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A B S T R A C T

Despite the growing prevalence of insufficient sleep among individuals, we still know little about
the labour market return to sleep. To address this gap, we use longitudinal data from Germany
and leverage exogenous fluctuations in sleep duration caused by variations in time and local
sunset times. Our findings reveal that a one-hour increase in weekly sleep is associated with a
1.6 percentage point rise in employment and a 3.4% increase in weekly earnings. Such effect
on earnings stems from productivity improvements given that the number of working hours
decreases with longer sleep duration. We also identify a key mechanism driving these effects,
namely the enhanced mental well-being experienced by individuals who sleep longer hours.

1. Introduction

There is a widespread concern that average sleep duration has decreased over the past 50 years, and that insufficient sleep
has become a major public health issue (Roenneberg, 2013).1 The adverse effects of sleep deprivation have potentially important
consequences for economic activity. Insufficient sleep can impair cognitive abilities (Nuckols et al., 2009) and brain plasticity (Saper
et al., 2005). It can give rise to errors in judgment, influencing organizational capacities (Barnes and Hollenbeck, 2009) as well as
risk-taking (Harrison and Horne, 1998). Sleep deprivation can also predict a higher rate of workplace accidents (Barnes and Wagner,
2009) and a higher prevalence of heart attacks and chronic diseases (Moore et al., 2002; Giuntella and Mazzonna, 2019; Jin and
Ziebarth, 2020). Yet despite such detrimental consequences, little attention has been paid to the economic consequences of sleep
deprivation, and especially its impact on labour market performance.

To estimate the causal effects of sleep on work performance, it is important to control for individual heterogeneity in sleep
routines (Jansson-Fröjmark et al., 2019), genetic pre-dispositions in sleep time (Shi et al., 2019) or ability to deal with sleep
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deprivation, which is likely to be correlated with both sleep duration and labour market outcomes.2 While some of these underlying
actors may vary over time, they are likely to be fixed across individuals. In order to deal with such omitted variables, it is therefore
ssential to rely on longitudinal data and include individual fixed effects to estimate the causal effect of sleep on work performance.
revious studies have relied on evidence from repeated cross-sections (Gibson and Shrader, 2018; Giuntella and Mazzonna, 2019).
n contrast, this paper, is the first to use longitudinal data and rely specifically on the German Socio-Economic Panel (SOEP) which
ollects data on both individual sleep and labour market performance between 2008 and 2019. To exploit exogenous individual
ariation in sleep duration and avoid reverse causality, we combine our longitudinal data with an instrumental strategy that draws
n both time and local variation in sunset time to instrument for sleep duration. The intuition behind this first-stage relationship is
traightforward: earlier sunset times induce workers to go to bed earlier, and because work schedules do not respond as strongly to
ariation in sunset times (Hamermesh et al., 2008), earlier bedtimes encompass more sleep (Gibson and Shrader, 2018; Giuntella
nd Mazzonna, 2019).

We make several contributions to the literature. First, we identify the effect of sleep duration on a range of outcomes including
abour force participation, hours worked, and earnings — using a large-scale longitudinal dataset. Second, we dig into the
pecific mechanisms through which sleep affects labour market performance through the detailed analysis of workers’ self-reported
fficiency, stress, psychological well-being and health. This allows us to provide novel insights into how sleep can boost workers’
roductivity. Finally, we investigate the extent to which labour market returns to sleep are heterogeneous across different subgroups.
his allows us to identify who are the individuals most likely to suffer from sleep deprivation and to opt out from the labour market
r decrease their working hours due to sleep problems.

Providing empirical evidence on the causal impact of sleep on labour market performance requires large and exogenous variations
n sleep duration. Our methodology relies on two sources of variation. First, within a location, earlier sunset times during the year
an be associated with longer sleep. Using the interview date and respondent’s state (länder) of residence, we assign daily local sunset
ime to each observation in the dataset and exploit the differences in interview days between survey waves for each respondent to
apture the effect of daily local sunset time on respondent’s sleep. Second, respondents living further east experience on average
arlier sunset times than respondents living further west. We observe a bit less than 10% of individuals relocating to different states
etween two survey waves in our dataset. We thus also rely on these geographical variations to capture the effect of sunset time
n sleep duration. To the best of our knowledge, we are the first to capture exogenous variations in sleep duration relying on
ithin-individual variations in interview days and state of residence. This research design allows us to get as close as possible to a
uasi-natural experiment dealing with important confounders (such as sleeping routines, ability to deal with sleep deprivation or
eporting bias) that are likely to affect results from cross-sectional estimates. By restricting our sample to non-movers, we can also
isentangle how much of the sleep effects come from seasonal versus geographical variations.

Some clear results emerge from our analysis. We find that later sunset times significantly reduce sleep duration conditional on
ndividual fixed effects. In fact, a 1-hour increase in sunset time reduces weekly sleep duration by 0.08–0.11 h (roughly 5–7 min).
0% of our sample experienced more than 30 min variations in sunset times over two consecutive interviews (among whom 20%
xperience more than 2 h). And there are about 40 min differences in sunset times between east and west residents in Germany. For
omparison, using cross-sectional variations in weekly sleep, Gibson and Shrader (2018) find that a 1-hour increase in sunset time
educes weekly sleep by 20 min. We then assess the impact of sleep variations induced by sunset times on respondents’ labour market
utcomes. We find that sleep exerts a positive effect on employment. An increase of 30 min in sleep duration increases labour force
articipation by 0.8 percentage points. The effects are large in economic terms. We also find that sleep increases workers’ earnings.
mong full-time workers, a 30-minutes increase in sleep would increase weekly earnings by 1.7%.

Changes in earnings may reflect changes in productivity or changes in the number of hours spent at work. Our dataset uniquely
llows us to provide evidence on both channels. We find that a 30-minutes increase in sleep is associated with significant increases
n hourly wages. In contrast, a 30-minutes increase in sleep reduces working hours by 0.4% among full-time workers. These results
uggest that respondents who sleep more tend to be more productive at work. They also tend to spend less time in the labour market.

Investigating potential mechanisms, we find that an increase in sleep duration substantially increases workers’ self-reported
fficiency in completing tasks. We also document evidence that an increase in sleep duration increases (i) workers’ ability to deal with
tress, (ii) decreases the probability to experience negative emotions during the day and, (iii) is associated with better self-reported
ealth. These results suggest that workers sleeping longer are more efficient and experience better mental health. In quantitative
erms, a 30-minutes increase in sleep duration increases workers’ mental health by 0.09 points on a 1–5 scale. This is equivalent to
he mental health effects of having an increase in autonomy or security at work of about 25% (Clark et al., 2018). Under competitive
arkets, our results suggest that this increase in productivity through better mental health ultimately results in higher wages.

Importantly, we find that women and in particular mothers are those who are more likely to benefit from longer sleep time.
omen who sleep 30-minutes more per week are 1.1 percentage points more likely to work, and when they work, their weekly

arnings increase by 2.5%. This increase in labour market participation and weekly earnings is twice as much as that observed
or men. This suggests that women would be those who would benefit the most from policies promoting sleep and encouraging
ndividuals to allocate more time to sleep. Such policies would ultimately help reduce gender inequalities. Moreover, there is
vidence that a 30-minutes increase in sleep would not decrease women’s working hours (compared to a 0.6% decrease for men).
n addition, we find that parents are those who benefit the most from longer sleep times. A 30-minutes increase in sleep would
ncrease parents’ earnings by 6.9% on average (compared to 2.2% for non-parents). These are large differences consistent with the

2 One could also imagine that individuals who have a bias in reporting sleep duration may also have a consistent bias in reporting labour market outcomes.
2
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idea that parents and in particular mothers are more likely to suffer from sleep deprivation and to opt out of the labour market or
experience lower earnings due to sleep deprivation (Costa-Font and Fleche, 2020).

Our findings are robust to a number of robustness checks, e.g. including individuals’ socio-demographic controls, job charac-
eristics, as well as housing characteristics, the day temperature and other environmental factors. The identification assumption
nderlying our sunset time instrument is that there are enough variations in time and local sunset times within individuals and
hat these variations are exogenous to labour market performance (that is, they only affect respondents’ labour market performance
hrough sleep, conditional on our control variables). We provide support for this assumption by restricting our baseline specification
o non-movers — using only seasonal variations to identify our sleep effects. We use this specification to test if endogenous sorting
f respondents across locations could not bias our results. We also test that our results are not driven by seasonal confounders which
ould co-vary with both daily sunset time and labour market performance.

Our paper contributes to several strands of literature. First, it relates to the scarce literature on the relationship between sleep
nd labour in economics. Standard economic models of time allocation (Becker, 1965; Gronau, 1977) focus on ‘‘productive time’’
nd ‘‘leisure time’’ and do not tend to model ‘‘sleep time’’ (Dunn, 1979). In a seminal work, Biddle and Hamermesh (1990) extend
he analysis and consider a model where individuals optimize sleep and other time uses (e.g. work, leisure and home production).

hile their model allows sleep to affect productivity at work, they do not test this relationship in their empirical analysis. Instead,
iddle and Hamermesh provide evidence for the opposite relationship, that is the impact of wages on sleep duration. They find that

ndividuals, whose time is more valuable, tend to substitute away time for sleep. Consistently, Szalontai (2006), Grandner et al.
2010), Bonke (2012) et Brochu et al. (2012) estimate a negative relationship between wages and sleep duration.

Our study most closely relates to Kamstra et al. (2000), Gibson and Shrader (2018) and Giuntella and Mazzonna (2019). Using
aylight Saving Time as an exogenous variation in sleep duration, Kamstra et al. (2000) provide evidence that insufficient sleep

mpairs how individuals process information and negatively affects the performance of stock market participation. Using cross-
ectional time use data from the United States, Gibson and Shrader (2018) investigates sleep changes induced by variations in
unset times. They provide evidence that a 1-hour reduction in weekly sleep decreases earnings by 1.1% in the short run and 5% in
he long run. Similarly, Giuntella and Mazzonna (2019) use US time zone variations and provide evidence that later sunset times
nduce a reduction in income per capita by roughly 3% across commuting zones spanning across a time-zone boundary. Other studies
ocus on the relationship between insomnia, work accidents and absenteeism (see Metlaine et al., 2005 for a review), or cyberloafing
Wagner et al., 2012). Our approach differs from theirs in that we use longitudinal data and consider only differences in sleep patterns
ithin individuals through time, rather than between individuals. This is important as it allows us to take into account genetic
ffects on sleep which are time-invariant unobserved characteristics alongside sleep routines formed in early life which are likely
o be correlated with both sleep and future labour market outcomes. Indeed, sleep routines can influence individuals’ educational
ttainment as well as the ability to deal with sleep reduction, alongside the amount of sleep needed to stay alert. Following the same
ndividuals over time is rare in observational studies investigating the relationship between sleep and labour market performance,
ne exception being Costa-Font and Fleche (2020) which rely on birth cohort data and focus on children-related sleep deprivation.
hey provide evidence that sleep disruptions induced by children negatively affect mothers’ labour market performance. However,
he effect is restricted to mothers, and therefore is not extensive to the entire active population.

This paper also complements recent work by Bessone et al. (2021). In their paper, the authors conduct a randomized three-
eek sleep intervention in India. They find that increased night-time sleep exerts no effects on participants’ cognition, productivity,
ecision making or well-being but leads to small decreases in labour supply. These results stand at odds with previous findings
howing that sleep reduces mistakes (Ulmer et al., 2009), increases students’ tests (Taras and Potts-Daterma, 2005; Carrell et al.,
011; Heissel and Norris, 2018), or improve cognitive performance (Van Dongen et al., 2003) and depend on the experimental
etting.3 Our study allows us to investigate how sleep affects workers’ self-reported efficiency, decreases stress and improves

psychological well-being using large-scale observational data. To capture the mechanisms through which sleep can affect labour
market performance, it is important to study all these effects within the same sample of individuals. To the best of our knowledge,
we are the first to provide evidence on these mechanisms using large-scale observational data and to show that these productivity
effects are significantly related to mental health improvements.

Finally, our study relates to another important piece of literature, which investigates the determinants of workers’ productivity.
he finding that sleep boosts workers’ productivity relates to a recent stream of research, which has begun to incorporate insights
rom health and psychology literature to consider influences on work performance such as the individual cognitive functioning,
ood and affective states to understand workers’ productivity (e.g., Krueger et al., 2009; Oswald et al., 2015; Bellet et al., 2021).

t also relates to the growing literature that estimates the effect of environmental factors on workers’ productivity. Relative to these
tudies, our paper focuses on sleep duration and how a longer sleep time can improve workers’ productivity.

. Data and empirical strategy

This section describes the data, explains how we identify exogenous variations in sleep duration and presents the empirical
pecification.

3 Other studies have also found a relationship between sleep and workplace accidents (Barnes and Wagner, 2009), car accidents (Smith, 2016), health (Jin
3

nd Ziebarth, 2020), depression or emotional states (Hansen et al., 2017).
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Table 1
Descriptive statistics.

Mean SD Min Max
(1) (2) (3) (4)

Sleep variables
Sleep during workdays 6.73 1.00 2 10
Sleep during weekends 7.89 1.20 2 10
Total weekly sleep 49.46 6.53 14 70

Employment variables
Employed 0.98 0.13 0 1
Working full-time 0.75 0.43 0 1
Weekly hours worked 43.71 6.65 25 80
Weekly earnings 498.08 298.17 5.08 11 538.46
Hourly wages 11.35 6.03 0.13 174.82

Notes: This table provides the list, arithmetic mean and standard deviations alongside extreme values of all sleep and labour
variables of interest. Figures in rows (1) to (5) are estimated on the full sample of respondents aged between 15 and 64, who are
not self-employed and for whom we have sleep duration observations. Figures in rows (6) to (8) are estimated on the sample of
respondents aged between 15 and 64, who are not self-employed, who report positive weekly earnings and are working full-time.

.1. Data

To evaluate the labour market returns to sleep, we rely on the German Socio-Economic Panel (SOEP), which is a longitudinal
urvey of households and individuals produced by the German Institute for Economic Research (DIW Berlin) and which includes
nformation on household composition, demography, employment, health, income, education, satisfaction indicators, among others.
ne of the main advantages of the German SOEP is its longitudinal dimension, which allows us to follow the same individuals over

ime and control for unobserved heterogeneity. Respondents are interviewed annually and most interviews occur between February
nd June (about 82%).

Although the SOEP began in 1984, we only use data from 2008 to 2019, which includes information on respondents’ sleep
uration and labour market outcomes. As we are interested in the labour market effects of sleep, our final sample is restricted to
hose individuals aged between 15 and 64 and who are not self-employed. This gives us a sample size of roughly 20,200 individuals,
or a total of approximately 86,000 observations. Additionally, for the analysis of employed individuals, we restrict our sample to
ndividuals aged between 15 and 64 who report not being self-employed, who report receiving positive weekly earnings and who
ork full-time, as in Gibson and Shrader (2018). This sample contains about 15,300 respondents for a total of approximately 63,800
bservations.
Sleep Data. The SOEP data include rich information on sleep. In particular, the dataset provides precise information on the

number of hours slept. We use the individuals’ answers to the following question: ‘‘How many hours of sleep do you have on
average on a normal day during the working week? How many hours on a normal weekend day?’’ All these answers are given in
complete hours. From these variables, we have also created another sleep variable, ‘‘weekly sleep’’, which measures the hours of
sleep on a normal week, and allows us to match the frequency of our earnings variable:

Weekly sleep = (5*Sleep hours on workdays + 2*Sleep hours on weekends)
Table 1 reports the descriptive statistics. In our sample, respondents sleep on average 6.73 h on a normal workday and 7.89 h on

eekends. This amounts to 49.46 h on a normal week. The sleep information in SOEP relies on the cognitive ability of respondents
o be able to estimate the average time they devote to different activities. One concern lies in that the sleep information refers to an
verage sleep duration, which may not vary with daily sunset times if respondents average it over the year. This issue means that
ur estimates relying on seasonal variations in sleep duration would be attenuated. Similarly, it would be an issue if respondents
ho recently moved provide an average duration of sleep across a window that includes time in both locations. If our first-stage
stimates are attenuated, this could inflate our resulting IV estimates. An alternative to measuring sleep is time diaries which focus
n a restricted number of days where respondents are asked to fill their diaries. Unfortunately, this is not how sleep data are collected
n SOEP. Reassuringly, Sonnenberg et al. (2011) find large associations between experience sampling time use questions and the
tandard survey questions of the SOEP for long-lasting and externally structured activities such as sleep. We also provide evidence
hat within a year, earlier sunset times are associated with longer sleep duration. Similarly, respondents living further East report
n average longer sleep. We also find that average sleep responses vary with interview days and locations in a meaningful way. This
uggests that the average reference period used by SOEP respondents to report their sleep duration allows for capturing meaningful
easonal (daily) and geographical variations (see Sections 3 and 2.2).4
Labour Market Outcomes. We use several variables to capture the labour market effects of sleep. Table 1 provides the descriptive

tatistics for these outcomes. The first employment variable is a measure of employment status (whether the respondent is currently

4 The SOEP data also include questions on sleep satisfaction and sleep disorder. Sleep satisfaction is assessed using the following question: ‘‘How satisfied
re you today with your sleep?’’. Possible answers range from 0 (completely satisfied) to 10 (completely satisfied). Appendix Table A1 in the Online Appendix
xamines the correlation between the different measures of sleep used in this paper. Overall, we find significant correlations that suggest that sleeping more
4

ours increases sleep satisfaction and having a sleep disorder reduces sleep duration and sleep satisfaction.
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working). In our sample, 98% of respondents work and 75% declare working full-time. We also have information on weekly hours
of work. The question included in SOEP refers to the actual hours currently worked per week by respondents. The second-to-last row
gives information on weekly earnings (i.e., the net monthly income reported by respondents multiplied by 12 and divided by 52).
The last employment-related outcome gives information on hourly wages (that is the weekly earnings reported by the respondent
divided by the number of actual hours currently worked per week). In our sample, full-time workers work on average 43.71 h per
week. They earn 498.08 euros on average per week and 11.34 euros per hour of work. Comparisons with other data sources suggest
that these figures capture employment and earnings accurately in Germany.5

Work Efficiency, Stress, Psychological Well-being, and Health. Insufficient sleep may impair workers’ performance at work
y decreasing their alertness and their ability to process information (Kamstra et al., 2000; Killgore, 2010; Kahn et al., 2014; Wagner
t al., 2012). It can also increase the risk of mental impairment and depression as well as workplace injuries (Barnes and Wagner,
009). To test for these mechanisms, the SOEP data collect detailed information on worker’s self-reported efficiency (e.g., whether
worker is thorough; efficient and effective in completing tasks), stress (e.g., the feeling of being rushed by time; whether the

espondent is nervous), emotional states (e.g., frequency of being angry; worried; sad or happy), mental and physical health (using
he SF-12 questionnaire or whether the state of health affects daily activities). Detailed definitions of all these variables from the
OEP questionnaire can be found in the online Appendix.

.2. Empirical strategy

The main empirical issue in estimating the causal effect of sleep on labour market outcomes is that sleep and labour market
erformance may be endogenous. First, individuals who spend more time on the labour market and earn higher wages may sleep
ess on average. Second, both sleep and labour market performance may result from unobserved characteristics, which are not
ncluded in the model. Third, sleep duration on a normal week may be an imperfect proxy of sleep quantity. Due to these issues,
LS estimates may be biased.

To overcome these issues, it is essential to rely on longitudinal data which allows us to identify the effect of sleep on labour market
erformance by exploiting within-individual variations in sleep quantity and to deal with unobserved heterogeneity likely to affect
oth sleep duration and labour market outcomes. Furthermore, to account for omitted variables and deal with reverse causality, we
mplement an instrumental strategy based on time and local variations in sunset times within individuals to instrument for sleep
ariations using information from sunset map logs.6
First-stage. Using the interview date and respondent’s state of residence, we assign sunset time to each observation in the dataset

nd begin by estimating the following first-stage equation:

𝑆𝑙𝑒𝑒𝑝𝑖𝑠𝑡 = 𝜆1𝑆𝑠𝑡 +𝑋𝑖𝑠𝑡𝛽1 + 𝛿1,𝑡 + 𝜇1,𝑠 + 𝜂1,𝑖 + 𝜖1,𝑖𝑠𝑡 (1)

here 𝑆𝑙𝑒𝑒𝑝𝑖𝑠𝑡 is our measure of sleep duration of individual 𝑖 at time 𝑡, in state (länder) 𝑠. 𝑆𝑠𝑡 is the sunset time (in hour) at time 𝑡
n state 𝑠 that individual 𝑖 experiences. 𝑋𝑖𝑠𝑡 is a vector of covariates that includes respondents’ age group dummies and occupation
ummies. 𝛿1,𝑡 are time-fixed effects (i.e., day-of-week fixed effects and a dummy for being interviewed during summer).7 𝜇1,𝑠 are
tate fixed effects and 𝜂1,𝑖 are individual fixed effects. Standard errors are clustered at the state level.

Our source of identification corresponds to deviations in respondents’ sleep duration through time. Sleep, and especially sleep
ime, evolves across the individual’s life cycle. Indeed, middle-aged individuals appear to sleep less than both their older and younger
ounterparts (Bonke, 2012). Therefore, it is important to control for age. Similarly, occupation and job characteristics are likely to be
elated to both respondents’ sleep and labour market performance (Mezick et al., 2008; Antillon et al., 2014). We, therefore, control
or occupation dummies. Finally, individual fixed effects allow us to control for any unobserved heterogeneity across respondents,
ncluding a genetic propensity for interrupted sleep, ability to deal with sleep deprivation, time-invariant environmental triggers
such as the presence of curtains, bed quality, or insulation at home, etc.) and respondent specific persistent reporting bias in sleep
uration.

The relevance of sunset time as an instrument for sleep comes from a large medical literature, which has demonstrated that the
uman body reacts to environmental light. As such, the human circadian rhythm is synchronized with sunrise and sunset times.
ased on this idea, Roenneberg et al. (2007) provide evidence using German data that later sunset times induce individuals to go to
ed later and reduce sleep duration. Similarly, Gibson and Shrader (2018) and Giuntella and Mazzonna (2019) demonstrate using
ime use data in the United States that a 1-hour increase in sunset time is associated with a reduction in sleep duration of roughly
0 min per week. Note that if people were able to compensate for later sunset time by waking up later, we would not observe any
ffect on sleep duration. But because work schedules often tend to be rigid, many individuals are not able to compensate in the
orning by waking up one hour late (Hamermesh et al., 2008).

Using sunset time as a source of exogenous variations actually provides two types of variation: (1) within a location, earlier sunset
ime during the year induces longer sleep duration. (2) comparing two locations, respondents living further east will experience
arlier average sunset time than respondents living further west. As a consequence, respondents from the eastern location will sleep

5 See https://www.destatis.de/.
6 https://sunrise.maplogs.com/ This website uses google maps to search and choose a location on Earth. Then the location (with its latitude and longitude) is

ent to a back-end server to perform sunrise and sunset time calculations. It provides sunrise and sunset times for a number of countries and regions worldwide.
7 Sleep may vary across time due to temperature or holidays. We, therefore, control for a summer dummy to capture some of these effects.
5

https://www.destatis.de/
https://sunrise.maplogs.com/
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Fig. 1. Within-individual variation in sunset time
Notes: The figure is a histogram of within-individual variation in daily local sunset time across two consecutive interview dates.

longer. We rely on these two types of sunset variations to estimate our sleep effects. More specifically, conditional on individual
fixed effects, we first rely on differences in interview days between survey waves for each respondent to capture the seasonal effect
of sunset time on respondent’s sleep. By focusing on within-individual variations in interview days, our estimation strategy allows us
to reduce the possibility that individual confounders correlated with seasonal effects (e.g. individuals with consistent reporting bias
being systematically interviewed in Summer) would affect our estimates. Second, relying on individuals who relocate to different
states across survey waves, we also capture sunset time effects through spatial differences in sunset times for movers and their
impacts on sleep duration. In contrast with cross-sectional estimates, this allows us to deal with geographical factors that would be
systematically correlated with individual unobserved heterogeneity.

However, one important assumption underlying this strategy is that there are enough variations in time and local sunset times
within individuals in our dataset. To provide evidence for this, we first compute within-individual variations in sunset times across
two interview dates in our sample. We then plot the distribution in Fig. 1. We see that 50% of our sample experience more than
30 min variations in sunset times over two consecutive interviews (among whom 20% experience more than 2 h). 20% of our sample
experience between 15- and 30-minute variations in sunset times and 30% less than 15-minute variations.8 This suggests that there
are significant variations in interview dates (or states of residence) between interviews in our dataset.9,10 Note however that the
distribution is not uniformly distributed over days of the year, which suggests that the timing of interviews is not unconditionally
random.

We also graphically examine the relationship between within-individual variations in sunset times and within-individual
variations in sleep duration to provide evidence that these variations are meaningful. To construct Fig. 2, we first average within-
individual variations in weekly sleep between two interviews by within-individual variations in sunset times (in a quarter of an
hour). We then plot the means of the y-variable within each sunset time change. The solid line shows the linear fit estimated.
As expected, there is a strong relationship between variations in sunset times and variations in weekly sleep. Consistent with our
hypothesis and previous findings from Gibson and Shrader (2018) and Giuntella and Mazzonna (2019), this indicates that later
sunset times reduce sleep duration on average. To interpret the magnitude, a 1-hour increase in sunset time decreases the average
duration of sleep by 6 min within-individuals.11,12

8 Note that 10.5% of respondents are observed only once in our sample.
9 Only 10% of our sample were interviewed in the exact same week between two interviews (see Appendix Figure A1).

10 There are a bit less than 10% movers in our sample. This means that most of our identification comes from seasonal variations.
11 For comparison purposes, we can also replicate Fig. 2 using cross-sectional variations in weekly sleep and sunset times. Consistent with Gibson and Shrader

(2018), we find that a 1-hour increase in sunset time would increase weekly sleep duration by 15 min. See Appendix Figure A2.
12 Similarly, we can plot a histogram of the predicted values for sleep using within-individual variations in sunset times to check that there are enough

variations in sleep time generated by our sunset time instrument. According to Appendix Figure A3, our first stage generates enough variation in sleep duration,
ranging from 46 to slightly less than 54 h per week.
6
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Fig. 2. Changes in sleep hours on a normal week by changes in sunset time
Notes: The figure is a scatter plot of within-individual variation in weekly sleep duration against within-individual variation in sunset time across two interview
dates. To construct this scatter plot, we first average within-individual weekly sleep duration by within-individual variation in sunset time (in quarter of an
hour). We then plot the means of the y-variable within each sunset time quarter change. The solid line shows the linear fit estimated.

2SLS estimates. We build on this first-stage relationship and examine the effect of sleep on respondents’ labour market outcomes
using sunset time as an instrument for sleep. More specifically, the 2SLS empirical specification we estimate is the following:

𝑆𝑙𝑒𝑒𝑝𝑖𝑠𝑡 = 𝜆1𝑆𝑠𝑡 +𝑋𝑖𝑠𝑡𝛽1 + 𝛿1,𝑡 + 𝜇1,𝑠 + 𝜂1,𝑖 + 𝜖1,𝑖𝑠𝑡

𝑌𝑖𝑠𝑡 = 𝛼2𝑆𝑙𝑒𝑒𝑝𝑖𝑠𝑡 +𝑋𝑖𝑠𝑡𝛽2 + 𝛿2,𝑡 + 𝜇2,𝑠 + 𝜂2,𝑖 + 𝜖2,𝑖𝑠𝑡 (2)

where 𝑌𝑖𝑠𝑡 is the employment status, the number of hours worked, weekly earnings or hourly wages of individual 𝑖 at time 𝑡 in the
state 𝑠. 𝑆𝑙𝑒𝑒𝑝𝑖𝑠𝑡 is our measure of sleep duration instrumented by 𝑆𝑠𝑡 the daily sunset time at time 𝑡 in state 𝑠. 𝑋𝑖𝑠𝑡 is the same set of
covariates in both Eqs. (1) and (2), and 𝛿2,𝑡, 𝜇2,𝑠 and 𝜂2,𝑖 are time, state, and individual fixed effects. Standard errors are clustered
at the state level. Our coefficient of interest, 𝛼2, is the labour market effect of 1-hour increase in sleep duration.

The validity of our instrumental strategy relies on the idea that variations in sunset times affect respondents’ labour market
performance only through sleep — conditional on our control variables. While we control for individual, time, and state-fixed
effects, one could still be concerned about potential correlations between sunset times and labour market performance.

The primary threat to this identification strategy is seasonal confounders which would covary with labour market outcomes
and sunset times within a location. We provide evidence that our results are robust to a wide range of seasonal confounders.
We also provide evidence that our results are insensitive to the inclusion of individuals’ socio-demographic characteristics, job
characteristics, and housing characteristics. We can also make use of the amount of selection on observables as a guide to the
amount of selection on unobservables (see Oster, 2017). Overall, the insensitivity of the results to our controls and the ‘‘modest’’
association between observables that determine the respondents’ labour market outcomes allows us to conclude that the exclusion
restriction is reasonable.

A residual source of variation relies on movers and geographical variations in sunset times. Endogenous sorting of respondents
across locations could be correlated with unobserved characteristics related to both sunset times and labour market performance.
In particular, if more productive individuals are more likely to move and to move to states with earlier sunset times, that could
violate the exclusion restriction. To test for this issue, we split the sample of movers by median sunset time of new location and
test whether more educated individuals are more likely to move to states with earlier sunset times. Appendix Table A2 provides
the results and shows that this does not seem to be the case. Among movers, we also find that 20% of them move from East to
West, while 11% move from West to East. The resulting 69% are respondents moving within East or West regions. However, to
avoid potential endogeneity, we provide evidence that our results remain similar when including state*individual fixed effects or
restricting our sample to non-movers (that is, focusing on seasonal variations in sunset times to estimate our effects).
7
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3. Results

3.1. Baseline results

Table 2 presents the central results of this paper and reports two-stage least square (2SLS) estimates of the labour market returns
o sleep. Appendix Table A3 reports control coefficients. We focus on respondents’ weekly sleep duration — although robustness
hecks for the workday and weekend sleep duration are reported in Appendix Tables A9 and A10.

First-stage regressions for the IV estimates are reported at the bottom of Table 2. The coefficients on sunset times are negative and
ignificant, which confirms that an increase in sunset time decreases respondents’ sleep duration. Quantitatively, a 1-hour increase
n sunset times reduces respondents’ weekly sleep duration by 0.08–0.11 h (roughly 5–7 min). The weak identification tests produce
arge Kleibergen–Paap statistics (F> 10) that compare favourably to the statistics reported in Stock and Yogo (2005). This allows
s to reject the hypothesis of weak instruments for all regressions.

The coefficients on the instrumented sleep variable suggest a large labour market returns to sleep. Column (1) is estimated on
he full sample of respondents aged between 15 and 64, and who are not self-employed. The result shows a positive and significant
elationship between respondents’ sleep duration and employment probability. In terms of magnitude, the estimate in column (1),
.016, indicates that a 1-hour increase in weekly sleep duration would increase the employment probability by 1.6 percentage points.
n columns (2), (3) and (4), we then restrict the sample to full-time workers. We first test the effect of respondents’ sleep duration on
he number of hours worked (column (2)). The coefficient on respondent’s sleep is negative and significant, indicating that a 1-hour
ncrease in weekly sleep would reduce working hours by 0.8% on average. In column (3), we then use the log of weekly earnings
s the dependent variable. The coefficient on the respondent’s sleep duration is statistically significant. The estimate in column (3)
ndicates that a 1-hour increase in weekly sleep would increase weekly earnings by 3.4%. Note that weekly earnings are a function
f the number of hours worked per week times the hourly wage earned by the respondent. Hence, if the number of hours worked
er week decreases with sleep but weekly earnings increase, this may suggest that most of the increase in weekly earnings is due
o an increase in hourly wages. To test for this, column (4) presents the effect of respondents’ sleep duration on the log of hourly
ages (which we expect to pick up productivity effects). The effect is statistically significant and indicates that a 1-hour increase

n weekly sleep would increase hourly wages by 4.2%, consistent with a productivity-enhancing role of sleep.
Overall, the results in Table 2 are consistent with the existence of large labour market returns to sleep. They suggest that

espondents who sleep more hours on average tend to be more productive at work. They also tend to spend less time in the labour
arket. Does the magnitude of the 2SLS make sense? Overall, our results are consistent with available evidence from the sleep-labour

iterature. For example, Gibson and Shrader (2018) find that a 1-hour increase in weekly sleep increases earnings by 1.1% in the
hort run (using seasonal variations) and 5% in the long run (using geographical variations). Similarly, Costa-Font and Fleche (2020)
ind that a 1-hour increase in a mother’s night-time sleep is associated with a 6.2% increase in household income. In practice, the
stimates might be biased by measurement errors. But overall, they imply not implausibly large effects of sleep on respondents’
abour market performance conditional on individual fixed effects.

One issue would be that first-stage estimates are likely to be attenuated, which would inflate the resulting IV estimates. To bound
he potential magnitude of the IV results, one could consider first stage estimates from Gibson and Shrader (2018) and rescale our
V estimates based on those. Specifically, Gibson and Shrader (2018) find that a 1-hour increase in sunset time is associated with
bout a 20-minute reduction in sleep duration (this is about 3–4 times what we find in our study). This could mean that we only
apture 25%–30% of the variations in sleep duration and as a result, our IV estimates are 3–4 times their true size. If we rescale
ur IV estimates based on this, we would find that a 1-hour increase in sleep duration increases labour force participation by 0.45
ercentage points, weekly earnings by 1%, and reduces working hours by 0.2%. Note that this is consistent with weekly earnings’
stimates from Gibson and Shrader (2018).

These results have large policy implications. They suggest that employers and firms aiming to increase their workers’ productivity
hould consider adopting work schedules that allow them to allocate enough time to sleep.13 Long working hours have been

associated with sleep disturbances (e.g., short sleep, difficulty falling asleep, frequent waking) and sacrificing sleep for work can
become an exhausting cycle. Our results suggest that allocating enough time to sleep could be an important step toward productivity.
The effects are equivalent to the earnings effect of 6 additional months of schooling (Angrist and Krueger, 1991). This is substantial.
Sleeping more hours is not only beneficial for workers’ productivity, but it also increases the probability of working. Individuals who
are sleep deprived are more likely to remain out of the labour force. As a result, policies aiming to reduce unemployment should
consider taking sleep deprivation into account. As an illustration, fatigue has been estimated to cost employers around $1,967
annually per employee (Rosekind et al., 2010) and up to 3% of GDP (Hafner et al., 2017).

3.2. Robustness checks

The previous results show that respondents’ sleep increases labour force participation, decreases the number of hours worked
and boost weekly earnings. However, several biases could affect our estimates. Therefore, this section is devoted to testing whether
our results are robust to several robustness checks and specification tests.

13 See also the importance of school schedules for sleep and academic achievement (Carrell et al., 2011; Heissel and Norris, 2018).
8
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Table 2
IV estimates of the effect of sleep on labour market outcomes.

Working Log (hours Log (weekly Log (hourly
worked) earnings) wages)

(1) (2) (3) (4)

Panel A: 2SLS
Sleep 0.016*** −0.008** 0.034*** 0.042***

(0.005) (0.003) (0.010) (0.012)
Individual controls Yes Yes Yes Yes
Time FE Yes Yes Yes Yes
State FE Yes Yes Yes Yes
Individual FE Yes Yes Yes Yes
Observations 86,044 63,179 63,811 63,122

Sleep Sleep Sleep Sleep
(1) (2) (3) (4)

Panel B: First-Stage
Sunset −0.083*** −0.109*** −0.112*** −0.110***

(0.014) (0.016) (0.014) (0.015)
Observations 86,044 63,179 63,811 63,122
F-statistics 34.09 51.77 56.74 53.11

Notes: This table reports the IV estimates of the effect of 1-hour increase in weekly sleep on
the four labour market outcomes. Weekly sleep duration is instrumented using local variations
in daily sunset times. The first estimate (working) is estimated on the full sample of respondents
aged between 15 and 64, who are not self-employed. The three estimates to the right are
estimated on respondents aged between 15 and 64, who are not self-employed, who report
positive weekly earnings and who declare working full-time. We control for age group dummies,
indicators for summer season, day of week, and occupation codes. We also include individual
and state fixed effects. Standard errors are clustered at the state level.

We begin by including various additional controls which are likely to be correlated with sunset times, respondent’s sleep, and
abour market performance, such as socio-demographic characteristics, job characteristics, house characteristics and environmental
actors. Overall, we find that our results remain remarkably stable when including those controls. In Panel A of Table 3, we
irst examine the effects of additional socio-demographic controls such as education, marital status, the presence of children in
he household, citizenship, and health status. Indeed, the existing literature on sleep has shown that groups of individuals with
pecific socioeconomic characteristics tend to suffer more from sleeping problems (Arber et al., 2009; Asgeirsdottir and Olafsson,
015; Grandner et al., 2010). For instance, adults with more education report fewer sleeping problems. Other salient individual’s
haracteristics include the fact that partnered individuals exhibit better sleep quality (Grandner et al., 2010). One of the most
ommon disruptions to sleep comes from newborn arrival (Costa-Font and Fleche, 2020). A recent study using British data finds
hat children reduce sleep by 4.2 min a day, single people sleep 4.8 min less and separated people 6.5 min less on average (Hafner
t al., 2017). When including those controls in our baseline specifications, we find little effect on our 2SLS estimates. For example,
he estimate of the effect of sleep duration on employment is 0.015 (s.e. = 0.005) with these additional socio-demographic controls.

The effects on hours worked and earnings are now −0.008 (s.e. = 0.003) and 0.029 (s.e. = 0.009), respectively.
Similarly, job characteristics can influence respondents’ sleep and labour market performance. Work stress and the social situation

at work are strongly linked to disturbed sleep and impaired awakening (Metlaine et al., 2005). To control for this, in Panel B, we
include controls for the type of contract (temporary versus permanent), the number of years spent at the current firm, and whether
the respondent is a civil servant or not. Again, including these controls has small quantitative effects on our 2SLS estimates. The
coefficient on employment is now 0.012 (s.e. = 0.005). The coefficient on hours worked is −0.006 (s.e. = 0.003) and the one on
weekly earnings is now 0.027 (s.e. = 0.009).

Finally, house characteristics such as home insulation, the presence of curtains, as well as bed quality are likely to influence
sleep quantity. The individual fixed effects capture most of these effects. However, in Panel C, we control for whether there is
air conditioning in the respondent’s house. This may help respondents to deal with excessive temperatures at night. Our estimates
of the effect of sleep on labour market performance do change but remain statistically significant. Overall, some deviations from
our baseline estimates emerge after controlling for socio-demographic characteristics, job characteristics and house characteristics
(Panel D). But overall, they remain remarkably similar and we can reject the null hypothesis that the coefficient on sleep is zero,
with little effects from socio-demographic, job and house characteristics.14

Despite the inclusion of a wide range of controls, our estimates could still be biased by unobservable factors correlated with
both sunset times and respondents’ labour market performance. We try to assess this issue by implementing a strategy proposed by
Oster (2017). In Panel D, we run two sets of regressions. We first run unconditional 2SLS regressions of respondents’ labour market

14 Still, it could be argued that if there are measurement errors in the controls, this could bias the control coefficients towards zero, and mechanically implies
hat including the controls does not affect our coefficients of interest. To deal with this issue, we run additional regressions where the additional individual
ariables, job and house characteristics variables are included as dependent variables in the baseline regressions. The regressions are presented in Appendix
9

able A4 and indicate positive and significant effects of respondents’ sleep duration on these variables.
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Table 3
IV estimates of the effect of sleep on labour market outcomes — robustness checks.

Working Log (hours Log (weekly Log (hourly
worked) earnings) wages)

(1) (2) (3) (4)

Panel A: Socio-demo. controls
Sleep 0.015*** −0.008** 0.029*** 0.037***

(0.005) (0.003) (0.009) (0.011)
Observations 86,014 63,156 63,787 63,099
F-statistics 37.08 57.05 61.85 58.27

Panel B: Job characteristics
Sleep 0.012*** −0.006** 0.027*** 0.033***

(0.005) (0.003) (0.009) (0.010)
Observations 82,181 60,678 61,252 60,630
F-statistics 38.34 49.69 55.53 50.84

Panel C: House characteristics
Sleep 0.019*** −0.010** 0.055*** 0.066***

(0.006) (0.004) (0.018) (0.021)
Observations 75,585 54,253 54,826 54,195
F-statistics 22.14 23.21 26.30 23.70

Panel D: All controls
Sleep 0.012*** −0.008** 0.034*** 0.041***

(0.004) (0.003) (0.013) (0.014)
Observations 69,817 51,796 52,310 51,746
F-statistics 27.56 26.93 30.23 27.33
Oster(2017) 14.88 23.40 59.26 43.75

Panel E: Reduced-form estimates
Sleep −0.001*** 0.001*** −0.004*** −0.005***

(0.000) (0.000) (0.001) (0.001)
Observations 96,202 71,334 71,976 71,269

Panel F: Including min. temperature
Sleep 0.016*** −0.008** 0.031*** 0.039***

(0.005) (0.003) (0.010) (0.012)
Observations 85,778 62,990 63,620 62,933
F-statistics 34.98 58.76 62.69 60.45

Panel G: Including max. temperature
Sleep 0.029** −0.008 0.095*** 0.107***

(0.012) (0.010) (0.028) (0.038)
Observations 85,778 62,990 63,620 62,933
F-statistics 7.896 6.129 7.844 6.332

Panel H: Including hours of sunshine
Sleep 0.019** −0.007*** 0.036*** 0.044***

(0.005) (0.003) (0.010) (0.010)
Observations 85,448 62,753 63,378 62,696
F-statistics 30.28 42.68 46.87 43.93

(continued on next page)

performance on weekly sleep duration (Appendix Table A5). We use the same instrumental strategy as before but only control for
individual fixed effects. Our full regressions are those presented in Panel D of Table 3. Comparing the R-squared from these two
sets of regressions and computing the ratios suggested by Oster (2017), we find that none of the ratios associated with employment,
the number of hours worked, weekly earnings and hourly wages (reported in Table 3), are less than 1. Their values which range
from 14.88 to 59.25 suggest that evidence of selection on unobservables would have to be at least 15 times that on observables
and on average over roughly 35 times as strong to account for the full effect of sleep on labour market performance. As additional
evidence, Panel E reports the reduced-form effects of respondents’ labour market performance on sunset times. All the relationships
are statistically significant and have the expected signs. This suggests economically important effects of sunset times on labour
market performance without requiring any exclusion restriction.

One might still argue that seasonal effects and selective migration may affect our results. One can try to further deal with
seasonal effects by including daily minimum temperatures (Panel F), daily maximum temperatures (Panel G) and hours of sunshine
(Panel H). Temperature data are derived from the European Climate Assessment & Dataset (ECA & D). They are merged using the
information on the date of the interview and the location of the respondent. Including deviations in daily minimum temperature
barely changes our estimates. The coefficient on employment is 0.016 (s.e. = 0.005). The coefficient on the number of working hours
s now −0.008 (s.e. = 0.003). Further, the effect on earnings is 0.031 (s.e. = 0.010). When controlling for maximum temperature

instead of minimum temperature, the coefficients largely increase but remain significant. Finally, including hours of sunshine does
10

not change our results.
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Table 3 (continued).
Working Log (hours Log (weekly Log (hourly

worked) earnings) wages)
(1) (2) (3) (4)

Panel I: Including quarter FEs
Sleep 0.010 −0.007 0.030* 0.037*

(0.006) (0.006) (0.017) (0.019)
Observations 86,044 63,179 63,811 63,122
F-statistics 17.71 28.12 25.82 29.10

Panel J: Including month FEs
Sleep 0.049 −0.029 0.071 0.104

(0.052) (0.055) (0.129) (0.204)
Observations 86,044 63,179 63,811 63,122
F-statistics 1.060 0.406 0.626 0.400

Panel K: Restricting to non-movers
Sleep 0.015*** −0.009** 0.034*** 0.043***

(0.005) (0.003) (0.013) (0.014)
Observations 81,277 59,703 60,290 59,647
F-statistics 32.44 43.02 47.31 44.12

Panel L: Including ind.*state FEs
Sleep 0.015** −0.009** 0.035*** 0.044***

(0.005) (0.004) (0.012) (0.013)
Observations 85,527 62,796 63,426 62,739
F-statistics 33.13 45.82 50.40 47.04

Panel M: Restricting to movers
Sleep 0.026 −0.005 0.049 0.047

(0.035) (0.012) (0.036) (0.037)
Observations 4,224 3,094 3,137 3,093
F-statistics 1.246 3.992 4.052 3.901

Notes: This table reports the IV estimates of the effect of 1-hour increase in weekly sleep on the four labour market outcomes.
Weekly sleep duration is instrumented using local variations in daily sunset times. The first estimate (working) is estimated on the
full sample of respondents aged between 15 and 64, who are not self-employed. The three estimates to the right are estimated on
respondents aged between 15 and 64, who are not self-employed, who report positive weekly earnings and who declare working
full-time. All regressions control for age group dummies, indicators for summer season, day of week, and occupation codes. We
also include individual and state fixed effects. Standard errors are clustered at the state level.

We could alternatively include quarter fixed effects (Panel I) or month fixed effects (Panel J) to deal with seasonal effects. The
stimates including quarter fixed effects do change. The coefficient on employment is 0.010 (s.e. = 0.006) and is not significant

anymore. The coefficient on the number of working hours is now −0.007 (s.e. = 0.006). However, the effect on earnings remains
very similar, at 0.030 (s.e. = 0.017) and significant at the 10% level. When including months fixed effects, the results all become
non-significant. Although they remain quantitatively the same, this could suggest that within-month variations in sunset times are
not enough to identify sleep effects on labour market outcomes.

To deal with potential selective migration, Panel K replicates our baseline estimates restricting our sample to non-movers.
Alternatively, Panel L includes individual*state fixed effects. This restricts our source of identification to within individual within
state variation in sunset times. Our estimates slightly increase and remain statistically significant. In Appendix Tables A6–A7–A8, we
also replicate our baseline estimates (i) including quarter fixed effects and individual*state fixed effects, (ii) months fixed effects and
individual*state fixed effects, and (iii) individual*quarter fixed effects to restrict our source of identification to spatial differences
in sunset time within individuals. Our results remain qualitatively the same, which suggests that neither selective migration nor
seasonal confounders fully explained our estimates. However, Panel M suggests some interesting findings. When restricting our
source of identification to spatial differences in sunset time within individuals (that is, focusing on movers), our coefficients on
earnings increase by almost 50% at 0.049 (s.e. = 0.036) (although they are barely significant). These results are consistent with
Gibson and Shrader (2018) who find that a 1-hour increase in sleep duration would increase earnings by 5% in the long run (relying
on geographical variations to identify their effects) compared to only 1.1% in the short run (using seasonal variations). When
restricting our sample to movers, our results however become imprecisely estimated and we have a weak instrument problem.
Therefore, these results should be taken with caution. This also suggests that most of our identification comes from seasonal
variations and is presumably driven by the non-movers.

As additional robustness checks, in Appendix Tables A19 and A10, we also estimate our baseline results using sleep duration
during a normal weekday and a normal weekend day as endogenous variables. Arguably, sleep-deprived people may catch up with
their sleep during weekends; hence sleep on workdays may have a larger impact on labour market performance than sleep during
weekends. Our estimates confirm that insufficient sleep during workdays has larger negative effects on respondents’ labour market
performance than insufficient sleep experienced during weekends. We also replicate our findings controlling for sleep satisfaction
(Appendix Table A11) and sleep disorder (Appendix Table A12). This allows us to control for sleep quality in addition to sleep
quantity. Finally, in Appendix Table A13, we instrument respondents’ sleep by deviations in minimum night temperature in addition
11
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to sunset time and in Appendix Table A14, we instrument respondents’ sleep by sunrise time instead of sunset time. Similar results
are obtained.

One could argue that for these results to be valid, there should be some wage flexibility, such that when sleep increases hourly
ages could increase. In other words, we would expect those results to depend on how much workers are able to influence their
ourly wages — within a week (or a month).15 If we expect some wage rigidity, by contrast, it is possible that most of the effects

come from the fact that people sleep more in the winter and are more likely to get pay rises then (in the new year). To test for
this, Appendix Table A15 controls for a new year dummy (January month effect) in our baseline specifications. Our results remain
very similar. Finally, we replicate our results on all workers (not only full-time workers) and include part-time workers (Appendix
Table A16) and self-employed (Appendix Table A17). We find that when increasing our sample size, our coefficients increase. The
coefficient on weekly earnings is now 0.064 (s.e. = 0.017) and the one on hourly wages is now 0.072 (s.e. = 0.020) in Appendix
Table A16 and the coefficients on labour force participation is now 0.017 (s.e. = 0.005) and the one on working hours is −0.011
(s.e. = 0.003) in Appendix Table A17. This could suggest that productivity (and wage) gains from longer sleep are higher among
part-time workers, who might have more opportunities to adjust their hourly wages. Similarly, self-employed workers have more
opportunities to adjust their labour supply and work schedules.16

4. Potential mechanisms and heterogeneity

The previous section has shown that respondents are more likely to work, work fewer hours and earn higher salaries when
they sleep more hours on average per week. These results are robust to various tests. If sleep affects labour market performance,
one might expect that one mechanism through which these relationships occur is via the positive effect sleep exerts on cognitive
functioning and attention to work (Lim and Dinges, 2010; Killgore, 2010). Another mechanism would be the effect of sleep on
workers’ ability to deal with stress and mental well-being. Arguably, if workers are more focused and less stressed, they are more
likely to report better health, which in turn increases their productivity at work. In this section, we document the impact of sleep
on alternative outcomes and test for these underlying mechanisms. We then focus on the existence of heterogeneous effects across
respondents.

Work Efficiency, Stress, Psychological Well-being and Health. One advantage of the SOEP data is the inclusion of several
variables, which allow us to contribute to the literature by providing unique insights on the potential mechanisms through which
sleep affects labour market performance. The first potential explanation advanced for the increase in productivity is that workers
are more efficient at work. To test for this, we examine the effect of sleep duration on the worker’s probability to report (i) being a
thorough worker, and (ii) being effective and efficient in completing tasks. Self-reported measures of workers’ efficiency at work are
not necessarily high-quality measures of productivity. Yet, we believe that this provides the first piece of evidence of whether workers
sleeping more hours on average tend to be more efficient at work. Table 4, Panel A, reports the results. The estimated coefficients
reveal that a 1-hour increase in weekly sleep duration is associated with a 2.5 percentage point increase in the probability of being
a thorough worker and a 4.3 percentage point increase in the probability of being effective and efficient in completing tasks. The
coefficient is only significant on the latter.

The second explanation invoked was that sleep duration reduces workers’ stress and increases psychological well-being. In other
words, workers are more productive because they feel more relaxed and less under pressure. In SOEP, respondents are asked whether
they feel (i) nervous, and (ii) rushed by time. Columns (3) and (4) of Panel A indicate that a 1-hour increase in weekly sleep duration
decreases the probability of being nervous by 2 percentage points and significantly reduces the probability of feeling rushed by time
by 17.3 percentage points. This latter estimate reveals meaningful effects of sleep duration on worker’s stress — equivalent to a
decrease of roughly 50% in worker’s stress, relative to a sample mean of 41%. Arguably, if workers feel more relaxed, they are more
likely to enjoy working and be more productive at work.

We provide further evidence for this mental health channel, by investigating the effects of sleep on workers’ affective states and
self-reported mental health. In the SOEP data, respondents are asked ‘‘during the last four weeks, how often did they feel: (i) angry,
(ii) worried, (iii) sad, and (iv) happy’’. Possible answers range from (1) very rarely to (5) always. Sleep deprivation is likely to affect
workers’ moods. In our sample, 25% declare being very often or always angry, 5% worried, 10% sad and 60% happy. If respondents
who sleep less on average, are also respondents who report more negative emotions, they may experience more problems at work
or be less productive. Panel B of Table 4 reports the results. The estimates reveal that workers who sleep more hours tend to be
less angry and less sad on average. We do not find any significant effect on the frequency of being worried or happy. We also
investigate the effects of sleep duration on respondents’ mental health using a summary measure of the SF-12 questionnaire. We

15 The German system of wage formation is still dominated by sectoral collective bargaining. However, over time, workers’ pay have become increasingly
inked to their own performance. In particular performance pay was increasingly used from the 80 s up to 2009 in Germany (Sommerfeld, 2013). In a recent
tudy by Baktash et al. (2022) using the SOEP data, in 2004, 2008 and 2016, 26% of the sample were subject to performance pay.
16 As placebo tests, we also examine specific occupation groups that are expected to have the least flexibility in their labour supply and income. In particular,
ppendix Table A18 presents the replication of our baseline results using only seasonal variations (non-movers), but with a restricted sample of trainees (Panel
) and civil servants (Panel B). As anticipated, we do not find any wage effects for trainees, as their wages are predetermined based on predetermined schedules.
imilarly, we do not observe any labour supply effects for civil servants, which aligns with the fact that most civil servants have lifelong appointments and are
ess likely to respond to variations in sleep. It is important to note, however, that the results remain significant and within the same range of magnitude as the
est of the sample in terms of weekly earnings and hourly wages. This might be attributed to performance bonuses that civil servants receive, which could vary
12

n a monthly basis.
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Table 4
IV estimates of the effect of sleep on work efficiency, stress, affective states and health.

A thorough Effective and Nervous Feel rushed by
worker efficient in time

completing tasks
(1) (2) (3) (4)

Panel A: Work efficiency & Stress
Sleep 0.025 0.043*** −0.020 −0.173*

(0.032) (0.016) (0.022) (0.093)
Observations 21,593 21,563 21,560 13,193
Outcome mean 0.45 0.72 0.26 0.41
Outcome SD 0.50 0.45 0.44 0.49
F-Statistics 22.17 22.39 21.64 2.534

Angry Worried Sad Happy
(5) (6) (7) (8)

Panel B: Affective states
Sleep −0.102*** −0.035 −0.116** −0.012

(0.021) (0.033) (0.051) (0.019)
Observations 56,913 56,847 56,878 56,878
Outcome mean 2.88 1.79 2.20 3.63
Outcome SD 0.96 0.88 0.96 0.79
F-Statistics 35.97 35.17 34.68 35.89

Mental health State of health General
score affect tiring tasks health
(9) (10) (11)

Panel C: Health
Sleep 0.184* −0.132 0.161*

(0.095) (0.085) (0.091)
Observations 13,211 13,191 13,198
Outcome mean 3.21 1.44 3.41
Outcome SD 0.70 0.59 0.67
F-Statistics 2.663 2.638 2.539

Notes: This table reports the IV estimates of the effect of 1-hour increase in weekly sleep on work
efficiency, stress, affective states, and health. Weekly sleep duration is instrumented using local variations
in daily sunset times. All coefficients are estimated on respondents aged between 15 and 64, who are
not self-employed, who declare positive weekly earnings and who are working full-time. We control for
age group dummies, indicators for summer season, day of week, and occupation codes. We also include
individual and state fixed effects. Standard errors are clustered at the state level.

eplicate the baseline regression with this variable as an alternative outcome. Interestingly, a 1-hour increase in sleep duration
ncreases respondents’ mental health by 0.18 points on a 1–5 scale.

Finally, if workers are less under pressure and experience higher well-being, this might give rise into better health. To examine
uch health effects, we study the effect of sleep duration on workers’ probability of reporting that (i) their state of health affects
heir ability to perform tiring tasks and (ii) a composite measure of respondents’ general health from the SF-12 questionnaire.
n our sample, 13% of workers declare being limited in their activities due to health problems. Panel C reports the results. The
stimates reveal a (non-significant) negative effect of weekly sleep duration on the probability that workers report being affected
n their ability to perform tiring tasks. We do however find significant and positive effects on workers’ general health. In terms of
agnitude, a 1-hour increase in weekly sleep duration would increase respondents’ general health by 0.16 points on a 1–5 scale.
hese results are consistent with the idea that better sleep reduces absenteeism and workplace accidents. If workers are in better
ealth, they tend to be more productive.

Overall, these results are important — they provide a first attempt to explore potential mechanisms through which sleep can
ffect workers’ productivity using large-scale longitudinal data. They highlight the influence of sleep on workers’ efficiency, stress,
sychological well-being, and health and shed new light on previous findings from the literature (Bessone et al., 2021). However,
ur results are also somewhat hindered by the quality of the data and the small sample size.
Other activities. While more hours of sleep improve productivity at work, it can also increase productivity in other day-to-day

ctivities. In other words, it is likely that longer sleep affects market work but also non-market activities such as leisure and home
roduction. In the SOEP data, we have information on respondents’ satisfaction with several times allocations, including leisure,
ome production and family life. We replicate our baseline regressions with these variables as alternative outcomes in Appendix
able A19. Interestingly, a 1-hour increase in sleep duration substantially increases housework satisfaction. The effects are large
nd meaningful, which suggests that the productivity effects of sleep duration are pervasive and go beyond work effects. We do not
ind any significant effects on leisure, family or life satisfaction though.
Heterogeneity. In Table 5, we also investigate heterogeneous effects with respect to (i) gender, (ii) education, (iii) age, and

(iv) parenthood. We find evidence of significant differences across these different subgroups. We see that the employment effects –
on the extensive margins – are concentrated among women and respondents aged below 42 (the median age in our sample). This
13
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Table 5
Heterogeneity of the effect of sleep on labour market outcomes.

Working Log (hours Log (weekly Log (hourly
worked) earnings) wages)

(1) (2) (3) (4)

Panel A: Sex
Male 0.012** −0.013*** 0.026** 0.040***

(0.006) (0.005) (0.011) (0.014)
Observations 46,069 42,578 42,994 42,547
F-statistics 28.22 29.57 36.10 30.87

Female 0.022** −0.001 0.050*** 0.047***
(0.009) (0.004) (0.019) (0.016)

Observations 39,975 20,601 20,817 20,575
F-statistics 13.59 25.23 23.95 26.39

Panel B: Education
Low educated 0.017** −0.009* 0.031*** 0.040***

(0.008) (0.005) (0.009) (0.011)
Observations 41,260 30,155 30,494 30,124
F-statistics 17.91 20.53 22.31 21.19

Highly educated 0.016*** −0.007 0.038** 0.044**
(0.005) (0.007) (0.017) (0.019)

Observations 44,500 32,820 33,105 32,794
F-statistics 20.53 19.65 20.37 20.14

Panel C: Age
Below median 0.031*** −0.014** 0.021 0.034

(0.011) (0.006) (0.023) (0.025)
Observations 38,151 26,890 27,157 26,854
F-statistics 13.48 25.39 27.65 25.63

Above median 0.007 −0.004 0.042*** 0.046***
(0.005) (0.004) (0.011) (0.012)

Observations 45,970 34,797 35,163 34,775
F-statistics 23.74 31.84 31.45 33.58

Panel D: Children
No child 0.013*** −0.005 0.022 0.028*

(0.004) (0.004) (0.016) (0.014)
Observations 44,699 34,481 34,875 34,464
F-statistics 13.40 39.66 37.12 40.95

With children 0.019* −0.012 0.069*** 0.081***
(0.011) (0.008) (0.018) (0.022)

Observations 38,812 26,767 27,003 26,726
F-statistics 14.43 22.23 24.67 22.44

Notes: See Table 2.

uggests that young women experiencing sleep deprivation are the ones who are more likely to opt out of the labour market. We
lso find that the productivity effects (looking at hourly wages for instance) are more pronounced for respondents with children
nd respondents aged above 42. Again, these results are important and suggest that women and in particular mothers would be
hose who would benefit the most from policies promoting sleep and encouraging firms to pay attention to sleep issues allowing to
educe gender inequalities.

. Conclusions

To estimate the causal effects of sleep duration on labour market performance, it is essential to rely on longitudinal data that
raws on within-individual variations in sleep duration and control for specific sleep routines, genetic predisposition to cope with
leep deprivation or reporting bias that would be correlated with both sleep duration and labour market outcomes. In this paper,
e use the data from the German Socio-Economic Panel and exploit daily variations in local sunset times as an instrument for

leep duration. Importantly, our dataset allows us to investigate the causal effects of sleep on a range of labour market outcomes,
ncluding labour force participation, hours worked and earnings, and to provide unique evidence on how sleep affects labour market
erformance.

We find that an increase in sleep duration significantly increases labour force participation and weekly earnings. We document
hat a 1-hour increase in sleep duration increases labour force participation by 1.6 percentage points and weekly earnings by 3.4%.
oreover, we find that the number of working hours slightly decreases with sleep duration; that is, most of the earnings effects come

rom productivity changes. Interestingly, women and in particular mothers are more likely to experience an increase in labour force
articipation and earnings when allocating more time to sleep. These results are consistent with sleep playing an important barrier
or women with young children to go back to work and could be an additional explanation for the child wage penalty experienced
y women.
14
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Investigating potential mechanisms, we find that an increase in weekly sleep duration increases workers’ efficiency in completing
asks and substantially decreases the feeling of being rushed by time. Although other mechanisms are likely to be at work, we find
hat the mental health effects associated with sleep seem to play a key role in shaping the labour market returns to sleep. Finally,
e find beneficial effects of sleep on workers’ physical health.

The results of our study are important because they highlight how sleep can exert economically significant productivity gains.
hey can also help us shed light on the returns to interventions attempting to address sleep deprivation. For instance, we find that
orkers who sleep 1 h longer are more efficient at work by 4.3 percentage points; they are more productive within shorter hours
f work (0.8% reduction in weekly working hours). Therefore, if a policy is introduced that allows workers to sleep 1 h more per
eek then our results suggest that they are more likely to work by 1.6 percentage points and to earn higher salaries by 3.4% in

esponse to this change.
One promising avenue for policy could be to engage workers in training, nudging and information campaigns that convey the

otion that sleep is a productivity-enhancing investment, and enough time should be allocated to sleep per night. Another avenue
or policy could be to encourage firms to recognize the importance of sleep and to adopt flexible working hours allowing workers
o have enough time to sleep. However, whether such interventions successfully imrpove sleep and labour market performance is
eyond the scope of this article and is an open question that future research should address.

eclaration of competing interest

None of the author of this paper has received any funding nor have any conflict of interest to disclose.

ppendix A. Supplementary data

Supplementary material related to this article can be found online at https://doi.org/10.1016/j.jhealeco.2023.102840.

eferences

ngrist, J., Krueger, A., 1991. Does compulsory school attendance affect schooling and earnings?. Q. J. Econ. 106 (4), 979–1014.
ntillon, M., Lauderdale, D.S., Mullahy, J., 2014. Sleep behaviour and unemployment conditions. Econ. Hum. Biol. 14, 22–32.
rber, S., Bote, M., Meadows, R., 2009. Gender and socio-economic patterning of self-reported sleep problems in Britain. Soc. Sci. Med. 68 (2), 281–289.
sgeirsdottir, T.L., Olafsson, S.P., 2015. An empirical analysis of the demand for sleep: Evidence from the American time use survey. Econ. Hum. Biol. 19,

265–274.
aktash, M.B., Heywood, J.S., Jirjahn, U., 2022. Worker stress and performance pay: Germany survey evidence. J. Econ. Behav. Organ. 201, 276–291.
arnes, C.M., Hollenbeck, J.R., 2009. Sleep deprivation and decision-making teams: Burning the midnight oil or playing with fire?. Acad. Manag. Rev. 34, 56–66.
arnes, C.M., Wagner, D.T., 2009. Changing to daylight saving time cuts into sleep and increases worplace injuries. J. Appl. Psychol. 94 (1305).
ecker, G.S., 1965. A theory of the allocation of time. Econom. J. 75, 493–517.
ellet, C.S., De Neve, J-E., Ward, G., 2021. Does Employee Happiness Have an Impact on Productivity?. Mimeo.
essone, P., Rao, G., Schilbach, F., Schofield, H., Toma, M., 2021. The economic consequences of increasing sleep among the urban poor. Q. J. Econ. 136 (3),

1887–1941.
iddle, J., Hamermesh, D.S., 1990. Sleep and the allocation of time. J. Polit. Econ. 98 (5), 922–943.
onke, J., 2012. Do morning-type people earn more than evening-type people? How chronotypes influence income. Ann. Econ. Stat. 5, 5–72.
rochu, P., Armstrong, C.D., Morin, L.P., 2012. The ‘trendiness’ of sleep: an empirical investigation into the cyclical nature of sleep time. Empir. Econ. 43 (2),

891–913.
arrell, S.E., Maghakian, T., West, J.E., 2011. A’s from zzzz’s? The causal effect of school start time on the academic achievement of adolescents. Am. Econ. J.:

Econ. Policy 3 (3), 62–81.
lark, A.E., Fleche, S., Layard, R., N., Powdthavee, G., Ward, 2018. The Origins of Happiness: The Science of Well-Being over the Life Course. Princeton University

Press.
osta-Font, J., Fleche, S., 2020. Child sleep and mother labour market outcomes. J. Health Econ. 69, 102258.
unn, L.F., 1979. Measurement of internal income-leisure tradeoffs. Q. J. Econ. 93 (3), 373–393.
ibson, M., Shrader, J., 2018. Time use and labor productivity: The returns to sleep. Rev. Econ. Stat. 100 (5), 783–798.
iuntella, O., Mazzonna, F., 2019. Sunset time and the economic effects of social jetlag: evidence from US time zone borders. J. Health Econ. 65, 210–226.
randner, M.A., Patel, N.P., Gehrman, P.R., Xie, D., Sha, D., Weaver, T., Gooneratne, N., 2010. Who gets the best sleep? Ethnic and socioeconomic factors related

to sleep complaints. Sleep Med. 11 (5), 470–478.
ronau, R., 1977. Leisure, home production and work: the theory of the allocation of time revisited. J. Political Econ. 85, 1099–1123.
afner, M., Stepanek, M., Taylor, J., Troxel, W.M., Van Stolk, C., 2017. Why sleep matters—the economic costs of insufficient sleep: A cross-country comparative

analysis. Rand Health Q. 6 (4).
amermesh, D.S., Knowles Myers, C., Pocock, M.L., 2008. Cues for timing and coordination: Latitude, letterman, and longitude. J. Labor Econ. 26, 223–246.
ansen, B., Sonderskov, K.M., Hageman, I., Dinesen, P.T., Ostergaard, S.D., 2017. Daylight savings time transitions and the incidence rate of unipolar depressive

episodes. Epidemiology 28 (3), 346–353.
arrison, Y., Horne, J.A., 1998. Sleep loss affects risk-taking. J. Sleep Res. 7 (Suppl. 2), 113.
eissel, J.A., Norris, S., 2018. Rise and shine the effect of school start times on academic performance from childhood through puberty. J. Hum. Resour. 53 (4),

957–992.
ansson-Fröjmark, M., Evander, J., Alfonsson, S., 2019. Are sleep hygiene practices related to the incidence, persistence and remission of insomnia? findings

from a prospective community study. J. Behav. Med. 42 (1), 128–138.
in, L., Ziebarth, N., 2020. Sleep, health and human capital: evidence from daylight saving time. J. Econ. Behav. Organ. 170, 174–192.
ahn, M., Fridenson, S., Lerer, R., Bar-Haim, Y., Sadeh, A., 2014. Effects of one night of induced night-wakings versus sleep restriction on sustained attention

and mood: a pilot study. Sleep Med. 15 (7), 825–832.
amstra, M.J., Kramer, L.A., Levi, M.D., 2000. Losing sleep at the market: The daylight-saving anomaly. Amer. Econ. Rev. 90 (4), 1005–1011.
illgore, W.D.S., 2010. Effects of sleep deprivation on cognition. Prog. Brain Res. 185, 105–119.
15

https://doi.org/10.1016/j.jhealeco.2023.102840
http://refhub.elsevier.com/S0167-6296(23)00117-0/sb1
http://refhub.elsevier.com/S0167-6296(23)00117-0/sb2
http://refhub.elsevier.com/S0167-6296(23)00117-0/sb3
http://refhub.elsevier.com/S0167-6296(23)00117-0/sb4
http://refhub.elsevier.com/S0167-6296(23)00117-0/sb4
http://refhub.elsevier.com/S0167-6296(23)00117-0/sb4
http://refhub.elsevier.com/S0167-6296(23)00117-0/sb5
http://refhub.elsevier.com/S0167-6296(23)00117-0/sb6
http://refhub.elsevier.com/S0167-6296(23)00117-0/sb7
http://refhub.elsevier.com/S0167-6296(23)00117-0/sb8
http://refhub.elsevier.com/S0167-6296(23)00117-0/sb9
http://refhub.elsevier.com/S0167-6296(23)00117-0/sb10
http://refhub.elsevier.com/S0167-6296(23)00117-0/sb10
http://refhub.elsevier.com/S0167-6296(23)00117-0/sb10
http://refhub.elsevier.com/S0167-6296(23)00117-0/sb11
http://refhub.elsevier.com/S0167-6296(23)00117-0/sb12
http://refhub.elsevier.com/S0167-6296(23)00117-0/sb13
http://refhub.elsevier.com/S0167-6296(23)00117-0/sb13
http://refhub.elsevier.com/S0167-6296(23)00117-0/sb13
http://refhub.elsevier.com/S0167-6296(23)00117-0/sb14
http://refhub.elsevier.com/S0167-6296(23)00117-0/sb14
http://refhub.elsevier.com/S0167-6296(23)00117-0/sb14
http://refhub.elsevier.com/S0167-6296(23)00117-0/sb15
http://refhub.elsevier.com/S0167-6296(23)00117-0/sb15
http://refhub.elsevier.com/S0167-6296(23)00117-0/sb15
http://refhub.elsevier.com/S0167-6296(23)00117-0/sb16
http://refhub.elsevier.com/S0167-6296(23)00117-0/sb17
http://refhub.elsevier.com/S0167-6296(23)00117-0/sb18
http://refhub.elsevier.com/S0167-6296(23)00117-0/sb19
http://refhub.elsevier.com/S0167-6296(23)00117-0/sb20
http://refhub.elsevier.com/S0167-6296(23)00117-0/sb20
http://refhub.elsevier.com/S0167-6296(23)00117-0/sb20
http://refhub.elsevier.com/S0167-6296(23)00117-0/sb21
http://refhub.elsevier.com/S0167-6296(23)00117-0/sb22
http://refhub.elsevier.com/S0167-6296(23)00117-0/sb22
http://refhub.elsevier.com/S0167-6296(23)00117-0/sb22
http://refhub.elsevier.com/S0167-6296(23)00117-0/sb23
http://refhub.elsevier.com/S0167-6296(23)00117-0/sb24
http://refhub.elsevier.com/S0167-6296(23)00117-0/sb24
http://refhub.elsevier.com/S0167-6296(23)00117-0/sb24
http://refhub.elsevier.com/S0167-6296(23)00117-0/sb25
http://refhub.elsevier.com/S0167-6296(23)00117-0/sb26
http://refhub.elsevier.com/S0167-6296(23)00117-0/sb26
http://refhub.elsevier.com/S0167-6296(23)00117-0/sb26
http://refhub.elsevier.com/S0167-6296(23)00117-0/sb27
http://refhub.elsevier.com/S0167-6296(23)00117-0/sb27
http://refhub.elsevier.com/S0167-6296(23)00117-0/sb27
http://refhub.elsevier.com/S0167-6296(23)00117-0/sb28
http://refhub.elsevier.com/S0167-6296(23)00117-0/sb29
http://refhub.elsevier.com/S0167-6296(23)00117-0/sb29
http://refhub.elsevier.com/S0167-6296(23)00117-0/sb29
http://refhub.elsevier.com/S0167-6296(23)00117-0/sb30
http://refhub.elsevier.com/S0167-6296(23)00117-0/sb31


Journal of Health Economics 93 (2024) 102840J. Costa-Font et al.

L
M
M

M
N

O
O
R
R
R

S
S

Krueger, A.B., Kahneman, D., Schlkade, D., Schwarz, N., Stone, A.A., 2009. National time accounting: the currency of life. In: Measuring the Subjective Wellbeing
of Nations: National Accounts of Time Use and Wellbeing. University of Chicago Press, pp. 9–86.

im, J., Dinges, D.F., 2010. A meta-analysis of the impact of short-term sleep deprivation on cognitive variables. Psychol. Bull. 136, 375–389.
etlaine, A., Leger, D., Choudat, D., 2005. Socioeconomic impact of insomnia in working populations. Ind. Health 43 (1), 11–19.
ezick, E.J., Matthews, K.A., Hall, M., Strollo Jr., P.J., Buysse, D.J., Kamarck, T.W., 2008. Influence of race and socioeconomic status on sleep: Pittsburgh sleep

SCORE project. Psychosom. Med. 70 (4), 410.
oore, P.J., Adler, N.E., Williams, D.R., Jackson, J.S., 2002. Socioeconomic status and health: the role of sleep. Psychosom. Med. 64 (2), 337–344.
uckols, T.K., Bhattacharya, J., Wolman, D.M., Ulmer, C., Escarce, J.J., 2009. Cost implications of reduced work hours and workloads for resident physicians.

N. Engl. J. Med. 360 (21), 2202–2215.
ster, E., 2017. Unobservable selection and coefficient stability: theory and validation. J. Bus. Econ. Stat. 37, 187–204.
swald, A.J., Proto, E., Sgroi, D., 2015. Happiness and productivity. J. Labor Econ. 33 (4), 789–822.
oenneberg, T., 2013. The human sleep project. Nature 498, 427–428.
oenneberg, T.C., Kumar, J., Merrow, M., 2007. The human circadian clock entrains to sun time. Curr. Biol. 17, R44–R45.
osekind, M.R., K.B., Gregory, Mallis, M.M., Brandt, S.L., Seal, B., Lerner, D., 2010. The cost of poor sleep: workplace productivity loss and associte costs. J.

Occup. Environ. Med. 52 (1), 91–98.
aper, C.B., Scammell, T.E., Lu, J., 2005. Hypothalamic regulation of sleep and circadian rhythms. Nature 437, 1257–1263.
hi, G., Xing, L., Wu, D., Bhattacharyya, B.J., Jones, C.R., McMahon, T., 2019. A rare mutation of 𝛽1-adrenergic receptor affects sleep/wake behaviors. Neuron

103 (6), 1044–1055.
Smith, A.C., 2016. Spring forward at your own risk: Daylight saving time and fatal vehicle crashes. Am. Econ. J.: Appl. Econ. 8, 65–91.
Sommerfeld, K., 2013. Higher and higher? Performance pay and wage inequality in Germany. Appl. Econ. 45 (30), 4236–4247.
Sonnenberg, B., Riediger, M., Wrzus, C., Wagner, G.G., 2011. Measuring time use in surveys – how valid are time use questions in surveys? Concordance of

survey and experience sampling measures. In: SOEP Papers on Multidisciplinary Panel Data Research, Vol. 390. DIW, Berlin.
Stock, J., Yogo, M., 2005. Testing for weak instruments in linear iv regressions. In: Andrews, D.W.K. (Ed.), Identification and Inference for Econometric Models.

Cambridge University Press, New York, pp. 80–108.
Szalontai, G., 2006. The demand for sleep: A South African study. Econ. Model. 23 (5), 854–874.
Taras, H., Potts-Daterma, W., 2005. Sleep and student performance at school. J. School Health 75, 248–254.
Ulmer, C., Wolman, D.M., Johns, M.E., 2009. Resident in Duty Hours: Enhancing Sleep, Supervisions, and Safety. National Academies Press, Washington, DC.
Van Dongen, P.A., Hans, G.M., Mullington, J.M., Dinges, D.F., 2003. The cumulative cost of additional wakefulness: Dose-response effects on neurobehavioral

functions and sleep physiology from chronic sleep restriction and total sleep deprivation. Sleep 26, 817–838.
Wagner, D.T., Barnes, C.M., Lim, V.K.G., Lance Ferris, D., 2012. Lost sleep and cyberloafing: Evidence from the laboratory and a daylight saving time

quasi-experiment. J. Appl. Psychol. 97 (5), 1068–1076.
16

http://refhub.elsevier.com/S0167-6296(23)00117-0/sb32
http://refhub.elsevier.com/S0167-6296(23)00117-0/sb32
http://refhub.elsevier.com/S0167-6296(23)00117-0/sb32
http://refhub.elsevier.com/S0167-6296(23)00117-0/sb33
http://refhub.elsevier.com/S0167-6296(23)00117-0/sb34
http://refhub.elsevier.com/S0167-6296(23)00117-0/sb35
http://refhub.elsevier.com/S0167-6296(23)00117-0/sb35
http://refhub.elsevier.com/S0167-6296(23)00117-0/sb35
http://refhub.elsevier.com/S0167-6296(23)00117-0/sb36
http://refhub.elsevier.com/S0167-6296(23)00117-0/sb37
http://refhub.elsevier.com/S0167-6296(23)00117-0/sb37
http://refhub.elsevier.com/S0167-6296(23)00117-0/sb37
http://refhub.elsevier.com/S0167-6296(23)00117-0/sb38
http://refhub.elsevier.com/S0167-6296(23)00117-0/sb39
http://refhub.elsevier.com/S0167-6296(23)00117-0/sb40
http://refhub.elsevier.com/S0167-6296(23)00117-0/sb41
http://refhub.elsevier.com/S0167-6296(23)00117-0/sb42
http://refhub.elsevier.com/S0167-6296(23)00117-0/sb42
http://refhub.elsevier.com/S0167-6296(23)00117-0/sb42
http://refhub.elsevier.com/S0167-6296(23)00117-0/sb43
http://refhub.elsevier.com/S0167-6296(23)00117-0/sb44
http://refhub.elsevier.com/S0167-6296(23)00117-0/sb44
http://refhub.elsevier.com/S0167-6296(23)00117-0/sb44
http://refhub.elsevier.com/S0167-6296(23)00117-0/sb45
http://refhub.elsevier.com/S0167-6296(23)00117-0/sb46
http://refhub.elsevier.com/S0167-6296(23)00117-0/sb47
http://refhub.elsevier.com/S0167-6296(23)00117-0/sb47
http://refhub.elsevier.com/S0167-6296(23)00117-0/sb47
http://refhub.elsevier.com/S0167-6296(23)00117-0/sb48
http://refhub.elsevier.com/S0167-6296(23)00117-0/sb48
http://refhub.elsevier.com/S0167-6296(23)00117-0/sb48
http://refhub.elsevier.com/S0167-6296(23)00117-0/sb49
http://refhub.elsevier.com/S0167-6296(23)00117-0/sb50
http://refhub.elsevier.com/S0167-6296(23)00117-0/sb51
http://refhub.elsevier.com/S0167-6296(23)00117-0/sb52
http://refhub.elsevier.com/S0167-6296(23)00117-0/sb52
http://refhub.elsevier.com/S0167-6296(23)00117-0/sb52
http://refhub.elsevier.com/S0167-6296(23)00117-0/sb53
http://refhub.elsevier.com/S0167-6296(23)00117-0/sb53
http://refhub.elsevier.com/S0167-6296(23)00117-0/sb53

	The labour market returns to sleep
	Introduction
	Data and Empirical Strategy
	Data
	Empirical Strategy

	Results
	Baseline Results
	Robustness checks

	Potential Mechanisms and Heterogeneity
	Conclusions
	Declaration of competing interest
	Appendix A. Supplementary data
	References


