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Abstract 

Some patients, following brain injury, do not outwardly respond to spoken commands, yet 

show patterns of brain activity that indicate responsiveness. This is “cognitive-motor 

dissociation” (CMD). Recent research has used machine learning to diagnose CMD from 

electroencephalogram (EEG) recordings. These techniques have high false discovery rates, 

raising a serious problem of inductive risk. It is no solution to communicate the false 

discovery rates directly to the patient’s family, because this information may confuse, alarm 

and mislead. Instead, we need a procedure for generating case-specific probabilistic 

assessments that can be communicated clearly. This article constructs a possible procedure 

with three key elements: (1) a shift from categorical “responding or not” assessments to 

degrees of evidence; (2) the use of patient-centred priors to convert degrees of evidence to 

probabilistic assessments; and (3) the use of standardized probability yardsticks to convey 

those assessments as clearly as possible. 
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1. The search for cognitive-motor dissociation 

Some patients, following brain injury, enter a state of unresponsive wakefulness. Although 

they have sleep-wake cycles, they give no outward response to any stimulus. This is often 

known as the “vegetative state”, even though many experts now discourage the use of that 

term. They discourage it in part because some fraction of patients—and the fraction is 

unknown—are conscious, experiencing subjects, unable to produce any behavioural report of 

their experiences. This clinical name for this condition is “cognitive-motor dissociation” 

(CMD).[1] Informally, it is often described as “covert consciousness”.[2] 

 

The risks of failing to diagnose CMD are extremely serious. Some of these risks can be 

mitigated by low-cost precautions that could be taken with all unresponsive patients, such as 

administering pain relief (as urged by Fins and Bernat 2018) and explaining what is 

happening. Yet it would be a mistake to think accurate diagnosis is therefore unimportant. A 

diagnosis of CMD is likely to influence life-or-death decisions about the patient’s best 

interests.[3-5] 

 

In the first two weeks after a serious brain injury, the patient’s surrogate decision makers, in 

discussion with clinicians, will typically face the terrible decision of whether or not to 

withdraw life-sustaining treatment.[6] The surrogate decision makers are usually family 

members, with some exceptions,[7] so I will say “family” in what follows. Evidence of CMD 

could have a major influence on their decision, particularly if CMD turns out to be linked to a 

higher probability of recovery, something that is currently unclear.[3] A Canadian study 

found withdrawal of treatment to be by far the largest cause of hospital mortality in patients 

with traumatic brain injury, accounting for 70.2% of deaths.[8] The concern that outwardly 

unresponsive patients are often written off much too quickly, leading to a “self-fulfilling 

prophecy” of no recovery, is a major motivation for research into CMD.[1,9] 

 

Later on, if the patient stabilizes in an unresponsive condition, the family—in jurisdictions 

where this is legal—will face a decision that is yet more terrible: that of whether to withdraw 

clinically assisted nutrition and hydration, leading eventually to death at a slow speed that is 

often highly distressing to witness.[10,11] Again, evidence of CMD could play a major role 

in that decision, though the role it plays will depend on the family’s view of the patient’s 

values and interests. For some, the idea of withdrawing nutrition and hydration from a 

potentially conscious patient is too abhorrent to contemplate. For others, the greater fear is 

that the patient will continue to live in a way they would experience as a form of torment. 

 

Given the gravity of these decisions, there is a pressing need for reliable ways of diagnosing 

CMD as early as possible, ideally in the intensive care unit (ICU), in the first few days after 

admission to hospital. One promising approach, and the focus of a great profusion of recent 

research, involves the use of electroencephalogram (EEG) recordings of brain activity (a 

recent review surveyed 119 recent articles on this topic).[12] The guiding thought is that, 

even when the patient cannot respond behaviourally to stimulation, their patterns of brain 
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activity might still respond in a way that contains clues as to the presence or absence of 

experience.  

 

There are many techniques in development of this general type, all (it is fair to say) at an 

early stage. None has yet been rolled out to widespread clinical use. The technology is 

moving fast, however, and the European Academy of Neurology already recommends the use 

of EEG and fMRI techniques “whenever feasible” and proposed that patients should be 

diagnosed as having the “highest level” of consciousness indicated by behaviour, EEG or 

fMRI.[13] 

 

Among EEG-based methods, particular excitement surrounds the idea of using machine 

learning to infer responsiveness to spoken commands from the EEG.[14] This is an important 

emerging case of the clinical application of AI. Yet these machine learning techniques have 

high false discovery rates, raising a serious problem of inductive risk. In reaching any 

categorical judgement about whether the patient is responding, the risk of misattributed 

responsiveness must be balanced against that of missed responsiveness. This balancing 

involves value-judgements about the comparative seriousness of the two types of error.[4,9] 

 

I will argue that the value-judgements involved in categorical assessments are not inherently 

a problem, but they can lead to problems if the values in question are misaligned with the 

patient’s own values. To secure greater sensitivity to the patient’s values, what is needed, I 

argue, is a procedure for generating case-specific probabilistic assessments that can be 

communicated clearly to the patient’s family. I will put forward a possible procedure built 

around three proposals: (1) a shift from categorical “responding or not” assessments to 

degrees of evidence; (2) the use of patient-centred priors to convert degrees of evidence to 

probabilistic assessments; and (3) the use of standardized probability yardsticks to convey 

those assessments as clearly as possible to the patient’s family. 

 

The problem here is fundamentally a problem of inductive risk: a risk associated with moving 

from probabilistic evidence to the acceptance or rejection of a hypothesis. This inductive step 

always brings with it the possibility of error, requiring careful evaluation of the comparative 

seriousness of different types of error. Accordingly, the article aims to build on previous 

discussions of inductive risk in the management of disorders of consciousness.[4,9] which did 

not zoom in specifically on the complications introduced by machine learning. It is also a 

contribution to a growing literature on the management of inductive risk in medicine[15-25] 

and in machine learning.[26,27] The overall message will be that the clinical application of AI 

to the diagnosis of CMD is a source of new risks and new opportunities. The risk is that 

contentious value judgements will be buried too deeply to allow room for input or scrutiny by 

the patient’s family. The corresponding opportunity is that, with the right design, an AI 

product could enable human clinicians to do a better job of evaluating and communicating 

diagnostic uncertainty than they do currently. 
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2. Background uncertainty: The links between responsiveness and consciousness 

When thinking about diagnostic uncertainty, it can help to introduce a distinction between the 

“background” and the “foreground”. Background uncertainty concerns the relevance of a 

proposed biomarker to the condition we are trying to diagnose (e.g. “Is fever evidence of 

COVID-19?”). Foreground uncertainty concerns whether or not the biomarker is present or 

absent in a particular case (e.g. “Is this a fever?”). Our focal condition is CMD, and our focal 

biomarker will be an EEG signature of neural responsiveness to spoken commands. 

 

I want to focus primarily on foreground uncertainty: uncertainty about whether the EEG 

shows a patient is responding to commands or not. But to put that discussion in context, we 

should also note three important sources of background uncertainty regarding the relationship 

between that marker and consciousness.  

 

First, it is far from certain that neural responsiveness to commands, when present, implies 

conscious experience. There is some evidence that task-relevant responses can be elicited by 

spoken commands during sleep, when the subject is unconscious according to their own 

subsequent report.1[28] I think we should grant, however, that neural responsiveness raises 

the probability of conscious experience, since it is more likely to be observed if the patient is 

conscious than if the patient is unconscious. A strong and implausible epiphenomenalism 

about conscious experience may deny this, but it can be granted by any view on which, in 

healthy controls, conscious experience has a causal role in mediating motor responses to 

linguistic commands. 

 

Second, any inference from the absence of responsiveness to the absence of consciousness is 

tendentious. There are many reasons why a conscious patient might fail to respond neurally 

to spoken commands, including effects of sedation and deficits of attention, memory and 

linguistic comprehension.[1,3] 

 

Third, even granting that responsiveness raises the probability of consciousness, it leaves 

many questions open regarding the form of the subject’s conscious experiences. Current 

clinical practice involves distinguishing different conscious “levels”: a typical taxonomy 

includes coma, unresponsive wakefulness (UWS), minimally conscious state-minus (MCS-), 

minimally conscious state-plus (MCS+), confusional state, cognitive dysfunction, and full 

recovery.[1] Finding responsiveness in a patient’s EEG does not tell us where to put the 

patient on these scales (e.g. whether to reclassify them as MCS-). 

 

Moreover, CMD casts some doubt on the very idea of a “levels” framework. The conscious 

states of unresponsive patients vary a great deal, with some having experiences closely akin 

to those of a healthy adult, and others having highly degraded, fragmentary, fleeting 

 
1 This evidence is itself subject to substantial foreground uncertainty (i.e. are the sleeping patients really 

responding?), since Kouider et al. measured responsiveness using readiness potentials, which have been the 

targets of methodological criticism (see Section 3). 
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experiences. Over the long-term, we will surely need a richer framework for thinking about 

these cases, with many different dimensions of variation, and a shift from “levels of 

consciousness” to multidimensional consciousness profiles.[29] Merely finding 

responsiveness leaves us in the dark as to the patient’s consciousness profile. This 

background uncertainty needs to be included in conversations about prognosis and treatment 

that follow any evidence of responsiveness. Although my focus in what follows will be on 

foreground uncertainty, we also need to consider the question of how best to communicate 

background uncertainty (an issue revisited at the end of Section 8). 

 

3. Foreground uncertainty: Is the patient responding at all? 

Background uncertainty arises even when we are certain that the putative biomarker is 

present, but there is also uncertainty about whether the biomarker is there at all. The 

appearance of responsiveness in the EEG could conceivably be a chance pattern or a 

statistical artefact.  

 

This possibility has been a source of controversy. In a 2013 study published in the Lancet, 

Cruse et al. used a machine learning method to analyse EEG data from 16 patients with 

disorders of consciousness and 12 healthy controls.[30] Across a series of blocks, subjects 

were instructed to imagine either closing their right hand into a fist or wiggling their toes. 

The machine learning algorithm, a support vector machine classifier, was tasked with 

inferring the command given in each block from the EEG response. Significantly above-

chance performance by the classifier was interpreted as evidence of responsiveness. The 

headline finding: 3/16 outwardly unresponsive patients were responding to commands. 

 

In a critique, Goldfine et al. took issue with the statistical techniques used to detect 

responsiveness.[31] I will not go into detail here, because to do so would distract from the 

main case-study in the next section. In brief, Goldfine et al. criticized the method of cross-

validation used, the way p-values were calculated, and the chosen significance threshold of p 

< 0.05. As has often been noted,[32] this threshold leads to high false discovery rates (the 

false discovery rate is the number of incorrect rejections of the null hypothesis divided by the 

total number of rejections). Goldfine et al. dramatically showed that, when their preferred 

method of cross-validation was used, when a different method was used to calculate the p-

value, and when a correction for multiple comparisons (specifically, a Benjamini-Hochberg 

correction) was applied to lower the significance threshold, the headline result disappeared: 

there was no finding of responsiveness in any of the patients. 

 

Cruse et al. replied combatively, accepting none of the criticisms.[33] My aim is not to 

referee the dispute here. I will restrict myself to two comments. Firstly, the dispute very 

clearly shows how the frequency with which responsiveness is detected depends quite 

sensitively on methodological choices; to acknowledge this is not to take sides on the issue of 

whose choices were correct. Second, the disagreement suggests a difference in attitude 

towards the risk of misattributed and missed responsiveness. Goldfine et al. were concerned 

by a high false discovery rate and sought ways of controlling it. Cruse et al. feared that what 

they describe as “conservative corrections” would drive up the rate of missed responsiveness. 
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These issues will resurface when we turn to our focal example, a more recent study that takes 

the criticisms of Goldfine et al. at least partly on board. 

 

4. Managing inductive risk: How values drive methodological choices 

With these issues in mind, I want to examine a high-profile EEG study by Claassen et al, 

published in 2019 in the New England Journal of Medicine [14]. This was a ground-breaking 

study of CMD in an ICU setting, involving an unprecedented sample size of 104 patients 

with disorders of consciousness. My aim will be to tease out the ways in which value-

judgements about the comparative seriousness of missed and misattributed responsiveness 

shaped methodological decisions. 

 

Before going deeper into methodological details, we should note that the terms “false 

positive” and “false negative” can lead to confusion. The term “false positive” is sometimes 

used to describe a single incorrect guess by a classifier, but it is also sometimes used to 

describe a situation in which a classifier is judged to be performing at above-chance level 

when the patient is not in fact responding. That is why I favour the term “misattributed 

responsiveness” to describe the latter type of situation, and the term “missed responsiveness” 

to describe a situation in which a patient is responding but this is not detected in the form of 

above-chance classifier performance. 

 

In the Claassen et al. study, a support vector machine classifier was tasked with guessing the 

spoken commands given to a patient using only an EEG recording of that patient. The 

commands given were ““keep opening and closing your right[/left] hand” and “stop opening 

and closing your right[/left] hand”. The algorithm was trained separately on each patient over 

the course of six blocks of eight trials each (i.e. 48 trials). This is called an “individualized 

classifier” approach, since the classifier is trained anew on every patient’s personal EEG data. 

This strategy can be contrasted with a “general classifier” approach that seeks to generalize 

from a training set of patients to a new patient. 

 

For each patient, the classifier’s performance was evaluated by comparing its guesses about 

the spoken commands (inferred from the EEG) to the actual commands.2 The headline result: 

in 16/104 patients, significantly above-chance classifier performance was obtained, leading 

the authors to the striking conclusion that “of the 104 patients, 16 (15%) had cognitive–motor 

dissociation detected on at least one recording”. [14] 

 

For any study of this type, researchers face many difficult methodological choices. I will 

focus on four:  

 

 
2 The classifier’s performance was evaluated by the area under the receiver operating curve (AUC). For patients 

who are not responding, the classifier is expected to perform at chance level, which corresponds to an AUC 

neither significantly greater than nor significantly less than 0.5. For patients who are responding, the classifier is 

expected to perform at a significantly above-chance level, corresponding to an AUC significantly greater than 

0.5. In the main text I will simply refer to the “performance level” of the classifier. 
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a) What significance threshold will be used to assess “better than chance” performance 

by the classifier? 

b) How many EEG recordings will be made of each patient and at what points in the 

timeline (e.g. in the acute, subacute or chronic phase)? 

c) How will adjustments to the significance threshold be made for multiple recordings of 

a single patient, and how will the point in the timeline affect the statistical approach 

taken (e.g. will we be less conservative for patients in the acute phase)? 

d) How will adjustments to the significance threshold be made to control the false 

discovery rate in the whole sample of patients? 

 

All these choices have implications for the likely rates of misattributed and missed 

responsiveness. Let us consider how Claassen et al. handled them. 

 

Regarding (a): Claassen et al. used a standard p-value threshold of 0.05 to assess whether the 

classifier was performing significantly better than chance. A p-value of 0.05 implies a 0.05 

probability of the observed level of classifier performance being achieved by chance, without 

real responsiveness. As noted earlier, a threshold of p < 0.05 is well-known to create a risk of 

a high false discovery rate when many tests are conducted. That needs to be kept in mind as 

we consider (b)-(d). How did Claassen et al. try to manage that risk? 

 

Regarding (b) and (c): in keeping with the aim of developing a diagnostic tool for use in the 

first few days after brain injury, patients were initially tested between 3 and 10 days after 

injury. For some but not all patients, Claassen et al. took multiple recordings (with an overall 

median of 2 recordings per patient). If this type of procedure becomes a widely used 

diagnostic tool, clinicians will often want to take multiple recordings, because a single 

recording carries a high risk of missed responsiveness. A key advantage of bedside EEG in 

the ICU over fMRI outside the ICU is that the former (in addition to being safer and faster) 

allows for repeated measurement.[1] Yet doing multiple recordings drives up the chance of 

misattributed responsiveness.  

 

There are two well-known statistical techniques for manage this risk: the Bonferroni 

procedure and the above-mentioned Benjamini-Hochberg procedure, recommended by 

Goldfine et al.[31] The two procedures control different quantities. The Bonferroni procedure 

controls the overall rate of false positives (Type I errors) in a series of tests. If we apply this 

procedure, we can be reassured that the overall chance of there being a misattribution of 

responsiveness to a given patient is below the desired threshold (e.g. 0.05). Yet reassurance 

about the chance of a false positive is bought at the cost of driving up the rate of false 

negatives. The Benjamini-Hochberg procedure, meanwhile, controls the false discovery rate 

(the fraction of cases of misattributed responsiveness among the total number of positive 

tests). After applying this procedure, we can regard each “positive” recording, indicating 

apparent responsiveness, as having at most a 5% chance of being a misattribution.  

 

Claassen et al. chose the Benjamini-Hochberg procedure. This is the less stringent of the two 

options, since controlling the false positive rate is more stringent than controlling the false 
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discovery rate when there are many comparisons. The trouble here is that, in a clinical 

setting, it is surely the overall chance of a misattribution for this patient (i.e. the variable 

controlled by the Bonferroni procedure) that we most want to control. If we simply control 

the false discovery rate among EEG recordings, we are still faced with a situation where the 

chance of a misattribution happening at some point, for any given patient, becomes very high 

as the number of EEG recordings conducted on that patient goes up. To give an extreme 

illustration: if we make 100 recordings of the same patient, a misattribution somewhere in the 

sequence is very likely, even if we apply the Benjamini-Hochberg procedure to hold the false 

discovery rate at 5% or lower.  

 

Regarding (d): Beyond the correction just noted for individual patients who were recorded 

multiple times, Claassen et al. did not make any further downward adjustments of the 

significance threshold to control the overall rate of false discoveries in the population as a 

whole. So, the overall false discovery rate was likely to be high.  

 

Strikingly, Claassen et al. write in their supplementary information that, since 104 patients 

were studied, “it is likely that amongst the 16 CMD patients, five were classified as CMD 

because of statistical fluctuations rather than actual spoken command following”.[14, 

supplementary information, page 13]. In fact, inferences from the p-value to the false 

discovery rate are more complicated than this quotation makes it sound. What the authors 

should have said is that, in a population of 104 patients with no cases of true responsiveness, 

we would expect about five cases of misattributed responsiveness. However, it does not 

follow that in the real study population, where some cases of true responsiveness very 

probably existed, five were likely to have been misattributions. Further assumptions about the 

base rate of the target property (i.e. responsiveness) are needed to estimate the false discovery 

rate. That said, the authors are clearly right to flag the possibility of a high false discovery 

rate, given their methodological choices. 

 

Could Claassen et al. have controlled the overall false discovery rate by pushing the p-value 

threshold below 0.05? By way of analogy, this is an orthodox approach in Genome-Wide 

Association Studies (GWASs), which also involve many separate tests for statistical 

relationships (but across many genes rather than many patients). Since the 2000s, the norm in 

this area has been to use a p-value threshold of p < 5 x 10-8.[34,35] By contrast, Claassen et 

al. applied the Benjamini-Hochberg procedure to multiple recordings from the same patient, 

but not to the whole set of tests across all patients. The analogy in a GWAS would be to 

control the false discovery rate for repeated tests of the same gene, without controlling the 

overall false discovery rate across the whole genome. However, it is not clear that controlling 

the false discovery rate across the whole population would have been the right approach here, 

for it would have made the threshold for a diagnosis of responsiveness sensitive to the 

population size. As already emphasized in the discussion of (b) and (c), surely what we really 

want is a diagnosis for each individual patient that has a low chance of error, irrespective of 

how many other patients there are or how many times each patient is recorded. 
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In sum, Claassen et al. chose to set a reasonably easy-to-clear bar for statistical significance 

(p < 0.05), chose to adjust it downwards for multiple comparisons only in a limited and 

partial way, and chose to accept—and openly acknowledge, albeit in supplementary 

information—a high false discovery rate. 

  

These choices reflect implicit value-judgements by the researchers. That is not intended as a 

criticism, because I regard these value-judgements as both unavoidable and potentially 

benign. The ICU is not a genomics lab, and the consequences of error are very different in the 

two contexts. Claassen et al. were quite clearly, and understandably, worried about the risk of 

missed responsiveness. As Fins and Bernat have emphasized, the “ethical importance of 

avoiding type II error: failing to identify consciousness when it is present” looms large for 

researchers in this area.[2] This concern drives methodological choices that prioritize 

avoiding cases of missed responsiveness, while expressing a more permissive attitude 

towards cases of misattributed responsiveness.  

 

5. A problem: Neglecting the patient’s own values 

Here is the story so far: multiple EEG testing of each patient, plus a relatively high threshold 

for significance (p < 0.05), is a recipe for a high rate of misattribution. This is exemplified by 

the Claassen et al. study, in which the authors themselves estimated a false discovery rate of 

five in 16. While this may be an underestimate or an overestimate, the point of relevance here 

is that the authors, having reached that estimate, were willing to accept it. There are 

frequentist strategies for controlling the false discovery rate, but researchers in this area are 

understandably hesitant to use them (except in limited, partial ways) because they are 

“conservative” and allow the rate of missed responsiveness to rise in an uncontrolled way—

and because the normative, clinical importance of the research speaks strongly against a 

disregard for the risk of missed responsiveness. A special concern for the risk of missed 

responsiveness is widespread among researchers working in this area and shapes their 

methodological choices. 

 

Is this a problem? Clinical research and practice cannot avoid value-judgements altogether. 

To worry about missed responsiveness more than misattributed responsiveness is a value-

judgement, but we may well be tempted to regard it as a benign, well-founded one.  

 

In my view, however, a problem remains, even if we agree with all the relevant value-

judgements. The real danger is not that of value-judgements being made in scientific research 

(this is normal and unavoidable) but that these value-judgements will be made in an 

insufficiently inclusive and context-sensitive way. The value-judgements are being made in a 

one-size-fits-all manner by researchers, or software designers, without involvement of 

families. Families simply receive a result—the patient is responding/not responding—

without an opportunity for input into the underlying value-judgements that shaped the 

methodological choices leading to this result. 

 

This is a problem even now, since results obtained in research studies are sometimes shared 

with the patient’s family and so already inform decision-making in some cases. [3, 36] But it 
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has the potential to become a much larger problem if the approach is rolled out to widespread 

clinical use, as the European Academy of Neurology has urged. Value-judgements about the 

comparative seriousness of missed and misattributed responsiveness should, as far as 

possible, properly involve the patient’s surrogate decision makers.  

 

One might object: would anyone really disagree that missed responsiveness is much worse 

than misattributed responsiveness? But it is not that simple. There is a wide range of 

reasonable reactions to evidence of covert awareness in a patient. The actual pattern of 

variation in family reactions is still poorly understood, calling for further research.[37-41] In 

broad terms, though, we can expect that some families will hope for evidence of 

responsiveness, regarding it as a sign of incipient recovery, whereas others will fear it, seeing 

it as a sign that the patient may be suffering and experiencing a low quality of life.[42] For 

this latter group, a misattribution of responsiveness could conceivably tip the balance in 

favour of withdrawing treatment. 

 

Meanwhile, in cases where the family hopes for evidence of continuing awareness, a 

misattribution of responsiveness may lead to false hope: hope that a given level of recovery is 

in fact realistic, when other evidence suggests it is not.[4] That false hope may be a curse 

rather than a blessing. Given the current legal framework surrounding end-of-life decisions in 

most jurisdictions, families are often put in an agonizingly difficult position. There may be 

only a narrow window in which life-sustaining treatment such as mechanical ventilation can 

be withdrawn (if this is in the patient’s best interests) before the patient’s condition stabilizes, 

resulting in a situation where a quick death is no longer legally possible (the path from 

withdrawal of clinically assisted nutrition and hydration to death is distressingly long by 

comparison). Misattributed responsiveness could conceivably lead to that window being 

missed—it could lead to patients being kept alive over the long term when their prospects of 

recovery to a level they would themselves value are bleak. Kitzinger and Kitzinger have 

urged clinicians to take this risk seriously.[6] Values in this area vary a great deal. People 

have very different concepts of what counts as a good recovery, and some patients would 

want to be kept alive even if that level of recovery was very unlikely, whereas others would 

not.[3]   

 

In the US context, there is also a further legal complication: courts are far less likely to grant 

approval for treatment withdrawal in cases where a patient is diagnosed as minimally 

conscious rather than “vegetative”, essentially forcing patients to be kept alive regardless of 

their values or wishes.[9] This adds an extra cost to misattributions of responsiveness. In the 

UK, where court approval is not always needed to withdraw clinically assisted nutrition and 

hydration, clinical guidance avoids placing such enormous weight on the boundary between 

minimally conscious and “vegetative”, correctly recognizing this to be subject to great 

uncertainty.[43] 

 

In the absence of a clear advance directive by the patient themselves, the patient’s family is 

generally recognized to be the best (though fallible) way to access the patient’s own values. 

And yet, one can hardly go the patient’s family and ask: “Should I apply a Bonferroni 
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correction to your relative’s EEG data, or a less conservative correction?” Error rates are 

controlled by deeply buried methodological details that a patient’s relatives will typically be 

unable to understand. Yet they will keenly feel the consequences of those methodological 

choices, because they will be heavily involved in making life-or-death decisions about the 

patient in which those choices may tip the balance of considerations, either for the family or 

for a court. 

 

Given this, should clinicians communicate their best estimates of the false discovery rate to 

the patient’s family? Should they say: “We expect there is a high (but difficult to estimate 

precisely) false discovery rate associated with this procedure”? Edlow and Fins seem to have 

something like this in mind when they write “the possibility of a false-positive result must be 

considered by clinicians and clearly communicated to families” and, later, that “it is ethically 

appropriate to share single-subject data if families are fully informed of the performance 

characteristics of the assessments, such as their sensitivity and specificity”.[3] Yet this would 

not adequately solve the problem, and might even make things worse, because false 

discovery rates are easily misinterpreted. They have significant potential to confuse, alarm 

and mislead. Not all particular cases are equal, and an expected false discovery rate of x% 

does not equate to a x% chance of a particular case being a false discovery. The EEG may 

provide extremely strong evidence of responsiveness in some specific cases and extremely 

weak evidence in other cases. But this further complication—i.e. the strength of evidence 

varies from one case to the next—points us in the direction of a possible solution. 

 

6. Communicating uncertainty, proposal 1: Degrees of evidence 

There may be a temptation to react to a high false discovery rate simply by lowering the 

required p-value, mirroring standard practice in GWASs, and also mirroring calls in 

psychology for a lowering of the standard p-value threshold to p < 0.005.[32] Yet we would 

still be using a single, one-size-fits-all threshold to assess whether the patient is “responding” 

or not. Ultimately, this is misleading. The reality is that classifier performance delivers 

evidence of responsiveness of continuously varying strength. If the strength of evidence can 

be conveyed to clinicians and the patient’s family, it will enable better-informed decisions. 

 

But how to do this? Our problem arises in part from the use of frequentist methods to 

interpret EEG recordings. Might the problem be at least partly addressed by incorporating 

Bayesian ideas? Bayesian approaches are no panacea for deep problems of inductive risk and 

uncertainty communication, but I believe they can help. There are, in particular, two 

Bayesian ideas that can help: (i) EEG data do not directly support a yes/no verdict on 

questions of responsiveness, but rather provide a quantitative degree of evidence; (ii) 

converting degrees of evidence into probabilistic assessments requires consideration of prior 

probabilities. The following two proposals (in Sections 6 and 7) should be understood as part 

of a single package that rests on these ideas. By contrast, Proposal 3 (Section 8) has the status 

of a standalone extra that could be pursued in combination with any strategy for estimating 

probabilities. 
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The first proposal is to shift from p-values to Bayes factor bounds. The lowest p-value 

threshold at which the algorithm’s performance becomes “significantly” above-chance is a 

continuous variable that provides some insight into the strength of evidence of 

responsiveness in the present patient. However, the relationship between p-values and 

strength of evidence is not straightforward. The p-value imposes an upper bound on the 

Bayes factor, a formal measure of the strength of evidence. In other words, given a certain p-

value, there is an upper limit on how much evidence against the null hypothesis a dataset can 

provide. This Bayes factor upper bound (BFB) is typically given by: 

 

BFB =  
1

−𝑒𝑝 log 𝑝
 

 

where p is the p-value.[44] In the case of multiple recordings of the same patient, Bayes 

factors can be multiplied to give an upper bound on the total evidence against the null 

hypothesis provided by the series of tests.  

 

Benjamin and Berger recommend the increased use of BFBs in science as a response to the 

replication crisis.[44] My first proposal is that BFBs also have an important role in the design 

of medical AI. In cases where a diagnostic package delivers a p-value as its primary output, 

the p-value should be converted to a BFB.  

 

An obvious problem arises: doctors and patients’ families will not typically find the BFB any 

more intuitive to interpret than the p-value. So, we cannot stop here. What we need is to 

transform the BFB into a more useful output: an assessment of the probability that the patient 

is responding. To do this, we need to incorporate prior probabilities. 

 

7. Communicating uncertainty, proposal 2: Patient-centred priors 

To move from a BFB to an upper bound on the odds that the patient is responding to 

commands (the “odds upper bound”, or OB), we need prior probabilities: 

 

OB (𝑅𝑒𝑠𝑝𝑜𝑛𝑑𝑖𝑛𝑔) = BFB ×  
Prior(𝑅𝑒𝑠𝑝𝑜𝑛𝑑𝑖𝑛𝑔)

Prior(𝑁𝑜𝑡 𝑟𝑒𝑠𝑝𝑜𝑛𝑑𝑖𝑛𝑔)
 

 

But how to decide these priors? One option would be to set our priors in line with base rates. 

However, at present, our uncertainty about individual cases of cognitive-motor dissociation 

percolates up to uncertainty about the base rate. For example, we could use the Claassen et al. 

data to estimate a base rate of about 10% among unresponsive wakeful patients (i.e. 16/104, 

minus about 5 probable misattributions), but that estimate would itself be subject to 

substantial uncertainty. We can hope that, over the long run, we can be more confident (e.g. if 

many different studies, with similarly large samples but substantially different 

methodologies, converge on a similar base rate). 

 

Remember, though, that we are thinking here about how to use EEG data to inform decisions 

about a specific patient, and the clinicians treating them will have lots of other background 



 13 

information that might relevantly shape the prior probability of responsiveness in this patient, 

beyond just base rates. They will have, for example, information about whether the patient is 

responding behaviourally, and about the extent of their brain injury. The priors for a specific 

patient call for a holistic expert judgement, a judgement that considers not just base rates but 

the wider context. 

 

So, a natural suggestion is that a good diagnostic algorithm will include an opportunity for 

clinicians to enter their all-things-considered priors that the patient will respond to 

commands, given everything else that is known about them. The algorithm will then combine 

those priors with the BFB to generate an OB. A probability is somewhat easier to interpret 

than an odds ratio (see Section 8), so it will be helpful if the formula also converts the odds to 

a probability by applying the formula: 

 

Probability Upper Bound (𝑅𝑒𝑠𝑝𝑜𝑛𝑑𝑖𝑛𝑔)  =  
OB (𝑅𝑒𝑠𝑝𝑜𝑛𝑑𝑖𝑛𝑔)

1 + OB (𝑅𝑒𝑠𝑝𝑜𝑛𝑑𝑖𝑛𝑔)
 

 

This proposal comes with an associated risk: a probabilistic version of the “self-fulfilling 

prophecy”, whereby a clinician gives a patient an extremely low prior probability of 

responding. If the prior is set low enough, even very strong evidence of responsiveness will 

not be enough to render it more likely than not that the patient is responding. For example, 

suppose, due to the severity of the patient’s injury, a clinician inputs a prior probability of 

responding below 0.001. This might be described as a “dogmatic” prior: a prior so low that 

even very strong evidence of responsiveness may fail to move the probability upper bound to 

0.5 or higher. We need to guard against this risk of dogmatic priors. After all, the 

development of this technology is driven in the first place by a fear that clinicians are too 

willing to “write off” patients as unresponsive when they are not. My proposal provides a 

mechanism through which this very fear could be realized. It may at first sight seem rather 

idealistic to think doctors could be entrusted with the task of inputting reasonable priors. 

 

This brings us to the nub of the problem: in setting patient-centred priors, how are we to 

integrate the expert judgement of clinicians, which inevitably and appropriately relies on low-

tech behavioural evidence, with a need for openness to the possibility of covert consciousness 

that clinicians are unable to detect without technological assistance? I hope to start a debate 

on this issue but do not claim to have a perfect solution. I propose there should be clinical 

guidelines requiring clinicians input priors that fall within an appropriately open-minded 

range, after discussion with all parties involved in the clinical care of the patient, including 

the patient’s family. These priors should be non-dogmatic and anchored on recommendations 

from professional bodies based on the overall evidential picture concerning base rates.  

 

It would be premature for me to specify exact thresholds for what counts as a “dogmatic” 

prior (the example of 0.001 is not a proposed threshold; it is just an illustrative example of a 

very low prior). What is needed is clear guidance from professional bodies further down the 

road, and it is not my place to prejudge that guidance. But as a tentative proposal with the 

aim of provoking debate, I suggest that the highest realistic estimates of the base rates of 
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covert awareness, according to current evidence, should be used as an anchoring point, and 

that departures from that anchoring point should be small and justified by clinical evidence 

specific to the current patient. Prior probabilities that fall far below existing published 

estimates of the base rate (as in the imagined case of a clinician who inputs 0.001) should be 

avoided. In assessing the “highest realistic estimate”, professional bodies should consider all 

relevant evidence from consciousness science, casting a wide net. Crucially, theories of 

consciousness that imply that conscious experience may persist despite very extensive 

cortical damage, such as the midbrain-centric theories of Bjorn Merker and Jaak Panksepp, 

should be given careful consideration in this process.[45-49] 

 

This proposal does not remove the need for value judgements. Indeed, my proposal that 

clinicians should anchor their priors to the highest realistic estimate of the base rate implicitly 

involves a value judgement. I am proposing, in effect, that it would be worse to 

underestimate the base rate than to overestimate it, and some may disagree. However, I do 

think the problem of neglecting the patient’s own values can be mitigated, provided the 

patient’s family is involved in the discussions through which the clinician decides on an 

appropriate prior. 

 

8. Communicating uncertainty, proposal 3: Probability yardsticks 

Imagine the following scenario: a clinician inputs patient-centred priors into a software 

package, the package calculates an upper bound on the strength of evidence of 

responsiveness from EEG data, and reports back an upper bound on the probability that the 

patient is responding. This report may still be very difficult for the patient’s family to 

interpret, so our framework is not yet complete. How can this upper bound be communicated 

sensitively to the patient’s family, so as to put them in a better position to make the decisions 

that lie before them?  

 

Without standardized language, numerical probabilities can be coverted to ordinary language 

terms in many different ways.[50] A “probabilistic yardstick” aims to solve this problem by 

providing a standardized protocol for assigning verbal, qualitative labels to probability 

ranges. An influential example is the PHIA (Professional Head of Intelligence Assessment) 

probability yardstick, widely used in UK government circles (Figure 1). This yardstick maps 

the terms “remote chance”, “highly unlikely”, “unlikely”, “realistic possibility”, 

“likely/probably”, “highly likely” and “almost certain” to vaguely bounded ranges of 

probabilities.  
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Figure 1: The PHIA probability yardstick. This figure can be found widely in UK government 

documents (public sector information licensed under the Open Government Licence v3.0). 

 

I see this as a starting point, but far from a perfect proposal. To require 40% probability 

before being willing to describe an outcome as a “realistic possibility” is unwarranted. I 

would favour the label “about as likely as not” for the range 45-55%. Moreover, the word 

“likely” covers too big a range, including outcomes that are slightly more likely than not 

(~55%), outcomes that are moderately likely (~60-70%), and outcomes that have a ~75% 

probability of occurring. Yet this starting point illustrates the general idea. My third proposal 

is that standardized yardsticks should be developed, in consultation with clinicians, patients 

(where possible) and patients’ families, for use in cases where diagnostic AI yields 

quantitative probabilistic outputs. 

 

Here is a design choice-point the proposal raises: who should implement the conversion of 

quantitative probabilities to qualitative categories? At present, patients are generally sceptical 

of the idea of AI replacing a human clinician in making critical judgements and decisions, 

such as whether to recall a patient for a biopsy following cancer screening.[27,51,52] To be 

clear, no part of my proposal involves the AI deciding anything. However, I suspect that 

hiding the raw probability may still raise a problem of trust for some families. There is also 

some evidence that people with a good level of numeracy prefer information about risk to be 

conveyed to them numerically.[50] A solution would be for the algorithm to output both a 

precise probability upper bound and a suggested qualitative interpretation. For example, the 

output might read:  

 

It is at most moderately likely that the patient responded to simple commands 

during the series of tests performed at [times, dates]. (Estimated probability 

upper bound: 62%). Please note that this is assessment of the probability of 

responsiveness, not consciousness. A conscious patient may still fail to respond 

for many reasons. 

 

Informing the user that we are assessing the probability of responsiveness, not consciousness, 

is crucial. More generally, it is crucial that we do not forget background uncertainty when 

attempting to communicate foreground uncertainty. A good qualitative interpretation will 



 16 

highlight both kinds of uncertainty. A clinician can then communicate this result in a way 

appropriate to the patient’s family, giving probabilities if they have a good grasp of the 

concept of probability, and using coarse-grained, qualitative categories if they do not. 

Patients’ families will then be well-placed to take this information into account in a way that 

respects what is known about the patient’s values and wishes. 

 

9. Opportunities and risks of medical AI 

In sum, the use of EEG recordings to detect covert consciousness raises a serious problem of 

inductive risk, calling for a value-judgement about the comparative seriousness of 

misattributed and missed responsiveness. Current methods bury value judgements in “under-

the-hood” methodological choices, opaque to the patient’s family. To address this, we should 

look for ways of incorporating the patient’s values transparently (to the extent that they are 

known by the family) into the management of risk.  

 

My proposal for one way to do this involves three ingredients: (1) a shift from “responding or 

not” to degrees of evidence quantified by Bayes factor bounds; (2) the use of patient-centred 

priors to convert degrees of evidence to probabilistic assessments; and (3) the use of 

standardized probability yardsticks to convey those assessments clearly to the patient’s 

family, who are best placed to know what the patient would want. 

 

What are the wider lessons of the case for the clinical use of AI? The case highlights a type of 

risk that is likely to recur in many clinical contexts: the risk of an algorithm encoding implicit 

value-judgements, such as judgements about the comparative seriousness of false positives 

and false negatives, that differ from those the patient would want to be made. The same risk 

arises in the case of cancer screening.[27] It will arise whenever an algorithm is tasked with 

moving from a native output that is fundamentally probabilistic to a yes/no judgement. 

 

Avoiding AI altogether would not remove that risk, since human clinicians can also make 

implicit value-judgements in conflict with the patient’s own values. That said, patients and 

their families often trust their clinicians to have their best interests at heart, whereas the same 

level of trust in AI does not exist.[27, 51, 52] So, there is a risk of eroding patient trust in 

cases where AI products are found to be encoding contentious value-judgements.   

 

With this risk comes a corresponding opportunity. Human clinicians often struggle to 

estimate and communicate uncertainty. This can lead to an exaggerated sense of certainty 

surrounding early diagnoses in an area where misdiagnosis is easy and common.[9] Poorly 

designed medical AI could accentuate the problem, if it gives yes/no verdicts on matters as 

shrouded in uncertainty as the presence or absence of responsiveness to commands. By 

contrast, well-designed medical AI could help to foster the humility and open-mindedness 

that is needed in these cases. It can do so by delivering inputs to decision-making that are 

explicitly probabilistic, while also accompanied by clearly defined qualitative language that 

the patient’s family can more easily understand. 
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