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Abstract: Recently, Letzter proved that any graph of order n contains a collection P of
O(n log⋆ n) paths with the following property: for all distinct edges e and f there exists a path
in P which contains e but not f . We improve this upper bound to 19n, thus answering a ques-
tion of G.O.H. Katona and confirming a conjecture independently posed by Balogh, Csaba,
Martin, and Pluhár and by Falgas-Ravry, Kittipassorn, Korándi, Letzter, and Narayanan. Our
proof is elementary and self-contained.

A path separates an edge e from an edge f if it contains the former and not the latter. How many
paths do we need to separate any edge from any other?

This question was first asked by G.O.H. Katona in 2013 (see [6]), in line with the general study of
separating systems initiated by Rényi in 1961 [10]. Note that the roles of e and f are not symmetric.
There are in fact two variants of the problem, which we clarify now. A collection P of paths in a graph G
is a strongly-separating path system of G if, for any two distinct edges e and f of G, there exist paths
Pe and Pf in P such that e ∈ Pe, e ̸∈ Pf and f ∈ Pf , f ̸∈ Pe. The collection P is a weakly-separating path
system of G if for any two distinct edges e and f , there is a path P ∈ P that contains one and not the
other. The size of a (weakly or strongly) separating path system is the number of paths in the collection.
We recommend the excellent introduction in [7] for a more complete description of the history of the
problem. We are interested in the following conjecture.
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Conjecture 1 ([1, 6]). Every graph on n vertices admits a strongly-separating path system of size O(n).

This conjecture was formulated independently by Falgas-Ravry, Kittipassorn, Korándi, Letzter, and
Narayanan [6] for weakly-separating path systems, and later strengthened by Balogh, Csaba, Martin,
and Pluhár [1] to strongly-separating path systems. Very recently, Letzter [7] made major progress
toward Conjecture 1 by proving that every graph on n vertices admits a strongly-separating system with
O(n · log⋆ n) paths. A key component in [7] is the use of sublinear expanders, motivated by the recent
work of Bucić and Montgomery [3]. In this note we obtain a linear bound, thus confirming Conjecture 1.

Theorem 2. Every graph on n vertices admits a strongly-separating path system of size 19n.

Our proof uses Pósa rotation–extension tools [9] as presented by Brandt, Broersma, Diestel, and
Kriesell [2], and is inspired by Lemma 2.2 in Conlon, Fox, and Sudakov [4]. In essence, we reduce
the general problem to traceable graphs, i.e., graphs with a path that spans all vertices, known as a
Hamiltonian path.

Before delving into technical arguments, we point out that the upper bound of 19n is likely far from
optimal. Balogh et al. [1, Theorem 10] showed that the complete bipartite graph Kεn,(1−ε)n cannot be
strongly separated by fewer than 2(1−2ε)n paths. However, we are not aware of any graph with a larger
lower bound. Therefore, the following might be true.

Problem 3. Does every graph on n vertices admit a strongly-separating path system of size 2n ?

Determining the exact constant is challenging even for cliques [11]. In our initial attempts to solve
Conjecture 1, we stumbled upon this question:

Problem 4. Does every properly edge-colored graph G admit O(|V (G)|) rainbow paths that cover E(G) ?

In this context, a rainbow path is a path that does not contain two edges of the same color. To the best
of our knowledge, this question has not been stated anywhere else. We pose this question here, since
we believe it to be natural and interesting in its own right. Problem 4, if answered affirmatively, would
yield an alternative proof of Conjecture 1: start with a linear path decomposition (e.g., with Theorem 6),
decompose each path into two matchings, and define two graphs each containing precisely one of the
matchings of each path. The matchings form a proper edge coloring of each such graph, and the two
linear rainbow path decompositions of these graph together with the original path decomposition form a
strongly separating path system. We remark that we can verify a version of Problem 4 where “paths” is
replaced by “trails”.

Proof of Theorem 2

From now on, every separating path system is a strongly-separating path system. We use the following
standard notation. Given a graph G, and a set S ⊆V (G), we denote by NG(S) the set of vertices not in S
adjacent in G to some vertex in S. We omit subscripts when clear from the context.

Pósa rotation-extension. Given a graph G and vertices u,v in G, let P = u · · ·v be a path from u to v. If
x ∈V (P) is a neighbor of u in G and x− is the vertex preceding x in P, then P′ = P−xx−+ux is a path in
G for which V (P′) =V (P). We say that P′ has been obtained from P by an elementary exchange fixing v
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u x− x v

Figure 1: a path (highlighted) obtained by an elementary exchange fixing v.

(see Figure 1). A path obtained from P by a (possibly empty) sequence of elementary exchanges fixing v
is said to be a path derived from P. The set of endvertices of paths derived from P that are distinct from v
is denoted by Sv(P). Since all paths derived from P have the same vertex set as P, we have Sv(P)⊆V (P).
When P is a longest path ending at v, we obtain the following.

Lemma 5 ([2]). Let P = u · · ·v be a longest path of a graph G and let S = Sv(P). Then |NG(S)| ≤ 2|S|.

Proof rephrased from [2, Lemma 2.6]. Since the maximum degree of P is 2, it suffices to show that
NG(S) ⊆ NP(S). Let x ∈ S and y ∈ NG(x) \ S be given. As x ∈ S there is a longest path Q = x · · ·v
derived from P. Note that, by the maximality of Q, we have y ∈V (Q). Let z denote the predecessor of y
in Q, and note that Q+ xy− yz is obtained from Q by an elementary exchange. Now, consider the first
edge e incident to y that is removed by an elementary exchange in the “derivation sequence” from P
to Q+ xy− yz, and note that e ∈ E(P). Note that when an elementary exchange removes an edge ab of
a path derived from P, then a or b belongs to S. Therefore one of the vertices of e is in S. Since y ̸∈ S
and e ∈ E(P), we obtain y ∈ NP(S), as desired.

Our argument requires a lemma stating that every n-vertex graph admits an edge-cover by O(n) paths.
While elementary arguments yield a cover by at most 6n paths (as we discuss at the end of the paper), we
optimize the multiplicative constant in Theorem 2 using a result of Dean and Kouider [5] that strengthens
a well-known result of Lovász [8].

Theorem 6 ([5]). Every graph G contains at most 2|V (G)|/3 edge-disjoint paths covering E(G).

Let H and G be (not necessarily disjoint) graphs. We say that a set of paths P in H ∪G separates H
from G if for each pair (e, f ) ∈ E(H)×E(G) with e ̸= f there is a path in P that contains e and does not
contain f . Now, we are able to prove our result.

Proof of Theorem 2. We proceed by induction on n. Let G be a graph with n vertices. If G is empty, the
result trivially holds. If not, we consider P and S as in Lemma 5. Let H be the subgraph of G induced by
the edges with at least one vertex in S, set n′ = |V (H)|, and note that n′ ≤ 3|S|. Let G′ = G\S and note
that G is the (edge) disjoint union of G′ and H. Note that, since G is not empty, S is not empty. By the
induction hypothesis, G′ admits a separating path system Q′ of size 19(n−|S|). Since Q′ covers G′, the
family Q′ separates G′ from H. In what follows, we construct a set of paths P that separates H from G.
Moreover, we obtain such P so that |P| ≤ 19|S|, and hence Q′∪P is a separating path system of G with
cardinality at most 19(n−|S|)+19|S|= 19n as desired.

First, let PS = E(P)∩E(H) be the set of edges of P having at least one vertex in S (see Figure 2),
and let PS be the set of paths each consisting of a single edge in PS, i.e., PS = {(e,{e}) : e ∈ PS}. Now,
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S N(S)
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Figure 2: Left: a set S in a traceable graph and its neighborhood N(S); a Hamiltonian path is highlighted,
dashed red edges are the edges in PS. Right: paths that separate subgraphs of G, where A α→ B indicates
that α separates A from B (for instance, Q′ separates G′ from H ′).

P

Mk

Figure 3: Set of comparable edges Mk (dashed) and a highlighted path Pk joining them.

let D be the path decomposition of H ′ = H \PS given by Theorem 6. Note that PS ∪D has size at most
2|S|+2n′/3 ≤ 4|S| and separates (i) H from G′; (ii) H ′ from P; and (iii) PS from G. It remains to create a
set of at most 5n′ ≤ 15|S| paths that separates H ′ from itself (see Figure 2).

Let us write P = u1 · · ·um, and let v1, . . . ,vn′ be the vertices of H in the order that they appear in P, i.e.,
so that if vi = usi and v j = us j , then i < j if and only if si < s j. In what follows, each edge viv j is written
so that i < j. We define 5n′ sets of edges as follows: for k ∈ [2n′] let Mk = {viv j ∈ E(H ′) : i+ j = k},
and for k ∈ [3n′] let Nk = {viv j ∈ E(H ′) : i+2 j = k}. We shall build a family of 5n′ paths, covering each
of the Mk and Nk. (Strictly speaking, we need fewer than 5n′ paths, since some Mk and Nk are empty.
However, as far as we can tell, this only leads to marginal improvements.) Note that M= {M1, . . . ,M2n}
(resp. N = {N1, . . . ,N3n}) partitions E(H ′).

We observe that for any k, the edges in Mk are pairwise comparable (similarly for Nk), in the sense
that given viv j,vi′v j′ ∈ Mk with i > i′ we have j′ > j, and in fact j′ > j > i > i′, i.e., each Mk and Nk is a
set of “nested” edges with respect to P. Moreover, the set Mk is a subset of {v1vk−1, . . . ,v k

2−1v k
2+1}, with

the last indices tweaked to fit the parity of k. In the same manner Nk ⊆ {v1v k−1
2
, . . . ,v k

3−2v k
3+1}, again

with tweaks depending on the value of k mod 6. Now, for each k ∈ [2n′], we find a path Pk using all edges
of Mk and (possibly) some edges in P (see Figure 3). Let Mk = {x1y1, . . . ,xsys} where the xi’s are chosen
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in increasing order on P (hence the yi’s in decreasing order). By induction on i from s down to 1, there is
a path Ri in Pi ∪{xiyi, . . . ,xsys} that contains xiyi, . . . ,xsys and ends in either xi or yi, where Pi denotes the
subpath of P between xi and yi. Therefore, Pk = R1 is the desired path. Analogously, for k ∈ [3n′], we
obtain a path Qk that contains Nk and some edges of P.

We claim that the collection of Pk’s and Qk’s together separates each pair of edges in H ′. Indeed,
let viv j and vi′v j′ be two edges of H ′. Each such edge belongs to exactly one Mk and exactly one Nk.
If they belong to different Mk’s, they belong to different Pk’s and are separated. Similarly, if they belong
to different Nk’s. Therefore, we may assume that i+ j = i′+ j′ and i+2 j = i′+2 j′. This immediately
yields j = j′ and i = i′, as desired. Therefore, any two distinct edges in H ′ are separated by this collection,
which involves 5n′ paths. This concludes the proof.

Discussion and further work

As mentioned in the introduction, the best possible constant factor in Theorem 2 might well be 2. Here
we obtain 19, which can still be reduced a little with some care1. While partial progress would only be of
limited interest, we highlight here straightforward candidates for improvement. First, any improvement of
the ratio n′

|S| (currently 3) would immediately significantly improve the factor. Second, with the arguments
in this paper we can prove that the edges of any traceable graph with n vertices can be separated by
(6+2/3)n paths. In fact, any improvement of that could be plugged in the proof and used to improve the
bound. In contrast, we observe that Theorem 6 is tight for disjoint triangles.

We also note that by using the Mk’s together with Lemma 5, we can prove that the edges of any
graph can be covered by 6n paths without using Theorem 6. This allows us to verify Conjecture 1 in a
self-contained manner.

As a final remark, we observe that robust sublinear expanders, which play a key role in [7], have also
been applied in [3] to investigate the well-known Erdős–Gallai conjecture, that says that the edges of
any n-vertex graph can be partitioned into O(n) edges and cycles. It is natural to wonder if our approach
might be useful in tackling this conjecture as well.
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