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The welfare properties of climate targets

Coppens Léo,∗ Venmans Frank†

26th October 2023

Abstract

Two approaches are predominant in climate models: cost-benefit and 
cost-effectiveness analysis. On the one hand, cost-benefit a nalysis max-
imises welfare, finding a  trade-off between c limate damages and emission 
abatement costs. On the other hand, cost-effectiveness analysis minimises 
abatement costs, omits damages but adds a climate constraint, such as 
a radiative forcing constraint, a temperature constraint or a cumulative 
emissions constraint. These constraints can be applied from today on-
wards or only from 2100 onwards, allowing to overshoot the target before 
2100. We analyse the impacts of these different constraints on optimal 
carbon prices, emissions and welfare. To do so, we fit a model with abate-
ment costs, capital repurposing costs (stranded assets) and technological 
change on IPCC and NGFS scenarios. The welfare-maximizing scenario 
reaching 1.5°C in 2100 has almost no net negative emissions at the end of 
the century (-2GtCO2/y). A constraint on cumulative emissions has the 
best welfare properties, followed by a temperature constraint with over-
shoot. A forcing constraint with overshoot has insufficient early abate-
ment, leading to a substantial welfare loss of $29 Trillion, spread out over 
the century. As to the paths reaching 2°C, all cost-effectiveness analy-
sis abate too late, but the welfare impact of this dynamic inefficiency is 
milder. Again, a forcing constraint with overshoot scores worst.

Keywords: climate change mitigation, targets formulation, integrated assess-
ment models, optimal abatement path, cost-benefit, cost-effectiveness, welfare,
negative emissions

1 Introduction
There are two common approaches in the literature on optimal emission scenar-
ios. Cost-benefit (CB) analysis maximizes welfare by considering both abate-
ment costs and climate damages. Peak temperature is endogenous and balances
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costs and benefits from emission abatement. In contrast, cost-effectiveness (CE)
analysis only considers abatement costs while imposing a climate constraint (for
example, less than 2°C of warming). CE analysis does not specify a damage
function and therefore abstracts from the timing of damages. As a result, it
tends to abate later than a CB analysis with the same peak temperature. This
article evaluates the welfare cost of this delay and investigates the implications
of different types of constraints.

We investigate the three most popular constraints in CE analysis: a tem-
perature constraint, a cumulative emissions constraint and a radiative forcing
constraint. Radiative forcing is the extra incoming energy flow (in W/m²) that
results from a higher atmospheric concentration of greenhouse gases (GHG).
Since forcing is a monotonic function of GHG concentrations, a forcing con-
straint is identical to an atmospheric concentration constraint. Each constraint
can be applied with or without overshoot before 2100. In the past, the most
popular constraint was a radiative forcing target as it was used in the IPCC sce-
narios, which were grouped in different Representative Concentration Pathways
(RCP). Each RCP was named after its radiative forcing in 2100 (Van Vuuren
et al. [2014], Riahi et al. [2017]). Other model comparisons also use the radiative
forcing constraints from the RCP’s (Rogelj et al. [2018]). However, temperature
targets (e.g., Nordhaus [2018], Shukla et al. [2022]) and cumulative emissions
targets (e.g., Luderer et al. [2018]) have become more popular in recent years,
including in the most recent IPCC report (Rogelj et al. [2019], Riahi et al. [2020],
Johansson et al. [2020], IPCC [2022]).

We assess the implications of these three forms of constraint with and with-
out overshoot and compare them against a CB approach. This allows us to
rank the welfare performance of different types of constraints. We calibrate
constraints and damage functions such that all models reach 1.5°C or 2°C by
2100.

While CB analysis is conceptually the gold standard, CE analysis is popular
because it avoids the need for a damage function, which is notoriously difficult
to estimate, and because international climate agreements such as the Paris
agreement set a maximum temperature. CE is also computationally simpler,
which is important for models with many sectors, countries and/or technologies.
Therefore, we do not argue against the use of CE analysis, but show that some
constraints are better than others.

We rank the constraints by comparing them to a CB welfare maximization,
which requires an estimate of marginal damages. One could argue that CB
analysis is not a good reference scenario, since CE was developed as a solution
to avoid uncertainty regarding climate damages. We have three arguments why
a CB scenario with damages is the most appropriate reference scenario. Firstly,
our approach is agnostic to the true size of the damages. Instead of choosing
an exogenous damage parameter, we adjust our damage parameter such that
both approaches (CE and CB) obtain the same optimal temperature in 2100.
Secondly, we use a quadratic damage function in the main analysis and show in
the appendix that a cubic damage function gives very similar results. Thirdly,
we also analyze a CB case with lower damages, combined with a temperature
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constraint. This corresponds to the case where the temperature target is con-
sidered as a political constraint due to the Paris Agreement. As long as a social
planner believes that damages are not zero, it makes sense to consider the timing
of these damages. We show that considering even low climate damages improves
the welfare properties of CE analysis. Other studies investigating the effect of
different constraints have compared the total abatement costs of different sce-
narios (e.g., Johansson et al. [2020], Lemoine and Rudik [2017]). We show that
including the timing of damages can change the relative ranking of constraints.

Optimal emissions depend on the dynamic properties of marginal abatement
costs. Not only the level of abatement but also the speed of abatement mat-
ters, since capital adjustment costs, stranded assets, and bottlenecks in rapidly
expanding green sectors will make very fast abatement more costly. The result-
ing emissions inertia will increase initial emissions in all models and reduce the
differences between them. Another important dynamic property of abatement
costs is the pace of endogenous technological change, driven by learning by do-
ing, economies of scale, network effects, and demand-induced R&D. We develop
a statistical method to obtain consensus estimates for a dynamic abatement cost
structure. More specifically, we use Generalized Method of Moments (GMM) to
fit a stylized dynamic abatement cost function on the climate scenarios database
of both the IPCC’s Special Report on 1.5 degrees and the NGFS, as in Coppens
et al. [2022].

Our results are as follows. We start by comparing models reaching 1.5°C
in 2100. The welfare-maximizing path (CB) has an optimal peak temperature
of 1.60°C and almost no net negative emissions. The CE scenario with a cu-
mulative emission constraint scores second-best. Its emission and temperature
trajectory are extremely close to a welfare-maximizing approach (peak temper-
ature 1.61°C). Third-best is the scenario with a temperature constraint allowing
overshoot, reaching a peak temperature of 1.70°C. This overshoot can be de-
creased to 1.65°C by adding modest climate damages to the model. A radiative
forcing target with overshoot is worst, showing the largest welfare loss, the high-
est temperature overshoot (1.73°C) and substantial net negative emissions. This
is because an extra tonne of CO2 emitted today leads to a constant increase in
temperature , while the increase on forcing diminishes over time. The diminish-
ing impact on forcing creates an incentive to postpone abatement and increases
the discrepancy with CB analysis. The discounted cost of using the radiative
forcing constraint instead of cost-benefit is substantial, $29 Trillion spread out
over this century. Finally, a temperature target without overshoot performs
almost as badly, in welfare terms, as the radiative forcing target with overshoot.
This is because the current warming is already 1.2°C with another 0.2°C locked
in due to inertia in the climate system, causing a temperature target without
overshoot to produce extremely high stranding and repurposing costs. Note
that a constraint on radiative forcing without overshoot is physically impossible
because keeping the current CO2 concentration constant leads to more than
1.5°C warming.

Regarding the models reaching 2°C in 2100, the ranking of constraints is
slightly different. The largest difference is between CB on the one hand, and all
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the CE scenarios on the other hand. The CB scenario has lower emissions until
2060. None of the scenarios have a temperature overshoot and none have net
negative emissions. A radiative forcing constraint without overshoot, criticized
in Lemoine and Rudik (2018) for having earlier abatement than a temperature
constraint, is actually the second-best from a welfare perspective. A cumulative
emissions constraint is third best, closely followed by a temperature constraint.
Again, a forcing constraint with overshoot scores worst. Overall, our advice for
2°C scenarios is to add damages to the optimization problem.1 This is because
all CE have insufficient abatement early on. If that is impossible, we provide
a deviation from the Hotelling rule for the carbon price path as a second-best
solution.

The paper is organized as follows. Section 2 discusses the related literature.
Section 3 introduces the model and the methodology used to assess the different
scenarios. Section 4 presents the results: optimal abatement paths, their rank-
ing and their net negative emissions. Section 5 concludes and gives practical
recommendations.

2 Literature
Our work is situated within the literature on top-down integrated assessment
models (IAM’s), focussing on optimal timing of emissions and carbon prices
(Grubb et al. [2020, 2021] Campiglio et al. [2022] Vogt-Schilb et al. [2018]),
and provides insights on optimal dynamics for more detailed bottom-up IAM’s
(Shukla et al. [2022], Weyant [2017] , Nikas et al. [2019]). We contribute to a
relatively new body of literature that compares the effect of constraints in CE
analysis. Our study presents the first comprehensive overview of the effect of 6
different types of constraints, while also ranking their welfare properties.

For example, Johansson et al. [2020] compare two constraints, a radiative for-
cing constraint with overshoot and a temperature constraint without overshoot.
They show that large net negative emissions are the result of a forcing con-
straint with overshoot, and that in the case of a temperature constraint without
overshoot negative emissions are mild (not exceeding 5GtCO2/y).2 Expand-
ing their approach, we demonstrate that even under a temperature target with
overshoot, net negative emissions are very low and that constraints leading to
large negative emissions result in lower welfare.

Taking welfare effects into consideration can lead to opposite conclusions.
Lemoine and Rudik [2017] show that a temperature constraint leads to lower
discounted abatement costs compared to a forcing constraint (both without
overshoot). Their analysis highlights the advantage of postponing abatement
costs. However, we demonstrate that the advantage of delayed abatement costs

1Adding mild damages to a CE scenario is technically identical as adding a constraint to
a CB analysis.

2We refer mainly to the results with the GET-Climate model (Azar et al. [2006, 2013]),
which has emissions inertia, whereas their results based on a modified version of DICE has no
abatement inertia (and hence no negative emissions).
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is outweighed by the earlier damages incurred. This reverses their result. For
a scenario reaching 2°C by 2100, the constraint on forcing achieves a higher
welfare score due to its earlier abatement.

The role of climate inertia depends on the level of ambition of the scenarios.
Mattauch et al. [2020] show that a cumulative emissions target and 2°C temper-
ature target exhibit very similar emissions trajectories. We confirm this result
for a 2°C target, but show that for a 1.5°C scenario, a cumulative emissions
constraint differs from a temperature constraint without overshoot. This differ-
ence is driven by the large emissions over the last decade which reach their peak
warming effect with a delay of 10 years and lead to a temperature overshoot in
the case of a cumulative emissions constraint.

Abatement inertia is important when comparing CB and CE analysis. Dietz
and Venmans [2019] show that compared to a CE approach, CB analysis leads
to much earlier abatement. Dietz et al. [2021] show similar results for DICE.
We obtain a smaller difference between both approaches, due to abatement
inertia, in line with the results of Campiglio et al. [2022] and Emmerling et al.
[2019]. To solve the problem of insufficient early abatement ambition in CE,
Emmerling et al. [2019] suggest using a lower discount rate and show that under
this condition net negative emissions are never large.

There is a wider debate on the merits of CE (Stern et al. [2022]) and CB
analysis (Aldy et al. [2021]), including ethical, legal, prudential and political
arguments, that exceeds the scope of this paper. We provide guidance on how to
improve the welfare properties of CE analysis, acknowledging that CE analysis
is widely applied for several reasons, including computational constraints.

3 Methods
Our climate module uses the mean CMIP5 model parameters of Joos et al.
[2013] for carbon absorption and Geoffroy et al. [2013] for thermal inertia. This
results in a calibration which is very close to FAIR (FAIR adds saturation of
carbon sinks, which has a minor effect below 2°C). For other greenhouse gases,
we add RCP1.9 or RCP2.6 exogenous forcings for our 1.5°C and 2°C models
respectively (Riahi et al. [2017], Rogelj et al. [2018], Gidden et al. [2019]).

We now describe the main features of the economic model. Define abatement
a = EBAU−E, with emissions E (in GtCO2-eq) and business-as-usual emissions
EBAU . Cumulative abatement A is the sum of all past aggregate abatement
(Ȧ = a). We assume a linear marginal abatement cost function proportional to
consumption c, as in Dietz and Venmans [2019]

MACt = ϕ

(
At
A0

)−χ
atct. (1)

Parameter ϕ is the slope of the marginal abatement cost function at time

zero. The factor
(
At
A0

)−χ
represents endogenous technological change, which

reduces green technology costs as cumulative abatement increases over time.
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Parameter χ is the elasticity of the MAC with respect to cumulative abatement.
Each increase of cumulative abatement by 1% reduces the MAC curve by χ%.
We also fit a quadratic static MAC curve to our database but the coefficient on
the quadratic term is both statistically and economically insignificant.

The model also includes abatement inertia, which adds extra costs when
emissions decrease rapidly due to stranding costs, capital repurposing costs, bot-
tlenecks in innovation, adjustments in labour and financial markets etc. This is
modeled as a quadratic penalty for abatement speed v = ȧ, reducing consump-
tion by a factor exp

(
θ
2v

2
)
. Adding technological change and economic inertia is

important since those dynamics have a large effect in ambitious scenarios Grubb
et al. [2020].

We assume that climate damages are quadratic in temperature T and propor-
tional to consumption, as in DICE and Dietz and Venmans [2019]. Exogenous
labour-augmenting technology improves labour productivity, leading to a BAU
consumption growth rate of rate g. Bringing all the pieces together, we obtain
the following consumption per capita function

ct = c0e

(
gt−ϕ2 a

2
t

(
At
A0

)−χ
− θ2 v

2
t−

γ
2 T

2
t

)
. (2)

Our dynamic abatement cost function is fitted on both the total abatement
cost and marginal abatement cost of 109 scenarios of the IPCC 1.5 special report
and NGFS scenarios (Rogelj, J. et al. [2018], Huppmann, D. et al. [2019], NGFS
[2021]) using GMM.

We use a standard utility function with constant elasticity of marginal utility
and utility discount rate δ. Population is growing at rate n and standardized
at 1 at time zero. This results in the following welfare maximization problem

max

∫ ∞
0

e−(δ−n)t
c(1−η)

1− η
dt. (3)

The damage coefficient is chosen such that the optimal temperature path
reaches either 1.5°C or 2°C in 2100. For our CE analysis, we set damages to
zero (γ = 0) and add a constraint which is again designed to reach 1.5°C or 2°C
in 2100. A constraint with overshoot implies that the constraint is only binding
from 2100 onwards. We also develop a CB scenario with a lower damage function
and a temperature constraint.

Appendixes A, B and C describe the details of the economic model, the
climate module and GMM estimation respectively.

4 Results

4.1 1.5°C scenarios
Figure 1 plots the emissions and temperature paths of the 6 scenarios reach-
ing 1.5°C. Table 2 presents the associated net negative emissions and welfare

6



2020 2040 2060 2080 2100
-30

-20

-10

0

10

20

30

40

50

60

Emissions (GtCO
2
-eq)

CB15

CE CumE15

CE Forcing15 Overshoot

CE Temp15 NoOvershoot

CE Temp15 Overshoot

CB2 Temp15 Overshoot

2020 2040 2060 2080 2100
1.2

1.3

1.4

1.5

1.6

1.7

1.8
Temperature increase (°C)

Figure 1: Emissions and temperature trajectories meeting 1.5°C

impacts. A radiative forcing constraint without overshoot is infeasible (as in Jo-
hansson et al. [2020]) because keeping radiative forcing constant at the current
level will give a temperature that exceeds 1.5°C.

4.1.1 Cost-benefit

The CB scenario leads to the maximum total welfare by design. The peak
temperature is 1.60°C. Emissions reach zero around 2075 and there are almost
no net negative emissions thereafter (-2GtCO2-eq in 2100). Note that large scale
negative emissions start well before 2075 to compensate for emissions in hard-
to-abate sectors. It is worth reflecting on the logic of net negative emissions.
In a CB analysis, net negative emissions are driven by two factors. First, high
economic inertia costs lead to high emissions during the first decade and a
temperature exceeding the long term optimum. Since abatement in the later
decades come with less inertia costs, negative emissions may become optimal.
This effect is negligible in our model because emissions reach net zero in 2075,
when inertia costs have become negligible. The second driver of net negative
emissions is technological change after peak warming. Since negative emissions
technologies become cheaper over time, it becomes optimal to deploy them at
a larger scale. This effect is again small in our analysis as by 2075 most of the
learning gains, economies of scale and network effects will have been obtained.
As a result, the optimal path has only very modest net negative emissions of
22GtCO2-eq over the period 2075-2100. This will generally be the case unless
we would start the optimisation in 2030 at a temperature of 1.5°C.

Table 1 reports the growth rate of the carbon price. The Hotelling rule
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2020 2030 2040 2050 2060 2070 2080 2090 2100
1.5°C scenario 1.2% 1.4% 1.9% 2.2% 2.3% 2.3% 2.4% 2.4% 2.4%
2°C scenario 1.7% 2.2% 2.5% 2.6% 2.6% 2.6% 2.6% 2.6% 2.6%

Table 1: Continuous growth rates of carbon prices for CB scenarios.

prescribes that the carbon price should grow at the discount rate (2.76%) in
the period before the constraint binds and is very popular in CE analysis. The
welfare-maximizing carbon price is 1.5% (0.5%) lower than the Hotelling rule in
2020 (2050). The initial carbon price is $210/tCO2.

We now analyse the CE scenarios from the lowest to the highest overshoot.

4.1.2 Temperature constraint without overshoot

This is the scenario with the most rapid fall in emissions (Figure 1). Emissions
need to drop drastically to 5.9 GtCO2-eq in 2030. This is due to the very large
past emissions between 2010 and 2020 which have their peak warming effect
a decade later. Since emissions decrease so rapidly after 2020, an increase in
emissions is allowed in 2040. This early dip in emissions is the direct consequence
of not allowing overshoot. The sharp drop by 2030 leads to very high inertia
costs and lower welfare. In other words, the window of opportunity to stay
below 1.5°C without overshoot is behind us. It is neither politically feasible, nor
desirable from a welfare perspective.

4.1.3 Cumulative emissions constraint

The scenario with the cumulative emissions constraint has a very similar emis-
sions path compared to the CB scenario. In the first decades, emissions are
largely driven by inertia costs and are very close to the CB trajectory, leading
to a very similar peak temperature of 1.61°C. Zero emissions are reached earlier
(in 2058) and by the nature of the constraint, there are no net negative emis-
sions. This makes the emission path close to the CB solution in the second half
of the century. The welfare outcome is almost indistinguishable from the CB
analysis.

4.1.4 Constrained cost-benefit

We also run a CB scenario with a mild damage function (calibrated to reach
2°C) while adding a 1.5°C constraint with overshoot. We frame this as an eleg-
ant solution to improve the welfare properties of models that are traditionally
running CE scenarios and are designed to inform target-based policy such as the
Paris agreement. As expected, the emission trajectory is in between the pure
CB analysis and the unconstrained temperature target with overshoot, with a
peak temperature of 1.65°C. In welfare terms, this scenario ranks third, provided
that one considers the damage function resulting in 1.5°C as the true damage
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function. This constrained CB scenario leads to 209 GtCO2-eq cumulative net
negative emissions.

4.1.5 Temperature constraint with overshoot

This scenario reaches net zero in 2065 and has a peak temperature of 1.70°C
and peak net negative emissions of 14 GtCO2-eq at the end of the century.Since
a temperature overshoot is allowed the model is insensitive to warming before
2100. Since discounting shrinks future costs, it becomes optimal to do more
net negative emissions in the far future, which are expensive in current prices,
but cheap in present value terms. This leads to large cumulative net negative
emissions of 344GtCO2-eq. Net negative emissions peak in 2090, since their
cooling effect comes with a delay of approximately 10 years. However, negative
emissions in 2100 are still needed to keep warming below 1.5°C after 2100.

4.1.6 Forcing constraint with overshoot

This scenario has the largest temperature overshoot (1.73°C) and a substantial
amount of negative emissions (22 GtCO2-eq in 2090). Although still very pop-
ular in the literature, the radiative forcing constraint with overshoot is least
attractive from a welfare perspective. The welfare loss, compared to the cost-
benefit scenario, is equivalent to a constant loss of 0.4% of consumption and
corresponds to a loss with a net present value of $29.0 Trillion.

The logic of a constraint on forcing is somewhat different from a temperature
constraint. Forcing is a function of atmospheric GHG concentrations, so the
dynamics of atmospheric CO2 absorption will drive the model. An extra tonne
of CO2 emitted today will be absorbed at approximately 50% in 2100 when the
constraint starts. By contrast, a tonne of CO2 emitted in 2100 will not yet be
absorbed at all in 2100. This creates an extra incentive to emit earlier when
compared to a temperature target (the temperature impact response function is
more or less constant after 15 years). Therefore, total net negative emissions are
highest at 471 GtCO2. Note that from 2095 onwards emissions increase again. A
model without abatement inertia would give decreasing emissions until 2100 and
slightly positive emissions from 2100 onwards. Since our model has abatement
inertia (it would be costly to abandon all infrastructure for negative emissions),
the model smooths emissions in the decade before and after 2100. This artificial
switch is an undesirable artefact of a forcing constraint, which is unrelated to
damages.

To sum up, we obtain the following ranking in welfare terms: cost-benefit
(by design), cumulative emissions, temperature constraint with overshoot and
with low damages, temperature constraint with overshoot, a forcing constraint
with overshoot and a temperature constraint without overshoot. Note that the
commonly used radiative forcing constraint leads to the same level of welfare
losses as the unrealistic 1.5°C temperature constraint without overshoot, even
though there is a 0.23°C difference in terms of peak temperature between the 2
cases. Large net negative emissions are not optimal from a welfare perspective.
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Figure 2: Emissions and temperature trajectories meeting 2°C.

The last 2 columns of Table (2) shows how welfare differences are distributed
between the early period (2020-2050) and the later one (2050-2100).,The less
ambitious scenarios (the CE scenarios with overshoot for instance) have welfare
gains compared to the optimal scenario in the first period because of delayed
action. However, those gains are exceeded by the welfare losses incurred in the
second period due to larger climate damages and higher costs of net negative
emissions. As to the case with the temperature constraint without overshoot,
the opposite is happening: there are early welfare losses due to large inertia in
abatement (stranded assets).

4.2 2°C scenarios
An overview of scenarios is shown in Table 3 and Figure 2. Note that we do not
model climate uncertainty. This means that although our emission scenarios
reach 2°C as a best estimate, they will exceed 2°C with a likelihood of 50%.3

Compared to the 1.5° scenarios, the emission paths are logically less steep.
The scenarios do not reach net zero in this century, there are no net negative
emissions and none of them overshoot the temperature target. Consequently, the
two scenarios with the temperature constraint (with or without overshoot) have
the same trajectory. We will again discuss scenarios with earliest abatement
first.

3In 2100, the IPCC SSP1-RCP2.6 scenario results in 1.8°C warming as the median estimate,
with a very likely range of 1.30°C to 2.4°C (Table SPM.1). This scenario is often interpreted
as in line with a 2°C constraint, yet it is actually in between our model of 1.5°C and 2°C.
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4.2.1 Cost-benefit

The CB scenario is significantly different from all the CE scenarios: it leads
to much earlier abatement and a slower temperature increase. For example,
there are 30.7 GtCO2-eq annual emissions in 2040 and a temperature increase
of 1.73°C in 2050. In the 2°C analysis, the largest differences are not caused by
the different ways to constrain the scenarios but they appear between CB on
the one hand, and all the CE scenarios on the other hand. Table 1 shows that
the growth rate of the carbon price is 1% (0.3%) lower in 2020 (2050) than the
Hotelling rule. The lower growth rate of the CB analysis implies a higher initial
carbon price, at $121/tCO2.

4.2.2 Forcing constraint without overshoot

Due to thermal inertia, a constant level of forcing leads to a slowly increasing
temperature for several centuries. Therefore, the forcing constraint becomes
binding around 2070 at a temperature of only 1.9°C, since constant forcing
from 2070 onwards will increase temperature from 1.9°C to 2°C. As the forcing
constraint without overshoot imposes earlier abatement, especially after 2040,
it scores slightly better on welfare than the other CE scenarios. Remember that
this constraint was not explored in the 1.5°C analysis as it was infeasible i.e.
constant current radiative forcing leads to warming above 1.5°C in 2100.

However, the binding constraint on forcing is not attractive from a theo-
retical perspective for three reasons. Firstly, forcing does not drive damages,
temperature does. Secondly, when combined with a higher discount rate or
used for warmer temperature constraints, the constraint does not bind before
2100 and the result is the same as the forcing constraint without overshoot, i.e.
slightly worse than a temperature constraint. Thirdly, a constant forcing con-
straint leads to an increasing temperature for centuries. Hence the temperature
will increase beyond 2°C after 2100.

4.2.3 Temperature and cumulative emissions constraint

The temperature constraint is not binding before 2100, so the scenarios which
allow overshoot and those which do not are identical. Temperature and cumu-
lative emissions constraints have very similar impacts and have almost the same
welfare ranking. The cumulative emissions constraint scores slightly better and
leads to more abatement in the first decades. In the first periods, the CE sce-
nario with a cumulative emissions constraint is actually the most ambitious CE
scenario. Temperature increase is gradual, leading to 1.78°C warming in 2050,
compared to 1.73°C for CB. The scenario with a temperature constraint shows
a deceleration of abatement after 2095. This is an artefact of the short delay
between emissions and warming and is non-desirable from a welfare perspective.
A cumulative emissions constraint avoids this disadvantage.
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4.2.4 Forcing constraint with overshoot

As mentioned before, the earlier the emissions, the more CO2 gets absorbed
by 2100, creating an incentive to postpone abatement. This is why the forcing
with overshoot scenario has the highest early emissions, deviates most from CB
and scores worst on welfare. For instance, emissions in 2040 are 38.4GtCO2-eq,
slightly higher than the 36.5GTCO2-eq for a cumulative emissions constraint
and much higher than the 30.7 GtCO2-eq in the CB analysis. It leads to a
slightly faster temperature increase compared to other CE scenarios (1.79°C in
2050). Emissions rise just before 2100 due to the combination of two factors: 1)
constant forcing after 2100 is compatible with rising temperatures after 2100 and
therefore higher emissions after 2100 and 2) our model includes an abatement
speed penalty and anticipates higher emissions after 2100.

Note that we have compared scenarios with the same temperatures in 2100.
This is because the IPCC is organized around scenarios until 2100. However,
the CB scenarios have a peak warming much later than 2100. If we compare
scenarios with identical temperature at a later period, the difference between
CE and CB becomes much larger. Appendix F compares 2°C CE scenarios with
a CB scenario which reaches 2°C in 2200, the difference between the CE and CB
scenarios becomes much larger and the welfare cost of CE becomes substantial.

A second reason why we may underestimate the costs of CE analysis is
because methane, the second most important greenhouse gas, has a short at-
mospheric lifetime. As a result, current methane emissions have very modest
warming effect in 2100, therefore the incentive to postpone abatement in CE
analysis with overshoot will be even stronger for methane than for CO2.

5 Conclusion and discussion
Using the climate dynamics from the CMIP5 ensemble, and abatement cost dy-
namics of the IPCC 1,5°C report and NGFS, we analyse the principle forms of
climate constraints used in CE models: a cumulative emissions budget, a tem-
perature target, and a radiative forcing target (all with or without overshoot).
We show that the type of constraint matters in terms of emissions trajectory,
temperature overshoot and welfare losses. For instance, in order to reach the
1.5°C target in 2100, the emissions level in 2050 ranges from 2 to 17 GtCO2-eq,
depending on the formulation of the target. Total net negative emissions until
2100 ranges from 0 to 471 GtCO2-eq andthe welfare cost of using CE rather
than CB analysis can be up to $29 Trillion. We have five key messages from
our findings.

First, for scenarios reaching 2°C in 2100, CB scenarios differ substantially
from CE scenarios. In this case, the short term dynamics of warming do
not play a large role and all CE constraints give similar results, with insuffi-
cient early abatement and approximately 20% excess emissions in 2050. Since
CE analysis disregards the timing of climate damages, it misses an incentive
for early abatement. One way to improve the dynamics of the trajectory is
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to add damages to the model. Even if damages would be poorly calibrated
or underestimated, they will improve the dynamic properties of the model.
Another way to improve the dynamics is to adjust the carbon price path.
Whereas the cost-effective carbon price increases at the discount rate4, the
welfare-maximizing carbon price starts higher and increases at a slower rate.
Appendix A shows that the welfare-maximizing carbon price dynamic follows
ṗ = rp −Marg damage − Endog TC gain. The term rp corresponds to the
Hotelling rule and indicates that discounting of abatement costs creates an in-
centive to postpone abatement. By contrast, damages and endogenous TC
create an incentive to abate earlier, reducing the optimal carbon price growth
rate by 1%, 0.5% and 0.3% in 2020, 2030, and 2050 respectively. To improve
the welfare properties of their scenarios, modellers can use these percentages to
obtain a welfare-corrected Hotelling rule.

Secondly, the overly steep carbon price path of CE is exacerbated by the
choice of high discount rates. Gollier [2021] shows that the mean discount rate
used in the 767 scenarios of the AR5 IPCC database is 7.0%. Similarly, the
US Climate Leadership Council, the French Quinet commission and the UK
government have proposed carbon price paths increasing at 5%, 8% and 16%
per year respectively Gollier [2021]. These implicit discount rates are very far
from economists’ consensus discount rates (Drupp et al. [2018]). High discount
rates may be chosen because high abatement costs today are deemed politically
infeasible. Yet it should be clear that the resulting scenarios are not welfare-
maximizing and put an excessive burden on future generations. It should also
be clear that this is a risky strategy, because a carbon price increasing at 7%
per year can be as politically difficult as a carbon price that starts relatively
high. The ’second-best’ solution could then lead to a world of 2,5 or 3°C.

Thirdly, when analysing paths leading to 1.5°C in 2100, short term climate
dynamics matter. The window of opportunity to stay below 1.5°C is more or less
behind us, and modest overshoot of 1.6°C, has become desirable from a welfare
point of view. This requires a substiantial worldwide marginal abatement cost
(carbon price) of $210/tCO2. A cumulative emission constraint scores best on
welfare, followed by a temperature constraint with overshoot.

Fourthly, a radiative forcing target with overshoot, is dynamically the least
attractive and should be avoided. It leads to the farthest path from the optimal
CB path because the carbon absorption over time creates an incentive to post-
pone abatement. The discounted extra cost of using this constraint compared
to cost-benefit is $29 Trillion for the 1.5°C and $8 Trillion for the 2°C scenario.

Fifthly, for scenarios starting in 2020,large net negative emissions are never
optimal. Instead, they tend to be an artefact of the radiative forcing constraint
with overshooting (see also Johansson et al. [2020]), sometimes combined with
high discount rates. Our welfare-maximizing paths reaching 1,5°C in 2100 does
not exceed 2GtCO2 net negative emissions per year. Carbon removals from
the atmosphere are important in optimal climate scenarios, but they should
compensate emissions from hard-to-abate sectors and should not lead to large

4This is exact for a cumulative emission constraint and approximate for other CE models.
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net negative emissions. Instead, respecting the Paris agreement at the lowest
welfare cost requires radical worldwide reductions in emissions by 2040.
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A Appendix : Our model
Since our analysis focuses on the transition rather than the long term outcome
(all our models have 1.5°C or 2°C in 2100) it is important that we model the
dynamics of the abatement cost function in a convincing way. Our model is
flexible, yet parsimonious. This has the advantage that we are able to fit our
model to a few variables which are available for a large set of model runs of
detailed bottom-up models: the time series of total abatement costs, marginal
abatement costs, abatement and GDP.

Abatement a equals business-as-usual emissions minus emissions,

a = EBAU − E (4)

Cumulative abatement A equals cumulative BAU emissions minus cumulat-
ive emissions,

At = A0 +

∫ t

0

EBAUdτ − St + S0. (5)

Therefore, all else equal, an extra unit of cumulative emissions implies a unit
less of cumulative abatement AS = −1.

20



We use a non-stochastic fruit tree model for our business-as-usual consump-
tion (Lucas Jr [1978]). Exogenous labour-augmenting TC improves labour pro-
ductivity, leading to a BAU consumption growth rate of rate g. For a similar
model with capital and savings, see Campiglio et al. [2022].

Assume the following linear marginal abatement cost function, proportional
to consumption c,

MAC
def
= − ∂c

∂a
= ϕ (A/A0)

−χ
ac. (6)

Parameter ϕ is the slope of the MAC curve. The factor (A/A0)
−χ represents

endogenous TC, with elasticity χ, such that for every percentage increase in
cumulative abatement, the marginal abatement cost, decreases by χ%. Our
main model has a linear MAC curve. We also fit a model with a quadratic MAC
curve, but the quadratic term is both economically and statistically insignificant.

We add a penalty on the abatement speed, because very rapid abatement
leads to stranded assets, repurposing costs and capital adjustment costs. We
define the abatement speed v = ȧ and assume a quadratic total speed penalty.
This results in a linear marginal abatement speed penalty − ∂c

∂v = θvc.
We assume that climate damages are quadratic and proportional to con-

sumption. The climate dynamics are modelled in the next appendix, and define
how a given emission trajectory translates into a temperature trajectory. All
the above leads to the following expression for consumption per capita

c = c0e
(gt−ϕ2 (A/A0)

−χa2− θ22 v
2− γ2 T

2), (7)

where c0 is a constant, representing initial consumption in the absence of
climate damages and abatement costs and g is an exogenous tfp-growth process.

We use a utility function with constant elasticity of marginal utility u = c1−η

1−η ,
with c consumption per capita and η the elasticity of marginal utility. We
standardize population at time zero at 1 and assume that population grows at
rate nt.5 In the CB setting, the social planner maximises discounted utility and
solves the following problem

max{a}

∫ ∞
0

e−(δ−nt)tu(c)dt, (8)

subject to

Tt = f({Eτ<t}); Ȧ = a;S0 given;A0 given. (9)

We solve the problem as a constrained maximization problem over a finite
horizon between 2020 and 2400 and a time step of 2 years.

To give some analytical insight we use optimal control under the simplifying
condition that temperature is proportional to cumulative emissions T = ζS.

5In our calibration, we assume that the growth rate is constant, i.e. ṅt = 0.
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The present value Hamiltonian is

HPV = e(−δ+nt)tu(c)− λS(EBAU − a) + λav. (10)

Optimality conditions include

λa =e(−δ+nt)tuccθv, (11)

λ̇a =e(−δ+nt)tuccϕta (A/A0)
−χ − λS , (12)

λ̇S =e(−δ+nt)tuccS . (13)

with marginal damage cS = −cγζ2S. Take the time derivative of equation
11

λ̇a = e(−δ+nt)tuccθv

[
−δ + nt + ṅt− η ċ

c
+
ċ

c
+
v̇

v

]
(14)

The shadow price of cumulative emissions expressed in consumption units, a.k.a.
the carbon price, corresponds to the marginal abatement cost augmented by
extra inertia costs

p =
λSe−(δ−nt)t

uc︸ ︷︷ ︸
Carbon Price

= cϕa (A/A0)
−χ︸ ︷︷ ︸

∂c/∂a standard MAC

+ cθ [rv − v̇]︸ ︷︷ ︸,
Abatement speed costs (pos)

(15)

with the consumption discount rate r = δ − nt − ṅtt+ (η − 1) ċc .
Equations 13 and 15 can be combined as follows

ṗτ = rτpτ − (−cSτ )︸ ︷︷ ︸
Marginal damages

+
χϕτ
2Aτ

a2τ (Aτ/A0)
−χ︸ ︷︷ ︸

endogenous TC gain

. (16)

This shows that the growth rate of the carbon price is lower than the discount
rate, both due to the inclusion of climate damages and due to endogenous
technological change.

Integrating equation 16, shows that the carbon price is also the sum of both
the SCC and the future gains from technological change

pt =

∫ ∞
t

ee
−δ(τ−t)+(nττ−ntt)−η

∫ τ
t
ċ
c
ds︸ ︷︷ ︸

Discount factor

cτ

 −cSτ︸ ︷︷ ︸
Marginal damages

+
χϕτ
2Aτ

a2τ (Aτ/A0)
−χ︸ ︷︷ ︸

endogenous TC gain

 dτ.

(17)

B The climate module
Concerning the climate module, we use the Joos et al. [2013] carbon cycle and
the Geoffroy et al. [2013] thermal inertia model, as done in Dietz et al. [2021].
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The temperature dynamics are defined as

∆Tt
∆t

= ξ1
[
Ft − ξ2Tt−1 − ξ3

[
Tt−1 − Toceant−1

]]
(18)

∆Toceant
∆t

= ξ4
[
Tt−1 − Toceant−1

]
(19)

with T , the warming of the atmosphere; Tocean, warming of lower oceans; ∆t
is our time step (2 years); ξ1, the warming delay parameter; ξ2, the forcing per
degree warming; ξ3, the transfer of heat from ocean to surface; ξ4, the transfer
of heat from surface to ocean.

Ft the radiative forcing function is defined by

Ft = FCO2X ∗ log(MATt/MATeq)/log(2) + Fotht (20)

with FCO2X , the forcing from CO2 doubling; MATt, carbon concentration
in the atmosphere at time t; MATeq, equilibrium carbon concentration in 1850
(588 GtC); Fotht , other radiative forcing.

Other forcings are exogenous. We use IPCC RCP 1.9 and 2.6 other forcing
data (Riahi et al. [2017], Rogelj et al. [2018], Gidden et al. [2019]), depending
on the scenario.

MATt (carbon stock in the atmosphere) is actually the sum of 4 different
reservoirs or “boxes”, denoted byM . Following the approach in Joos et al. [2013],
each box is a fraction of atmospheric concentration decaying at a different speed,
but those boxes do not represent a physical reality. Each box evolves according
to the following differential equation6

dM

dt
=

0.75

3.66
αECO2 − ωMi (22)

withMt,a vector of stocks of carbon in 4 reservoirs or ’boxes’; α is a vector of
4 parameters allocating emissions to each CO2 reservoir; ω, a vector containing
the decay rates of each box. One of the boxes does not decay (ω = 0). ECO2

is carbon emissions. When we calibrate the model on the IPCC and NGFS
scenarios, we only have abatement costs for total GHG emissions. Therefore,
we calibrate abatement costs, assuming that the proportion of CO2 in these
models remains constant at 25%, i.e. ECO2

= 0.75E. The factor 3.66 corrects
for the fact that emissions are expressed in GtCO2, whereas carbon stocks are
in GtC.

6We discretize the equation using a time step of 2 years and obtain the following formula
(abstracting from the effect of decreasing emissions)

Mt+2 = α/ω ∗ (1 − e−2ω)
0.75

3.66
ECO2 +Mte

−2ω (21)

For ω = 1, we have the exact solution ∆Mt = α 0.75
3.66

ECO2.
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C GMM and model parameters
We fit the main parameters of our dynamic marginal abatement cost function
to the climate scenarios database of IPCC 1.5°C report and the NGFS (Rogelj,
J. et al. [2018], Huppmann, D. et al. [2019], NGFS [2021]). For the calibration,
we use the model presented in appendix A, which includes a speed penalty on
abatement and endogenous learning. We use equation 1 and define abatement as
60GtCO2-eq minus emissions. Our stylised model has the advantage that it re-
quires only four variables, which are available for all IPCC and NGFS scenarios:
total abatement costs, marginal abatement costs (carbon price), emissions and
GDP. We use 109 scenarios of the IPCC and NGFS database which are defined
for 17 periods of 5 years (from 2015 to 2100). We assume that each modelling
team makes a meaningful estimate of abatement costs in the future. However,
those different scenarios are obtained thanks to various modelling tools which
use various assumptions. In order to avoid the impact of extreme values, carbon
prices are winsorized at the 5% value within each period and total abatement
costs are winsorized at the 1% level. We fit both the total abatement cost and
marginal abatement cost functions to the dataset, using Generalized Method of
Moments and assuming that the errors of the equations are normally distrib-
uted. We minimise the sum of the square errors of the two equations, and we
do not minimise the product of the errors. We tried different specifications of
this fit, giving different relative weights to the two equations. We found that
our values of our cost parameters are quite stable for the different weights as-
sumptions (except for the inertia parameter). In the final fit, same weights are
assumed for both equations and the inertia parameter is significant and has a
meaningful value. Conceptually, we fit a line through different combinations of
MAC and abatement of each model. We assume this relationship between MAC
and abatement is meaningful, even if the model would have reached that level of
abatement via a suboptimal path. Table 4 provides the parameters estimates.

Concerning the other parameters of the economic model (δ, n, η, g, ζ, γ), we
use values from the literature, provided in Table 5. Table 6 summarises our
physical climate parameters.

D Optimisation and calibration
We use the fmincon function in Matlab for our optimisation. The algorithm
maximises welfare or minimises discounted abatement costs by choosing emis-
sions in each period of 2 years. In the objective function, we use the mid-period
discount factor and mid-period values for consumption, cumulative emissions
and cumulative abatement. Even though we report the trajectories only until
2100, we run the model from 2020 to 2400 (we constrain emissions to be zero or
less in the last 200 years to avoid increasing emissions at the result of the finite
horizon).

The CE scenarios with a temperature constraint minimises abatement costs
subject to a temperature constraint of 1.5°C or 2°C, and has no damages. As

24



Variable Parameters estimates
ϕ0 4.74e-05

3.64e-06
θ2 .00178

.000302
χ .109

.0452
A0 100.6

134.7
N 1848
ll 7121.0
bic -142112.0
aic -14234.1

Table 4: Parameters of the abatement cost function, fitting total abatement
cost and marginal abatement cost functions to 109 scenarios of the IPCC 1.5°C
report and the NGFS, using Generalized Methods of Moments.

Parameter Value Source
δ−n 0.011-0.005 Drupp et al. [2018], United Nations

[2017]
η 1.35 Drupp et al. [2018]
g 0.02 By assumption
ζ 0.0006 By assumption
γ 0.0102-0.0268 Calibrated to reach the desired

temperature outcome
EBAU 60 GtCO2 IPCC AR6 WGIII IPCC [2022]

Table 5: Other parameters for the economic model.
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Parameter Value Source
ω 1; 1-0.00254;

1-0.0274;
1-0.232342

Joos et al. [2013]

α 0.2173; 0.2240;
0.2824; 0.2763

Joos et al. [2013]

MATeq 588 Dietz et al. [2021]
initial values

ofM
588+139.1; 90.2;

29.2; 4.2
Dietz et al. [2021]

TATM0 1.2 IPCC [2021]
Tocean0

0.28 Dietz et al. [2021]
FCO2X 3.503 Geoffroy et al. [2013], Dietz

et al. [2021]
ξ1 0.386 Geoffroy et al. [2013], Dietz

et al. [2021]
ξ2 1.13 Geoffroy et al. [2013], Dietz

et al. [2021]
ξ3 0.73 Geoffroy et al. [2013], Dietz

et al. [2021]
ξ4 0.034 Geoffroy et al. [2013], Dietz

et al. [2021]

Table 6: Parameters of the climate module.
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to the scenarios with cumulative emissions or radiative forcings constraints, we
run the scenarios multiple times in order to find the right constraint in terms
of cumulative emissions or radiative forcing which correspond to the desired
temperature level in 2100. For the CB analysis, we replace the constraint by
climate damages and calibrate the damage parameter with a similar trial and
error procedure to reach 1.5°C or 2°C.

E Results for a cubic damage function
We run the model with a cubic damages function (considering T³ instead of T²).
We call this scenario the “cubic case” (“CB15 CubicDam” in Fig. 3) while we
refer to our central scenario with a quadratic damages function as the “quadratic
case” (“CB15” in Fig. 3). In the cubic case, we modify the damages coefficient
so that 1.5°C remains the welfare-maximizing temperature in 2100. In order to
reach 1.5°C, we see that the optimal (unconstrained) CB path is very similar
whether one considers a quadratic or a cubic damages function (see Fig. 3).
There are almost no visible differences. The peak overshoot actually remains
almost the same. However, in the cubic case, emissions decrease slightly faster
after peak warming and hence temperature decreases faster as well. In fact, the
temporary overshoot is more costly in this scenario because of the more convex
shape of the climate damages function. However, the effect is not large since it
still needs to reach the same temperature outcome and since the inertia costs
play an important role in early decades. Note that following the faster decrease
in emissions after peak warming, the abatement rate then decreases (after 2080
there are more emissions in the cubic case than in the quadratic case). As a
consequence, there are slightly less end-of-century net negatives emissions in the
cubic case.

F Results for a cost-benefit scenario with peak
warming of 2°C in 2200

In the main analysis, we compare scenarios with the same temperatures in 2100.
However, the CB scenarios have peak warming much later than 2100. If we
compare scenarios with identical temperature at a later period, the difference
between CE and CB becomes larger. In this appendix, we compare our central
2°C CE scenarios with a CB scenario which reaches 2°C in 2200. The difference
between the CE and CB scenarios becomes much larger and the welfare cost of
CE becomes substantial.

Fig. 4 illustrates this difference. It is the same as Fig. 2, except that there
is one more scenario: a CB scenario with a peak warming of 2°C in 2200. We
see that early abatement is much more important when we consider 2°C to be
the peak warming in 2200 instead of 2100.
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Figure 3: Emissions and temperature trajectories meeting 1.5°C: differences
between a quadratic and a cubic damages function.
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Figure 4: Emissions and temperature trajectories meeting 2°C: central scenarios
and a CB scenario with a peak warming in 2200.

28


