S,A)

)}
. (14)

Given the boundedness conditions and β-mixing property, it follows from Theorem 4.2 of Chen & Christensen (2015) that,
for any integers τ ≥ 0 and 1 < d < NT/2, we have

P
(∣∣∣ N∑

i=1

T−1∑
j=t

(
ϕ̃[t,T ](Si,j , Ai,j ;hb)− Eϕ̃[t,T ](Si,j , Ai,j ;hb)

)∣∣∣ ≥ 6τ

∣∣∣∣Λ) ≤ N(T − t)

d
β(d)

+P
(∣∣∣ ∑

(i,j)∈Ir

(
ϕ̃[t,T ](Si,j , Ai,j ;hb)− Eϕ̃[t,T ](Si,j , Ai,j ;hb)

)∣∣∣ ≥ τ

∣∣∣∣Λ)+ 4 exp

(
− τ2/2

N(T − t)dΛ + 4dτ/3

)
, (15)

where Ir = {d⌊N(T − t)/d⌋+ 1, ..., N(T − t)}-th elements of

{(0, t), (0, t+ 1), ..., (0, T ), (1, t), (1, t+ 1), ..., (1, T ), ..., (N − 1, t), (N − 1, t+ 1), ..., (N − 1, T )}

when d⌊NT/d⌋ < N(T − t) and Ir = ∅ when d⌊N(T − t)/d⌋ = N(T − t). Suppose τ ≥ 2Md, note that |Ir| ≤ d, it
follows that

P
(∣∣∣ ∑

(i,j)∈Ir

(
ϕ̃[t,T ](Si,j , Ai,j ;hb)− Eϕ̃[t,T ](Si,j , Ai,j ;hb)

)∣∣∣ ≥ τ

∣∣∣∣Λ) = 0.

Under the exponentially β mixing, we have β(d) = O(ρd) for some positive constant ρ. Set d = −(c∗ +
3) log(NT )/ log ρ, we obtain N(T − t)β(d)/d = O(B−1N−2T−2) since B = O((NT )c1) and T − t = O(T ). Set
τ = max{

√
8N(T − t)dΛ log(NTB), 32d log(NTB)/3} and hence

τ2

4
≥ 2N(T − t)dΛ log(NTB) and

τ2

4
≥ 8dτ log(NTB)/3 and τ ≥ 2Md

as either N → ∞ or T → ∞. Therefore we have τ2/(2N(T − t)dΛ + 4dτ/3) ≥ 2 log(NTB) and hence

max
Tϵ≤t≤T (1−ϵ)
b∈{1,...,B}

P
(∣∣∣ N∑

i=1

T−1∑
j=t

(
ϕ̃[t,T ](Si,j , Ai,j ;hb)− Eϕ̃[t,T ](Si,j , Ai,j ;hb)

)∣∣∣ ≥ 6τ

∣∣∣∣Λ) = O(B−1N−1T−2).
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By Bonferroni’s equality, we have

P
(

max
Tϵ≤t≤T (1−ϵ)
b∈{1,...,B}

∣∣∣ N∑
i=1

T−1∑
j=t

(
ϕ̃[t,T ](Si,j , Ai,j ;hb)− Eϕ̃[t,T ](Si,j , Ai,j ;hb)

)∣∣∣ ≥ 6τ

∣∣∣∣Λ) = O(N−1T−1).

Thus it follows from Equation 15 that we have

max
Tϵ≤t≤T (1−ϵ)
b∈{1,...,B}

∣∣∣∣ N∑
i=1

T−1∑
j=t

(
ϕ̃[t,T ](Si,j , Ai,j ;hb)− Eϕ̃[t,T ](Si,j , Ai,j ;hb)

)∣∣∣∣ = O(max{
√
NTΛ log(NTB), log2NTB})

(16)

with probability 1 − O(N−1T−1). Given T − t = O(T ) and B = O((NT )c∗), combining with Equation 14, we have
Equation 12.

Proof of (11) with m = 2: We want to show that

max
Tϵ≤t≤T (1−ϵ)
b∈{1,...,B}

√
N(T − t)|R2| = op(log

−1/2(NT )). (17)

Define the list

{(1, t), (1, t+ 1), ..., (1, T − 1), (2, t), (2, t+ 1), ..., (2, T − 1), ..., (N, t), (N, t+ 1), ..., (N,T − 1)}.

For any 1 ≤ g ≤ N(T − t), denote by (ng, Tg) the g-th element in the list. Let F (0) = {S1,t−1, A1,t−1} ∪
{Sj,t′ , Aj,t′ , Sj,t′+1 : t ≤ t′ ≤ T − 1, j ∈ I1} ∪ {θ(1)b,k : b = 1, ..., B, k = 1, ...,K}. Then we recursively define
F (g) as

F (g) =

{
F (g−1) ∪ {Sng,Tg , Ang,Tg} if ng = ng−1

F (g−1) ∪ {Sng−1,T , Sng,t−1, Ang,t−1} otherwise

Let

χg,b,t =sgn(∆̂ng,Tg,b,t)
[
hb(Sng,Tg+1)− E∗

[t,T ][hb(S
′)|Ang,Tg

, Sng,Tg
]
]

×

[
g(Ang,Tg

, Sng,Tg
)

ω̂[t,T ](Ang,Tg , Sng,Tg )
−

g(Ang,Tg
, Sng,Tg

)

ω∗
[t,T ](Ang,Tg , Sng,Tg )

]
.

Under MA, R2 can be written as 1
N(T−t)

∑N(T−t)
g=1 χg,b,t and forms a sum of martingale difference sequence with respect

to the filtration {σ(F (g)) : g ≥ 0}.

Under the boundedness conditions and Markov assumption, we have

E
(
χ2
g+1,b,t|σ(F (g))

)
≤ E

{[
hb(Sng,Tg+1)− E∗

[t,T ][hb(S
′)|Ang,Tg

, Sng,Tg
]
]2}

∗
[ g(Ang,Tg , Sng,Tg )

ω̂[t,T ](Ang,Tg
, Sng,Tg

)
−

g(Ang,Tg
, Sng,Tg

)

ω∗
[t,T ](Ang,Tg

, Sng,Tg
)

]2
≤ 4Q log2(NT )

[
ω̂[t,T ](Ang,Tg

, Sng,Tg
)− ω∗

[t,T ](Ang,Tg
, Sng,Tg

)
]2

where maxA,S
g(A,S)

ω̂[t,T ](A,S)ω∗
[t,T ]

(A,S) ≤ Q under boundedness conditions. It follows from Theorem 2.1 of Bercu & Touati

(2008) that for any y, τ

P
(∣∣∣∣N(T−t)∑

g=1

χg,b,t

∣∣∣∣ ≥ τ,

N(T−t)∑
g=1

4Q log2(NT )

[
ω̂[t,T ](Ang,Tg

, Sng,Tg
)− ω∗

[t,T ](Ang,Tg
, Sng,Tg

)

]2
≤ y

)
≤ 2 exp

(
− τ

2

2y

)
.
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By Bonferroni’s inequality, for any y, τ we have

P
(

max
Tϵ≤t≤T (1−ϵ)
b∈{1,...,B}

∣∣∣∣N(T−t)∑
g=1

χg,b,t

∣∣∣∣ ≥ τ, max
Tϵ≤t≤T (1−ϵ)

N(T−t)∑
g=1

[
ω̂[t,T ](Ang,Tg

, Sng,Tg
)− ω∗

[t,T ](Ang,Tg
, Sng,Tg

)

]2

≤ y

4Q log2(NT )

)
≤ 2BT exp

(
− τ

2

2y

)
.

Set y = 4Q log2(NT )(NT )−2κ3+1 log4(NTB), by Equation 21, we obtain

P
(

max
Tϵ≤t≤T (1−ϵ)
b∈{1,...,B}

∣∣∣∣N(T−t)∑
g=1

χg,b,t

∣∣∣∣ ≥ τ

)
≤ 2BT exp

(
− τ2

8Q log2(NT )(NT )−2κ3+1 log4(NTB)

)
+ o(1). (18)

Set τ = 4
√
Q(NT )−2κ3+1 log(NT ) log5/2(NTB), the RHS of Equation 18 is O(N−1T−1). Under Theorem 3.5, we

obtain Equation 17.

Proof of (11) with m = 3:
Define

ψi,j,b = E∗
[t,T ][hb(S

′)|Ai,j , Si,j ]− Ê[t,T ][hb(S
′)|Ai,j , Si,j ].

Under similar arguments to Equation 16, we have

max
Tϵ≤t≤T (1−ϵ)
b∈{1,...,B}

∣∣∣∣ N∑
i=1

T−1∑
j=t

(ψ2
i,j,b − Eψ2

i,j,b)

∣∣∣∣ = O(max{
√
NTΞ log(NTB), log2NTB}) (19)

where

max
i,j,b

E[ψ2
i,j,b − Eψ2

i,j,b]
2 ≤ max

i,j,b
Eψ4

i,j,b ≡ Ξ ≤ 16 log4(NT )E
{
d4TV

(
p̂[t,T ](S

′, R|S,A), p∗[t,T ]((S
′, R|S,A)

)}
.

By triangular inequality, Theorem 3.5 and boundedness condition, we have

max
Tϵ≤t≤T (1−ϵ)
b∈{1,...,B}

N∑
i=1

T−1∑
j=t

{
E∗
[t,T ][hb(S

′, R)|Ai,j , Si,j ]− Ê[t,T ][hb(S
′, R)|Ai,j , Si,j ]

}2

= O((NT )−2κ1+1 log2(NT )). (20)

Similar to Equation 20, we have

max
Tϵ≤t≤T (1−ϵ)
b∈{1,...,B}

N∑
i=1

T−1∑
j=t

{
ω∗
[t,T ](Ai,j , Si,j)− ω̂[t,T ](Ai,j , Si,j)

}2

= O((NT )−2κ3+1 log2(NT )).

Together with Equation 20 and Equation 21, by Cauchy-Schwarz inequality,

max
Tϵ≤t≤T (1−ϵ)
b∈{1,...,B}

√
N(T − t)|R3(t, b)| = O((NT )−κ1−κ3+1/2 log2(NT )) = O(log−1/2(NT )). (21)

Step 3
In this step, we show the limiting distribution of Γ∗. We begin by defining vectors λ∗i,j,t ∈ RB , where the b-th element is

I(j ≥ t)√
N(T − t)

sgn
(
∆̂i,j,b,t

) [
hb(Si,j+1)− E∗

[t,T ][hb(S
′)|Ai,j , Si,j ]

] g(Ai,j , Si,j)

ω∗
[t,T ](Ai,j , Si,j)

−I(j < t)√
Nt

sgn
(
∆̂i,j,b,t

) [
hb(Si,j+1)− E∗

[0,t][hb(S
′)|Ai,j , Si,j ]

] g(Ai,j , Si,j)

ω∗
[0,t](Ai,j , Si,j)

}
. (22)
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Define τ = {⌈ϵT ⌉, ⌈ϵT ⌉ + 1, ..., ⌊(1 − ϵ)T ⌋}, which is all the values t can take. Define λ∗i,j =
(λ∗i,j,⌈ϵT⌉, λ

∗
i,j,⌈ϵT⌉+1, ..., λ

∗
i,j,⌊(1−ϵ)T⌋) as a vector with B|τ | dimensions. Define the list

{(1, 0), (1, 1), ..., (l1, T − 1), (2, 0), (2, 1), ..., (l2, T − 1), ..., (N, 0), (N, 1), ..., (N,T − 1)}.

For any 1 ≤ g ≤ NT , denote by (ng, Tg) the g-th element in the list. Let F (0) = {S1,0, A1,0} ∪ {Sj,t′ , Aj,t′ , Sj,t′+1 : t ≤
t′ ≤ T − 1, j ∈ I1} ∪ {θ(1)b,k : b = 1, ..., B, k = 1, ...,K}. Then we recursively define F (g) as

F (g) =

{
F (g−1) ∪ {Sng,Tg

, Ang,Tg
} if ng = ng−1

F (g−1) ∪ {Sng−1,T , Sng,0, Ang,0} otherwise

Under MA, the high-dimensional vector
∑NT

g=1

√
(T − tg)tg/T 2λ∗ng,tg forms a sum of martingale difference sequence

with respect to the filtration {σ(F (g)) : g ≥ 0}. Note that Γ∗ = ∥
∑NT

g=1

√
(T − tg)tg/T 2λ∗ng,tg∥∞. For each g, define

Σg = E(((T − tg)tg/T )λ
∗
ng,tgλ

∗T
ng,tg |σ(F

(g−1))), V ∗ =
∑NT

g=1 Σg and V0 = EV ∗. Similar to the proof of Equation 19,
we can show that ∥V ∗ − V0∥∞,∞ is absolutely bounded by O((NT )−1/2 log3(NT )) with probability 1−O(N−1T−1).
By Theorem 3.1 of Belloni & Oliveira (2018), we have for any Borel set R, any δ > 0 and some constant C > 0

P(Γ∗ ∈ R) ≤ P(∥N(0, V0)∥∞ ∈ RCδ)

+ C

(
1

NT
+

log3(NT ) log(B|τ |)
δ2
√
NT

+
log3(B|τ |)
δ3
√
NT

+
log2(B|τ |)

δ3

N(T−1)∑
g=1

E∥ηg∥3∞
)

(23)

where ηg = Σ
1/2
g Ng, 1 ≤ g ≤ NT and {Ng}g=1,...,N(T−1) are i.i.d. standard B|τ |-dimensional Gaussian random vectors

defined in the same probability as λ∗ng,tg . By the boundedness conditions, we have each element in Σg is bounded by

4log2(NT )(NT )−1 and E∥Ng∥3∞ = O(log3/2(B|τ |)). Therefore, we have
∑NT

g=1 E∥ηg∥3∞ = O((NT )−1/2 log9/2(NT )).
Combined all the arguments together, we have

P(Γ∗ ∈ R) ≤ P(∥N(0, V0)∥∞ ∈ RCδ) +O(1)
( 1

NT
+
log4(NT )

δ2
√
NT

+
log3(NT )

δ3
√
NT

+
log13/2(NT )

δ3
√
NT

)
. (24)

Let R = (z,∞) and δ = ϵ log−1/2(NT )/C, then

P(Γ∗ ≤ z) ≥ P(∥N(0, V0)∥∞ ≤ z − ϵ log−1/2(NT ))− o(1). (25)

Let R = (−∞, z] and δ = ϵ log−1/2(NT )/C, then

P(Γ∗ ≤ z) ≥ P(∥N(0, V0)∥∞ ≤ z + ϵ log−1/2(NT )) + o(1). (26)

Together with Γ̂ = Γ∗ + op((NT )
−1/2 log−1/2(NT )) from step 2, we have for any constant ϵ > 0,

P(Γ̂ ≤ z) ≥ P(∥N(0, V0)∥∞ ≤ z − 2ϵ log−1/2(NT ))− o(1),

P(Γ̂ ≤ z) ≥ P(∥N(0, V0)∥∞ ≤ z + 2ϵ log−1/2(NT )) + o(1). (27)

Step 4
In this step, we show that ∥V̂ −V0∥∞,∞ is uniformly bounded byO((NT )−c2) with some positive constant c2 > 0, where V̂
is the estimated version of V0 by replacing p∗[t1,t2], ω

∗
[t1,t2]

with estimated ones. By Cauchy-Schwarz inequality, ∥V̂ −V0∥∞,∞

≤ ∥V̂ − V ∗∥∞,∞ + ∥V ∗ − V0∥∞,∞. Since we have shown that ∥V ∗ − V0∥∞,∞ is bounded by O((NT )−1/2 log3(NT ))

with probability 1−O(N−1T−1), we will show that ∥V̂ − V ∗∥∞,∞ = Op((NT )
−c3) for some constant c3 > 0.

∥V̂ − V ∗∥∞,∞ = max
t1,t2∈τ

b1,b2∈{1,...,B}

|
N∑
i=1

T−1∑
j=0

λ̂i,j,t1,b1 λ̂i,j,t2,b2 − λ∗i,j,t1,b1λ
∗
i,j,t2,b2 |. (28)
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Since âb̂− a∗b∗ = 1
2

[
â(̂b− b∗) + a∗(̂b− b∗) + b̂(â− a∗) + b∗(â− a∗)

]
, following the similar steps in step 1, we can show

that ∥V̂ − V ∗∥∞,∞ is bounded by O((NT )−c3) with probability 1−O(N−1T−1).

Step 5
In this step, we finish the proof by showing that |P(Γ̂ ≤ z)− P(∥N(0, V̂ )∥∞ ≤ z|V̂ )| = o(1).

Since ∥V̂ − V ∗∥∞,∞, using the similar steps in step 3, we can show that for any ϵ > 0,

P(Γ̂ ≤ z) ≥ P(∥N(0, V̂ )∥∞ ≤ z − 2ϵ log−1/2(NT )|V̂ )− o(1),

P(Γ̂ ≤ z) ≥ P(∥N(0, V̂ )∥∞ ≤ z + 2ϵ log−1/2(NT )|V̂ ) + o(1). (29)

By the condition from Theorem 3.6 that the diagonal element of V0 is uniformly bounded below by some ζ > 0 and
∥V̂ − V0∥∞,∞ = Op((NT )

−c2), by the Theorem 1 of Chernozhukov et al. (2017), we can show that

P(∥N(0, V̂ )∥∞ ≤ z + 2ϵ log−1/2(NT )|V̂ )− P(∥N(0, V̂ )∥∞ ≤ z − 2ϵ log−1/2(NT )|V̂ )

≤ O(1)ϵ log1/2(B|τ |) log−1/2(NT ). (30)

Together with Equation 29, we have

|P(Γ̂ ≤ z) ≥ P(∥N(0, V̂ )∥∞ ≤ z|V̂ )| = o(1),

since ϵ > 0 can be arbitrary small. Replacing z with ĉα, which is α percentile generated by Gaussian multiplier bootstrap
(Chernozhukov et al., 2013), we finish the proof.
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