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Abstract

Inequality prevails in science. Individual inequality means that most perish quickly
and only a few are successful, while gender inequality implies that there are differ-
ences in achievements for women and men. Using large-scale bibliographic data and
following a computational approach, we study the evolution of individual and gender
inequality for cohorts from 1970 to 2000 in the whole field of computer science as
it grows and becomes a team-based science. We find that individual inequality in
productivity (publications) increases over a scholar’s career but is historically invari-
ant, while individual inequality in impact (citations), albeit larger, is stable across
cohorts and careers. Gender inequality prevails regarding productivity, but there is
no evidence for differences in impact. The Matthew Effect is shown to accumulate
advantages to early achievements and to become stronger over the decades, indicat-
ing the rise of a “publish or perish” imperative. Only some authors manage to reap
the benefits that publishing in teams promises. The Matthew Effect then amplifies
initial differences and propagates the gender gap. Women continue to fall behind
because they continue to be at a higher risk of dropping out for reasons that have
nothing to do with early-career achievements or social support. Our findings sug-
gest that mentoring programs for women to improve their social-networking skills
can help to reduce gender inequality.
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1. Introduction

Half a century ago, Price diagnosed that the science system exhibits an “essential, built-
in undemocracy,” meaning that academic achievements are strongly concentrated among
a very limited number of persons or organizations. He observed inequality in the form
of broad distributions of individual productivity and scientific impact and found this
pattern to be stable as science grows, perpetuating a system where a “few giants” coexist
with a “mass of pygmies” (Price, 1986 [1963], p.53). The literature has found the
broadness of these distributions to be a universal property of the science system (Lotka,
1926; Bradford, 1985 [1934]; Albarrán et al., 2011; Ruiz-Castillo and Costas, 2014) and
has identified an endogenous process of reproduction as the main driving mechanism:
the Matthew Effect (DiPrete and Eirich, 2006; Perc, 2014; Bol et al., 2018). In his
explanations of advancement in academic careers, Merton (1968, 1988) referred to the
Matthew Effect (ME) as a cumulative-advantage process according to which “initial
comparative advantages of trained capacity, structural location, and available resources
make for successive increments of advantage such that the gaps between the haves and the
have-nots in science ... widen until dampened by countervailing processes.” (Merton,
1988, p. 606) The larger the ME, the more “the rich get richer rendering the poor
relatively poorer” (Page, 2015, p. 34).
Extreme individual inequality is problematic but could be considered fair if it is merit-

based (Starmans et al., 2017). However, for differences in merit and success to be con-
sidered fair, they should not be associated with ascribed characteristics such as gender,
age, or ethnicity (Merton, 1973; Cole, 1979). Inequality among persons belonging to dif-
ferent groups, also known as horizontal inequality as opposed to individual, or vertical,
inequality, is undesirable (Stewart, 2005). For example, gender is a prominent principle
of distinction, and gender inequality in scientific productivity has been observed. This
is known as the “productivity puzzle.” For instance, research from the early days of
science studies found that women produce about half as much as men (Cole and Zuck-
erman, 1984; Cole and Singer, 1991), particularly over the first decade of their careers
(Reskin and Hargens, 1979; Long, 1992). More recent large-scale analyses show that
each year, women are 20 percent more likely to drop out of science than men (Huang
et al., 2020). In computer science, women on average publish less than men per year for
the first several years of employment (Way et al., 2016). Women are less likely to take
prestigious author positions in publications (West et al., 2013; Holman et al., 2018), yet
they are more likely to perform better in the job market (Way et al., 2016). Gender
inequality in impact has also been reported (Cole and Zuckerman, 1984; Lincoln et al.,
2012; Larivière et al., 2013).
The literature on individual and gender inequality in science is abundant, but we iden-

tify two major research gaps in it. The first relates to cohort design and data availability.
Older analyses tend to have sound cohort designs but are often restricted in the amount
of data (number and size of cohorts) that were studied. For example, Zuckerman and
Merton (1972) only analyze one cohort, while Allison et al. (1982) analyze three cohorts.
More recent computational analyses tend to study large amounts of data but are often
restricted regarding cohort design. For example, Penner et al. (2013) aggregated scien-
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tists that started their careers in the same decade. Petersen et al. (2014a) group authors
into one cohort that published their first paper in a competitive journal within the same
15 years. These cohorts are heterogeneous with respect to career age and do not include
unsuccessful scientists and early career researchers. Previous research, however, has
shown that life-course approaches are important because dropouts can partially explain
gender inequality. Specifically, productivity inequality almost vanishes when women and
men are compared for the same career ages (Jadidi et al., 2018; Azoulay and Lynn, 2020;
Huang et al., 2020), although, even when the survival bias is removed, women still have
fewer publications than men when they become a professor (Aksnes et al., 2011; Lutter
and Schröder, 2016).
The second research gap relates to recognizing the scientific field’s growth and trans-

formation. Price (1986 [1963]) argued that recruiting more people into science implies
that less talented people will enter. Zuckerman and Merton (1972) hypothesized that
this leads to larger differences between the most and the least talented, suggesting that
inequality should be higher in more recent cohorts than in older ones. Early work on
chemistry cohorts found inequality in productivity (publications) and scientific impact
(citations) to increase as a cohort ages (Allison et al., 1982). Yet, using full-scale biblio-
graphic databases, scholars found impact inequality decreases over time (Larivière et al.,
2009; Petersen and Penner, 2014; Pan et al., 2018) as the academic system transitions
from a scholar-centered to a globalized, interdisciplinary, team- and project-based mode
of knowledge production (Gibbons, 1994). Both findings are plausible and can be ex-
plained by changes in the academic system: the increased tendency to publish papers
with multiple authors (Wuchty et al., 2007; Petersen et al., 2014b) may function as a
social multiplier that potentially increases inequality, while a higher number of refer-
ences per paper decreases the number of uncited papers which may decrease inequality
(Wallace et al., 2009; Pan et al., 2018).
In this paper, we take a cohort-design approach to the problem of individual and

gender inequalities in academia and their origins. Using bibliographic data on the whole
field of computer science, we define cohorts from 1970 to 2000 and study the careers of
authors over 15 years. Computer science presents an ideal case study because we can
observe it since its early days as it grows and evolves from an individual-based to a team-
based science. The field is relatively young, growing, in ongoing transformation, and a
driver of the digital revolution. Last but not least, it concerns potentially large gender
disparities since only one out of five computer scientists is female (Lee et al., 2019).
We find that individual inequality in productivity is slightly increasing over academic
careers. In contrast, individual inequality in impact is stable. These trends are invariant
as the field grows and matures. Gender inequality exists, but impact inequality finds
an explanation in productivity inequality which is a result of higher dropout rates for
women. The ME is shown to increase historically. Over the decades, we expose the
emergence of an imperative to “publish or perish” and the citation-based consequences
of early-career achievements as well as early-career social capital. By shedding light
on the mechanisms behind individual and gender inequality we motivate science policy
interventions to mentor women in social networking.
In the next section, we distill from the literature an evolutionary theory of careers in
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competitive fields with the ME at its center. This theory guides our analysis. Then, we
present our research design, discuss our results in detail, and conclude our work. For
readability, materials and methods are placed at the end.

2. The Matthew Effect in the center of a theory of careers

The ME is a feedback mechanism that generates inequality. On the one hand, the ME
implies cumulative advantage. For example, getting a more prestigious job entails an
increase in productivity (Allison and Long, 1990). Departmental prestige helps careers
because prestige operates and reproduces in networks. As a scholar climbs up the career
ladder, she or he advances into the core of a field and becomes part of a reproductive
vortex that makes it increasingly hard to not benefit from collective dynamics (Burris,
2004; Clauset et al., 2015; Way et al., 2019). Cores harbor the few positions that strongly
influence how a field reproduces (Fuchs, 2001). Padgett and Powell (2012) introduce the
concept of autocatalytic feedback to model these dynamics.
Inversely, the ME also takes the form of a cumulative disadvantage. This has sustained

the hypothesis that success either comes early or not at all (Zuckerman and Merton,
1972). As a consequence, the ME makes it increasingly difficult for an individual to
stay in academia (Cole and Cole, 1973). Young scientists must overcome a “barrier” to
excel (Petersen et al., 2011). If positive feedback does not set in early in a career, the
respective scholar requires motivation to be productive for the love of the work or some
amount of tenacity (Huber, 2002). Surprisingly, though most computer scientists are
most productive in their fifth year after hiring, there is a huge variance in productivity
career patterns (Way et al., 2017). And success can come at any time in a career, but
it depends on persistence, ability to excel, and, last but not least, luck (Sinatra et al.,
2016).
Cumulative advantage and disadvantage both imply that past achievement to some

extent predicts current achievement. Thus, empirical research on the ME typically
quantifies the size of the effect and even attempts to establish a scaling law (Jeong
et al., 2003; Perc, 2014; Ronda-Pupo and Pham, 2018). Career reinforcement via the
ME manifests as increasing returns to the average number of citations per paper as an
author becomes more productive (Costas et al., 2009). For highly-cited authors, staying
in academia twice as long means being up to 2.8 times more productive and being up
to eight times more impactful. Below a certain citation threshold, the ME operates
via the author’s reputation as measured by their cumulative citation record, but above
that threshold, mainly via publication visibility (Petersen et al., 2014a). Overall, studies
predicting the success of scholars or publications have found that current productivity
and impact (Acuna et al., 2012; Penner et al., 2013; Mazloumian, 2012; Dong et al.,
2015), combined with an intrinsic “fitness”, or ability and quality (Wang et al., 2013),
and mediated through networks (Sarigöl et al., 2014) are positively correlated with future
success. The observation that the early career of a scientist is predictive of her or his
later success and gains in predictive power diminish as more career ages are used for
prediction provides further evidence for the ME (Mazloumian, 2012; Penner et al., 2013;
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Wang et al., 2013).
In sum, the ME has become central to an empirically-oriented evolutionary theory of

careers in competitive fields that is taking shape at the intersection of the social and
computational sciences. It is a field theory (Bourdieu, 1988) because the academic fields,
as spacetimes that delimit agents’ social positions and interactions, are the loci that
harbor the ME (White et al., 2004). Emerging from collective action, field structure acts
as a memory in which advantages accumulate and lead to institutionalization (Petersen
and Penner, 2014; Flack, 2017; Pan et al., 2018). This field-endogenous feedback process
operates behind (i.e., it reinforces or impedes) life-course factors such as creativity, self-
perceptions, dispositions, access to resources, and environmental conditions (Cole and
Cole, 1973; Cole and Singer, 1991; Padgett and Powell, 2012). Competition for ideas,
positions, and funds ensues. Careers are tournament-like endeavors (Sørensen, 1986)
to improve one’s rank in the academic “pecking order” (Chase, 1980). Ranks translate
to positions in networks, and upward or downward mobility resembles approaching or
withdrawing from network cores (Burris, 2004; Clauset et al., 2015). Only a few make
it up those “chains of opportunity,” for most the way is down (White, 1970). As an
evolutionary theory, it looks for path dependence and the long-term consequences of
initial conditions (Cole and Singer, 1991; Wray, 2011). Small differences in ability,
persistence, or luck accumulate and lock a career into an upward or downward path
(Petersen et al., 2012; Way et al., 2019). Since this is a collective phenomenon, good
ideas can fail if they are put forth at the “wrong time” (Newman, 2009; Bornholdt
et al., 2011), but if the time is “right,” success breeds success in an avalanche-like way
(Mazloumian et al., 2011).
This theory also prepares the ground for understanding gender inequality as co-

generated by the ME (Long and Fox, 1995; DiPrete and Eirich, 2006). Some or many of
the career factors exemplified above are likely to be gender-correlated and thus generate
outcome differences that increase over the career as they interact with the ME (Xie
and Shauman, 1998; Cole and Singer, 1991). For example, absence from the job mar-
ket (e.g., because of motherhood) leads to disadvantages that accumulate (Cole, 1979;
DiPrete and Eirich, 2006). And women’s disadvantages grow early in a career (Reskin
and Hargens, 1979; Long, 1992).

3. Research design

We adopt an integrated modeling approach to study individual and gender inequality in
an academic field. By “integrated” we mean that we are interested in both explaining
and predicting inequality (Hofman et al., 2021). We study 15-year careers in the entire
computer science discipline for cohorts from 1970 to 2000. Starting with descriptive
modeling, we explore the evolution of individual and gender inequality in productiv-
ity and impact over the career within cohorts and between cohorts over time. In an
explanatory modeling step, we then present the ME as a plausible mechanism that gen-
erates the patterns of individual inequality we observe. Finally, in a predictive modeling
step, we inquire how accurately the early career predicts total-career achievements. We
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Figure 1: Description of the field of computer science. (A) The size of cohorts increases
exponentially with time for both males and females. (B) The average team
size, measured by the number of authors per paper, increases over time. (C)
Distributions of productivity (cumulative number of papers P per author at
career age 15) and impact (cumulative number of citations C per author at
career age 15) are broad. The lines are best fits to the data: a truncated power
law (P (15)) and a stretched exponential (C(15)). (D) The number of authors
decreases with the number of years during which they publish persistently after
the beginning of their careers (early career persistence). Female scientists show
equal persistence in their early careers but after 4 years they are less likely to
persist. (E) The fraction of authors in a cohort that drop out of academia (for
ten years in a row) decreases but is more or less constant since the mid-80s.
Females drop out more than men.

identify the meritocratic and non-meritocratic early-career factors that predict whether
an author drops out of the field and how successful they become eventually. Explana-
tions of individual and gender inequality then derive from the assumption that the ME
accumulates the early advantages from these career factors.
As the main data source, we use DBLP, a comprehensive collection of computer science

papers that were published in major and minor computer science outlets (Ley, 2009).
We study cohorts from 1970 to 2000, where an author belongs to a cohort if they have
published their first paper in the given year. For each cohort, we study careers over
15 years, including the start year. We measure productivity in terms of the number of
publications since those are the vehicles of academic communication (Merton, 1968) and
scientific impact in terms of the number of citations, a widely used measure (Merton,
1988; Aksnes et al., 2019). For details of our methods, we refer to the “Materials and
methods” section at the end of the paper. Selected results obtained from the DBLP
dataset (Way et al., 2016; Jadidi et al., 2018) were reported above in the Introduction.
Our cut of the DBLP dataset consists of 2.5 million publications from 1970 to 2014
that are authored by 1.4 million authors. Of those, about 300,000 authors started their
careers between 1970 and 2000 and are counted as cohort members. There are 7.9 million
citations among the authors’ publications which we use for the impact analyses.
Figures 1A and 1B show that cohorts grow exponentially with time and that the field is

becoming a team science in the process. Individual inequality at the most aggregate level
(all publications and citations accumulated over an author’s 15-year career, aggregated
for all cohorts) is depicted via broad probability distributions. The citation distribution
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is broader than the productivity distribution, that is, inequality in impact is larger than
inequality in productivity (figure 1C). Correspondingly, the Gini coefficient, our measure
of individual inequality, is larger for impact (0.83) than for productivity (0.68). This
is not surprising since authors are physically constrained about the number of projects
they can work on during any year but there are no such restrictions when it comes to the
number of citations their work receives. The last two plots show early career persistence,
that is, the number of career years during which an author publishes consecutively from
the beginning of their career, and the dropout rate per cohort. Most authors persist for
only one year before they become inactive (for at least a year) or drop out of computer
science. Long persistence is decreasingly likely, especially for female scientists (figure
1D). Dropout rates decrease for subsequent cohorts but women continue to be more
likely to drop out than men (figure 1E).

4. Results

4.1. Individual inequality over careers and cohorts

In the first, descriptive modeling step, we explore the evolution of individual and gender
inequality regarding productivity and impact. If the ME is in place, how would inequality
change over the career? Intuitively, one might expect that inequality should increase
if the rich get richer and that an increase in productivity inequality should directly
translate to an increase in impact inequality. This is what Allison et al. (1982) find
in their aforementioned study of the chemistry cohorts from the 50s and 60s. But
they also find that the method of counting publications and citations – window vs.
cumulative counting – is decisive. They find stable impact inequality for cumulative
counting; increases are found only for window counting. Here, we report results using
cumulative counting but also include plots with 3-year window counting in Appendix A.
Our measure of individual inequality is the Gini coefficient.

For cumulative counting, we find that productivity inequality is increasing over career
years (figure 2A) while impact inequality is larger but mostly stable after an initial
decrease (2B). We study several modifications to validate this finding. The change
around career year 4 that can be seen in almost all figures is because the career of an
author starts with the first publication (i.e., in career year 1 every author has at least one
publication while even those authors that eventually become highly cited may still have
zero citations). As we saw in figure 1E, many authors drop out of academia early on, but
their publication and citation counts influence the Gini coefficients. We introduce the
convention that we observe a dropout if an author is absent for at least ten consecutive
years. When we remove dropouts1 (figure 2E), then author careers are more comparable
and productivity inequality drops, but a trend of increasing inequality remains. When
this filter is applied to measuring impact, the inequality level also drops but the trend
toward stable inequality does not change (figure 2F).
In computer science, the order of authors is typically important. The first author

1Results are qualitatively similar for absences of five and ten consecutive years.
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Figure 2: Individual inequality in productivity and impact as a function of career ages,
depicted for seven cohorts between 1970 and 2000. We count publications
and citations cumulatively (P (t) and C(t), defined in “Materials and meth-
ods: Individual inequality”). (First two columns) Assigning publications to
all authors. (Last two columns) Assigning publications only to first authors.
(Second row) Authors are filtered that have not published for ten consecutive
years (most likely left academia).

usually did the most valued part of the work. Hence, in our analysis, attributing pub-
lications only to first authors serves the purpose of studying scholars of heightened
importance.2 When we add the first-author filter to the removal of dropouts, the trend
for increasing productivity inequality completely vanishes (2G), and the trend for stable
impact inequality remains (2H). When we employ window counting, the Gini coefficients
are systematically higher and the trends less pronounced due to the ceiling effect, but
qualitatively almost the same. A difference is, though, that productivity inequality still
increases slightly over a career when dropout and first-author filters are applied (figure
6 in appendix A). In sum, when all authors are considered, productivity inequality is
increasing over career ages while impact inequality, albeit larger, is mostly stable. Rising
inequality in productivity is an effect of considering the full workforce and disappears
for comparable authors, at least for cumulative counting.
Now turning to the historical analysis of cohorts, we address Zuckerman and Merton’s

(1972) hypothesis that recruiting more people into science will lead to larger differences
between the most and the least talented. Our results do not entirely support this hy-

2In our cut of the DBLP dataset, 69% of all publications have author lists that are not alphabetically
sorted. Since an author ranking by importance can be alphabetic by chance, the fraction where the
author ranking is indicative of importance will be even higher.
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Figure 3: Individual inequality in productivity and impact as a function of cohorts, de-
picted for career ages 3, 5, 10, and 15. We count publications and citations
cumulatively (P (t) and C(t), defined in “Materials and methods: Individual
inequality”). (First two columns) Assigning publications to all authors. (Last
two columns) Assigning publications only to first authors. (Second row) Au-
thors are filtered that have not published for ten consecutive years (most likely
left academia).

pothesis: we do not see a remarkable increase in inequality over cohorts for impact, but
we observe an upward trend for productivity (figures 3A and B). Removing dropouts
reduces inequality levels but no longer softens the increasing trend for productivity (3E).
Also considering first authorships preserves all trends, this time also for productivity.
The increase in productivity inequality does not vanish when only comparable authors
are considered (3G). The results are not as evident for window counting of publications
and citations because the Gini coefficients are much closer to 1 (appendix A, figure 7).
In sum, though the field has grown exponentially, similar levels of impact inequality can
be observed for authors that started their careers in 1970 and 2000. When it comes to
productivity, however, inequality appears to be increasing over time in parallel to the
field’s transition from an individual- to team-based science.

4.2. Gender inequality over careers and cohorts

Increasing individual inequality in science is not necessarily problematic if the evaluation
is based solely on merit rather than on functionally irrelevant factors such as gender,
race, nationality, age, or class. Due to its societal importance, we focus on gender
inequality. Figure 4 shows a systematic comparison of the cumulative productivity and
impact distributions of male and female computer scientists with the same filters applied
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Figure 4: Gender inequality for productivity and impact as a function of cohort and
career ages. We compare the cumulative publications distribution Pgender(t)
and cumulative citations distribution Cgender(t) of male and female scientists
in the same cohort at the same career age t and test differences between these
distributions. Color marks the effect size (Cliff’s d). Positive values (red)
indicate that men dominate women, while negative values (blue) reveal that
women dominate men. Effects are only shown if they are significant (p ≤ 0.05)
according to a Mann–Whitney U test. Details in “Materials and methods:
Gender inequality.” Publications are assigned to all authors (A, B) or first
authors only (C, D). In general, effects decrease with cohort and increase with
career age.

as in the previous figure. Positive values (red) indicate that the distribution of men is
dominant, that is, men are more productive or their work has a higher scientific impact.
Negative values (blue) reveal that the distribution of women is dominant.
There is a general pattern for gender inequality in productivity (figure 4A): it seems

to accumulate and is more prevalent in the later career stages. If there are differences
in productivity it is always men publishing more. This gender productivity gap exists
in almost all cohorts. For gender inequality in impact, the picture is less clear (4B).
Female and male dominance both exist sporadically in cohorts. In four cohorts, women
are statistically more likely to have more citations than men, for the 1982 cohort even
for ten consecutive career years. There is no cohort in which gender inequality shifts
signs, which means, it is always one cohort’s gender that is dominant. In total, gender
inequality is more pronounced for productivity than for impact. For cumulative numbers
of publications, 55% of 465 cohort-age pair differences are statistically significant; for
cumulative numbers of citations, 19% are significant. That means, the productivity gap
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does not automatically translate into an impact gap. However, whenever there is an
impact gap, it can be explained by a productivity gap: significant differences in citation
are strongly correlated with differences in publications (r = 0.91, p ≤ 0.001). That
means, as Azoulay and Lynn (2020) found, the productivity gap is the puzzle to solve.
When we limit authors to first authors, we get a step closer to solving this puzzle

(figure 4C): the magnitude of the gender gap becomes smaller (only 28% of cohort-
career year pairs are significantly different). This is particularly the case for the more
recent cohorts. The observation that larger differences in productivity between male and
female scientists diminish when only first-author contributions are counted suggests that,
as team sizes increased in computer science, male scientists boosted their productivity
more via collaborations than female scientists. Applying the first author filter makes the
impact gap a purely male phenomenon but also a phenomenon of the 70s (4D).
Accounting for dropouts removes any pattern (4E to H). Neither does gender inequality

increase with career ages nor does it persist on the historical scale or single out any
gender. Any significant inequality is likely just noise. In sum, gender inequality exists.
While it appears to be diminishing on the timescale of cohorts, it is more persistent on
the career timescale. Importantly, however, gender inequality practically disappears in
recent cohorts when authors with comparable careers are studied.

4.3. The role of the Matthew Effect

In the explanatory modeling step that now follows, we inquire if reproductive feedback
operates in the field as an underlying mechanism and to what extent it can generate the
patterns of individual inequality we observe. The ME states that present achievement
(productivity or impact) depends on past achievement and that resulting advantages can
accumulate over time. Our guiding theory describes this feedback process as a vortex,
an autocatalytic mechanism that fuels itself (Padgett and Powell, 2012). When the ME
is fully operational – formally, when it is linear – it generates power law distributions
that signal the absence of a characteristic scale (Albert and Barabási, 2002). In our
case of computer science, productivity and impact distributions are broad but not pure
power laws. Distributions for individual cohorts are much like the (truncated power law
and stretched exponential) distributions that we measure when all cohorts are lumped
together (figure 1C). These deviations can result from a damped (sublinear) ME and
other mechanisms and factors that interact with the ME but also from sampling and
finite-size effects intrinsic to the DBLP database.
We quantify the strength of the reproductive feedback of the field that a cohort experi-

ences in a career age by regressing the number of publications or citations in a career age
on the corresponding cumulative number in the previous career age (details in “Materials
and methods: Reproductive feedback”). We interpret two parameters. The exponent of
the scaling relationship quantifies the strength of reproductive feedback. An exponent
that is larger than zero over time is indicative of a cumulative advantage. The lower
cutoff states at and above which number of publications or citations the advantage ac-
cruing from past selection unfolds. It resembles the boundary to the basin of attraction
of the feedback dynamics: once an author crosses it, she or he gets attracted by the
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Figure 5: Matthew Effect. (First column: A, F) Measurement of the strength of a co-
hort’s reproductive feedback as the exponent that relates an author’s number
of papers produced, or citations received, in a career age (y-axis) to the re-
spective cumulative numbers in the previous career age (x-axis), shown for the
2000 cohort and the last career age. Exponents show as slopes of the continu-
ous lines on the log-log plot. Dotted lines indicate that feedback fully unfolds
only above a lower cutoff. (B, G) For an average cohort, potential individual
advantages from feedback are constant along the career path, for both pro-
ductivity and impact. (C, H) For an average cohort, the number of citations
required to take advantage of feedback increases along the career path. (D,
I) For an average career age, potential individual advantages from feedback
increase historically, but more so for productivity. (E, J) For an average ca-
reer age, the numbers of citations and publications required to take advantage
of feedback increase historically. (All columns but the first) Shaded areas are
bounded by minima and maxima, lines show means.

reproductive vortex and advantages can accumulate. Examples of the fitting procedure
are depicted in figures 5A and F. They show that scaling relationships are plausible fits
to the data.
Our results show that the ME is a plausible explanation for productivity and impact

inequality since all exponents are larger than zero. For an average cohort, the strength of
the ME is stable over an author’s career, allowing for a constant cumulative advantage.
This holds for both productivity and impact as there are no discernible trends in figures
5B and G. To enter the productivity basin of attraction (i.e., to reap benefits), an
author must produce a certain number of publications that is constant over career ages
(non-discernible trend in figure 5C). However, getting one’s publications cited becomes
increasingly difficult as careers progress since the lower cutoff increases with career age
(figure 5H). In other words, regarding productivity, it is equally possible for an early-
and late-career author to benefit from autocatalytic feedback, but regarding impact,
moving early is advantageous.
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While the strength of the ME is stable over a computer scientist’s career, it does in-
crease at the historical timescale of cohorts. Nowadays, the ME is strong for both impact
and productivity (the exponents in figures 5D and I are ≈ 1 for the 2000 cohort start
year). However, whereas the 1970 cohort already experienced a strong effect from past
citations (exponent ≈ 0.8), the effect of the past number of publications started weak
(≈ 0.3). In other words, while getting cited has long been endowed with a strong rein-
forcement effect, increasing returns for productivity became prominent only recently. At
the same time, the lower cutoff for reinforcement to set in has been growing historically,
particularly so for productivity (figure 5J). As the field grew and transitioned towards
team-based science, this is likely the result of how limited resources get distributed
among an increasing number of scholars. For the authorship practice, this mechanism
has a name: “publish or perish” (Garfield, 1996).
There is a correspondence between the ME and the inequalities described in figures 2

and 3: The ME is persistently stronger for impact than for productivity and thus gener-
ates individual inequalities that are persistently higher, both over careers and cohorts.3

Looking at cohorts for average career ages, a large cumulative advantage for productivity
corresponds to a modest increase in inequality while a modest cumulative advantage for
impact corresponds to stable inequality. For careers, there is no meaningful correspon-
dence. We suggest that this is because, for a certain year, the ME is always computed
for authors that have been active in that year, that is, that they have either published or
got cited. This means that, in figures 5B, C, G, and H, the values for small career ages
result from all authors while the values for large career ages tend to result from authors
with dropouts removed. In sum, the ME increases, strongly so for productivity where it
resembles the imperative to ”publish or perish.” Reproductive feedback is stronger and
creates larger inequality for impact than for productivity but, alone, is not capable of
explaining the individual inequality patterns we observe.

4.4. The role of gender

Following the leads from the descriptive and explanatory analyses, we proceed with the
final analytical step: out-of-sample predictions of dropout and future success. We study
the effect of the cohort, gender, and variables from two classes of constructs. First,
our theory of careers states that inequality results from differences in the early career
that are then amplified by the ME which we have found to operate. We aim to gain
more insights into how the ME operates by using a set of variables on the early-career
achievements of authors. Second, we study inequality as the field becomes a more team-
based science. We have found that it is historically increasingly important to produce
publications to benefit from the ME. Hence, we use a set of variables on social support
which, we hypothesize, makes it easier to write papers. The constructs are fully described
and operationalized in the section “Materials and methods: Independent variables” and
summarized in table 1. We use regression models with standardized variables so that
the coefficient size indicates the relative importance of the predictor. The models also

3Since we have measured the ME cumulatively we do not discuss a correspondence with the window-
counted inequalities.
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employ variable selection. When new variables are added to the model, this can result
in decreasing effect sizes for previously considered variables. If that happens, there
is collinearity among the variables and the variable that predicts better has a larger
coefficient.

4.4.1. Predicting dropout

Table 2 shows the results of logistic regression models that use dropout as a binary
dependent variable. The most important factor for predicting dropout is early career
productivity. Scientists that publish much in the first three years of their careers, not
necessarily as a first author, are less likely to drop out. This is not surprising, given
that dropout is defined as the absence of publications for ten consecutive career years.
Publishing in a top source early on is the second strongest predictor of not dropping out.
Having a publication in a top journal or conference proceedings represents symbolic
capital, a reputation signal for academic worthiness, that likely influences the career
path. These differences in early-career achievements are then amplified by the ME,
contributing to the individual inequalities we have diagnosed. Social support has effects
that seem contradictory at first glance. On the one hand, co-authoring publications
in large teams is positively correlated with dropout. On the other hand, having larger
collaboration networks decreases the likelihood to drop out. This tells us that being
one author among many is not automatically an achievement. It is the well-connected
authors that stay in the field. Having early senior support (a co-author with a high
h-index) has negligible influence on dropping out. Similarly, dropout is not associated
with the initial impact of early-career publications. Having many early citations does
not make it more likely for an author to stay in computer science. Women are more
likely to drop out than an average computer scientist and adding early achievements and
social support even increases this effect. Interestingly, the cohort has no effect. These
dropout-related patterns are historically invariant. That means, large author teams did

Table 1: Independent variables used in the prediction models. The variables characterize
authors in their early career ages [1, te], with the end of the early career chosen
to be te = 3. The variables are used to predict author dropout and success.
Details are given in the section “Materials and methods”.

Variable Description

Baseline
Cohort Year in which cohort members started publishing

Gender
Male Dummy
Female Dummy
Undetected Dummy

Early Achievement
Productivity Cumulative number of publications authored in the early career
Productivity (1st author) Cumulative number of publications authored in the early career as a first author
Impact Cumulative number of citations received in the early career
Top source Smallest h5-index-based quartile rank of all journals and conference proceedings an author has published in the early career

Social Support
Collaboration network Number of distinct co-authors in the early career
Team size Median number of authors of all publications produced in the early career
Senior support Largest h-index of all co-authors in the early career
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not guard against dropping out before and in the team era.

4.4.2. Predicting success

Next, we study which factors predict whether success in terms of scientific impact in-
creases, on average, after the first three career years (table 3). The dependent variable
is the increase in citations until career age 15. First of all, the cohort has a small pos-
itive effect on success. This can be an effect of the exponential growth of the field: As
more publications are produced and reference lists become longer, more citations are
made and accumulated (Pan et al., 2018). Early-career productivity is a requirement
for success, and its effect is on par with that of early-career impact. This confirms an
observation made in the literature, namely that total success is well predictable from
early success (Mazloumian, 2012; Penner et al., 2013; Wang et al., 2013). Since the ME
is path-dependent this is further evidence for cumulative advantage as an underlying
mechanism. In contrast to dropout, early senior support is an important factor for suc-
cess. But similar to dropout prediction, publishing in large teams exhibits a negative

Table 2: Dropout prediction. Each column corresponds to a separate logistic regression
model that predicts whether (1) or not (0) an author dropped out of computer
science (described in section “Materials and methods: Prediction models”).
Coefficients are reported as means (with standard deviations in brackets) from
10-fold cross-validation over 292,443 observations. Mean coefficients away from
zero indicate that the effects are sizable, and low standard deviations indicate
that the effects are robust. Goodness-of-fit measures (F1 and average precision)
are also means across all folds.

Model 1 Model 2 Model 3 Model 4

Baseline + Gender
+ Early

achievement

+ Social

support

Cohort 0.00(0.00) 0.00(0.00) 0.00(0.00) 0.00(0.00)

Female 0.03(0.01) 0.06(0.01) 0.06(0.01)

Male -0.06(0.01) -0.07(0.00) -0.08(0.00)

Undetected 0.03(0.00) 0.02(0.00) 0.02(0.00)

Productivity -0.56(0.00) -0.54(0.00)

Productivity (1st) -0.26(0.00) -0.22(0.01)

Impact 0.01(0.00) 0.01(0.00)

Top source -0.22(0.01) -0.21(0.01)

Collaboration network -0.08(0.00)

Senior support -0.01(0.00)

Median team size 0.22(0.01)

Intercept 0.00 0.30 0.00 0.00

F1 0.44 0.44 0.67 0.68

Average precision 0.58 0.60 0.75 0.76
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effect on citation success, and the size of the early collaboration network has a weakly
positive effect. Publishing in a top source is associated with success but gives way to
senior support when added to the model.
Finally, being female is a negative predictor for an increase in citations, and the effect

increases when we account for early achievements and social support. This adds to
works that have also found gender inequality in impact (Cole and Zuckerman, 1984;
Lincoln et al., 2012; Larivière et al., 2013). To check if this effect can again be explained
by the gender difference in career persistence, we construct a last model that predicts
success with dropouts removed. The result is reported in the last column of table 3.
Removing dropouts makes the absolute values of all effects smaller (except for publishing
in a top source). This means that persistent authors are more homogeneous in their
characteristics. The markedly smaller error also shows that their success is easier to
predict. However, the gender effect does not fully go away: After removing dropouts,

Table 3: Success prediction. Each column corresponds to a separate linear regression
model that aims to predict C+

i (15), the increase in citations an author gains af-
ter the early career of the first three career years (described in section “Materials
and methods: Prediction models”). Coefficients are reported as means (with
standard deviations in brackets) from 10-fold cross-validation over 292,443 ob-
servations. Mean coefficients away from zero indicate that the effects are sizable,
and low standard deviations indicate that the effects are robust. Goodness-of-fit
measures (mean squared error and adjusted R2) are also means across all folds.
In the first four models, there are 292,443 observations. In model 5 dropouts
are removed which causes the number of observations to drop to 119,113.

Model 1 Model 2 Model 3 Model 4 Model 5

Baseline + Gender
+ Early

achievement

+ Social

support

Dropouts

removed

Cohort 0.08(0.00) 0.08(0.00) 0.07(0.00) 0.05(0.00) 0.04(0.00)

Female -0.07(0.11) -0.09(0.01) -0.10(0.01) -0.04(0.01)

Male 0.01(0.02) 0.00(0.00) 0.00(0.00) 0.00(0.00)

Undetected 0.00(0.00) 0.06(0.01) 0.04(0.01) 0.03(0.01)

Productivity 0.99(0.01) 0.88(0.01) 0.45(0.01)

Productivity (1st) 0.44(0.01) 0.45(0.01) 0.33(0.01)

Impact 1.00(0.01) 0.91(0.01) 0.37(0.01)

Top source 0.19(0.01) 0.00(0.00) 0.05(0.00)

Collaboration network 0.05(0.01) 0.02(0.01)

Senior support 0.70(0.01) 0.40(0.01)

Median team size -0.09(0.01) -0.05(0.01)

Intercept -158.94 -157.86 -131.24 -94.95 -77.45

Mean squared error 40.17 40.17 31.95 31.54 7.28

Adjusted R2 0.01 0.01 0.21 0.22 0.22
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women are still slightly less successful at career age 15 than an average computer scientist.

5. Discussion

5.1. Summary and conclusion

We studied individual and gender inequalities in computer science, their changes over
author careers as well as over the field’s transformation from a sole-scholar to team-
based science, and their origins. We found that individual inequality in productivity
increases during the careers of an average cohort but, contrary to what has been pre-
viously suggested (Allison et al., 1982), it does not translate to an increase in impact
inequality. The increase in productivity inequality can be a result of comparing scholars
with different persistence (all authors vs. only those that kept producing papers) and
status (all authors vs. only first authors of a paper), but this explanation is not robust
to changing the counting method. The inequality patterns of cohorts from 1970 to 2000
are different from those of chemistry cohorts in the 1960s and 1970s. Since computer
science exhibits an exponential influx of personnel, we have also checked if it leads to
an increase in individual inequality on the historical time scale of cohorts (Zuckerman
and Merton, 1972). We found such an effect but only a small one for publications. The
inequality patterns for impact are largely the same since the 70s.
Regarding gender inequality, we found that men produce more publications than

women, particularly towards the end of their careers, though this phenomenon was more
pronounced in the past. This gender gap, known as the “productivity puzzle” (Reskin
and Hargens, 1979; Cole and Zuckerman, 1984; Cole and Singer, 1991; Long, 1992), dis-
appears once we remove dropouts and focus on first authors only. Regarding reports of
gender inequality in impact (Cole and Zuckerman, 1984; Lincoln et al., 2012; Larivière
et al., 2013), we found that men having more publications does not automatically entail
having more citations, but more citations find their explanation in more publications.
To understand individual inequality, we quantified the Matthew Effect (ME). We

found that it is stable over an author’s career regarding productivity and impact. While
the number of publications above which nonlinear benefits accrue is also stable as the
career progresses, this becomes increasingly difficult regarding the number of citations,
indicating an early-citation advantage. The ME for publications and citations has in-
creased historically to similar levels, but the climb has been much steeper for produc-
tivity, indicating the rise of the imperative to ”publish or perish.”
Using regression models to inquire about the importance of early career achievements

and social support in shaping total-career outcomes, we found that early productivity is
the best predictor for not dropping out of computer science and for impact-based success.
While staying in the field is a condition for success, success and having successful co-
authors are not conditions for staying in the field. As our result for the ME suggested,
success turned out to be correlated with early-citation success. Publishing in top journals
and conference proceedings in the early career is predictive of staying in the field as well
as success. Authors with a large social support network are more likely to stay and be
successful, stressing the importance of social capital, but authors that are part of large co-
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author collectives are more likely to drop out or remain unsuccessful, potentially because
more of the same in terms of team structure hinders creativity (Uzzi and Spiro, 2005;
Guimerà et al., 2005). This supports the argument that the transition to team science
is a reason why we observe a historical increase in individual inequality for productivity.
Finally, we found that women are not only more likely to drop out of the field but

also somewhat less successful after 15 years than an average computer scientist. Both
effects cannot be explained with less impressive early-career achievements or lower social
support. Whereas gender inequalities could be explained when only comparable authors
were analyzed, this also does not explain the impact gender effect: it is softened but does
not go away when dropouts are removed. The gender effects can potentially be explained
by differences in network structure. We have found in previous work that, on average,
”female” collaboration networks are smaller and more cohesive than the networks of their
male counterparts (Jadidi et al., 2018). If this type of embedding is a disadvantage, the
latter would accumulate due to the ME. For example, if men manage to inflate their
publication counts more than women due to having different social capital (Way et al.,
2016), this can explain our finding that the productivity gap between women and men
is smaller when only publications authored as first authors are counted.
In conclusion, we have contributed to the reconstruction of the chain of events that

results in individual and gender inequality in computer science. Teams become more
important. These help scholars increase the number of publications which serves their
career. But being part of a team is not enough, only some authors manage to reap
benefits from team science and the cumulative advantage of early-career achievements.
Most scholars drop out of the field, especially women due to reasons we cannot measure.
Differences in dropout entail differences in individual and gender inequality. Taken
together, in the 45 years we have studied, computer science has increasingly become a
competitive field. At the end of a career that works like a tournament, senior female
computer scientists even fall behind in terms of citation impact to some extent.
These conclusions in the context of computer science likely carry over to other male-

dominated fields that have experienced growth and transformation from individual-based
to project- and team-based science, such as statistics, applied mathematics, and engi-
neering. Nevertheless, our findings should be replicated for other academic fields to
establish the extent to which the trends in individual and gender inequality we detected
are sensitive to the rates of growth, dropout, or entry of women.
Our findings are relevant for science policy measures that aim at more gender equality.

The way the field operates on autocatalytic feedback, natural differences among women
and men like motherhood, but also small behavioral differences in the ways women and
men embed into collaboration networks, can have large career consequences. Regarding
behavioral differences, our results suggest that mentorship programs with the goal ofOn
”broadening and institutionalizing women’s support networks” (Abbate, 2017, p.175)
are promising. It is not unexpected that small policy interventions can have large con-
sequences, too.
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5.2. Methodological considerations

We close our paper with a few methodological considerations. The first set of consider-
ations relates to data. Inquiries into inequality and the ME date back to the 70s when
it was only possible to study small cohorts. Much of this research was done using one of
two carefully constructed bibliographic chemistry cohort datasets (Allison et al., 1982).
On the contrary, we use a large-scale dataset on the complete trails of computer science.
The use of bibliographic traces has allowed us to reconstruct and study scholarly careers
in historical comparison. While formal communication just represents the observable
aspect of academic careers, it is undeniably an important part since academic careers
are subject to collective field dynamics that work on what is observable.
The ability to model processes with behavioral data comes at the cost of a reduced

ability to model individual perception. Gender is an example. While we maintain that
our inferred gender variable is a true gender variable because authors are free to choose
which name they put on a paper, the variable does not allow us to differentiate between
the various types of socially constructed gender. Hence, we can only contribute insights
into the social construction of binary gender. In particular, we show indirectly how a
structural mechanism that accumulates achievements – the ME – contributes to generat-
ing gender disparities, even after we account for early achievements and social support.
Augmenting behavior with data on cognitive states (e.g., whether computer scientists
dropped out on free terms, because of structural constraints or even discrimination)
would allow for deeper insights into the origins of inequality.
Limitations to gender disambiguation from names forced us to remove most Asian

authors from the analysis. However, the proportion of Asian scholars in computer science
has been increasing since the 70s as a result of the passing of the 1965 Immigration Act
in the US and the increasing internationalization of science. We are thus missing a larger
proportion of one type of authors. Yet, the DBLP data has the converse problem too
because its coverage of publications increases over time. We recognize that both of these
biases might be influencing the historical trends we observe, and hence, our conclusions
should be interpreted with caution.
Operationalizing scientific impact via the number of citations is straightforward be-

cause it very well captures that impact is a collective phenomenon. On the other hand,
citation scores are not unobtrusive measures anymore. Citations have become a currency
in science, scholars try to improve their scores, and the databases we use for research
are also used to compute a scholar’s market value. This adds an exploitative angle to
the ME that cannot be disentangled from its systemic effects (Xie, 2014; Clauset et al.,
2017). And yet, strategic human behavior is the result of structural constraints as well
as incentives and, hence, just as much part of the problem of inequality.
The second set of considerations relates to methods. We followed the integrative

modeling approach (Hofman et al., 2021) and found the combination of descriptive,
explanatory, and predictive modeling insightful. With large-scale behavioral data, ex-
ploratory description is necessary because existing knowledge may not translate into
meaningful research questions or hypotheses for testing: past small-scale studies may
not have captured new phenomena, while new large-scale studies may not generalize due
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to preprocessing decisions and design choices. Still, we let the literature guide our mod-
eling: we distilled a theory of careers from a broad and multidisciplinary set of studies
that gives the ME the central role of an inequality-creating mechanism. Multivariate
regression models with variable selection then served to shed new light on findings from
the first two modeling steps by focusing on early-career factors. This fleshed out the
inequality-creating mechanism but also uncovered the gender impact effect even though
gender inequality in impact had not been diagnosed. The strong message is that the
choice of methods matters and that a systematic mix of methods can produce more
robust as well as surprising results.

6. Materials and methods

Data: We use DBLP (Ley, 2009; The DBLP team, 2017), a comprehensive collection
of computer science publications from major and minor journals and conference pro-
ceedings. From this dump, we remove arXiv preprints. The coverage of DBLP ranges
from 55% in the 80s to over 85% in 2011 (Way et al., 2016). Our dataset consists of
2.5 million publications from 1970 to 2014 that are authored by 1.4 million authors. Of
those, 292.443 started their career between 1970 and 2000. We have added citations
among publications by combining DBLP with the AMiner dataset (Wan et al., 2019;
AMiner, 2017) via publication titles and years. There are 7.9 million citations among
publications. Author names in DBLP are disambiguated (Reitz and Hoffmann, 2013).
To infer the gender of authors, we have used a method that combines the results of

name-based (genderize.io) and image-based (Face++) gender detection services. The
accuracy of this method is above 90% for most nationalities. Since the accuracy is very
low for Chinese and Korean names, we label their gender as unknown to reduce noise
in our analysis (Karimi et al., 2016). Since authors are free to choose the name under
which they publish, the inferred variable is a true, socially constructed gender attribute.

Cohorts and career ages: Our main units of analysis are cohorts of computer scientists
from 1970 to 2000. We consider a career to begin with an author’s first publication in the
database. Since DBLP covers publication years back to 1960, this ensures that authors
of the earliest cohort have been at least absent for ten years. Imbalances in coverage
over publication years cause earlier cohorts to be less homogeneous as we tend to miss
more first publications. Given start years, we follow cohort members over career ages
t ∈ [1, 15].

Publication and citation counts: Our unit of observation is the individual author i in
a cohort. For each author and career age, we measure the number of publications pi(t)
authored in a career age, the cumulative number of publications Pi(t) authored until
and in a career age, the number of citations ci(t) received by Pi(t) in a career age, and
the cumulative number of citations Ci(t) received by Pi(t) until and in a career age.
Citations are always counted coming from the whole field of computer science, not just
from the same cohort.
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Individual inequality: To quantify individual inequality we use the Gini coefficient G(t)
of the publication and citation distributions of authors in the same cohort at the same
career age:

G(t) =

∑n
i=1

∑n
j=1 |xi(t)− xj(t)|

2n
∑n

i=1 xi(t)
(1)

The numerator is the absolute difference of all pairs (i, j) of authors in a cohort. x is
a placeholder for publication or citation counts. In figures 6 and 7 in appendix A, we
use backward-looking 3-year windows, that is, to quantify inequality in productivity,
x(t) = p3yr(t) =

∑2
τ=0 p(t − τ), and, to quantify inequality in impact, x(t) = c3yr(t) =∑2

υ=0

∑υ
τ=0 ct−υ(t − τ), where t ≥ 3 and the index t − υ of c defines the career age for

the publications of which citations are counted. In figures 2 and 3, we use cumulative
counting, that is, to quantify inequality in cumulative productivity, x(t) = P (t), and,
to quantify inequality in cumulative impact, x(t) = C(t). A Gini coefficient of zero ex-
presses perfect equality, where all authors in one cohort have produced an equal number
of papers or received an equal number of citations. A Gini of one indicates maximal
inequality among authors.

Gender inequality: To quantify gender inequality, we look at the differences between
the cumulative distributions of productivity x(t) = P (t) and impact x(t) = C(t) of male
and female scientists in the same career age. For both x(t), we rank all observations
ascendingly (with adjusted ranks for ties) and perform the Mann–Whitney U test,

U(t) = Rm(t)− nm(t)(nm(t) + 1)

2
, (2)

where Rm(t) is the sum of the ranks and nm(t) is the number of male scientists. The U
test allows us to assess the statistical significance of the difference between the distribu-
tions of male and female scientists (Mann and Whitney, 1947). To quantify the size of
the difference, we compute Cliff’s d,

d(t) =
2U(t)

nm(t)nf (t)
− 1, (3)

where nf (t) is the number of female scientists (Cliff, 1993). The value of d ranges from
−1 (when all observations for women are greater than those for men) to 1 (when all
observations for men are greater than those for women). For example, if d = 0.8 for the
cumulative publication distribution, a randomly picked man has an 80% chance to have
more publications than a randomly chosen woman. If d = −0.8 then a randomly picked
woman has an 80% chance to have more publications than a randomly picked man.

Reproductive feedback: We quantify the ME as the extent to which authors reproduce
their productivity and impact over time via positive feedback. For each cohort and career
age, we measure to what extent scholars author new publications or receive new citations
in a career age proportional to their productivity or impact in the previous career age.
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This relationship is quantified by the scaling law

x(t) ∝ x(t− 1)β(t), x(t− 1) ≥ xmin(t− 1), (4)

where the exponent β and the lower cutoff xmin are the model parameters. If the scaling
law is a plausible fit and the estimated exponent β̂ > 0, past productivity or impact
is advantageous to, because correlated with, present productivity or impact. If this
advantage accumulates over subsequent career ages, we speak of the ME that is then
quantified by the sequence of β̂s. To quantify the ME in productivity we predict the
number of publications x(t) = p(t) by the cumulative number of publications x(t− 1) =
P (t−1), and to quantify the ME in impact we predict the number of citations x(t) = c(t)
by the cumulative number of citations x(t− 1) = C(t− 1). Predicting by the number of
publications p(t− 1) and citations c(t− 1) yields less variance in x(t− 1), shorter time
series, and marginally smaller exponents, but similar trends.
In figure 5A, we demonstrate the fitting procedure for the 2000 cohort, career age

15, and productivity. The pale points are the observations for authors with pi(15) ≥ 1
and Pi(14) ≥ 1. The full points result from putting these observations into 20 bins of
exponentially increasing size. The model is fitted to the binned data using the method
of ordinary least squares, and the coefficient of determination R2 quantifies how well the
model fits the corresponding unbinned data. The lower cutoff is estimated by choosing
xmin such that R2(xmin) has its first maximum. Such a method that includes the iden-
tification of the lower cutoff is not discussed in the literature (Perc, 2014). Ours is a
simple heuristic that, in our particular application scenario, underestimates both model
parameters but mitigates statistical errors on the scaling exponent as well as biases from
finite-size effects.

Independent variables: There are substantive and methodological reasons to not mix
data from different cohorts. Substantively, we are interested in changes that may have
occurred as computer science grew and became a team-based science. Methodologically,
it prevents to account for variations in the productivity and impact functions of authors
across career ages (Penner et al., 2013). To account for this, the models contain a cohort
variable.
To test for a gender effect, we include a gender category. Since gender could not be

detected for all authors, we use male, female, and undetected as dummy variables.
We are further interested in the factors that affect an author’s career. According to the

Matthew Effect, advantages accumulate over time. The earlier in a career an advantage
sets in, the more it can accumulate. Hence, all our independent variables are computed
for the early career [1, te]. We choose te = 3 to delimit the early career.
The first construct category contains the early-career achievements of authors. Pro-

ductivity is the cumulative number of publications Pi(te). Productivity (1st author)
Pi(1st)(te) is the number of publications written as a first author. Impact is the cumu-
lative number of citations Ci(te). Another way to quantify achievement is to use the
reputation of the sources (journals and conference proceedings) an author publishes in.
We operationalize symbolic capital based on the h5-index (Google, 2020) of sources.
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h5s(y) is the maximum cumulative number of publications h5 published in source s in
the years [y−4, y] that have accumulated at least h5 citations in those years. The binary
top source variable is then 1 if an author has at least one publication in a source that
belongs to the top 25% of the distribution in a given year.
Careers are affected by being able to reap benefits from embedding into social net-

works. Hence, our second construct category is social support. Collaboration network
is the size of the social support network, measured in terms of the number of distinct
co-authors in the early career. The maturing of the computer science hasfield is marked
by the emergence of team science (Wuchty et al., 2007). Therefore, we study the effect
of team size, defined as the median number of authors of all publications produced in the
early career. Senior support quantifies the extent to which an author enjoys mentorship
from a senior scientist. Our proxy is the largest h-index (Hirsch, 2005) of all co-authors
j in the social support network: max(hj(y)). hj(y) is the maximum cumulative number
of publications h that each has accumulated at least h citations until y, where y is the
year in which author i is in career age te.
All independent variables are standardized by subtracting the median and dividing

the result by the range between the 1st and 3rd quartile.

Dependent variables: Authors can leave academia for a certain number of years in a
row. We label each author in our corpus as a dropout if she or he has not published
for ten consecutive years in the first 15 career ages. 59% of the authors are labeled as
dropouts. This label is used as a binary variable in dropout predictions.
To quantify the success of authors, we define C+

i (15) = Ci(15)−Ci(te). This variable
measures citation increase in the cumulative number of citations received by all publi-
cations published until and in career age 15 after the early career period. This measure
avoids autocorrelation with the independent predictor Ci(te) and an inflated coefficient
of determination (Penner et al., 2013).
Dependent variables are standardized like the independent ones.

Prediction models: In dropout prediction, we regress dropout against the independent
variables using a logistic model. In success prediction, we regress citation increase against
the independent variables using a linear model. We use the elastic net variant since it
contains regularization techniques to ensure that the model generalizes well (to avoid
overfitting). These techniques estimate weights that penalize regression coefficients. This
is useful when multiple independent variables are correlated with each other (Zou and
Hastie, 2003). There are two parameters. The mixing parameter λ controls the extent
to which overfitting is avoided by L1 regularization (which makes some weights zero, i.e.,
selects variables to remove) as opposed to L2 regularization (which makes weights small
but not zero). When λ = 1 only L1 penalties are applied; when λ = 0 only L2 penalties
are applied. We use the default λ = 0.5, that is, the elastic net will perform variable
selection but will keep highly correlated variables in the model. The regularization
parameter α is a constant that multiplies the penalty weights. When α = 0, the model
becomes an ordinary-least-squares regression (without any regularization). The optimal
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value for α is learned from the data.
In all prediction models, there are 292,443 observations. Regression coefficients and

their weights are learned in 10-fold cross-validation. That is, the data is randomly
divided into 10 folds of 29,244 observations, and in 10 iterations the model is trained on
9 folds and tested on the remaining one (Hox, 2017). Regression coefficients are reported
as averages across the 10 folds. When means are far from zero, effects are sizable; when
standard deviations are low, coefficients are robust.
For the binary prediction model (dropout prediction), we use two scores as evaluation

metrics. The F1 score is the weighted average of the precision (proportion of predicted
positives that are correct) and recall (proportion of known positives that are predicted
correctly). The average precision summarizes a precision-recall curve as the weighted
mean of precisions achieved for every highest value of recall. Both range from 0 to 1.
For the linear models (success prediction), we use two other goodness-of-fit measures.
The mean squared error quantifies the mean squared distance of all observations to the
regression line. The adjusted R2 coefficient of determination measures the proportion of
the variance in the dependent variable that is predictable from the independent variables.
It corrects for the number of independent variables that the models use. It increases
only if the new term improves the model more than would be expected by chance. Both
measures range between 0 and 1 where higher values are better. For all four evaluation
metrics, we report the average value across 10 folds.
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Guimerà, R., Uzzi, B., Spiro, J., and Amaral, L. A. N. (2005), “Team assembly mech-
anisms determine collaboration network structure and team performance,” Science,
308, 697–702.

Hirsch, J. E. (2005), “An index to quantify an individual’s scientific research output,”
Proceedings of the National Academy of Sciences, 102, 16569–16572.

Hofman, J. M., Watts, D. J., Athey, S., Garip, F., Griffiths, T. L., Kleinberg, J., Mar-
getts, H., Mullainathan, S., Salganik, M. J., Vazire, S., Vespignani, A., and Yarkoni,
T. (2021), “Integrating explanation and prediction in computational social science,”
Nature, 595, 181–188.

Holman, L., Stuart-Fox, D., and Hauser, C. E. (2018), “The gender gap in science: How
long until women are equally represented?” PLOS Biology, 16, e2004956.

Hox, J. J. (2017), “Computational social science methodology, anyone?” Methodology,
13, 3–12.

26

https://scholar.google.com/intl/en/scholar/metrics.html
https://scholar.google.com/intl/en/scholar/metrics.html


Huang, J., Gates, A. J., Sinatra, R., and Barabási, A.-L. (2020), “Historical comparison
of gender inequality in scientific careers across countries and disciplines,” Proceedings
of the National Academy of Sciences, 117, 4609–4616.

Huber, J. C. (2002), “A new model that generates Lotka’s law,” Journal of the American
Society for Information Science and Technology, 53, 209–219.

Jadidi, M., Karimi, F., Lietz, H., and Wagner, C. (2018), “Gender disparities in sci-
ence? Dropout, productivity, collaborations and success of male and female computer
scientists,” Advances in Complex Systems, 21, 1750011.
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Figure 6: Individual inequality in productivity and impact as a function of career age,
depicted for seven cohorts between 1970 and 2000 and estimated using window
counting. We count publications and citations in 3-year publication windows
(given career age plus previous two career ages, p3yr(t) and c3yr(t), defined
in “Materials and methods: Individual inequality”). (First two columns) As-
signing publications to all authors. (Last two columns) Assigning publications
only to first authors. (Second row) Authors are filtered that have not published
for ten consecutive years (most likely left academia). Inequality in impact is
always larger and more stable over the course of a career than inequality in
productivity.
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Figure 7: Individual inequality in productivity and impact as a function of cohort start
year, depicted for career ages 3, 5, 10, and 15 and estimated using window
counting). We count the number of publications authored in a career age and
the number of citations received in a career age by all publications authored
until and in that career age (p(t) and c(t), defined in “Materials and meth-
ods: Individual inequality”). (First two columns) Assigning publications to
all authors. (Last two columns) Assigning publications only to first authors.
(Second row) Authors are filtered that have not published for ten consecutive
years (most likely left academia). Inequality is surprisingly stable over cohorts
though they vary in size and the field has evolved over 45 years.
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