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Abstract
To mitigate the Look Elsewhere Effect in multiple hypothesis testing using p-values,
the paper suggests an “entropic correction” of the significance level at which the
null hypothesis is rejected. The proposed correction uses the entropic uncertainty
associated with the probability measure that expresses the prior-to-test probabilities
expressing how likely the confirming evidence may occur at values of the parameter.
When the prior-to-test probability is uniform (embodying maximal uncertainty) the
entropic correction coincides with the Bonferroni correction. When the prior-to-test
probability embodies maximal certainty (is concentrated on a single value of the
parameter at which the evidence is obtained), the entropic correction overrides the
Look Elsewhere Effect completely by not requiring any correction of significance.
The intermediate situation is illustrated by a simple hypothetical example. Interpreting
the prior-to-test probability subjectively allows a Bayesian spirit enter the frequentist
multiple hypothesis testing in a disciplined manner. If the prior-to-test probability is
determined objectively, the entropic correction makes possible to take into account in
a technically explicit way the background theoretical knowledge relevant for the test.
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1 Themain suggestion of the paper

The Look Elsewhere Effect is an important phenomenon in multiple (parameter
dependent) statistical hypothesis testing based on p-values. Given that this form of
hypothesis testing is widespread in empirical sciences, the problem of how to mitigate
it is a standard topic in statistics, where it is treated sometimes under the heading
“Family-wise Error Rate” (see e.g. Bayer & Seljak 2020; Benjamini & Hochberg,
1995; Foster et al., 2006; Hochberg, 1988; Lehmann & Romano, 2005a, 2005b; List
et al., 2019).

The problem is especially acute in experimental high-energy particle physics
(Dawid, 2015, 2017; Gross &Vitells, 2010; Lyons, 2008, 2013). The Look Elsewhere
Effect is one of the reasons why in high-energy particle physics the significance level
of rejecting a hypothesis is required to be very high in comparison with typical sig-
nificance levels adopted in other sciences. One can argue however—as Dawid does
(Dawid, 2015, 2017), based on the analysis of the experimental confirmation of the
Higgs particle—that the usual reasoning referring to the Look Elsewhere Effect to
motivate the demand of high significance in particle physics can be too much decou-
pled from the theoretical background of the experiment. Dawid then suggests both a
simple (Dawid, 2015) and a more elaborate (Dawid, 2017) Bayesian way of taking
into account the physicists’ prior-to-test theoretical belief in the truth of the theory
under test to mitigate the Look Elsewhere Effect.

Motivated by Dawid’s analysis, in this paper we suggest another Bayesian way of
mitigating the Look Elsewhere Effect. Our main idea is to adjust the significance level
by taking into account a possible prior-to-test theoretical knowledge that indicates the
probability with which the (dis)confirming phenomenon might be found at different
parameter values in the test. We demand the adjustment to satisfy three requirements:

(i) The correction should be sensitive to the uncertainty embodied by the probability
measureρ that represents the scientists’ prior theoretical knowledge (belief) about
where (at which parameter value t) the confirming evidence might be found
in a test: the higher the uncertainty of ρ, the higher significance is required.
The uncertainty embodied by the probability measure ρ should be justifiable on
independent grounds as a quantity that expresses the uncertainty of ρ.

(ii) The correction should also be sensitive to the prior probabilityρ(t)of the observed
event xt to be found in the test at a specific parameter value t : the higher ρ(t) the
smaller significance is required.

(iii) The adjustment should yield the “Bonferroni correction” (Bayer & Seljak, 2020;
Foster et al., 2006; Lehmann&Romano, 2005a) in the casewhen ρ is the uniform
probabilitymeasure on the parameter space (whichwe assume to be finite, having
N > 1 elements). Moreover, the uncertainty and the correction should be such
that the correction depends on ρ in a continuous manner; in particular, as ρ

approaches (pointwise) the uniform probability, the correction should approach
the Bonferroni correction.

Taking the entropy of ρ as a measure of uncertainty of ρ, we define a quantitative
entropic correction of significance that depends on the entropy of ρ, on the value ρ(t)
and on the number N of parameters, and which satisfies the conditions (i)–(iii). Thus
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the proposed entropic correction mitigates the Look Elsewhere Effect in a way that
reflects specific structural features of the prior knowledge represented by ρ, yielding
the Bonferroni correction as a special case when the entropic uncertainty is maximal:
when ρ is the uniform probability on the parameters. The correction also is intuitively
correct at the other end of the uncertainty scale: when ρ is totally concentrated at a
particular value of the parameter and hence represents maximal certainty (its entropy
is zero). In this case the suggested entropic correction is zero: no need to adjust the
p-value as a result of the Look Elsewhere Effect. In this extreme situation the Bayesian
certainty overrides the Look Elsewhere Effect completely. In the intermediate cases
the entropic correction depends very sensitively on the global features of ρ and the
value ρ(t). We illustrate the intermediate case on a simple hypothetical example.

To make the paper reasonably self-contained, Sect. 2 recalls the main idea of sta-
tistical theory testing, including the notion of p-values. Section 3 describes the Look
Elsewhere Effect and the standard way of correction of significance intended to miti-
gate the effect. Section 4 introduces the entropic correction of significance, and Sect.
6 contains some concluding comments.

2 Statistical hypothesis testing and p-values

In science one frequently tests a new theory T ′ using statistical methods. The typical
situation is that in these tests T ′ is evaluated not in isolation but in comparison with the
old theory T (called “background theory” or “null hypothesis”), and the comparison is
in termsof so called “p-values”.This testingprocedure is a standard topic in statistics: it
is described e.g. in Chap. 26 in Freedman et al. (2007); the chapter “Hypothesis Tests
and Corroboration” in Hartmann and Sprenger (2019), the Sect. 18.4 of Sprenger
(2016), and Romeijn (2017) provide a compact summary with a philosophical flavor;
and the review in Sect. 6 of Lyons (2013) is from the perspective of particle physics.
To simplify the discussion, we call this way of comparative testing of T ′ Contrastive
Statistical Confirmation of T ′ using p-values, “T -CS-confirmation of T ′”, for short.
The confirmation procedure is summarized below, following the description in Sects.
6.2 and 6.3 in Lyons (2013), but using a different and more explicit notation.

A probabilitymeasure space (X ,S, p) together with a random variable f : X → IR
is called a statistical test theory of theory T with respect to f , and f is called the
statistical data function (also called “test statistics”), if, assuming T to be true, one
infers from T that the probability measure p on S specifies what one expects to find
about the values of f in empirically executable trials with results in X : Assuming T is
true, one expects to find f (x) to lie more frequently in sets d of real numbers for which
p( f −1(d)) is a “large” probability ( f −1 is the inverse image function of f ), and one
regards T being in tension with the observation if the observed values of f fall in a d
such that p( f −1(d)) is “small”. What is a “small” and what is a “large” probability
depends on the particular testing situation, and in each testing situation the definition
of “small” and “large” gets specified by fixing what are called the “significance level”
of the test: If p( f −1(d)) is smaller than a conventionally chosen significance level,
then it is “small”, otherwise it is “large”. The question of how one can decide whether
(X ,S, p) with a particular test statistics f is a good statistical test theory for T does
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not have a general answer. It is the task of the specific sciences in which T is a theory
to come up with a (X ,S, p) and a suitable f that can serve as a good statistical test
theory for T . The implementation of this idea of comparing T and T ′ in terms of
statistical test theories starts with the definition of the p-value:

Definition 1 (p-value) Let (X ,S, p, f ) be a statistical test theory for T . For an x ∈ X
consider the event E+

x that the value of f is equal or larger than f (x):

E+
x

.= {y ∈ X : f (y) ≥ f (x)} (1)

Then the function p+
f : X → [0, 1] defined by

p+
f (x)

.= p(E+
x ) = p({y ∈ X : f (y) ≥ f (x)}) (2)

is called the positive side p f -value function. The event E−
x defined by

E−
x

.= {y ∈ X : f (y) ≤ f (x)} (3)

leads to the analogously defined function p−
f : X → [0, 1] defined by

p−
f (x)

.= p(E−
x ) = p({y ∈ X : f (y) ≤ f (x)}) (4)

and

p+,−
f (x)

.= 2 · min{p−
f (x), p

+
f (x)} (5)

is the two-sided p f -function.

Different theories and test situations use different statistical data functions. In a
particular application the statistical data function is chosen in such a way that the
p-value can be interpreted as the measure of incompatibility of theory T with the
empirical test result: The smaller the p-value p+

f (x), the less compatible theory T is

with the empirical test result x ; the larger the p-value p+
f (x), the more compatible

theory T is with the empirical test result x . This interpretation of p+
f (x) depends

very sensitively on f , and, depending on the specific situation, one might have to
use p−

f (x) to interpret it the same way: the smaller p−
f (x), the less compatible T is

with the empirical test result x . Sometimes a two-sided p f -function has to be used as
p-value in order for a similar interpretation of the p-value to be justified.

The typical procedure of testing T ′ in contrast to T using p-values has the assump-
tions and structure described in the following definition of T -CS confirmation of
T ′:

Definition 2 (T -CS con f irmation of T ′)
1. One specifies

(i) A statistical test theory (X ,S, p, f ) for T .
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(ii) A statistical test theory (X ,S, p′, f ) for T ′.

2. One assumes that the following hold:

(2.i) The positive side p f -value function p+
f has the interpretation of indicating the

(in)compatibility of the evidence x with theory T .
(2.ii) The negative side p f -value function p′−

f has the interpretation of indicating
the (in)compatibility of the evidence x with theory T ′.

(2.iii) Given a real number r , the probability that T ′ predicts for the event that the
value of the test function is smaller than r is smaller than the probability
predicted by theory T for this event:

p′( f −1((−∞, r ])) < p( f −1((−∞, r ])) for all r ∈ IR (6)

3. Under these assumptions we say that T ′ is T -CS-confirmed by evidence x ∈ X if:

(a) For some “small” real number α > 0 we have

p+
f (x) ≤ α (7)

(b) For some “large” real number β > 0 we have

p′−
f (x) ≥ β (8)

In view of assumption (2.iii) the conditions (7)–(8) do indeed positively distinguish
T ′ from T because

• 3. (a) says: It is very unlikely to obtain the value f (x) or more extreme (larger)
value of the test if T is true; so we exclude T on this ground.

• 3. (b) says: It is not very unlikely to obtain the value f (x) ormore extreme (smaller)
value of the test if T ′ is true, so we do not exclude T ′ on this ground.

The numbers α, β are called significance numbers, their choice is a matter of conven-
tion. The smaller α and the larger β, the more strongly the evidence x T -CS-confirms
T ′: A small α (high significance) makes it more difficult to exclude the null hypoth-
esis; a large β [called “the exclusion level” for the new theory T ′ (Lyons, 2013)]
makes it easier to exclude the new theory T ′. In many applications it is customary to
take α = 0.02. In experimental particle physics typical values of α are taken to be
the numbers which correspond in case of a probability measure given by a Gaussian
density to the probability that the value of the identity function as random variable is
outside of the symmetric interval of length kσ around its expectation value, where σ

is the variance of the Gaussian density. The value k = 5 results in α = 3 × 10−7.
This particular “5σ” value for α is regarded a very demanding p-value, and is the
convention accepted in particle physics. One of the reasons for choosing α very small
is the Look Elsewhere Effect to be discussed below. The exclusion level β is typically
taken to be much larger than α Lyons (2013); hence it is easier for the new theory
T ′ to be incompatible with evidence than it is for T . This is reasonable because T is
typically well-corroborated, hence discarding it needs strong evidence (high degree
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of incompatibility with evidence); whereas “... incorrect exclusion of New Physics is
not regarded as so dramatic” Lyons (2013).

The relation of p-values p+
f (x) and p′−

f (x) to α and β can be different from the
one expressed by Eqs. (7)–(8). How to interpret the situation when the p-value of
the null hypothesis T is not smaller than α, is a somewhat controversial matter (see
Hartmann & Sprenger, 2019, pp. 229–230 and the references there). The Table 2 in
Lyons (2013, p. 21) summarizes all the logically possible cases. In our notation the
possibilities listed in Table 2 in Lyons (2013, p. 21) are reproduced below.

Decision If T true If T ′ true

p+
f (x) ≤ α p′−

f (x) > β T ′ is T -CS confirmed Type I error Good choice

p+
f (x) > α p′−

f (x) ≤ β T ′ is T -CS DISconfirmed Correct choice Type II error

p+
f (x) > α p′−

f (x) > β No decision Weak test Weak test

p+
f (x) ≤ α p′−

f (x) ≤ β Ambiguous Ambiguous Ambiguous

2.1 Illustrative example: coin flipping

To illustrate the concept of T -CS-confirmation of T ′ we describe a simple instance
of the paradigm example (Maxwell, 1994) of coin flipping. Let T ′ be the theory that
a coin is not fair but biased towards its Head in 4:1 proportion, and let T be the
theory that the coin is fair. The task is to T -CS-confirm T ′. Let the probability space
component of the statistical test theory for T be (XM ,SM , pM ), where the set XM is
the set of all possible outcomes of flipping the coin M times and pM is the uniform
probability measure:

XM
.= {(x1, . . . xM ) : xi = H , T ; i = 1, . . . M} (9)

pM ({(x1, . . . xM )}) .= 1

2M
(10)

Let the statistical data function f be the number of heads thrown in M flips:

f ((x1, . . . xM ))
.= #{xi : i = 1, . . . M; xi = H} (11)

Here #{} denotes the number of elements in the set { }.
Let the probability space component of the statistical test theory for T ′ be

(XM ,SM , p′
M ), where p′

M is the probability measure describing M throws with a
coin that is biased towards Head in 4:1 proportion:

p′
M ({(x1, . . . xM )}) .=

(4
5

)k(1
5

)M−k
(12)

where k is the number of H ’s among (x1, . . . xM ).
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Suppose the outcome of 10 throws is

x = (H , H , T , H , H , H , H , H , H , H) (13)

This outcome contains 9 Heads. Elementary calculation shows

p10
+
f (x) ≈ 0.01074 (14)

p′
10

−
f (x) ≈ 0.89263 (15)

Thus choosing α = 0.03 and β = 0.7 one can conclude that the evidence of
throwing 9 Heads in 10 throws T -CS-confirms the hypothesis T ′ that the coin is
biased in favor of Heads in proportion to 4:1—in comparison with the null hypothesis
T that the coin is fair.

3 Parameter-dependent contrastive statistical confirmation and the
Look Elsewhere Effect

In some situations in which T ′ is to be T -CS confirmed, theory T ′ has a free parameter
t with values in a range R, and the theory’s claim to be tested has the form “For a
specific value of parameter t , property � holds”. A T -CS-type confirmation of T ′ in
this case consists in establishing that T ′ is T -CS-confirmed at some value t0 of the
parameter. To this end, onemakes all the concepts featuring in T -CS testing parameter-
dependent, and one stipulates certain connections between the parametrized notions
in order to compare the theories T and T ′.

To be specific, one starts with inferring from T a probability space (Xt ,St , pt ) for
each t in R with statistical data function ft , and proceeds with inferring from T ′ = “For
a specific value of parameter t , property � holds” a statistical test theory (Xt ,St , p′

t )

(with statistical data function ft ) for each parameter value t . To simplify the situation
we assume that (i) the random events at every value of the parameter are of the “same
sort”; (iia) the background theory T predicts the same probability for the same type
of event at different parameter values and (iib) that the same holds for T ′; (iii) that the
comparison is in terms of the “same sort” of test function at every parameter value. The
technical formulations of these assumptions are summarized in (I)–(III) below. (For
the notions of isomorphism of measurable spaces and of probability measure spaces
featuring in (I) and (II) see Bogachev (2007, p. 275), for a compact summary of these
notions see Rédei and Gyenis (2021).)
Assumptions
For all parameter values t we have:

(I) The measurable spaces (Xt ,St ) are isomorphic to (X ,S) via the isomorphisms
ht : Xt → X .

(IIa) The (Xt ,St , pt ) is measure theoretically (strictly) isomorphic to (X ,S, p) via
the isomorphism ht : Xt → X .

(IIb) The (Xt ,St , p′
t ) is measure theoretically (strictly) isomorphic to (X ,S, p′) via

the isomorphism ht : Xt → X .
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(III) The statistical data functions ft do not depend on t : There is a statistical data
function f : X → IR such that ft = ht ◦ f ; i.e. ft (xt ) = f (ht (xt )) for all
xt ∈ Xt .

One then finds empirical evidence xt ∈ Xt for each parameter value t in the range R.
One can define t-dependent p-values p+

ft
(xt ) and p′−

ft (xt ) in complete analogy with

Eqs. (2)–(4). The numbers p+
ft
(xt ) and p′−

ft (xt ) are called “local p-values”. In view
of the assumptions (I)–(III) they can be written as

p+
ft
(xt ) = p+

f (ht (xt )) and p′−
ft (xt ) = p′−

f (ht (xt )) (16)

Assume that one has obtained as empirical evidence a set E = {xt ∈ Xt : t ∈ R}
of elements, and one finds an xt0 ∈ E for which the analogues of (7)–(8) hold for the
local p-values:

p+
f (ht0(xt0)) ≤ α (17)

p′−
f (h

′
t0(xt0)) ≥ β (18)

and no other element xt in the evidence set E satisfies (17)–(18). Can one now regard
T ′ = “For a specific value of parameter t , property � holds” as T -CS-confirmed by
evidence xt0 , declaring t0 as the parameter value at which � holds? The problem with
doing so without further consideration is that, if the parameter space R is large and we
collect evidence at every value of the parameter, then it becomes more and more likely
that we find evidence xt at some parameter value t that has the same or smaller (local)
p-value as xt0 has—even if T is true and T ′ is not. Thus the danger of making a Type
I error increases because the local p-value p+

f (ht0(xt0)) at the particular parameter
value t0 is an overestimation of the degree of incompatibility of T with evidence xt0 .
This “dilution of significance” in case of a parameter-dependent testing is called the
“Look Elsewhere Effect” (Bayer & Seljak, 2020; Dawid, 2015; Gross &Vitells, 2010;
Lyons, 2008, 2013).

The customary way to mitigate the “dilution of significance” of local p-values is
to introduce a “global” p-value pG(xt0) and, for rejecting the background theory in
view of evidence xt0 , demand that this global p-value be below a chosen threshold
significance α. This demand then requires the local p-value to be below a significance
δ that is much smaller than α. By definition, the global p-value pG(xt0) of xt0 is the
probability that in testing at each parameter value we find at least one event xt at some
parameter value t such that the local p-value p+

f (ht (xt )) of xt is less than or equal to

the local p-value p+
f (hto(xt0)) of xt0 . The ratio

pG(xt0)

p+
f (hto(xt0))

(19)

is called the trial factor (Bayer & Seljak, 2020; Gross & Vitells, 2010).
Calculating the trial factor is typically difficult in applications. This is because the

global p-value of an observed event xt0 is not determined by the local probability
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spaces (Xt ,St , pt ), (Xt ,St , p′
t ) alone, not even when one makes the assumptions (I)–

(III). To obtain the global p-value one has to aggregate the local probability spaces
(Xt ,St , pt ), (Xt ,St , p′

t ) into a single probability space; in particular one has to assume
some additional hypothesis about what probabilistic dependencies exist among proba-
bilities of events at different values of the parameter. It is not always obvious what the
dependencies are—this depends on the specific features of the whole testing situation.
If R is a finite set containing N number of parameter values (which we have assumed),
and one takes as the aggregated probability space the product of the local probability
spaces, with the product probability measure as the aggregated probability measure,
which expresses that the events at different parameter values are independent, then
one can calculate pG(xt0) and obtain (see the Appendix for details):

pG(xt0) = 1 − [1 − p+
f (ht0(xt0))]N (20)

For large enough N , the global p-value in (20) can be large (close to 1) even if
p+
f (ht0(xt0)) is small. So if there are a large number of parameter values at which

evidence is collected, it is very likely that one finds evidence at some parameter value
with significance equal or higher than the significance displayed by the local p-value
of xt0 , even if T is true. For instance, taking p+

f (ht0(xt0)) = 3× 10−7 (the 5σ value),
and 100 parameter values at which evidence is collected, we have

1 − [1 − p+
f (ht0(xt0))]100 ≈ 3 × 10−5 (21)

So the local p-value gets diluted by two orders of magnitude, resulting in the trial
factor to be about 100. Thus, in the case of dilution (20), in order for a given local
significance δ not to dilute above the global significance α, the local significance δ

must satisfy

δ ≤ 1 − [1 − α] 1
N (22)

Since in general the calculation of the global p-value is difficult and an analytic
expression corresponding to (22) is not available, procedures have been developed
with the aim of controlling the Look Elsewhere Effect in a simple manner [Chap. 9
in Lehmann and Romano (2005a) gives a review of these procedures, in particular
the procedure suggested by Benjamini and Hochberg (1995); see also Efron (2008)].
The simplest, one-step procedure is the Bonferroni correction (Bayer & Seljak, 2020;
Foster et al., 2006; Lehmann & Romano, 2005a). In this correction one sets the local
significance level δ as

δ
.= α

N
(23)

For the T -CS-confirmation of “� holds at value t0” by the observation xt0 , with
significance α, one then requires that the local p-value p+

f (ht0(xt0)) satisfies

p+
f (ht0(xt0)) ≤ δ = α

N
(24)
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If N is large, then for the global significance to be less than α, the local p-value
p+
f (ht0(xt0)) must be very small. This is one of the reasons why local p-values are

required in particle physics to be less than the very demanding 3×10−7 (the 5σ value).
The Bonferroni correction is very demanding: one can show Lehmann and Romano

(2005a, p. 350) that it is the strongest correction in the sense that any dilution of δ is
bounded by α if δ ≤ α

N . Thus, controlling the dilution of significance α by the Bon-
ferroni correction in order to control Type I error one may over-compensate, making
Type II error more likely. This can happen especially for large N . (In Sect. 4.1 we
will see an example showing that the Bonferroni correction can make it impossible to
discard the null theory T in a given test situation.) Motivated by this, other, multiple-
step correction procedures have been designed (see Chap. 9 in Lehmann & Romano,
2005a). A common presupposition shared by the one-step Bonferroni and the other,
multi-step corrections is that we have no prior-to-test information whatsoever on the
value of the parameter at which the evidence confirming the new theory might happen.
But this presupposition is not always justified. There could be situations in which one
does have expectations about how likely it is that the confirming evidence occurs at
different parameter values. In such cases the adjustment of the local p-value should
take into account this information. Neither the Bonferroni, nor the multi-step correc-
tions have the tools to incorporate such information. In the next section we make a
suggestion for a modification of the Bonferroni correction that is sensitive for such
extra information.

4 Entropic taming of the Look Elsewhere Effect

Instead of requiring the local p-value p+
f (ht0(xt0)) to satisfy the Bonferroni corrected

significance condition (24) it is reasonable to require a more fine-tuned condition

p+
f (ht0(xt0)) ≤ δ = α

C
(25)

where C is a number that contains information on how likely it is that the claim of
T ′ is true at parameter value t0. If one has a theoretical probability measure on R
that indicates, before any actual test, how likely it is that the claim of the theory is
true at specific parameter values, then C should reflect two features of this probability
measure: (i) how much uncertainty the probability measure itself represents; (ii) what
the probability of the particular parameter value t0 is at which evidence xt0 obtains: the
larger the uncertainty, the largerC should be; the larger the probability of the particular
parameter value t0 at which evidence xt0 obtains, the smaller C should be. We also
demand that (iii) the correction (25) yields the Bonferroni correction (23) when the
uncertainty represented by ρ is maximal: for a ρ that is uniform on the parameters,
C = N should hold.

A possible specification of this idea is the following. Let ρ be the probability on R;
ρ(t) is to be interpreted as the prior-to-test probability that the true parameter value is
t . Taking the usual entropy H(ρ) = −∑

t∈R ρ(t) log(ρ(t)) as the uncertainty of the
probability measure ρ, and assuming that ρ(t0) 
= 0, the constant Cρ defined by
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Cρ
.= 1 + N − 1

N log (N )
· H(ρ)

ρ(t0)
(26)

is a quantity that satisfies the requirements (i)–(iii): For fixed N , Cρ is greater the
larger the uncertainty expressed by the entropy of ρ, and Cρ is smaller the more
probable it is before the test that the confirming test result is at parameter value t0.
If ρ is the uniform distribution: ρ(t) = 1/N , (t = 1, . . . N ), then H(ρ) = log(N ),
and Cρ = N , thus yielding the Bonferroni correction. On the other extreme, if ρ is
peaked at t0, i.e. ρ(t0) = 1, then H(ρ) is zero, hence Cρ = 1, i.e. no correction
of the global significance α is required. In this case the Look Elsewhere Effect is
neutralized completely by the prior-to-test certainty that the parameter at which the
confirming evidence happens is t0. In intermediate cases the entropic correction factor
Cρ given by (26) can take any value between N and 1 because the entropy function is
continuous in the probability profile (ρ(t1), ρ(t2), . . . ρ(ti ) . . . ρ(tN )): if ρ(ti ) → 1,
(and therefore ρ(t j ) → 0 ( j 
= i)), then H(ρ) → 0. So, for ρ peaked enough around
t0, the entropy H(ρ) will be small enough to entail that the entropic correction results
in a less demanding significance threshold than the one coming from the Bonferroni
correction.

If ρ(t0) = 0, i.e. if the prior-to-test probability of the true parameter value being t0
is zero, then one should distinguish two sub-cases:

(i) If the entropy H(ρ) is non-zero, then one can choose a “cut-off” ε > 0 to be
put in place of ρ(t0) in the formula (26) that specifies Cρ , yielding the required
significance Cε in this situation.

(ii) The entropy H(ρ) also is zero. This is an extreme situation because now ρ is
totally concentrated at a parameter t ′ that differs from t0 where the evidence xt0 is
found. So one has maximal prior-to-test probabilistic certainty that the confirming
evidence obtains at parameter t ′; yet in the test the confirming evidence is found at
parameter t0 
= t ′. In this extreme, unexpected situation it is reasonable to demand
a maximal (i.e. Bonferroni) correction of the significance.

Thus, instead of requiring (24), the entropic correction requires the local p-value
to satisfy

p+
f (ht0(xt0)) ≤ α

1 + N−1
N log (N )

· H(ρ)
ρ(t0)

if ρ(t0) 
= 0 (27)

p+
f (ht0(xt0)) ≤ α

1 + N−1
N log (N )

· H(ρ)
ε

if ρ(t0) = 0, H(ρ) 
= 0 (28)

p+
f (ht0(xt0)) ≤ α

N
if ρ(t0) = 0, H(ρ) = 0 (29)

We call Cρ given by (26) the entropic correction factor and α/Cρ the entropic
correction of significance. Cε denotes the entropic correction factor defined by the
cutoff (i.e. Cε is the denominator in the right hand side of (28)).

Similar considerations apply to the exclusion level condition expressed by Eq. (8):
The significance β also gets diluted by the Look Elsewhere Effect. That is to say, as
the number of parameters increases it becomes more and more likely that one finds
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an xt0 at some parameter value t0 such that the local p-value p′−
f (ht0(xt0)) is larger

than β even if T ′ is false. So, the local p-value p′−
f (ht0(xt0)) is an overestimation of

a possible compatibility of T ′ with the evidence xt0 . Thus one needs a correction of
β; but, in contrast to α, the correction should increase β. To correct the significance
β using the entropic correction factor Cρ one can demand

p′−
f (ht0(xt0)) ≥ 1 − 1 − β

Cρ

= 1 − 1 − β

1 + N−1
N log (N )

· H(ρ)
ρ(t0)

if ρ(t0) 
= 0, H(ρ) 
= 0

(30)

Just like in the case of the entropic compensation of α, this correction possesses the
intuitively desirable properties: given N , the larger the entropy of ρ, the larger the
correction of β (i.e. the larger the right hand side of (30)); and the larger the prior-to-
test probability ρ(t0) that the confirming evidence is at parameter t0, the smaller the
correction of β (i.e. the smaller the right hand side of (30)). If ρ is the uniform prob-
ability hence the entropy is maximal and is equal to log (N ), the entropic correction
of β reaches its maximum 1 − 1−β

N . This corresponds to the Bonferroni correction
of α. If the entropy of ρ is zero and thus ρ is concentrated on t0, entailing Cρ = 1,
then the entropic compensation given by (30) leaves the significance β unchanged—
the Bayesian certainty overrides the Look Elsewhere Effect. In intermediate cases the
entropic correction of β provided by (30) forces the local p-value p′−

f (ht0(xt0)) to
be larger than β by an amount that is sensitive to the global properties of ρ and the
prior-to-test probability ρ(t0). This will be illustrated in Sect. 4.1.

If ρ(t0) = 0, then, according to the two sub-cases H(ρ) 
= 0 and H(ρ) = 0
distinguished above in connection with the correction of α, the entropic corrections
of β corresponding to (28) and (29) are:

p′−
f (ht0(xt0)) ≥ 1 − 1 − β

Cε

if ρ(t0) = 0, H(ρ) 
= 0 (31)

p′−
f (ht0(xt0)) ≥ 1 − 1 − β

N
if ρ(t0) = 0, H(ρ) = 0 (32)

To summarize: If one has a prior-to-test probability measure ρ indicating the prob-
ability ρ(t) of finding a confirming evidence at parameter value t , then evidence xt0
T -CS-confirms T ′ at parameter value t0 with significance α and exclusion level β if
conditions (27)–(29) and (30)–(32) hold, and this T -CS confirmation of T ′ has taken
into account the Look Elsewhere Effect tamed entropically using the information
contained in ρ.

4.1 Illustrative example: coin-flipping at different temperatures

To illustrate the entropic taming consider the parametrized version of the coin-flipping
example in Sect. 2: Assume that now the theory T ′ is that a coin is fair but at a particular
temperature in the range of 0–100 ◦C becomes biased towards Head in 4:1 proportion.
Theory T is that the coin is fair at any temperature. The task is to T -CS-confirm T ′.

Assume that the temperature range is divided into 100 bins di of equal length (1
degree) and ten flips are made at a temperature ti ∈ di (i = 1, . . . , 100) in each

123



Synthese           (2024) 203:12 Page 13 of 22    12 

bin. The probability spaces (Xti ,Sti , pti ) (i = 1, . . . , 100) in this case are taken to
be isomorphic via hti with the probability space describing ten flips with uniform
probability (the space (9)–(10) with M = 10). The probability spaces (Xti ,Sti , p

′
ti )

(i = 1, . . . , 100) are taken to be isomorphic with the probability space describing 10
flips with the 4:1 bias towards Head, with p′ given by (12). Suppose that the evidence
is a set of flips with the coin ten times at each temperature ti , and that this set contains
the outcome described by Eq. (13), obtained at temperature 50◦:

x50◦ = (H , H , T , H , H , H , H , H , H , H)50◦ (33)

The local p-value of x50◦ was calculated in Sect. 3 and is given by Eq. (14):

p50◦+
f50◦ (x50◦) = p10

+
f (h50◦(x50◦)) (34)

= p10
+
f ((H , H , T , H , H , H , H , H , H , H)) (35)

= 0.01074 (36)

This local p-value was low enough to reject the null-theory of fairness of the coin at
significance level 0.03 in the case of the parameter-free test. In the current, parametric
case, theBonferroni correctionwould not allow this conclusion because theBonferroni
correction would require the local p-value to be less than 0.03/100 = 0.0003. In fact,
since the smallest non-zero probability of an event now is 2−10, and 2−10 > 0.0003,
T ′ could not be T -CS-confirmed at all by throwing 10 timeswith significance required
by the Bonferroni correction because it is impossible to reject the null hypothesis with
the required significance.

But suppose we have the following prior-to-flipping probability ρ about the
temperature where the bias might occur:

ρ(ti ) = 0.05/98 ti 
= 50◦, 25◦ (37)

ρ(50◦) = 0.9 (38)

ρ(25◦) = 0.05 (39)

The entropic corrections of the significance and exclusion levels can be easily
calculated:

(i) The entropic correction of the 0.03 significance for x50◦ for such a ρ is 0.02611.
Since the local p-value 0.01074 of the evidence x50◦ is below 0.02611, this
evidence allows the rejection of T .

(ii) Calculating the entropic correction of the exclusion level β = 0.7 one obtains
0.73890 (rounded up to 5 decimals). Since the local p-value p′

10
−
f (x) = 0.89263

in Eq. (15) is above this entropically corrected exclusion level, T ′ is not rejected
at parameter value 50◦.

In viewof (i)–(ii) above, theory T ′ is T -CS-confirmed at 50◦ by x50◦ . This confirmation
is at significance 0.02611 and exclusion level 0.73890, where these levels take into
account the Look Elsewhere Effect, tamed in an entropic manner.
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The entropic correction of significance for an event consisting of nine Heads and
one Tail, like x50◦ but occurring at 25◦ degrees, can also be calculated: it is 0.00814.
This value is below of the local p-value 0.01074 of the evidence x50◦ . Hence, if the
evidence of throwing 9 Heads in 10 throws were found at 25◦, one would not be
allowed to reject the hypothesis T that the coin is fair at this temperature and thus
one would not be able to conclude that T ′ is T -CS-confirmed at 25◦. This negative
conclusionwould be the result of the Look Elsewhere Effect—even after having tamed
the Look Elsewhere Effect in the entropic manner.

5 Assessing the performance of the entropic correction

If the coin in the example of the previous section does indeed change its non-biased
character at t = 50◦, then the ρ assigning high (0.9) probability to t = 50◦, is a
“good” prior because it leads to the correct decision. And the example also shows
that this good decision is not possible on the basis of the Bonferroni correction (with
the chosen significance levels)—so the entropic correction performs better than the
Bonferroni correction in this case. If the prior assigning 0.9 probability to t = 50◦
is a very bad reflection/anticipation of the parameter value at which the new theory
is in fact true (because the coin changes its non-biased character not at t = 50◦,
yet the prior assigns high probability to this), then rejection/acceptance based on the
entropic correction (on the basis of the evidence of throwing 9 Heads) is an error. In
this latter case the entropic correction did not perform well. This observation leads
to the general question of how the taming of the Look Elsewhere Effect using the
entropic correction compares with using the Bonferroni correction in general in the
sense that using the entropic correction is more likely to result in rejecting hypotheses
that are more likely false and is more likely to result in accepting hypotheses that are
more likely true.1 To formulate this question more precisely, one needs a measure of
good performance of a correction of significance in a parametric T -CS confirmation.
Below we define explicitly a measure that seems suitable to reflect the degree of good
performance—without claiming that it is the only one that does so.

Suppose ρ is understood as a probability measure that reflects some objective
chances (e.g. frequencies) with which T ′ is true at the parameter values. Suppose
one tests T ′ at each parameter via a T -CS confirmation, using both the entropic and
the Bonferroni corrections of the significance levels α and β. Let P(α,β)

Ent (t) be the
probability with which T ′ is confirmed when T -CS-tested at parameter t using the
entropic corrections of α and β, and P(α,β)

Bon f (t) be the probability with which T ′ is
confirmed when T -CS-tested at parameter t using the Bonferroni corrections of α

and β. At t the entropic correction performs better than the Bonferroni correction if
P(α,β)
Ent (t) is closer to ρ(t) than P(α,β)

Bon f (t) is, i.e. if

|P(α,β)
Ent (t) − ρ(t)| ≤ |P(α,β)

Bon f (t) − ρ(t)| (40)

1 We thank an anonymous referee who suggested to investigate this issue in more detail.
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The ρ-expected values of the left and right-hand sides of the inequality Eq. (40) are
reasonable indicators of how well the entropic and Bonferroni corrections perform at
this ρ at the significance levels α and β. So we define performance indicators I Ent

ρ;(α,β)

and I Bon f
ρ;(α,β)

by

I Entρ;(α,β)

.=
∑
t

ρ(t)|P(α,β)
Ent (t) − ρ(t)| (41)

I Bon f
ρ;(α,β)

.=
∑
t

ρ(t)|P(α,β)
Bon f (t) − ρ(t)| (42)

And we say:

Definition 3

• The entropic correction performs better than the Bonferroni correction at ρ at the
significance levels (α, β) if

I Entρ;(α,β) ≤ I Bon f
ρ;(α,β)

(43)

• The entropic correction performs better than the Bonferroni correction overall if
for all ρ and for all significance levels α and β the inequality (43) holds.

Problem 1 Is the overall performance of the entropic correction better than the overall
performance of the Bonferroni correction?

Problem 1 seems to be a difficult one; at any rate we are unable to solve it. What
we can do is to offer numerical evidence in the particular case of the ρ specified in
our example in Sect. 4.1 (see Eqs. (37)–(39)) that, for this ρ, and for the significance
levelsα = 0.3 andβ = 0.7, the entropic correction performsbetter than theBonferroni
correction. In this particular case the performance indicators I Ent

ρ;(0.3,0.7) and I Bon f
ρ;(0.3,0.7)

can be calculated explicitly.We calculated numerically these numbers for five different
testing situations: when we use as evidence outcomes of 10, 15, 20, 25 and 30 flips.
Some details of the calculations are in Sect. 2 of the Appendix. The result of the
calculations show (see Table 2 in Sect. 2 of the Appendix) that the entropic correction
performs better in the case of this particular ρ and at these significance levels in each
of these five testing scenarios:

Number of flips I Ent
ρ;(0.3,0.7) I Bon f

ρ;(0.3,0.7)

10 0.506838084 0.81252551
15 0.489350944 0.783931589
20 0.301453498 0.80315755
25 0.312234809 0.790270514
30 0.465918806 0.803975713
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Comments on the numerical calculations:

(i) While in our example the performance of the entropic correction is better than
the performance of the Bonferroni correction in the sense that in each one of the
testing scenarios I Ent

ρ;(0.3,0.7) < I Bon f
ρ;(0.3,0.7) holds, the numerical calculations also

show that it is not true that in each one of the testing scenarios the performance
of the entropic correction is better at every single parameter: it is not true that
|P(0.3,0.7)

Ent (t) − ρ(t)| ≤ |P(0.3,0.7)
Bon f (t) − ρ(t)| holds for all t in each one of the

testing scenarios. The reason for this is that when ρ(t) is very small, the entropic
correction can be stronger than the Bonferroni correction, and this can make it too
hard toT -CSconfirm thehypothesis at that parameter using the entropic correction.
In our example this happens in the testing scenario inwhich the test is a sequence of
tosses of length 30 and when it comes to the confirmation of the coin transforming
into a biased one at a temperature different from 50◦ and 25◦ with a probability of
0.05/98 = 0.510204×10−3. In this casewehave: P(0.3,0.7)

Ent (t) = 0.632533×10−6

and P(0.3,0.7)
Bon f (t) = 0.539747×10−5. But since the transformation of the coin into

biased one at temperatures different from 50◦ and 25◦ happen with a very low
probability, the average performance of the entropic correction is less affected by
the low probability of confirming the hypothesis at such a parameter.

(ii) The observation in (i) shows that in our example the entropic correction performs
better than the Bonferroni correction at parameters t for which ρ(t) is higher. This
indicates a general feature of the entropic correction: if ρ is a probability measure
that reflects some objective chances (e.g. frequencies) with which T ′ is true at the
parameter values, then the T -CS confirmation using the entropic correction ismore
likely to confirm the hypothesis as true at parameters at which the hypothesis are
objectively more likely true than is the T -CS confirmation using the Bonferroni
correction.

One also can raise the question of how the entropic correction performs in comparison
with other corrections available in the literature that are different from the Bonferroni
correction. We do not have any result in this direction.

6 Concluding comments

The entropic taming of the Look Elsewhere Effect allows one to introduce in a
disciplined and technically explicit manner a Bayesian component in the otherwise
frequentist statistical theory testing. This is in the spirit of Dawid: “... keeping in mind
a Bayesian framework can help making the right choices in framing data analysis”
Dawid (2017). But the kind of Bayesianism the entropic correction represents differs
significantly from the sort of Bayesianism present in Dawid (2015, 2017). Dawid’s
analysis in both Dawid (2015, 2017) involves the subjective prior probabilities about
the truth of the null hypothesis and of the theory to be tested. Such subjective priors
are completely absent in the entropic correction of the significance levels: Degrees
of beliefs enter the entropic correction of significance only through the prior-to-test
probability ρ representing expectations about where the confirming evidence might
occur; no prior degree of belief in the theory to be tested or in the null hypothesis is
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assumed. Also, Dawid’s analysis in Dawid (2017) assumes explicitly that “... the prob-
ability of the existence of a Higgs particle is uniformly distributed over the allowed
mass region...” Dawid (2017). Using our terminology, this amounts to assuming that
ρ is the uniform probability—and the main point in the entropic correction is that ρ

need not be uniform.
That the entropic correction of the Look Elsewhere Effect does not involve the prior

belief in the theory under test has the advantage that it is applicable even when the
prior belief in the new theory T ′ is not very high: Even if one does not have a high
degree of belief in the truth of T ′, one might have a high probability that if T ′ is true,
the conforming evidence obtains with higher probability at some specific parameter
values. This allows the taming of the Look Elsewhere Effect in the entropic way in
situations when the overall confidence in the truth of T ′ is low or moderate.

“Uncertainty” is not a uniquely determined notion and there are measures different
from entropy that express how uncertain or “peaked” a probability measure is. So there
seems to exist in principle an avenue for different types of Bayesian taming of the Look
Elsewhere Effect, where “type” refers to the type of uncertainty one uses to measure
the uncertainty of a Bayesian ρ. So no claim is made here about the uniqueness of the
suggested entropic correction as the only one that satisfies the desiderata formulated
in Sect. 1. But we do not have an example of a measure of uncertainty of a probability
measure and corrections of significance that differ from the entropic one and which
satisfy the desiderata in section. So we leave the question about the existence of such a
correction as an open issue.One alsomight consider further strengthening the demands
(i)–(iii) on a correction formulated in Sect. 1. We also leave it for future analysis in
which direction such strengthening are feasible or desirable.

Another possible topic for future investigation is the situation when the parameter
space is not finite; in particular when it is uncountably infinite. This situation presents
several technical and conceptual difficulties. In such a situation the Bonferroni correc-
tion is not applicable and it is unclear to us how one could tame the Look Elsewhere
Effect along the lines suggested in this paper.

The entropic taming of the Look Elsewhere Effect itself is neutral with respect to
the source of the probability measure ρ: One can interpret ρ entirely subjectively,
as expressing a rather personal conviction (degree of belief) of the experimenter (e.g.
physicist) carrying out the test. But the probabilitymeasureρ can also be the prediction
of (or informed by) a well-corroborated framework theory that provides a probabilistic
prediction regarding the chances of finding specific systems with certain parameter
values. In this latter case the entropic taming of the Look Elsewhere Effect is in the
spirit of the advice of the American Statistical Association (Wasserstein & Lazar,
2016), which emphasizes the importance of taking into account the broader scientific
context in which statistical analysis using p-values takes place.
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Appendix

Calculation of the global p-value when the probabilities of events at different
parameter values are independent

As an explicit illustration of the Look Elsewhere Effect and the global p-value, we
recall here the well-known calculation of the global p-value of xt0 in the case when the
probabilities of events at different parameter values are independent. The calculations
(especially in lines (46)–(49)) below use the assumptions (I)–(III).

Let (×N
i=1Xti ,×N

i=1Sti ) be the measurable space that describes the possible
outcomes of tests carried out at parameter values in R. Then

Et0 = {yto ∈ Xt0 : ft0(yt0) ≥ ft0(xt0)} (44)

is the event in St0 that the result of the empirical test xt0 has value ft0(xt0) or a larger
value. The complement E⊥

t0 of Et0 in Xt0 is the event in St that Et0 does not happen at
parameter value t0. The event (ht−1 ◦ ht0)(E⊥

t0 ) is the event that the event Et0 does not
happen at parameter value t , and the event that Et0 does not happen at any parameter
value is represented by E0, where

E0
.= ×N

i=1

[
(hti

−1 ◦ ht0)(E
⊥
t0 )

]
∈ ×N

i=1Sti (45)

So if one takes the product probability measure ×N
i=1 pti on ×N

i=1Sti , then the
probability that Et0 does not happen at any value of the parameter is

×N
i=1 pti (E0) = 	i pti ((hti

−1 ◦ ht0)(E
⊥
t0 )) (46)

= 	i p((ht0)(E
⊥
t0 )) = 	i p(X \ ht0(Et0)) (47)

= 	i [1 − p(ht0(Et0))] = [1 − p(ht0(Et0))]N (48)

= [1 − p+
f (xt0)]N (49)
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Table 1 Testing biasedness of coin at temperature 50 degrees centigrade, using entropic and Bonferroni
corrections and flipping coin 15 times

# of Heads p+(n) p−(n) E-conf.? B-conf.?

0 1 0.32768 × 10−10 0 0

1 0.999542236 0.199885 × 10−8 0 0

2 0.999511719 0.570491 × 10−7 0 0

3 0.996307373 0.101125 × 10−5 0 0

4 0.982421875 0.124617 × 10−4 0 0

5 0.940765381 0.113226 × 10−3 0 0

6 0.849121094 0.784985 × 10−3 0 0

7 0.696380615 0.423975 × 10−2 0 0

8 0.5 0.18058807 × 10−1 0 0

9 0.303619385 0.6105143 × 10−1 0 0

10 0.150878906 0.164233724 0 0

11 0.59234619 × 10−1 0.351837895 0 0

12 0.17578125 × 10−1 0.601976791 0 0

13 0.3692627 × 10−2 0.832874233 1 0

14 0.488281 × 10−3 0.964815628 1 0

15 0.305176 × 10−4 1 1 1

So the probability that Et0 does happen at some value of the parameter is

1 − ×N
i=1 pti (E0) = 1 − [1 − p+

f (xt0)]N (50)

Numerical calculations

We show here how to calculate the performance indicators I Ent
ρ;(α,β)

and I Bon f
ρ;(α,β)

defined
in Sect. 5, in the case of ρ specified by Eqs. (37)–(39) in our example in Sect. 4.1, for
the significance levels α = 0.3 and β = 0.7. We show the steps in the calculations in
the testing scenario in which the testing is in terms of M = 15 flips of the coin.

Table 1 shows the numerical results in case of testing biasedness of the coin at 50◦
degrees. The entropic corrections of the significance levels α = 0.3 and β = 0.7 at
this temperature are: 0.026110449 and 0.738895514. Table 1 has the following data:

1. The first column in Table 1 shows the possible numbers of Heads in 15 flips.
2. The second column shows the positive side p-values p+(n) of the events of obtain-

ing n Heads in 15 flips with the unbiased coin. The formula used to calculate this
number is:

p+(n) = 1 −
n−1∑
i=0

B(i, 15, 0.5) (51)
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Here, and in what follows, B( j, k, r) is the Binomial distribution with parameter
r ∈ [0, 1]:

B( j, k, r) =
(
k

j

)
r j (1 − r)k− j (52)

3. The third column shows the negative side p-values p−(n) of the events of obtaining
n Heads in 15 flips with the biased coin. The formula used to calculate this number
is:

p−(n) =
n∑

i=0

B(i, 15, 0.8) (53)

4. The fourth column E-conf.? contains

• 1 in row with n Heads if n Heads in a sequence of 15 flips T -CS confirms T ′
(= the coin turns biased at temperature 50◦ degrees) after the significance has
been corrected in an entropic manner;

• 0 otherwise.

5. The fifth column B-conf.? contains

• 1 in row with n Heads if n Heads in a sequence of 15 flips T -CS confirms T ′
(= the coin turns biased at temperature 50◦ degrees) after the significance has
been Bonferroni corrected;

• 0 otherwise.

Let gE be the function that assigns to the number n of Heads in the table the
corresponding value 1 or 0 in column 4 (indicating whether T ′ is T -CS confirmed
by n Heads in 15 flips, after the entropic correction of significance); and, let gB the
similarly defined function for the confirmation using the Bonferroni correction.

Let p50 be the probability measure that gives the probability p50(n) that n Heads
occur in 15 flips at temperature 50◦. Since the probability that the coin turns into the
biased one at 50◦ degrees is 0.9, we have:

p50(n) = 0.9 · B(n, 15, 0.8) + 0.1 · B(n, 15, 0.5) (54)

Then the expectation value of gE with respect to p50 yields the probability
P(0.3,0.7)
Ent (50◦) with which T ′ is confirmed when T -CS-tested at parameter 50◦ using

the entropic correction:

P(0.3,0.7)
Ent (50◦) =

15∑
i=0

p50(i)gE (i) (55)

= p50(13)gE (13) + p50(14)gE (14) + p50(15)gE (15) (56)

= 0.358590151 (57)
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Table 2 Numerical values of
performance indicators of
entropic and Bonferroni
corrections in case of flipping
coin 10, 15, 20, 25 and 30 times.
Smaller value indicates better
perfromance

Number of flips I Ent
ρ;(0.3,0.7) I Bon f

ρ;(0.3,0.7)

10 0.506838084 0.81252551

15 0.489350944 0.783931589

20 0.301453498 0.80315755

25 0.312234809 0.790270514

30 0.465918806 0.803975713

Exactly the same type of calculation can be used to obtain the probability
P(0.3,0.7)
Ent (25◦)withwhich T ′ is confirmedwhen T -CS-tested at parameter 25◦, and the

probability P(0.3,0.7)
Ent (t ′) with which T ′ is confirmed when T -CS-tested at parameters

t ′ 
= 50◦, 25◦, using the entropic correction. The results of the calculation are:

P(0.3,0.7)
Ent (25◦) = 0.8820156 × 10−2 (58)

P(0.3,0.7)
Ent (t ′) = 0.484532 × 10−4 (59)

The entropic performance indicator I Ent
ρ;(0.3,0.7) can now be calculated:

I Entρ;(0.3,0.7)
.=

∑
t

ρ(t)|P(0.3,0.7)
Ent (t) − ρ(t)| (60)

= 0.9
∣∣P(0.3,0.7)

Ent (50◦) − 0.9
∣∣ + 0.05

∣∣P(0.3,0.7)
Ent (25◦) − 0.05

∣∣ (61)

+98 · 0.05/98∣∣P(0.3,0.7)
Ent (t ′) − 0.05/98

∣∣ (62)

= 0.489350944 (63)

An entirely analogous calculation yields the performance indicator of the Bonferroni
correction:

I Bon f
ρ;(0.3,0.7) = 0.783931589 (64)

The calculation of the performance indicators in case of 10, 20, 25 and 30flips proceeds
exactly along the above lines. The results are provided in Table 2.
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