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The positive–negative–competence (PNC) 
model of psychological responses to 
representations of robots

Dario Krpan    1 , Jonathan E. Booth    2 & Andreea Damien    1

Robots are becoming an increasingly prominent part of society. Despite 
their growing importance, there exists no overarching model that 
synthesizes people’s psychological reactions to robots and identifies what 
factors shape them. To address this, we created a taxonomy of affective, 
cognitive and behavioural processes in response to a comprehensive 
stimulus sample depicting robots from 28 domains of human activity (for 
example, education, hospitality and industry) and examined its individual 
difference predictors. Across seven studies that tested 9,274 UK and US 
participants recruited via online panels, we used a data-driven approach 
combining qualitative and quantitative techniques to develop the positive–
negative–competence model, which categorizes all psychological processes 
in response to the stimulus sample into three dimensions: positive, negative 
and competence-related. We also established the main individual difference 
predictors of these dimensions and examined the mechanisms for each 
predictor. Overall, this research provides an in-depth understanding of 
psychological functioning regarding representations of robots.

Various projections indicate that robots will soon become a constitu-
ent part of society and will need to be increasingly integrated into it1–5. 
This trend highlights the importance of understanding people’s psy-
chological processes (for example, feelings, thoughts and actions) 
towards robots. Indeed, these processes form the basis of human–robot 
relationships and are therefore likely to shape the dynamics of the new 
world permeated by robots6–10. In this respect, although various pro-
cesses have been investigated6, this research area is still in its infancy 
for several reasons.

First, scholars have not synthesized psychological processes 
towards robots into an overarching framework that clarifies how they 
function as a whole and allows for building theories that would explain 
them. Second, it is unclear whether, and how many, important psycho-
logical processes remain hidden due to the lack of systematic research 
on this topic. Third, previous studies have mainly focused on specific 
robot types (for example, social6) rather than examining the full con-
tent space of robots across all domains of human activity (for example, 

education, hospitality and industry). Finally, most research has been 
conducted outside of psychology (for example, healthcare and robot-
ics6,11,12). Consequently, there has been little effort to integrate people’s 
responses to robots with important constructs from psychology in a 
way that would allow the field to study this topic more systematically 
and establish a coherent research stream around it.

To address this, the present research has two objectives: (1) to 
develop an integrative and comprehensive taxonomy of psychological 
processes in response to robots from all domains of human activity 
that organizes these processes into dimensions; and (2) to establish 
which individual differences widely studied in psychology are the 
most important predictors of these dimensions and to understand 
the mechanisms behind their relationships.

In this context we use the term ‘psychological processes’ in ref-
erence to people’s affective (that is, feelings towards robots), cog-
nitive (that is, thoughts about robots) and behavioural responses 
(that is, actions towards them). This rule-of-thumb classification is 
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general principles (that is, theory), data-driven research is inductive 
because it starts with empirical observations that are not guided by 
hypotheses and can progressively evolve into theory77–82.

A data-driven approach is recommended if (1) a construct is in its 
early stages of development and/or (2) its theoretical foundations have 
not been established77–80,82,83. Based on this, a data-driven approach 
is optimal for our research for both reasons. First, as previously indi-
cated, the conceptual bases of our topic are at an early stage because 
different affective, cognitive and behavioural responses to robots 
have not been studied under an all-encompassing construct (that is, 
psychological processes). Second, theoretical foundations have not yet 
been developed, because encapsulating the entirety of psychological 
functioning regarding robots by identifying, organizing and predicting 
the psychological processes triggered by robots is beyond the scope 
of existing models of human–technology relationships. To illustrate 
this, the technology acceptance model84–86 and its extensions—the 
unified theory of acceptance and use of technology87–89 and the Almere 
model90—examine the factors that make people accept technology 
(for example, perceived usefulness, ease of use or social influence) 
whereas the media equation91–93 examines whether people interact 
with media (for example, computers) similarly to how they interact 
with other humans.

Data-driven approaches have three main benefits. First, they allow 
the study of novel topics without engaging in premature theorizing that 
can lead to post hoc hypothesizing and false-positive findings77,78,94–97. 
Second, because the emphasis is on inferences from data that are not 
constrained by previous theories and findings, these approaches can 
diversify knowledge of human psychology and spark unexpected 
insights79,81,98. Third, they can be more beneficial to previous research on 
the topic than deductive approaches directly informed by this research. 
In behavioural sciences, failed replications are common and research-
ers examining the same research questions and hypotheses, even with 
identical data, can often obtain different findings99–103. Therefore, if a 
data-driven study produces a finding consistent with previous research 
and theorizing, despite using a methodological approach that is solely 
guided by data and not constrained by their assumptions, this is a 
compelling case of support for the previous work. It is thus important 
to emphasize that using a data-driven approach does not imply con-
ducting a research project that disregards previous literature. Quite the 
contrary, it is essential to comprehensively evaluate and discuss how 
the findings are linked to previous work to illuminate how the present 
research has extended this work and moved the field forward—a process 
labelled inductive integration77.

Drawing on data-driven approaches, our research objectives—(1) 
establishing a taxonomy of psychological processes involving robots 
and (2) examining its individual difference predictors—are achieved in 
three phases comprising seven studies (Fig. 1; for participant informa-
tion see Table 1).

Phase 1 consisted of two studies that undertook an in-depth exami-
nation of the construct of robots that was necessary to build the tax-
onomy. In Study 1 we developed an all-encompassing general definition 
of robots. In Study 2 we used this definition to identify all domains of 
human activity in which robots operate.

Phase 2 consisted of three studies aimed at creating the taxonomy. 
In Study 3 we sampled a comprehensive content space of people’s psy-
chological processes involving robots across the domains identified in 
Phase 1 to develop items assessing each process. In Study 4 we deter-
mined the main dimensions of these processes using exploratory factor 
analyses (EFAs104–106). In Study 5 we further confirmed these dimensions 
using exploratory structural equation modelling (ESEM107,108) and 
developed the psychological responses to robots (PRR) scale that can 
assess psychological processes towards any robot.

Phase 3 consisted of two studies that focused on determining the 
most important individual difference predictors of the psychological 
responses and testing the mechanisms behind these relationships.  

often used to summarize and investigate psychological processes in 
an all-encompassing way13–15, because an official taxonomy does not 
exist. We adopt it because it is useful as a guiding principle when (1) 
eliciting diverse psychological processes and (2) identifying and organ-
izing previous literature, considering that psychological functioning 
involving robots is typically not studied as a uniform construct and 
comprises studies from numerous areas.

Next, we briefly review previous research on psychological pro-
cesses regarding robots in terms of affective, cognitive and behavioural 
responses (for a detailed review see Supplementary Notes). Before this 
review, we first clarify how we define robots because their definition 
is often confined to various specific types (for example, autonomous 
and social6,16–20), and describing them as an overarching category can 
be less straightforward19–21.

We adopt a general definition proposed by the Institute of Electri-
cal and Electronics Engineers (IEEE22), according to which robots are 
devices that can act in the physical world to accomplish different tasks 
and are made of mechanical and electronic parts. These devices can 
be autonomous or subordinated to humans or software agents act-
ing on behalf of humans. Robots can also form groups (that is, robotic 
systems) in which they cooperate to accomplish collective goals (for 
example, car manufacturing).

Previous research has documented diverse affective responses 
to robots, which can be classified as negative or positive6. Regarding 
negative feelings, fear and anxiety are typically experienced concerning 
robots taking people’s jobs23–27. Individuals can also find robots creepy 
if they are designed to be human-like but look unnatural and inconsist-
ent with human appearance28. Regarding positive feelings, individu-
als can experience happiness, amazement, amusement, enjoyment, 
pleasure, warmth and empathy towards robots6,10,25,26,29–38. Interestingly, 
people can also become emotionally attached, feel attracted and be in 
love with robots39–44. Whereas these romantic feelings are perceived by 
many as taboo, they are becoming increasingly frequent nowadays42.

In terms of cognitive responses, people’s thoughts about robots 
can be organized into several themes. A key theme is the level of com-
petence displayed by robots concerning tasks in which they are special-
ized19,30,45,46. For example, robots are often seen as efficient and accurate 
in what they do and as more physically endurant than humans19,47,48. Indi-
viduals can also consider robots helpful and appreciate their effective-
ness in accomplishing various tasks, from household chores to carrying 
heavy loads49–52. Another important theme is anthropomorphism (that 
is, ascribing human characteristics to non-living entities7). For instance, 
people may perceive robots as sentient beings that have feelings53–59 
but they may also see them as distinct from humans (for example, cold 
or soulless19,60–62) and question whether robots can be trusted in their 
capacities as companions, coworkers and other roles they assume63–65.

In terms of behavioural responses, actions towards robots can 
be classified as either approach (for example, engaging with them) 
or avoidance (for example, evading them)10,66–68. Common approach 
behaviours involve communicating, cooperating, playing and request-
ing information10,26,69,70. More negative approach behaviours have also 
been documented, including several instances of robot abuse71–73. In 
contrast to approach, avoidance behaviours (for example, hiding from 
robots) are infrequently mentioned in the literature and may typically 
occur in environments where robots could potentially injure humans74,75.

Overall, the reviewed literature indicates that various psycho-
logical responses to robots have been observed. However, because 
this topic is not studied under a common umbrella of psychological 
processes but in relation to diverse topics (for example, anthropomor-
phism, robotic job replacement or robot acceptance7,49,76), it is unclear 
how these processes are interlinked, what shapes them and whether 
all important processes have been discovered.

For these reasons, our research adopted a data-driven rather than 
a theory-driven approach77–79. Contrary to theory-driven studies that 
are inherently deductive because they test hypotheses deduced from 
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In Study 6 we used machine learning109,110 to identify the key predic-
tors of the main dimensions of the PRR scale. In Study 7 we probed the 
mechanisms behind these predictors.

All in all, to achieve our research objectives, as stimuli we used rep-
resentations (that is, images and descriptions) of robots (Supplemen-
tary Table 7) from 28 exhaustive domains of human activity in which 
robots operate (Table 2). This comprehensive approach allowed us to 
minimize the chance that our findings are driven by idiosyncrasies of 
a sample that is small in size and/or variety of robot types, which could 
compromise replicability111,112. Despite the wide variety of our stimulus 
sample, it is unclear to what degree this sample is representative of 
the general population of robots because (1) there are no established 
recommendations on what variables would need to be measured to 
accurately define this population, (2) the type of data used to quantify 
general characteristics of human populations is not available for robots 
and (3) the field of robotics is rapidly evolving. Therefore, in the context 
of our research we use the term ‘robot/s’ in reference to our specific 
stimulus sample and we do not imply that our insights extend to the 
general population (that is, all physical robots).

Results
In this section we briefly present the results (for a detailed description 
see Supplementary Results).

Phase 1: mapping a comprehensive content space of robots
Phase 1 aimed to establish a comprehensive content space that encom-
passes a wide range of robots by identifying all domains of human activ-
ity in which robots operate, to ensure that our taxonomy developed in 
Phase 2 is not biased towards only a few robot types111,112.

The first step in this endeavour was to devise a general definition 
of robots in Study 1, because robot definitions are typically proposed 
by experts6,21,22,113 and it is less well known whether these reflect how 
people more broadly perceive robots. Because any robot definition is 

essentially a set of characteristics that describe robots (for example, 
made of mechanical parts, autonomous6,22,113), to develop a general 
definition we first recruited Sample 1 and asked them to generate 
robot characteristics. Using this approach, 277 characteristics were 
identified (Supplementary Table 3). We then recruited Sample 2 and 
asked them to group these characteristics into common categories. 
Using hierarchical cluster analysis114–116, the following main clusters 
of robot characteristics were identified: (1) characteristics conveying 
the degree of robot–human similarity; (2) positive characteristics; (3) 
characteristics conveying robots’ composition; (4) negative charac-
teristics; and (5) characteristics conveying robots’ ability to perform 
various tasks (Supplementary Table 3).

The general definition of robots that we subsequently devel-
oped by linking the themes of each cluster is available in Table 2. It is 
important to emphasize that we did not form the definition by always 
translating an individual cluster theme into a separate part, because 
the definition was more succinct and coherent if certain themes were 
combined in the same parts.

In Study 2 we used this robot definition to identify a compre-
hensive list of domains in which robots operate. Participants were 
presented with the definition and asked to generate all such domains 
they could think of. To develop an extensive inventory of domains, we 
analysed their responses using inductive content analysis117–121. Addi-
tionally, to ensure we did not miss any domains that participants were 
unable to identify, we consulted various other resources (for example, 
articles from the literature review of this paper and classifications 
detailed in Methods). The final list of domains, accompanied by the 
example items generated by participants, is available in Table 2.

Phase 2: creating the taxonomy of psychological processes
To develop the taxonomy, it was first necessary to identify a compre-
hensive range of psychological processes involving robots in Study 3. 
We instructed participants to write about any feelings, thoughts and 

The goal of this phase was to develop a comprehensive list of domains from
all areas of human activity in which robots play a role so that this list could be 
used in Phase 2 to create the taxonomy of psychological processes in response
 to robots across these domains. This was achieved by first developing a 
general definition of robots based on how participants perceive them (Study 1), 
as robots are typically defined by experts, and it is less known whether their 
definitions reflect how people see robots. Then, a comprehensive list of 
domains of human activity was generated in which robots, as defined using the
 previously developed definition, can be encountered (Study 2).

Phase

The goal of this phase was to develop the taxonomy of psychological
processes in response to robots from the domains identified in Phase 1. This
was achieved by first generating an exhaustive list of psychological processes
(that is, cognitions, thoughts and feelings) toward robots from these domains
(Study 3). Then, we created an item for each process and asked participants to
answer the items in relation to a robot from each domain to organize these
processes into dimensions (Study 4). Finally, we confirmed the dimensions
(Study 5).

The goal of this phase was to establish the main individual di­erence
predictors of the dimensions of psychological processes identified in Phase
2, and to determine the mechanisms that explain why these individual
di­erences are predictive of the dimensions. This was achieved by first testing
a comprehensive range of individual di­erences from personality psychology
to establish the most predictive ones (Study 6). Then, the key predictors
identified were replicated and their mechanisms examined (Study 7).

Developing a definition of robots based on how
participants perceive them.

Identifying all domains of human functioning in which
robots operate.

Mapping the content space of psychological processes
toward robots.

Establishing dimensions of the psychological processes.

Confirming the dimensions of the psychological
processes.

Determining the main individual di­erence predictors of
the dimensions.

Confirming the predictors and explaining why they
predict the dimensions.

Study Analysis

Hierarchical clustering114

Inductive content analysis118

Iterative categorization122

EFA104

ESEM107

ML models109

Regression-based
mediation analyses157

1

Phase 1: mapping a comprehensive content space of robots
from all domains of human activity

2

Description

Phase 2: developing the taxonomy (that is, key dimensions) of
psychological processes

Phase 3: determining key individual di­erence predictors
and their mechanisms

3

4

5

6

7

Fig. 1 | Overview of the present research. ‘Phase’ outlines the goals of each research phase, how these goals were achieved and the link between successive phases. 
‘Study’ and ‘description’ indicate the number of each study and its goal while ‘analysis’ specifies the statistical analyses that were used in each study.
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Table 1 | Sample size and background information for all participants who completed a study, and for those participants 
included in analyses (Studies 1–7)

Study 
no.

Sample 
no.

Sample 
size

Country Age (years) Gender Employment status Use of robots at work

Mean s.d. Female Male Other UDa Employed Unemployed UDa Don’t 
know

No Yes UDa

All participants

1 1 266 UK 49.496 13.598
132 133 1 0 175 91 0 3 161 11 0

49.62% 50.00% 0.38% 0% 65.79% 34.21% 0% 1.71% 92.00% 6.29% 0%

1 2 100 US 36.510 10.566
42 58 0 0 94 6 0 2 90 2 0

42.00% 58.00% 0% 0% 94.00% 6.00% 0% 2.13% 95.74% 2.13% 0%

2 − 70 US 36.257 10.270
31 39 0 0 64 6 0 1 55 8 0

44.29% 55.71% 0% 0% 91.43% 8.57% 0% 1.56% 85.94% 12.50% 0%

3 − 350 US 40.693 12.194
193 153 1 3 325 24 1 5 279 41 0

55.14% 43.71% 0.29% 0.86% 92.86% 6.86% 0.29% 1.54% 85.85% 12.62% 0%

4 1 1,668 UK 47.932 16.611
852 812 4 0 1,043 624 1 13 955 75 0

51.08% 48.68% 0.24% 0% 62.53% 37.41% 0.06% 1.25% 91.56% 7.19% 0%

4 2 1,808 US 48.004 16.772
976 830 2 0 1,053 754 1 14 871 168 0

53.98% 45.91% 0.11% 0% 58.24% 41.70% 0.06% 1.33% 82.72% 15.95% 0%

5 1 1,200 UK 46.648 16.616
590 601 6 3 753 447 0 14 690 49 0

49.17% 50.08% 0.50% 0.25% 62.75% 37.25% 0% 1.86% 91.63% 6.51% 0%

5 2 1,219 US 46.656 16.914
616 598 5 0 712 506 1 12 639 61 0

50.53% 49.06% 0.41% 0% 58.41% 41.51% 0.08% 1.69% 89.75% 8.57% 0%

6 − 2,505 US 47.405 17.262
1,299 1,186 15 5 1,537 964 4 19 1,210 307 1

51.86% 47.35% 0.60% 0.20% 61.36% 38.48% 0.16% 1.24% 78.72% 19.97% 0.07%

7 − 1,116 US 42.910 13.535
552 555 9 0 843 273 0 22 754 66 1

49.46% 49.73% 0.81% 0% 75.54% 24.46% 0% 2.61% 89.44% 7.83% 0.12%

Participants included in analyses

1 1 224 UK 50.344 13.262
121 102 1 0 145 79 0 3 136 6 0

54.02% 45.54% 0.45% 0% 64.73% 35.27% 0% 2.07% 93.79% 4.14% 0%

1 2 95 US 36.621 10.729
39 56 0 0 91 4 0 2 88 1 0

41.05% 58.95% 0% 0% 95.79% 4.21% 0% 2.20% 96.70% 1.10% 0%

2 – 67 US 35.657 9.634
31 36 0 0 61 6 0 1 52 8 0

46.27% 53.73% 0% 0% 91.04% 8.96% 0% 1.64% 85.25% 13.11% 0%

3 – 334 US 40.826 12.154
184 147 1 2 311 22 1 5 270 36 0

55.09% 44.01% 0.30% 0.60% 93.11% 6.59% 0.30% 1.61% 86.82% 11.58% 0%

4 1 1,528 UK 48.328 16.515
790 734 4 0 944 583 1 12 874 58 0

51.70% 48.04% 0.26% 0% 61.78% 38.15% 0.07% 1.27% 92.58% 6.14% 0%

4 2 1,537 US 49.465 16.563
861 674 2 0 870 667 0 11 745 114 0

56.02% 43.85% 0.13% 0% 56.60% 43.40% 0% 1.26% 85.63% 13.10% 0%

5 1 1,107 UK 47.112 16.583
544 555 6 2 691 416 0 10 639 42 0

49.14% 50.14% 0.54% 0.18% 62.42% 37.58% 0% 1.45% 92.47% 6.08% 0%

5 2 1,108 US 47.100 16.947
563 540 5 0 651 456 1 12 591 48 0

50.81% 48.74% 0.45% 0% 58.75% 41.16% 0.09% 1.84% 90.78% 7.37% 0%

6 – 2,203 US 47.947 17.493
1,164 1,021 14 4 1,316 883 4 16 1,064 235 1

52.84% 46.35% 0.64% 0.18% 59.74% 40.08% 0.18% 1.22% 80.85% 17.86% 0.08%

7 – 1,071 US 42.846 13.450
535 527 9 0 808 263 0 22 721 64 1

49.95% 49.21% 0.84% 0% 75.44% 24.56% 0% 2.72% 89.23% 7.92% 0.12%

All studies were administered via Qualtrics. In Studies 1 (Sample 1), 4 (Samples 1 and 2), 5 (Samples 1 and 2) and 6, participants were recruited via Pureprofile; in Studies 1 (Sample 2), 2 and 3, 
participants were recruited via Amazon Mechanical Turk; in Study 7, participants were recruited via Prolific. Samples for Studies 4–6 were recruited to be reasonably representative of the UK/
US populations in terms of age, gender and geographical region, whereas for Study 1 (Sample 1) the focus was on gender only. Supplementary Tables 1 and 2 contain more comprehensive 
breakdowns of these variables, the criteria that were used to guide representative sampling and additional demographic characteristics. aUD, undisclosed: for gender, this category comprises 
participants who either selected the option ‘choose not to disclose’ or whose data were missing; for other variables, this category comprises participants whose data were missing. For 
employment status, the category ‘employed’ comprises participants who were either self-employed or working for an employer whereas ‘unemployed’ refers to participants who were not 
working for themselves or someone else.
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Table 2 | Definition of robots developed from the clusters of their characteristics generated by participants (Study 1), and 
robot domains grounded in this definition (Study 2), with example participant items analysed using indictive content 
analysis to develop the domains

Definition 
part

Definition Robot clusters that informed the 
definitiona

1 A robot is a non-living entity that primarily functions as helping and/or substituting humans in some capacity 
by performing physical and/or intellectual tasks that range from simple, routine to complex ones.

1, 4, 5

2 Robots are characterized by different degrees of autonomy: sometimes they only follow commands that 
have been pre-programmed, but sometimes they are artificially intelligent and thus are able to learn from the 
environment and adapt to it.

1

3 Although robots at times require maintenance and repair, they have potential to work tirelessly over long 
periods of time as they do not have life commitments (e.g., family) and/or wellbeing considerations as humans 
do (e.g., time off, sick leave).

1

4 Humans can perceive robots as having positive attributes (e.g., clever, consistent, cute, efficient, flexible, 
friendly, reliable, robust, safe, supportive). However, humans also can have negative perceptions about robots, 
such as seeing them as cold, creepy, emotionless, lacking conscience, soulless, threatening, etc., generally 
attributing negative qualities to robots as a result of their nonhuman nature.

2, 4

5 A robot typically consists of software (i.e., the code or programme on which it runs) and different materials 
and components used to produce it (e.g., metal, wires, sensors, microchips, etc.). Although robots can take 
the form and/or have characteristics of humans, they can appear as an animal or any non-living object.

1, 3

Domain no. Domain Example items

1 Health and human care and wellbeing (e.g., medical, surgical, fitness, lab diagnostics, elderly, disability, 
infant/child, and personal care)

Elder care in home; at the doctor 
or hospital; exercise

2 Social and companionship Companionship; social life

3 Sex (this domain was added based on ref. 17 and was not generated from participants’ responses) −

4 Animal care (e.g., walking pets) Animal care; walking pets

5 Security and surveillance Public safety; security

6 Policing and military Policing robots; warfare

7 Education, libraries, and knowledge/information management and gathering Library; studying

8 Research and exploration within science, technology, engineering, and mathematics (STEM) (e.g., ocean 
exploration, supercomputing, IT innovation, space discovery)

Research/exploration

9 Communication tools and channels Chatbots; communications

10 Leisure, recreation, and travel Travel; watercraft

11 Culture/entertainment, gaming, toys, and other amusement Concerts; entertainment

12 Workplace domain (i.e., to aid or replace human effort) Work product generation

13 Dangerous and/or risky work Do dangerous work

14 Inspection, repair and/or improvement of products, engines, equipment, technology, and/or infrastructure 
(e.g., buildings, bridges, roads, power supplies, nuclear reactors, pipes, gas mains)

Repairs; auto maintenance

15 Agriculture (e.g., harvesting, farms) Agriculture; farms

16 Household chores/tasks and domestic help/assistance (i.e., inside and outside of the home) Home; house chores

17 Industry Factory/factories

18 Hospitality and food service (i.e., hotels, conventions, restaurants, bars, and other lodging, space, food and/or 
drink provider) and related customer service and support

Eating out; hospitality

19 Banking/financial services and related customer service and support ATM; bank; business

20 Retail and commerce and related customer service and support Retail; self-checkout

21 Construction Construction; demolition

22 Manufacturing Manufacturing facilities

23 Mining Mining

24 Warehouses and fulfilment centres Warehouse work

25 Public services (e.g., road work and other shared public good) Roadwork

26 Transportation (i.e., land, water, and/or sky) of goods, people, and other living entities, transport equipment, 
and delivery/courier/shipping services

Drone; transport

27 Airports Airports

28 Art (this domain was added based on ref. 18 and was not generated from participants’ responses) −

Our aim was to develop domains that are narrow rather than broad, which means that some overlap between them may be present. This approach was aligned with our objective to establish a 
comprehensive content space of all robots to decrease the probability of using a biased stimulus sample111,112 when developing the taxonomy of psychological responses to representations of 
robots. For that reason, it was more optimal to lean towards having too many rather than too few domains, to reduce the chance of failing to cover the content space of all robots in detail and 
omitting important types of robots. aCluster 1, characteristics conveying the degree of robot–human similarity; Cluster 2, positive characteristics; Cluster 3, characteristics conveying robots’ 
composition; Cluster 4, negative characteristics; and Cluster 5, characteristics conveying robots’ ability to perform various tasks (Supplementary Table 3).
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behaviours they could think of concerning robots from the domains 
developed in Study 2 (Table 2)—each participant was randomly allo-
cated to one of five domains. Participants were not provided with 
specific robot examples for a given domain, because we expected 
that reliance on their own reflections and experiences would cover 
a broader spectrum of robots and therefore increase the diversity 
of psychological processes reported (for a similar methodological 
approach see ref. 82). Table 3 contains the final list of psychologi-
cal processes derived from participants’ responses using iterative 
categorization122.

In Study 4 we then created items for each of these processes (Table 3)  
and asked participants to answer the items about an example of a robot 
(Supplementary Table 7) from one of the 28 domains (Table 2) to which 
they were randomly allocated. To develop the taxonomy from partici-
pants’ responses we used maximum-likelihood EFAs104 with Kaiser123 
normalized promax rotation106,124. EFAs were appropriate because the 
Kaiser–Meyer–Olkin measure of sampling adequacy was 0.983 and 
0.984 for Samples 1 and 2, respectively, and Bartlett’s test of sphericity 
was significant (for both samples, P < 0.001)125.

To select the most appropriate factor solution we used the fol-
lowing procedure. We first consulted parallel analysis126,127, very sim-
ple structure128, Velicer map129, optimal coordinates130, acceleration 
factor130, Kaiser rule131 and visual inspection of scree plots132, which 
indicated that extraction of between one and 19 factors (Sample 1) and 
between two and 18 factors (Sample 2) could be optimal. Next, we evalu-
ated the largest factor solutions (that is, 19 factors for Sample 1 and 18 
for Sample 2) against several statistical and semantic benchmarks. If the 
benchmarks were not met we decreased the number of factors by one 
and evaluated these new solutions. This procedure was continued until 
the benchmarks were met. Concerning statistical benchmarks, a factor 
solution was required to produce only valid factors—those that have at 
least three items with standardized loadings ≥0.5 and cross-loadings 
of <0.32 (refs. 105,125,133,134). Semantically, a solution was required 
to make sense conceptually by having factors that are coherent and 
easy to interpret135,136.

For Samples 1 and 2, three-factor solutions emerged as the most 
optimal. These met the statistical criteria and had semantically coher-
ent factors that denoted positive, negative and competence-related 
psychological processes (Table 3). Therefore, the taxonomy was 
labelled the positive–negative–competence (PNC) model of psycho-
logical processes regarding robots. None of the larger factor solutions 
met the statistical criteria.

We aimed to further validate the PNC model by confirming its 
dimensions and thereby developing the PRR scale that measures 
them. To do this, in Study 4 we selected a representative subset of 
PNC items (bold items in Table 3) and subjected them to ESEM107 
using the maximum-likelihood with robust standard errors (MLR) 
estimator137,138 and target rotation with all cross-loadings as targets 
of zero139,140. For both samples, fit indices showed good to excellent 
fit (that is, SRMR < 0.05, CFI > 0.90, RMSEA < 0.06 (refs. 141–143)): 
Sample 1, χ2(558) = 1,953.820, P <0.001, SRMR = 0.026, CFI = 0.939, 
RMSEA = 0.041, 90% confidence interval (CI) [0.039, 0.043]; Sam-
ple 2: χ2(558) = 1,850.880, P <0.001, SRMR = 0.025, CFI = 0.944, 
RMSEA = 0.039, 90% CI [0.037, 0.041].

Subsequently, in Study 5 we recruited two additional samples 
and asked participants to answer these items about one of the two 
robot examples (Supplementary Table 7) from one of the 28 domains 
to which participants were randomly allocated. The ESEM models for 
both samples had a good to excellent fit (Table 4). Moreover, items 
previously classified under a specific dimension (that is, positive, 
negative or competence) by EFAs in Study 4 (Table 3) had the highest 
loadings for this dimension whereas the cross-loadings were <0.32. 
To ensure that the model comprising the three dimensions was the 
most appropriate we tested several alternative models, which were all 
rejected due to poor fit (Supplementary Results).

To show that our model has equivalent factor structure, loadings 
and intercepts regardless of participants’ country, robot examples used 
and several key demographic characteristics, we tested configural, 
metric and scalar measurement invariance144–146. As shown in Table 5, 
measurement invariance was demonstrated in all cases given that the 
configural model demonstrated good to excellent fit (SRMR < 0.05, 
CFI > 0.90, RMSEA < 0.06 (refs. 141–143); changes in SRMR, CFI and 
RMSEA were, respectively, ≤0.030, 0.010 and 0.015 for the metric 
model and ≤0.015, 0.010 and 0.015 for the scalar model144. Since we 
could not analyse measurement invariance for participants who did 
versus did not use robots at work in Study 5 because the number of 
those who did was insufficient (Table 1), we tested this in Study 6 where 
sample sizes were larger. In Study 6 we also computed measurement 
invariance for additional participant characteristics assessed in that 
study (educational attainment, income, being liberal versus conserva-
tive, ethnic identity and relationship status). Measurement invariance 
was demonstrated in all cases (Supplementary Table 10).

Overall, the structure of the PNC model and its validity across 
different subgroups of participants were confirmed.

Phase 3: examining individual difference predictors
In Study 6, to identify the main predictors of the PNC model we fol-
lowed the analytic strategy described in Methods. We first computed 
11 common machine learning models (for example, linear least squares, 
lasso109,110) for the positive, negative and competence dimensions sepa-
rately. The key predictors in each model were 79 personality measures 
that were found to be conceptually or theoretically relevant to the 
PNC dimensions. We selected these measures by examining several 
comprehensive psychological scale databases (for example, Database 
of Individual Differences Survey Tools147). All measures and their justi-
fications are available in Supplementary Table 11.

We then identified the most predictive models, which were 
the same across all PNC dimensions: conditional random forest 
(r.m.s.e.Positive = 0.919; r.m.s.e.Negative = 0.988; r.m.s.e.Competence = 0.778), 
linear least squares (r.m.s.e.Positive = 0.929; r.m.s.e.Negative = 1.000; 
r. m . s . e . C o m p e t e n c e  =   0 . 7 95 ) ,  r i d g e  ( r. m . s . e . P o s i t i v e  =   0 .9 2 1 ; 
r. m . s . e . N e g a t i v e  =   0 .9 9 4 ;  r. m . s . e . C o m p e t e n c e  =   0 . 7 8 7 ) ,  l a s s o 
(r.m.s.e.Positive = 0.921; r.m.s.e.Negative = 0.993; r.m.s.e.Competence = 0.784), 
elast ic  n et  ( r.m.s.e. Positive =   0.921;  r.m.s .e. Negative = 0.993; 
r.m.s.e.Competence = 0.784) and random forest (r.m.s.e.Positive = 0.925; 
r.m.s.e.Negative = 0.995; r.m.s.e.Competence = 0.781).

Subsequently we determined all individual differences that were 
among the top 30 predictors across these six models and that were also 
statistically significant in the linear least-squares model after applying 
the false-discovery rate148 correction (Supplementary Tables 12–15).  
Several variables met these criteria and were therefore deemed the 
main individual difference predictors of PNC dimensions. For the 
positive dimension these were general risk propensity (GRP149), anthro-
pomorphism (IDAQ150) and parental expectations (FMPS_PE151); for the 
negative dimension these were trait negative affect (PANAS_TNA152), 
psychopathy (SD3_P153), anthropomorphism (IDAQ150) and expres-
sive suppression (ERQ_ES154); and for the competence dimension 
these were approach temperament (ATQ_AP155) and security-societal 
(PVQ5X_SS156). According to the most interpretable model (that is, 
the linear least squares) these most predictive individual differences 
were positively associated with the corresponding PNC dimensions.

In Study 7, to replicate the findings we measured the most predictive 
individual differences in wave 1 and used linear regressions to show that 
they significantly predicted PNC dimensions in wave 2 (Table 6), consist-
ent with Study 6. Furthermore, we examined various potential mediators 
of the relationship between each predictor and a PNC dimension using 
parallel mediation analyses157 percentile-bootstrapped with 10,000 sam-
ples (for mediators and mediated effects see Table 7; the rationale behind 
each mediator and detailed mediation analyses are available in Supple-
mentary Table 17 and Supplementary Results, respectively).
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Table 3 | Summary of key findings (Studies 3 and 4): psychological processes, items corresponding to each process and the 
output of EFAs performed on the items across two participant samples

Item 
no.

Psychological process Item Sample 1 (UK) Sample 2 (US)

P N C P N C

61 Companionship This robot would make a good companion. 0.853 0.864

84 Enjoyment I associate this robot with enjoyment. 0.819 0.815

85 Humour This robot is humorous. 0.806 0.711

35 Attachment I would feel attached to this robot. 0.793 0.864

26 Treating the robot like a 
human

I would treat this robot as if it were a human. 0.779 0.814

34 Intimacy I would be able to connect on an intimate level with this 
robot (e.g., share feelings, be in close contact, hug or 
hold, etc.).

0.775 0.842

60 Comfort This robot is comforting. 0.772 0.792

65 Friendliness This robot is friendly. 0.763 0.764

116 Empathy This robot is empathetic. 0.753 0.751

88 Thoughtfulness This robot is thoughtful. 0.745 0.793

122 Entertainment This robot is entertaining. 0.724 0.700

123 Play I would like to play with this robot. 0.715 0.742

62 Interaction I would want to interact with this robot. 0.693 0.663

40 Engagement I would like to engage with this robot. 0.692 0.689

32 Happiness This robot makes me feel happy. 0.681 0.806

41 Motivation This robot motivates me. 0.681 0.796

27 Perceiving the robot as 
human-like

This robot is like a human. 0.675 0.743

63 Communication I would find it easy to communicate with this robot. 0.642 0.685

67 Wellbeing This robot promotes wellbeing. 0.635 0.685

24 Anthropomorphism I can see human traits in this robot. 0.625 0.681

77 Pleasantness I find this robot pleasant. 0.623 0.689

149 Robot rights I think this robot should have rights. 0.609 0.711

95 Relaxation This robot makes me feel relaxed. 0.608 0.742

66 Care This robot provides care. 0.600 0.675

132 Self-improvement This robot helps me to improve myself. 0.597 0.773

14 Excitement This robot makes me feel excited. 0.590 0.734

125 Creativity This robot is creative. 0.573 0.615

89 Learning from robots I could learn from this robot. 0.567 0.648

107 Empowerment I feel empowered by this robot. 0.545 0.691

47 Pride I feel proud about this robot. 0.541 0.343 0.691

64 Social support This robot provides support to me. 0.534 0.633

129 Competition I would want to compete with this robot. 0.532 0.420 0.496 0.471

96 Gratitude This robot makes me feel grateful. 0.526 0.683

99 Gaining knowledge about 
robot

I would want to learn more about this robot. 0.504 0.552

46 Hope This robot makes me feel hopeful. 0.501 0.371 0.669

57 Safety This robot makes me feel safe. 0.499 0.641

42 Admiration I admire this robot. 0.495 0.333 0.704

83 Surprise This robot surprises me. 0.495 0.531

39 Interest I would be interested in this robot. 0.486 0.572

17 Awareness This robot has awareness. 0.482 0.576

143 Liberation This robot makes me feel liberated or free. 0.481 0.324 0.686

68 Cooperation This robot and I could cooperate. 0.457 0.490 0.330

98 Information search This robot provides me information. 0.456 0.479
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Item 
no.

Psychological process Item Sample 1 (UK) Sample 2 (US)

P N C P N C

86 Artificial intelligence This robot is intelligent. 0.421 0.511

9 Need fulfilment This robot fulfils my needs. 0.409 0.383 0.659

146 Testing the robot I would experiment with or test this robot to see what it 
can do.

0.402 0.399

71 Openness I would be open to this robot. 0.390 −0.348 0.450 0.323

87 Learning This robot can learn. 0.382 0.437

130 Winning I want to beat or outperform this robot. 0.378 0.481 0.590

100 Being knowledgeable  
about robot

I am knowledgeable about this robot. 0.364 0.483

82 Positive affect I feel positive about this robot. 0.359 −0.424 0.366 0.519 0.342

45 Uniqueness This robot is unique. 0.354 0.335

18 Ignoring I would ignore this robot. −0.324 0.352 −0.379 0.435

19 Monotony This robot deals with monotonous and repetitive tasks. −0.362 0.623 0.559

38 Indifference I am indifferent toward this robot. −0.388 −0.344

29 Instrumentality This robot is just a means to an end. −0.435 0.329 −0.412 0.374

28 Objectification This robot is merely an object. −0.464 −0.554

37 Emotionless (human) I feel no emotions toward this robot. −0.533 −0.573

23 Not human This robot does not feel or respond like humans. −0.547 −0.614 0.402

36 Emotionless (robot) This robot is emotionless. −0.715 0.384 −0.662 0.473

13 Anxiety This robot makes me feel anxious. 0.806 0.693

59 Threat I feel threatened by this robot. 0.804 0.755

119 Self-doubt This robot makes me feel insecure (or doubt myself). 0.793 0.722

49 Being upset This robot upsets me. 0.772 0.746

12 Stress This robot makes me feel stressed. 0.769 0.731

102 Fear I am afraid of this robot. 0.763 0.723

78 Unpleasantness This robot makes me feel unpleasant. 0.745 0.749

25 Dehumanization I would feel dehumanized when interacting with this 
robot.

0.742 0.708

50 Anger This robot angers me. 0.727 0.753

103 Creepiness This robot is creepy. 0.720 0.690

114 Freedom restriction This robot restricts or limits me. 0.718 0.698

30 Sadness This robot makes me feel sad. 0.714 0.717

58 Danger This robot is dangerous. 0.710 0.672

111 Boycott I would ban the use of this robot. 0.701 0.722

72 Negative affect I feel negative toward this robot. 0.686 0.699

117 Insignificance This robot can make humans feel insignificant or not 
needed.

0.685 0.441 0.589 0.354

140 Disconnection This robot disconnects humans from one another. 0.675 0.630

135 Confusion This robot makes me feel confused. 0.671 0.710

136 People judging the use 
of robots

I think using this robot is wrong. 0.670 0.727

33 Loneliness This robot makes me feel lonely. 0.669 0.671

115 Societal issues This robot can have negative social implications. 0.661 0.614

81 Dissatisfaction This robot brings me dissatisfaction. 0.660 0.697

92 Being gross This robot is gross. 0.660 0.682

148 Existential questioning This robot makes me question life and existence. 0.659 0.352 0.631

113 Immorality This robot is immoral. 0.657 0.657

126 Privacy This robot violates privacy (e.g., is too intrusive or 
invasive).

0.656 0.693

Table 3 (continued) | Summary of key findings (Studies 3 and 4): psychological processes, items corresponding to each 
process and the output of EFAs performed on the items across two participant samples

http://www.nature.com/nathumbehav


Nature Human Behaviour

Article https://doi.org/10.1038/s41562-023-01705-7

Item 
no.

Psychological process Item Sample 1 (UK) Sample 2 (US)

P N C P N C

104 Humans lacking control I would lack or lose control when using or interacting 
with this robot.

0.655 0.650

76 Abnormal This robot is abnormal. 0.645 0.610

91 Disgust This robot is disgusting. 0.641 0.695

48 Damage reputation This robot could damage my reputation. 0.637 0.671

79 Hate I would hate dealing with this robot. 0.636 0.651

147 Human being tired of 
robot

This robot makes me feel tired or exhausted. 0.631 0.688

11 Avoidance I would avoid this robot. 0.630 0.604

52 Protection of self I would want to protect myself when interacting with 
this robot.

0.612 0.585

134 Mixed feelings I would have mixed feelings toward this robot. 0.607 0.628

118 Replacement This robot can make humans feel replaced. 0.600 0.501 0.533 0.418

74 Shyness I would feel shy around this robot. 0.599 0.643

31 Guilt This robot makes me feel guilty. 0.594 0.638

145 Embarrassment I would feel embarrassed or ashamed if I had to interact 
with this robot.

0.579 0.719

142 Robots contribute to 
human degeneration

This robot can contribute to human degeneration (e.g., 
make people become lazy, use less of their mental and 
physical capacity, etc.).

0.570 0.559

1 Impatience I would feel impatient when interacting with this robot. 0.559 0.647

105 Unpredictability This robot is unpredictable. 0.558 0.549

51 Redundancy This robot will make human jobs redundant. 0.536 0.535 0.490 0.380

21 Robot damage I would be inclined to harm or damage this robot. 0.535 0.320 0.633

112 Unethical activities This robot could be used for unethical activities. 0.528 0.478

73 Disappointment This robot is disappointing. 0.525 −0.342 0.663

16 Caution I would be cautious or careful with this robot. 0.499 0.381

22 Verbal abuse of robots I would likely be verbally abusive toward this robot. 0.483 0.632

139 Dependence (on robots 
or technology)

This robot creates dependence in humans. 0.447 0.388 0.416

120 Human interaction 
substitute

This robot substitutes human interaction. 0.429 0.336

138 Uselessness This robot is useless. 0.405 −0.564 0.600 −0.348

131 Social comparison I compare whether this robot is better than humans. 0.345 0.400 0.368

133 Boredom This robot is boring. 0.343 0.478

3 Inefficiency This robot is inefficient in what it does. 0.330 −0.410 0.484

144 Authentic self I can be my authentic self around this robot. −0.373 0.374

10 Confidence I would feel confident in this robot. −0.375 0.466 0.412 0.426

80 Satisfaction I am satisfied with this robot. −0.379 0.403 0.483 0.371

69 Coexistence I could coexist with this robot. −0.381

121 Trust I would trust this robot. −0.393 0.342 0.523

70 Acceptance I would be accepting of this robot. −0.491 0.333 0.429 −0.343 0.372

4 Performance This robot can effectively achieve a certain result or a 
specified outcome.

0.734 0.669

5 Usefulness This robot is useful. 0.703 0.603

6 Help This robot is helpful. 0.662 0.592

7 Accuracy This robot is accurate in what it does. 0.642 0.570

2 Complexity This robot can do complex tasks. 0.641 0.484

8 Financial costs This robot reduces costs. 0.632 0.545

54 Speed This robot is fast at what it does. 0.605 0.527

Table 3 (continued) | Summary of key findings (Studies 3 and 4): psychological processes, items corresponding to each 
process and the output of EFAs performed on the items across two participant samples
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To aid the interpretation of the mechanisms, below we summarize 
the mediated effects from Table 7 that successfully explain a portion of the 
relationship between the key individual differences and PNC dimensions.

For the positive dimension, GRP149 was a positive predictor because 
people scoring higher on this trait valued the risks associated with 
robot adoption (GRP_M3) and were curious to see how robots would 
change the world (GRP_M4). Moreover, IDAQ150 was a positive predic-
tor because people scoring higher on this trait generally felt posi-
tive towards inanimate entities with human features (IDAQ_M3), and 
because interaction with such entities helped them fulfil the need to 
experience strong emotions regularly (IDAQ_M2). FMPS_PE151 was also 
a positive predictor due its association with valuing robots because 
they were closer to perfection than humans (FMPS_PE_M1), and also 
because they could help humans fulfil their own high expectations 
(FMPS_PE_M2) and could help humans cope with their own high expec-
tations of themselves (FMPS_PE_M6).

For the negative dimension, PANAS_TNA152 was a positive predic-
tor because people scoring high on this trait were more likely to be in 
a state of activated displeasure (for example, feeling scared and upset; 
12-PAC_AD158). Furthermore, SD3_P153 was a positive predictor because 
people scoring high on this trait were also more likely to be in the state 
of activated displeasure (12-PAC_AD158), had negative feelings towards 
other people’s inventions (SD3_P_M2) and felt inferior towards tech-
nologies in which they were not proficient (SD3_P_M3). For ERQ_ES154 
and IDAQ150, we did not manage to explain the mechanism behind their 
relationship with the negative dimension.

For the competence dimension, ATQ_AP155 was a positive predic-
tor because people scoring high on this trait were more likely to value 
exceptional skills and competencies (ATQ_AP_M5). PVQ5X_SS156 was 
also a positive predictor because it was associated with people linking 
advanced technology (for example, robots and machines) with how 
powerful society is (PVQ5X_SS_M4).

Item 
no.

Psychological process Item Sample 1 (UK) Sample 2 (US)

P N C P N C

93 Future orientation I think this robot is the future. 0.603 0.488

94 Progress I associate this robot with progress. 0.583 0.517

109 Social good This robot is a benefit to society. 0.545 0.424 0.400

128 Time freedom This robot frees up my time to do other things. 0.531 0.375 0.417

55 Level of advancement This robot is advanced. 0.516 0.526

127 Easier life This robot makes my life easier. 0.516 0.478 0.392

43 Being impressed This robot impresses me. 0.510 0.412 0.409

110 Corporate social 
responsibility (CSR)

Any benefits gained from this robot should be shared 
with or passed onto society.

0.504 0.428

141 Robots augment human 
capabilities

This robot can augment human capabilities. 0.471 0.424

20 Endurance This robot has endurance (e.g., never tires, runs nonstop, 
etc.).

0.462 0.580

101 Monitoring I would monitor this robot to make sure it functions 
properly.

0.426 0.389

15 Human alertness I would feel alert with this robot. 0.398 0.397

97 Bias This robot is not biased. 0.387 0.440

53 Robot superiority This robot is superior to humans. 0.363 0.353

44 Novelty This robot is novel.

56 Human superiority Whenever I am given a choice, I will choose a human 
over this robot.

75 Unusualness This robot is unusual.

90 Cleanliness I would find this robot sanitary. 0.360

106 Dominance I am dominant over this robot.

108 Humans having control I would have control over this robot.

124 Autonomy This robot is autonomous.

137 Objectivity This robot is objective.

Variance explained (%) 15.995 17.891 10.422 20.736 17.224 8.586

Eigenvalues 23.832 26.658 15.529 30.897 25.663 12.793

P − −

N −0.192 − −0.192 −

C 0.471 −0.417 − 0.470 −0.245 −

P, N and C refer to the dimensions (that is, factors) that comprise positive, negative and competence-related psychological processes, respectively, regarding robots. Values under each factor 
correspond to standardized factor loadings; only loadings with absolute values ≥0.320 are reported for clarity. The psychological processes and corresponding items are ordered according to item 
loadings on the three factors, while item no. corresponds to the number they were assigned when they were created. Items in bold were those selected for the PRR scale tested in Study 5 (Table 4). 
Coefficients for factors P, N and C at the bottom of the table denote correlations between factors. All items were scored on a seven-point Likert scale (1, strongly disagree; 7, strongly agree).

Table 3 (continued) | Summary of key findings (Studies 3 and 4): psychological processes, items corresponding to each 
process and the output of EFAs performed on the items across two participant samples
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Table 4 | ESEMs of the PRR scale (Study 5)

Item no. Sample 1 (UK) Sample 2 (US)

P N C P N C

116 0.801 0.756

132 0.760 0.746

88 0.758 0.769

35 0.742 0.756

84 0.740 0.789

32 0.682 0.729

40 0.674 0.588

149 0.672 0.654

27 0.658 0.662

96 0.655 0.626

107 0.644 0.638

66 0.587 0.604

63 0.561 0.536

125 0.557 0.523

17 0.546 0.496

59 0.799 0.816

113 0.756 0.656

25 0.750 0.787

114 0.746 0.724

13 0.733 0.785

48 0.723 0.709

145 0.719 0.695

135 0.715 0.713

126 0.709 0.698

76 0.694 0.658

115 0.685 0.682

72 0.680 0.760

104 0.675 0.708

91 0.673 0.701

52 0.653 0.687

142 0.595 0.622

7 0.762 0.644

4 0.701 0.606

54 0.681 0.660

2 0.643 0.659

55 0.617 0.619

8 0.483 0.514

Factor

 P − −

 N −0.239 − −0.183 −

 C 0.386 −0.431 − 0.423 −0.352 −

Model fit

Sample 1, χ2(558) = 1,918.764, P < 0.001, SRMR = 0.028, CFI = 0.927, 
RMSEA = 0.047, 90% CI [0.045, 0.049]

Sample 2, χ2(558) = 1,839.997, P < 0.001, SRMR = 0.029, CFI = 0.927, 
RMSEA = 0.046, 90% CI [0.043, 0.048]

Values under each factor correspond to standardized factor loadings; only loadings ≥0.32 are 
reported for clarity. The items to which the numbers (no.) correspond can be seen in Table 3.  
Coefficients for factors P, N and C at the bottom of the table (above model fit) denote the 
standardized loadings of the factors on each other. All factors also yielded good to excellent 
Cronbach’s α-values (Sample 1, positive, α = 0.927; negative, α = 0.943; competence, α = 0.818; 
Sample 2, positive, α = 0.923; negative, α = 0.943; competence, α = 0.802).

Table 5 | Measurement invariance tests of the PRR scale 
for country: United Kingdom versus United States; robot 
example: A versus B; gender: female versus male; age: 
below median versus median and above; and employment 
status: employed versus unemployed (Study 5)

Invariance 
model

SRMR ΔSRMR CFI ΔCFI RMSEA ΔRMSEA

Sample 1 (UK) versus Sample 2 (US)

Configural 0.028 − 0.927 − 0.046 −

Metric 0.033 0.005 0.926 0.001 0.045 0.001

Scalar 0.035 0.002 0.923 0.003 0.045 <0.001

Robot example A versus B (Sample 1)

Configural 0.031 − 0.924 − 0.048 −

Metric 0.038 0.007 0.925 0.001 0.046 0.002

Scalar 0.038 <0.001 0.924 0.001 0.046 <0.001

Robot example A versus B (Sample 2)

Configural 0.032 − 0.927 − 0.046 −

Metric 0.040 0.008 0.925 0.002 0.045 0.001

Scalar 0.040 <0.001 0.924 0.001 0.044 0.001

Gender: female versus male (Sample 1)

Configural 0.031 − 0.926 − 0.048 −

Metric 0.041 0.010 0.924 0.002 0.047 0.001

Scalar 0.042 0.001 0.920 0.004 0.047 <0.001

Gender: female versus male (Sample 2)

Configural 0.032 − 0.927 − 0.046 −

Metric 0.041 0.009 0.926 0.001 0.044 0.002

Scalar 0.041 <0.001 0.923 0.003 0.045 0.001

Age: <48 (median) versus ≥48 years (Sample 1)

Configural 0.031 − 0.925 − 0.048 −

Metric 0.039 0.008 0.924 0.001 0.046 0.002

Scalar 0.040 0.001 0.919 0.005 0.047 0.001

Age: <45 (median) versus ≥45 years (Sample 2)

Configural 0.033 − 0.921 − 0.048 −

Metric 0.041 0.008 0.919 0.002 0.047 0.001

Scalar 0.043 0.002 0.915 0.004 0.047 <0.001

Employment status: employed versus unemployed (Sample 1)

Configural 0.031 − 0.926 − 0.048 −

Metric 0.039 0.008 0.924 0.002 0.047 0.001

Scalar 0.039 <0.001 0.923 0.001 0.046 0.001

Employment status: employed versus unemployed (Sample 2)

Configural 0.032 − 0.925 − 0.047 −

Metric 0.039 0.007 0.924 0.001 0.045 0.002

Scalar 0.039 <0.001 0.923 0.001 0.045 <0.001

The symbol Δ refers to the absolute value of a change in fit indices for an invariance model 
relative to the previous (that is, metric minus configural; scalar minus metric). For robot 
example, ‘A’ indicates that the robot example for the domain to which participants from 
Study 5 were randomly allocated belonged to one of the two stimulus sets used in the present 
research, while ‘B’ indicates that the robot example belonged to the other stimulus set 
(Supplementary Table 7). For gender, very few participants identified themselves as ‘other’ 
or did not disclose any information (Table 1), and they were therefore randomly classified as 
either ‘female’ or ‘male’ so they could be used in invariance testing. For employment status the 
category ‘employed’ includes those participants who were self-employed or working for an 
employer. For use of robots at work we could not analyse measurement invariance because of 
the insufficient number of participants who used robots at work (Table 1). However, for Study 6, 
in which sample sizes were larger (Table 1), we tested measurement invariance for this variable 
and for additional participant characteristics assessed in that study (educational attainment, 
income, political orientation: liberal versus conservative, ethnic identity and relationship 
status). Measurement invariance was met in all cases (Supplementary Table 10).
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Discussion
In this section we first discuss (1) our findings and their contributions 
in relation to previous research to achieve inductive integration77 and 
then (2) the main limitations (for a detailed discussion see Supplemen-
tary Discussion).

Starting with Phase 1, we first discuss the robot definition (Table 2)  
and then the domains (Table 2). Regarding the definition, ours and 
that of IEEE22 both conceptualize robots as devices or entities that 
can perform different tasks (Part 1, Table 2), emphasize that robots 
can have different degrees of autonomy (Part 2, Table 2) and include 

robots’ composition (Part 5, Table 2). However, the two definitions also 
have unique elements: ours includes robots’ durability (Part 3, Table 2)  
and positive/negative attributes (Part 4, Table 2) whereas the IEEE 
definition includes robots’ capability to form robotic systems. Overall, 
although our definition is somewhat more nuanced, both definitions 
are remarkably aligned, which indicates that experts and lay individuals 
perceive robots similarly.

Regarding the domains in which robots operate we have identi-
fied 28 (Table 2), which is more than professional organizations usu-
ally propose (for example, the IEEE lists 18 domains on their website, 
https://robots.ieee.org/learn/types-of-robots/). However, this is not 
surprising because our list was intentionally nuanced to enable the 
identification of a comprehensive sample of robots, and we hope 
that other scholars will adopt it in their research for this purpose.  
It is important to emphasize that, despite the meticulous procedure 
used to develop the list, it is possible that (1) we failed to identify more 
niche domains and (2) the number of domains might increase as tech-
nology advances.

Continuing with Phase 2, we first compare the psychological pro-
cesses of the PNC model (Table 3) against those reported in previous 
research and then discuss the model (Tables 3 and 4) more specifically. 
In general, participants evoked the processes identified in the litera-
ture reviewed in the Introduction, including positive feelings such as 
happiness10,33 (Item 32); negative feelings such as anxiety27 (Item 13); 
performance48 and usefulness19 (Items 4 and 5); anthropomorphism36,159 
(Items 24 and 27); and various approach66 (Items 22 and 40) or avoid-
ance26 (Items 11 and 52) behaviours (Table 3). Importantly, participants 
also described many infrequent or previously unidentified processes. 
For example, they indicated that robots contribute to human degenera-
tion (Item 142); lead to existential questioning (Item 148); make people 
feel dehumanized (Item 25); help humans self-improve (Item 132); and 
restrict freedom (Item 114).

One of the main contributions of our research is showing that 
these seemingly highly diverse psychological processes fall under three 
dimensions: positive (P), negative (N) and competence (C) (Tables 3 and 
4). In general, previous research on human–robot relationships and 
interactions has focused on studying and measuring specific psycho-
logical reactions to robots (for example, safety, anthropomorphism, 
animacy, intelligence, likeability and various social attributes159,160) but 
did not attempt to identify all these reactions and investigate them 
under an all-encompassing construct of psychological processes. In 
that regard, the PNC model can be seen as an integrative framework 
that links and organizes an exhaustive list of psychological processes, 
both those that researchers have already studied separately and the 
less common ones generated by our participants. We believe that our 
model moves the field forward, not only through this integration but 
also by enabling researchers to systematically study psychological 
processes regarding robots by (1) using the PNC as a guide to inform 
the design of future research on these processes and (2) employing the 
PRR scale to measure them.

One of the most interesting insights spawned by the PNC model 
stems from comparing it with the stereotype content model (SCM161,162). 
According to the SCM, people form impressions of other humans 
along two dimensions: warmth (that is, positive and negative social 
characteristics) and competence (that is, a person’s ability to suc-
cessfully accomplish tasks). Although our model is broader than the 
SCM because it comprises all psychological processes rather than 
only social and intellectual characteristics, the competence dimen-
sions from the two models are thematically comparable whereas the 
positive and negative attributes from the SCM’s warmth dimension 
are broadly aligned with our positive and negative dimensions. These 
comparisons suggest that (1) people use similar criteria when forming 
impressions of robots and humans and (2) robots’ similarity to humans 
does not play a role in this regard, because many of our stimuli depicted 
non-humanoid robots (Supplementary Table 7).

Table 6 | Main individual difference predictors of the 
positive, negative and competence dimensions (Study 7)

Variable b s.e. b 99% CI t P f2

DV, positive dimension

Model 1: GRP positively predicts DV

(constant) 2.938 0.086 2.717–3.159 34.329 <0.001 1.102

GRP 0.145 0.035 0.054–0.236 4.099 <0.001 0.016

Model 2: IDAQ positively predicts DV

(constant) 2.791 0.068 2.615–2.967 40.888 <0.001 1.564

IDAQ 0.178 0.023 0.120–0.236 7.868 <0.001 0.058

Model 3: FMPS_PE positively predicts DV

(constant) 2.786 0.107 2.511–3.061 26.137 <0.001 0.639

FMPS_PE 0.158 0.034 0.071–0.245 4.684 <0.001 0.021

DV, negative dimension

Model 4: PANAS_TNA positively predicts DV

(constant) 2.090 0.078 1.888–2.292 26.734 <0.001 0.669

PANAS_TNA 0.124 0.047 0.003–0.245 2.634 0.009 0.006

Model 5: IDAQ positively predicts DV

(constant) 2.133 0.060 1.979–2.287 35.714 <0.001 1.193

IDAQ 0.056 0.020 0.005–0.107 2.840 0.005 0.008

Model 6: SD3_P positively predicts DV

(constant) 1.707 0.098 1.456–1.959 17.496 <0.001 0.286

SD3_P 0.296 0.048 0.172–0.420 6.152 <0.001 0.035

Model 7: ERQ_ES positively predicts DV

(constant) 2.041 0.083 1.827–2.255 24.586 <0.001 0.565

ERQ_ES 0.064 0.021 0.010–0.117 3.085 0.002 0.009

DV, competence dimension

Model 8: ATQ_AP positively predicts DV

(constant) 4.470 0.151 4.079–4.860 29.527 <0.001 0.816

ATQ_AP 0.157 0.029 0.081–0.233 5.345 <0.001 0.027

Model 9: PVQ5X_SS positively predicts DV

(constant) 4.859 0.106 4.586–5.133 45.797 <0.001 1.962

PVQ5X_SS 0.097 0.024 0.034–0.160 3.962 <0.001 0.015

DV, dependent variable. Model 1, R2 = 0.015; Model 2, R2 = 0.055; Model 3, R2 = 0.020; Model 4, 
R2 = 0.006; Model 5, R2 = 0.007; Model 6, R2 = 0.034; Model 7, R2 = 0.009; Model 8, R2 = 0.026; and 
Model 9, R2 = 0.014. All models had 1,069 residual degrees of freedom. In all models we used 
t-tests (two-sided) to assess the significance of the coefficients, with the significance criterion 
being P < 0.010 based on the Benjamini–Yekutieli correction216,217 for multiple comparisons. 
The table contains raw P values that are statistically significant if they meet this benchmark; 
therefore, all nine predictors reached statistical significance. f2 denotes Cohen’s f2 effect 
size218. GRP and FMPS_PE were measured on a 1–5 scale (1, strongly disagree; 5, strongly 
agree); IDAQ was measured on a 0–10 scale (0, not at all; 10, very much); PANAS_TNA was 
measured on a 1–5 scale (1, strongly disagree; 5, strongly agree); SD3_P was measured on a 
1–5 scale (1, disagree strongly; 5, agree strongly); ERQ_ES and ATQ_AP were measured on a 
1–7 scale (1, strongly disagree; 7, strongly agree); and PVQ5X_SS was measured on a 1–6 scale 
(1, not like me at all; 6, very much like me).
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Table 7 | All variables tested as mediators and their mediated effects (in parentheses), listed under the relevant individual 
difference predictors of the positive, negative and competence dimensions (Study 7)

DV, positive dimension

 Mediators tested for predictor GRP

 GRP_M1 (ab = 0.001, 99% CIbootstrapped [−0.006, 0.010], ab% = 0.007). I think robots do not pose a risk to me.

 GRP_M2 (ab < 0.001, 99% CIbootstrapped [−0.016, 0.016], ab% = 0.002). I think robots do not pose a risk to society.

 GRP_M3 (ab = 0.057, 99% CIbootstrapped [0.029, 0.093], ab% = 0.393). I think robot adoption has its risks, but these risks are what make robots appealing.

 GRP_M4 (ab = 0.013, 99% CIbootstrapped [0.001, 0.032], ab% = 0.090). I am curious to see how robots will change the world.

 GRP_M5 (ab = −0.003, 99% CIbootstrapped [−0.018, 0.009], ab% = −0.021). I think robot adoption has its risks, but the potential rewards are high.

 GRP_M6 (ab = −0.001, 99% CIbootstrapped [−0.010, 0.006], ab% = −0.007). The benefits of robots outweigh their risks.

 GRP_M7 (ab = 0.020, 99% CIbootstrapped [−0.004, 0.048], ab% = 0.138). (1) I feel that technology helps me to align with my ideal self; (2) I feel that technology helps me 
to succeed in my endeavours.a

 Mediators tested for predictor IDAQb

 IDAQ_M1 (ab = 0.004, 99% CIbootstrapped [−0.009, 0.019], ab% = 0.022). When I interact with a non-human entity (e.g., robots, machines, nature, animals), I can 
experience strong emotions that I would normally experience toward human beings.

 IDAQ_M2 (ab = 0.021, 99% CIbootstrapped [0.008, 0.039], ab% = 0.118). Interacting with non-human entities (e.g., robots, machines, nature, animals) helps me fulfil 
the need to experience strong emotions regularly.

 IDAQ_M3 (ab = 0.035, 99% CIbootstrapped [0.016, 0.060], ab% = 0.197). When I see a non-human entity (e.g., robots, machines, nature, animals) that has human 
characteristics, I experience positive feelings.

 IDAQ_M4 (ab = −0.001, 99% CIbootstrapped [−0.007, 0.004], ab% = −0.006). When I see a non-human entity (e.g., robots, machines, nature, animals) that has human 
characteristics, I experience negative feelings.

 Mediators tested for predictor FMPS_PE

 FMPS_PE_M1 (ab = 0.031, 99% CIbootstrapped [0.009, 0.058], ab% = 0.196). I value robots because they are closer to perfection than humans.

 FMPS_PE_M2 (ab = 0.027, 99% CIbootstrapped [0.006, 0.055], ab% = 0.171). I value robots because I believe they can help me fulfil my own high expectations.

 FMPS_PE_M3 (ab = 0.011, 99% CIbootstrapped [−0.024, 0.048], ab% = 0.070). I value robots because I believe they can help me fulfil my parents’ high expectations.

 FMPS_PE_M4 (ab = 0.009, 99% CIbootstrapped [−0.013, 0.032], ab% = 0.057). I value robots because their superiority over humans allows me to become superior over 
others.

 FMPS_PE_M5 (ab = 0.026, 99% CIbootstrapped [−0.012, 0.065], ab% = 0.165). I value robots because I believe they help me better cope with my parents’ high 
expectations of me.

 FMPS_PE_M6 (ab = 0.033, 99% CIbootstrapped [0.011, 0.062], ab% = 0.209). I value robots because I believe they help me better cope with my own high expectations 
of myself.

DV, negative dimension

 Mediators tested for predictor PANAS_TNA

 Activated Displeasure—12-PAC_AD (ab = 0.231, 99% CIbootstrapped [0.029, 0.450], ab% = 1.863); Deactivated Displeasure—12-PAC_DD (ab = −0.019, 99% CIbootstrapped 
[−0.180, 0.147], ab% = −0.153); Displeasure—12-PAC_D (ab = −0.030, 99% CIbootstrapped [−0.228, 0.173], ab% = −0.242); Unpleasant Activation—12-PAC_UA (ab = −0.073, 99% 
CIbootstrapped [−0.231, 0.081], ab% = −0.589); Unpleasant Deactivation—12-PAC_UD (ab = 0.033, 99% CIbootstrapped [−0.054, 0.130], ab% = 0.266)c. Measured using 12-point 
affect circumplex (12-PAC)158.

 Mediators tested for predictor IDAQb

 IDAQ_M1 (ab = 0.001, 99% CIbootstrapped [−0.011, 0.014], ab% = 0.018); IDAQ_M2 (ab = 0.008, 99% CIbootstrapped [−0.002, 0.022], ab% = 0.143); IDAQ_M3 (ab = −0.011, 99% CI 
[−0.026, −0.001], ab% = −0.196); IDAQ_M4 (ab = −0.005, 99% CIbootstrapped [−0.021, 0.011], ab% = −0.089)d. Same as for ‘DV, positive dimension: IDAQ’.

 Mediators tested for predictor SD3_P

 SD3_P_M1 (ab = −0.011, 99% CIbootstrapped [−0.075, 0.050], ab% = −0.037). I tend to have negative feelings toward other people.

 SD3_P_M2 (ab = 0.122, 99% CIbootstrapped [0.070, 0.183], ab% = 0.412). I tend to have negative feelings toward other people’s creations and inventions.

 SD3_P_M3 (ab = 0.022, 99% CIbootstrapped [0.005, 0.050], ab% = 0.074). Using technologies that I am not proficient in makes me feel inferior.

 SD3_P_M4 (ab = −0.008, 99% CIbootstrapped [−0.036, 0.020], ab% = −0.027). Technology can expose me for who I am.

 12-PAC_AD (ab = 0.064, 99% CIbootstrapped [0.010, 0.136], ab% = 0.216); 12-PAC_DD (ab = −0.005, 99% CIbootstrapped [−0.061, 0.051], ab% = −0.017); 12-PAC_D (ab = −0.028, 
99% CIbootstrapped [−0.098, 0.037], ab% = −0.095); 12-PAC_UA (ab = −0.017, 99% CIbootstrapped [−0.067, 0.022], ab% = −0.057); 12-PAC_UD (ab = −0.003, 99% CIbootstrapped [−0.037, 
0.029], ab% = −0.010).c Same as for ‘DV, negative dimension: PANAS_TNA’ (ref. 158).

 Mediators tested for predictor ERQ_ES

 ERQ_ES_M1 (ab = 0.007, 99% CIbootstrapped [−0.010, 0.029], ab% = 0.109). At the moment, I feel mentally exhausted.

 ERQ_ES_M2 (ab = 0.007, 99% CIbootstrapped [−0.012, 0.027], ab% = 0.109). At the moment, I feel emotionally exhausted.

 12-PAC_AD (ab = 0.017, 99% CIbootstrapped [−0.002, 0.043], ab% = 0.266); 12-PAC_DD (ab = −0.005, 99% CIbootstrapped [−0.026, 0.013], ab% = −0.078); 12-PAC_D (ab = −0.008, 
99% CIbootstrapped [−0.037, 0.014], ab% = −0.125); 12-PAC_UA (ab = −0.007, 99% CIbootstrapped [−0.023, 0.003], ab% = −0.109); 12-PAC_UD (ab = −0.001, 99% CIbootstrapped [−0.013, 
0.009], ab% = −0.016).c Same as for ‘DV, negative dimension: PANAS_TNA’ (ref. 158).
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Ending with Phase 3, we discuss our findings on individual differ-
ence predictors (Tables 6 and 7) in relation to the previous relevant lit-
erature. In this respect, researchers found that extraversion, openness 
and anthropomorphism predicted positive responses to robots163–166; 
the need for cognition predicted lower negative attitudes towards 
robots167; and animal reminder disgust, neuroticism and religiosity 
predicted experiencing robots as eerie168. Among these, our research 
corroborated only the positive relationship between anthropomor-
phism and positive responses (Table 6).

We also went beyond previous research by discovering many rela-
tionships not easily anticipated by theory. For example, although we 
had a sound rationale behind each predictor (Supplementary Table 11)  
it would have been difficult to foresee psychopathy as the most robust 
predictor of the negative dimension (Table 6)153. We also did not expect 
that one of the main mechanisms behind negative robot perceptions 
would be negative feelings towards other people’s creations and 
the state of activated displeasure, which mediated the relationship 
between psychopathy and the negative PNC dimension (Table 7). There-
fore, using a data-driven approach allowed us to generate unexpected 
insights, thus diversifying the body of knowledge on psychological 
reactions to robots79,81,98.

There are several limitations to this research. First, the stimuli were 
not physical robots but their depictions. These stimuli hold ecological 
validity because people often interact with robots indirectly (for example, 

via social media or various websites), and many psychological processes 
may therefore be shaped in this manner. Nonetheless, previous research 
showed that direct interaction with robots impacts people’s experi-
ences27,169,170. Therefore, based on the present findings it is not known 
whether our taxonomy applies to the physical counterparts of the robots 
depicted by our stimuli, and investigating this is currently unachievable 
because many of these robots are inaccessible for in-person research due 
to their size, cost, limited production or potential use as weapons (for 
example, industrial and military robots). However, this research may be 
possible in the future if such robots become more accessible.

Second, participants were from Western, educated, industrialized, 
rich and democratic171 countries (United Kingdom and United States). 
Because our research proposed and investigated a construct (that is, 
psychological processes regarding robots) from scratch, our priority 
was to establish its foundations. Combining the investigation of cultural 
differences with this agenda using equally meticulous methods would 
have exceeded the scope of a single article. Nevertheless, because 
measurement invariance analyses showed that the PNC model applies 
to individuals regardless of their income, age, education, use of robots 
at work, political orientation, ethnic identity and relationship status, 
it is plausible that the model would generalize to countries that differ 
from the United Kingdom or United States on these population char-
acteristics. Conducting an in-depth examination of this question will 
be a crucial step as this research topic progresses.

DV, competence dimension

 Mediators tested for predictor ATQ_AP

 ATQ_AP_M1 (ab = 0.008, 99% CIbootstrapped [−0.004, 0.026], ab% = 0.051). I value robots that can help me perform better than others.

 ATQ_AP_M2 (ab = 0.015, 99% CIbootstrapped [−0.007, 0.042], ab% = 0.096). I value robots that can help me become better at a task, goal, or skill that I want to 
accomplish or master.

 ATQ_AP_M3 (ab = −0.010, 99% CIbootstrapped [−0.029, 0.005], ab% = −0.064). When evaluating other people, it is important to me how good they are at what they do.

 ATQ_AP_M4 (ab = 0.012, 99% CIbootstrapped [−0.001, 0.030], ab% = 0.076). When evaluating robots, it is important to me how good they are at what they do.

 ATQ_AP_M5 (ab = 0.020, 99% CIbootstrapped [0.002, 0.042], ab% = 0.127). I highly value exceptional skills and competencies.

 ATQ_AP_M6 (ab = 0.003, 99% CIbootstrapped [−0.021, 0.027], ab% = 0.019). When I see a human that can accomplish something challenging, I react strongly to it.

 ATQ_AP_M7 (ab = −0.006, 99% CIbootstrapped [−0.032, 0.020], ab% = −0.038). When I see a robot that can accomplish something challenging, I react strongly to it.

 ATQ_AP_M8 (ab = 0.011, 99% CIbootstrapped [−0.012, 0.037], ab% = 0.070). When I see the potential for robots to improve human life, I get excited.

 ATQ_AP_M9 (ab = 0.017, 99% CIbootstrapped [−0.010, 0.047], ab% = 0.108). When I encounter robots or other inventions that can better my life, I react strongly to it.

 ATQ_AP_M10 (ab = 0.018, 99% CIbootstrapped [−0.002, 0.043], ab% = 0.115). I am thrilled when seeing robots helping society to achieve tasks that are often difficult to 
accomplish.

 Mediators tested for predictor PVQ5X_SS

 PVQ5X_SS_M1 (ab = 0.009, 99% CIbootstrapped [−0.005, 0.027], ab% = 0.093). I think advanced technology (e.g., robots, machines, devices) can make the country 
more powerful.

 PVQ5X_SS_M2 (ab = 0.016, 99% CIbootstrapped [−0.008, 0.042], ab% = 0.165). With effective use of advanced technology (e.g., robots, machines, devices), the country 
maintains its strength to defend its citizens.

 PVQ5X_SS_M3 (ab = 0.004, 99% CIbootstrapped [−0.003, 0.015], ab% = 0.041). I think advanced technology (e.g., robots, machines, devices) can create order and 
stability.

 PVQ5X_SS_M4 (ab = 0.015, 99% CIbootstrapped [<0.001, 0.036], ab% = 0.155). Advanced technology (e.g., robots, machines, devices) is a reflection of how powerful 
our society is.

 PVQ5X_SS_M5 (ab = 0.007, 99% CIbootstrapped [−0.001, 0.019], ab% = 0.072). Being surrounded by advanced technology (e.g., robots, machines, devices) that is 
effective at what it does makes me feel safe.

For each mediator we first present its name, followed by its mediated effect (ab) in parentheses. Mediated effects are presented in raw units. For example, for GRP_M3 (ab = 0.057, 99% CI 
[0.029, 0.093], ab% = 0.393) the mediated effect ab indicates that for one unit increase in GRP as a predictor, the positive dimension increased by 0.057 units, which is the effect that can be 
accounted for by the mediator (GRP_M3). For an easier understanding of the magnitude of each mediated effect, ab% is also reported and indicates the percentage of the total effect between 
a predictor and DV (that is, coefficients b in Table 6) explained by the mediator. In some cases ab% can exceed 1 (that is, 100%), which means that the effect travelling through the mediator is 
larger than the total effect itself. A mediated effect is significant only if its 99% CIbootstrapped does not contain 0 (ref. 157). Some mediated effects (ab and ab%) are negative; this means they are in 
the opposite direction to the effect between a predictor and DV, and therefore do not explain their relationship. All mediators that successfully explained a portion of the relationship between 
a predictor and DV (that is, mediated effects that are positive and whose 99% CIbootstrapped does not contain 0) are presented in bold typeface. aThe two items for GRP_M7 were averaged into a 
composite score. bFor IDAQ as a predictor we used the same mediators for the positive and negative dimensions, considering that we wanted to ensure that any potential differences between 
the mechanisms for these two dimensions are not a consequence of different mediators being used in the mediation models. cThe five 12-PAC mediators capture state affect because they 
were assessed in relation to how people currently felt. dAlthough the mediated effect of IDAQ_M3 was significant, the direction of this effect was negative (ab = −0.011) and thus opposite to the 
positive direction of the relationship between IDAQ and the negative domain (Table 6). Therefore, the mediator failed to explain this relationship.

Table 7 (continued) | All variables tested as mediators and their mediated effects (in parentheses), listed under the relevant 
individual difference predictors of the positive, negative and competence dimensions (Study 7)
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Third, we recruited online participants who are inherently more 
confident with technology. Whereas this might have influenced the 
findings, alternative modes of recruitment (for example, laboratory) 
would have yielded smaller and less representative participant sam-
ples172–176. Furthermore, to reduce the chance of technological profi-
ciency biasing the findings, all machine learning models controlled 
for a variable indicative of technological proficiency (that is, previous 
frequency of interaction with robots; Supplementary Tables 11 and 12).

Finally, rapid technological development might make robots with 
an embodiment similar to humans able to perform and simulate all 
human activities, thereby substantially changing how people perceive 
robots. However, since our comparison of the PNC model and SCM161,162 
indicates that people form impressions of robots and humans in a simi-
lar manner, it is unlikely that robots becoming more like humans will 
have a notable impact on the structure of our model. Even if it does, the 
PNC can be updated via the same methodological procedures we used.

Methods
This research complies with the ethics policy and procedures of the 
London School of Economics and Political Science (LSE), and has 
also been approved by its Research Ethics Committee (no. 20810). 
Informed consent was obtained from all participants and they were 
compensated for their participation. Table 1 summarizes key par-
ticipant information. In Studies 4–6, participants were recruited to be 
reasonably representative of the UK/US populations for age, gender 
and geographical region, and in Study 1 (Sample 1) for gender only. 
More comprehensive breakdowns of participant information and the 
criteria used for representative sampling are available in Supplemen-
tary Tables 1 and 2.

To be included in analyses, participants had to pass seriousness 
checks177, instructed-response items (for example, please respond with 
‘somewhat disagree’)178–180, understanding checks in which they identi-
fied the main research topic (that is, robots) amongst dummy topics (for 
example, animals or art) and completely automated public Turing tests to 
tell computers and humans apart (CAPTCHAs), used to safeguard against 
bots181. The number of these quality checks varied per study. For serious-
ness checks: Study 1, two (one per sample); Study 2, one; Study 3, one; 
Study 4, two (one per sample); Study 5, two (one per sample); Study 6, one; 
and Study 7, two (one per wave). For instructed-response items: Study 1, 
six (two in Sample 1 and four in Sample 2); Studies 2 and 3, none; Study 4, 
eight (four per sample); Study 5, four (two per sample); Study 6, three; 
and Study 7, three (two in wave 1 and one in wave 2). For understanding 
checks: Study 1, two (one per sample); Study 2, one; Study 3, one; Study 4, 
two (one per sample); Study 5, two (one per sample); Study 6, one; and 
Study 7, none. For CAPTCHA: Study 1, one (in Sample 2); Study 2, one; 
Study 3, one; Study 4, two (one per sample); Study 5, two (one per sample); 
Study 6, one; and Study 7, two (one per wave).

In Studies 4–7, which were quantitative, we employed pairwise 
deletion for missing data because various simulations showed that 
this does not bias the type of analyses we used when missing data 
are infrequent (≤5%)—even in smaller participant samples (for exam-
ple, 240)—and larger samples are generally more robust to missing 
data182,183. In our analyses, the percentage of participants with missing 
data never exceeded 1.95.

The analyses using machine learning models (Study 6) did not rely 
on distributional assumptions due to cross-validation184, and neither 
did the mediation analyses (Study 7) due to bootstrapped confidence 
intervals used to test mediated effects157. All other quantitative analy-
ses assumed a normal distribution of data. Because formal normality 
tests are sensitive to small deviations that do not bias findings134, we 
assumed variables to be normal if they had skewness between −2 and 
2 and kurtosis between −7 and 7 (refs. 185–187). All the required vari-
ables met these criteria (Supplementary Tables 18–23). Given the large 
sample sizes we used, even severe deviations from normality would not 
compromise the validity of statistical inferences157,188,189.

Next, we succinctly describe the methods of the studies in each 
phase (for a more comprehensive description, see Supplementary 
Methods). Study 7 was preregistered on 12 December 2021 via the 
Open Science Framework (OSF) and can be accessed using this link: 
https://osf.io/nejvm?view_only = 79b6eeee42e24cb2a977927712b-
dcdd2. There were no deviations from the preregistered protocol. 
Data and analysis codes for all studies are also publicly available via 
the OSF using the following link: https://osf.io/2ntdy/?view_only = 
2cacc7b1cf2141cf8c343f3ee28dab1d

Phase 1: mapping a comprehensive content space of robots
Study 1. Sample size. To determine Sample 1 size we relied on previous 
work showing that, in qualitative research, samples having 30–50 par-
ticipants tend to reach the point of data saturation, which means that 
the addition of further participants produces little new informa-
tion190–195. We recruited a considerably larger sample (266; Table 1) 
to ensure that the study detected all important robot characteristics 
because the robot definition we wanted to develop was essential for 
all subsequent studies. For Sample 2 we recruited 100 participants 
(Table 1), which is comparable to other studies using hierarchical 
clustering196,197 given the lack of guidelines on optimal sample sizes 
for this technique (for additional insights based on simulations, see 
Supplementary Methods).

Procedure. In Sample 1, participants first answered the consent 
form after which they were presented with three items that elicited 
robot characteristics. In the following order, they were asked to: (1) 
state the first thing that comes to mind when they think about a robot; 
(2) define in their own words what a robot is; and (3) list as many charac-
teristics they associate with robots that they could think of. At the end 
we assessed participant information, including gender, age, employ-
ment status and use of robots at work (Table 1). In Sample 2, after 
answering the consent form, participants were exposed to 277 robot 
characteristics produced by Sample 1 (Supplementary Table 3) and 
were asked to sort them into groups based on similarity. In this regard, 
participants were provided with up to 60 empty boxes representing 
different groups into which they could drag the characteristics they 
perceived as being similar. At the end, participant information was 
assessed as for Sample 1.

Analytic approach. We first extracted robot characteristics gener-
ated by Sample 1 participants for the three questions described in the 
Study 1 procedure and then rephrased those that were stated vaguely 
(for example, ‘appearance of thought’) into a more precise formula-
tion (for example, ‘appears to think on its own’). Next, we deleted all 
characteristics that were identical and therefore redundant. However, 
we included many items that were overlapping or similar (for example, 
‘performs actions’ and ‘performs certain actions’) to ensure that the 
potential content space of robot characteristics was sampled in detail 
(for the final list of 277 characteristics see Supplementary Table 3). The 
characteristics, as sorted into categories by Sample 2 participants, were 
subjected to hierarchical cluster analysis for categorical data114–116: a  
dissimilarity matrix was computed using Gower’s distance198,199, clus-
ters were produced using Ward’s linkage method200,201 and the optimal 
number of clusters was determined via the mean silhouette width 
approach using the partitioning around medoids algorithm114,202,203. 
The five clusters that emerged were then arranged into the robot defi-
nition (Table 2).

Study 2. Sample size. To determine sample size we followed the same 
guidelines as for Study 1 (Sample 1) that considered the point of data 
saturation in qualitative research.

Procedure. After completing the consent form, participants were 
presented with the robot definition developed in Study 1. They were 
then asked to think about and list any domains that came to mind 
in which humans can encounter and/or interact with robots. It was 
explained that, by ‘domains’, we mean any area of human life and human 
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activity in which people encounter, interact with, use, are helped by 
and/or are substituted by robots. At the end, participant information 
was assessed as in Study 1 (Table 1).

Analytic approach. To identify the domains we performed an 
inductive qualitative content analysis on participants’ responses117–121: 
we first created a list of all domain items identified by participants (see 
Supplementary Results, subsection ‘Additional analysis output’) and 
then arranged these items into common categories that correspond 
to the domains of robot use. The first author created the initial list of 
categories from the domain items. The list was revised by the remain-
ing authors and, eventually, it was consolidated by all three authors. To 
ensure that no important domains had been omitted we also consulted 
the classification of robots proposed by IEEE (https://robots.ieee.org/
learn/types-of-robots/), the list of industries and sectors endorsed by 
the International Labor Organization (https://www.ilo.org/global/
industries-and-sectors/lang--en/index.htm) and the articles from our 
literature review.

Phase 2: creating the taxonomy of psychological processes
Study 3. Sample size. To determine sample size we followed the same 
guidelines as for Study 1 (Sample 1) and Study 2. Because Study 3 aimed 
to identify a comprehensive range of psychological processes towards 
robots, which was a crucial step of our research, we recruited a sub-
stantially larger sample than required (350; Table 1) to ensure that even 
highly infrequent processes were detected.

Procedure. Participants first completed the consent form and were 
then randomly allocated to five out of the 28 domains we developed 
(Table 2). After reading the definition of robots (Table 2), we prompted 
them to think about robots from the allocated domains by writing about 
interactions they had with such robots, or else about interactions they 
could imagine or were exposed to via media. To assess participants’ 
psychological processes, we then asked them to list and describe feel-
ings they had experienced (for affective responses), thoughts they had 
(for cognitive responses) and actions they engaged in (for behavioural 
responses) when they interacted with any robots they could think of 
from each domain, or to write about feelings, thoughts and actions they 
could conceive in case they had never interacted with these robots. At the 
end, participant information was assessed as in Studies 1 and 2 (Table 1).

Analytic approach. We implemented iterative categorization122. 
This qualitative analysis involved first splitting participants’ responses 
to questions assessing their psychological processes into key points 
(that is, separate issues or thoughts—for example, ‘I think this will be 
the future’)—and then grouping these points into themes based on simi-
larity. Out of 334 participants who were included in analyses (Table 1),  
only four produced merely meaningless responses that could not be 
analysed and the remaining 330 generated 10,332 valid key points 
(approximately 31 per participant) that were analysed.

Study 4. Sample size. Because power analyses are difficult to imple-
ment for EFAs before any parameters are known, to determine the sizes 
of Samples 1 and 2 we consulted various resources that estimated the 
optimal sample size for EFAs (for a more comprehensive description 
see Supplementary Methods). Because the size of 1,500 met all the 
estimates, we recruited the samples required to reach this number 
after accounting for exclusions (Table 1).

Procedure. The procedure for both samples was identical. After 
answering the consent form, participants were randomly allocated to 
a domain (Table 2) and received a specific example of a robot from that 
domain (Supplementary Table 7) that included an image and descrip-
tion approximately eight lines long. For the sex domain, two robot 
examples were created (one male and one female) and participants 
assigned to this domain were randomly allocated to one. Participants 
were then asked to answer 149 items (Table 3), presented in a rand-
omized order, about the robot in question. At the end, participant 
information was assessed as in Studies 1, 2 and 3 (Table 1).

Analytic approach. For both samples we planned several steps to 
determine the optimal factor structure. First, the Kaiser–Meyer–Olkin 
measure of sampling adequacy and Bartlett’s test of sphericity were 
required to show that our data are suitable for EFAs125. Second, to deter-
mine the preliminary number of factors for examining in EFAs, we used 
parallel analysis126,127,204, very simple structure128, Velicer map129, optimal 
coordinates130, acceleration factor130, Kaiser rule131 and visual inspec-
tion of scree plots132. This was advisable because consulting several 
criteria allows understanding of the range within which lies the optimal 
number of factors potentially82,135,136,205,206. Next, we aimed to evaluate 
the largest factor solution identified in the previous step against sev-
eral statistical benchmarks using maximum-likelihood EFAs104,105 with 
Kaiser-normalized123 promax rotation106,124. Namely, the factor solution 
was required to produce only valid factors (that is, those that have at 
least three items with loadings ≥0.5 and cross-loadings <0.32) to be acc
epted105,125,133,134. If these criteria were not met, we aimed to decrease the 
number of factors by one and evaluate the new solution—this procedure 
would continue until a satisfying solution was identified. Finally, the 
accepted factor structure also had to have factors that are coherent 
and easy to interpret135,136. Importantly, this approach to selecting the 
best structure is not only statistically and semantically viable but has 
precedent in previous taxonomic research82,205.

Study 5. Sample size. To determine sample size we used Monte Carlo 
simulations207 based on the data from Samples 1 and 2 (Study 4). Details 
are available in Supplementary Methods.

Procedure. The procedure for both samples was identical. After 
answering the consent form, participants were randomly allocated to 
one robot example. The randomization procedure was the same as in 
Study 4 except that there were two (rather than one) possible robot 
examples per domain (Supplementary Table 7). The sex domain had 
four examples—two male and two female robots. The descriptions of 
robots were also consistent with Study 4. Participants were then asked 
to answer the 37 selected items (Table 4), presented in a randomized 
order, about the robot in question. At the end, participant information 
was assessed as in Studies 1, 2, 3 and 4 (Table 1).

Analytic approach. The maximum-likelihood with robust stand-
ard errors estimator137,138 was implemented using ESEM82,107,108,208 to 
test model fit. Target rotation with all cross-loadings specified as tar-
gets of zero was chosen139,140. The following fit criteria were used141–143: 
SRMR < 0.05, excellent fit; SRMR = 0.05–0.08, good fit; SRMR > 0.08, 
poor fit; CFI > 0.95, excellent fit; CFI = 0.90–0.95, good fit; CFI < 0.90, 
poor fit; RMSEA < 0.06, excellent fit; RMSEA = 0.06–0.10, good fit; and 
RMSEA > 0.10, poor fit. For testing of configural measurement invari-
ance the same fit criteria were used. For metric invariance, changes in 
SRMR, CFI and RMSEA were required to be ≤0.030, 0.010 and 0.015, 
respectively, and, for scalar invariance, ≤0.015, 0.010 and 0.015, 
respectively144,146.

Phase 3: examining individual difference predictors
Study 6. Sample size. For machine learning algorithms combined 
with cross-validation there are no straightforward guidelines for com-
pution of power analyses. Simulations showed that, for the tenfold 
cross-validations we were planning to use, a sample of 2,000 leads to 
high generalizability (that is, a likelihood that the results will apply to 
other samples from the same population) without inflating the time 
taken to run the models209. Therefore, we aimed to recruit a sample 
that would have approximately 2,200 participants after accounting 
for exclusions, in case of any additional missing data.

Procedure. After answering the consent form, participants were 
randomly allocated to one robot example as in Study 5 and asked 
to answer the PRR scale items (Table 4) presented in a randomized 
order. They then completed measures that assessed the 79 individual 
differences we tested as predictors (Supplementary Table 11), ranging 
from general personality traits, such as BIG 5 (ref. 210) or approach 
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temperament155, to more specific ones, such as psychopathy153. We 
also measured covariates for inclusion in the models alongside the 
individual differences (that is, familiarity with the robot, frequency 
of interaction, descriptive norms, injunctive norms, age, income and 
political orientation; Supplementary Table 11). Finally participant 
information was assessed as in the previous studies, with the addition 
of education level, ethnic identity and relationship status (Supple-
mentary Table 1).

Analytic approach. We implemented a rigorous multistep pro-
cedure to select the most predictive individual differences. Using 
the caret package109,110 in R, we computed the following 11 machine 
learning models for each PNC dimension separately: linear least 
squares, ridge, lasso, elastic net, k-nearest neighbours, regression 
trees, conditional inference trees, random forest, conditional ran-
dom forest, neural networks and neural networks with a principal 
component step. For each model, tenfold cross-validation184,211–214 
was implemented and all 79 individual differences plus covariates 
were used as predictors.

The most predictive models were selected using root-mean-square 
error (r.m.s.e.)109,110,184. For each PNC dimension, the model with the 
highest r.m.s.e. was identified and the remaining models were com-
pared with it using paired-samples t-tests (Bonferroni corrected α of 
0.00167 was used as the significance criterion). Ultimately, the model 
with the highest r.m.s.e. and those not significantly different from it 
were identified as the most predictive models. For each of these models 
we first identified the 30 most important predictors using the VarImp 
function in R110 and then identified individual differences that appeared 
in the top 30 across all models.

Based on the linear least-squares model—which is in essence a 
linear regression algorithm combined with cross-validation and thus 
outputs P values—we retained only the most important individual 
differences identified in the previous step that were also statistically 
significant after applying false-discovery rate correction148. We used 
this approach because in Study 7 we aimed to replicate the selected 
predictors using linear regressions; therefore, we wanted to further 
minimize the likelihood that these predictors are false positives.

Study 7. Sample size. Because this study tested the key predictors 
identified in Study 6, sample size was estimated using power analyses215 
based on the parameters from that study (Supplementary Methods).

Procedure. The study consisted of two waves. In wave 1, partici-
pants first completed the consent form and were then presented with, 
in a randomized order, the measures assessing the most predictive 
individual differences identified in Study 7 (Table 6). Finally participant 
information was assessed as in Studies 1–5. Approximately 4 days after 
completing wave 1, participants were invited to participate in wave 2. 
They first completed the consent form and were then presented with 
the items measuring the mediators (Table 7) in a randomized order. 
Subsequently, they were randomly allocated to a robot example as 
in Studies 5 and 6 and asked to answer the PRR scale items (Table 4), 
presented in a randomized order.

Analytic approach. To test whether the key individual differ-
ences predicted the relevant PNC dimensions we used linear regres-
sions, one per predictor (Table 6). Furthermore, to identify the most 
important mediators we used the Process package (Model 4 (ref. 
157)) to perform parallel mediation analyses (that is, with all poten-
tial mediators analysed together for the relevant predictor; Table 7), 
percentile-bootstrapped with 10,000 samples. In line with the Benja-
mini–Yekutieli correction216,217, the significance criterion was 0.01 for 
the regression analyses whereas for the mediated effects we used 99% 
confidence intervals that are the equivalent of this criterion.

Reporting summary
Further information on research design is available in the Nature Port-
folio Reporting Summary linked to this article.

Data availability
The data that support the findings from all studies, as well as the materi-
als used, are publicly available via the OSF: https://osf.io/2ntdy/?view_
only = 2cacc7b1cf2141cf8c343f3ee28dab1d), except for the stimuli 
used in Studies 4–7, which can be obtained from the corresponding 
author on request.

Code availability
The codes for all the analyses for the studies conducted are pub-
licly available via the OSF using the following link: https://osf.
io/2ntdy/?view_only = 2cacc7b1cf2141cf8c343f3ee28dab1d.
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Statistics
For all statistical analyses, confirm that the following items are present in the figure legend, table legend, main text, or Methods section.

n/a Confirmed

The exact sample size (n) for each experimental group/condition, given as a discrete number and unit of measurement

A statement on whether measurements were taken from distinct samples or whether the same sample was measured repeatedly

The statistical test(s) used AND whether they are one- or two-sided 
Only common tests should be described solely by name; describe more complex techniques in the Methods section.

A description of all covariates tested

A description of any assumptions or corrections, such as tests of normality and adjustment for multiple comparisons

A full description of the statistical parameters including central tendency (e.g. means) or other basic estimates (e.g. regression coefficient) 
AND variation (e.g. standard deviation) or associated estimates of uncertainty (e.g. confidence intervals)

For null hypothesis testing, the test statistic (e.g. F, t, r) with confidence intervals, effect sizes, degrees of freedom and P value noted 
Give P values as exact values whenever suitable.

For Bayesian analysis, information on the choice of priors and Markov chain Monte Carlo settings

For hierarchical and complex designs, identification of the appropriate level for tests and full reporting of outcomes

Estimates of effect sizes (e.g. Cohen's d, Pearson's r), indicating how they were calculated

Our web collection on statistics for biologists contains articles on many of the points above.

Software and code
Policy information about availability of computer code

Data collection Data for all studies were collected using Qualtrics (https://www.qualtrics.com/). The following Qualtrics versions were used: Study 1 (Sample 
1) - version [February, March 2019]; Study 1 (Sample 2) - version [July 2019]; Study 2 - version [September 2019]; Study 3 - version [October 
2019]; Study 4 (Sample 1) - version [March 2021]; Study 4 (Sample 2) - version [April 2021]; Study 5 (Sample 1) - version [June, July, 2021]; 
Study 5 (Sample 2) - version [June, July 2021]; Study 6 - version [September, October, 2021]; Study 7 - version [December 2021]. 
The original surveys in Qualtrics that were used for data collection are available via the following link (for each study, check the folder 
"Materials"): https://osf.io/2ntdy/?view_only=2cacc7b1cf2141cf8c343f3ee28dab1d 
Qualtrics is a commercial survey platform, and we did not use any of our own code to collect the data. 

Data analysis The data were analyzed using the following software (and packages where relevant):  
Study 1 (Sample 2) - R software (version 4.2.1): packages dplyr (version 1.1.1), cluster (version 2.1.3), dendextend (version 1.16.0), and ape 
(version 5.6-2). 
Study 4 (Samples 1 and 2) - R software (version 4.2.1): packages psych (version 2.2.5), paran (version 1.5.2), nFactors (version 2.4.1.1), 
GPArotation (version 2023.3-1), and MVN (version 5.9). 
Study 5 (Samples 1 and 2) - Mplus (version 8.6); R software (version 4.2.1): packages psych (version 2.2.5) and MVN (version 5.9); Bifactor 
Indices Calculator (version 10-4-2017). 
Study 6 - R software (version 4.2.1): packages psych (version 2.2.5), caret (version 6.0-93), tidyverse (version 1.3.2), rsample (version 1.1.0), 
skimr (version 2.1.4), ggplot2 (version 3.4.2), ggthemes (version 4.2.4), ggpubr (version 0.4.0), glmnet (version 4.1-4), party (version 1.3-11), 
randomForest (version 4.7-1.1), forecast (version 8.18), fabletools (version 0.3.2), h2o (version 3.38.0.1), and MVN (version 5.9); Mplus 
(version 8.6). 
Study 7 - R software (version 4.2.1): packages psych (version 2.2.5), sensemakr (version 0.1.4), sjPlot (version 2.8.14), and MVN (version 5.9); 
SPSS (version 23): package Process (version 3.4.1).  
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For more information about R software, see https://www.r-project.org/; for more information about Mplus, see https://
www.statmodel.com/; for more information about SPSS, see https://www.ibm.com/products/spss-statistics; and for more information about 
Bifactor Indices Calculator, see https://uknowledge.uky.edu/edp_tools/1/ 
Studies 1 (Sample 1), 2, and 3 involved only qualitative analyses, and therefore no statistical software was used in these studies. All analyses 
codes are available via the following link: https://osf.io/2ntdy/?view_only=2cacc7b1cf2141cf8c343f3ee28dab1d

For manuscripts utilizing custom algorithms or software that are central to the research but not yet described in published literature, software must be made available to editors and 
reviewers. We strongly encourage code deposition in a community repository (e.g. GitHub). See the Nature Portfolio guidelines for submitting code & software for further information.

Data
Policy information about availability of data

All manuscripts must include a data availability statement. This statement should provide the following information, where applicable: 
- Accession codes, unique identifiers, or web links for publicly available datasets 
- A description of any restrictions on data availability 
- For clinical datasets or third party data, please ensure that the statement adheres to our policy 

 

The data that support the findings from all the studies are publicly available via the Open Science Framework (OSF) using the following link: https://osf.io/2ntdy/?
view_only=2cacc7b1cf2141cf8c343f3ee28dab1d 

Human research participants
Policy information about studies involving human research participants and Sex and Gender in Research. 

Reporting on sex and gender Findings apply to both male and female gender. Participants also had the option to identify themselves using a different 
gender label, although few of them selected that option. Gender was assessed in each study using self-reports; Table 1 
includes the breakdown of gender and other demographic information for all studies. In a nutshell, as can be seen from Table 
1, the number of males and females who participated in each study was similar. Overall, 5283 female and 4965 male 
participants completed the studies, whereas 4832 female and 4392 male participants were included in analyses. Moreover, 
43 participants who completed the studies identified themselves as “Other”, whereas 42 participants who were included in 
analyses identified themselves as “Other”. Finally, the data for 11 participants who completed the studies, and 8 participants 
who were included in analyses, were missing or were not disclosed.

Population characteristics See above.

Recruitment The information regarding how participants were recruited is summarized in Table 1 in the article. In Studies 1 (Sample 1), 4 
(Samples 1 and 2), 5 (Samples 1 and 2), and 6, participants were recruited via Pureprofile (https://www.pureprofile.com/). In 
Studies 1 (Sample 2), 2, and 3, participants were recruited via Amazon Mechanical Turk (https://www.mturk.com/). In Study 
7, participants were recruited via Prolific (https://www.prolific.co/). Therefore, all data were collected using online 
participant panels. It is possible that such panels attract specific types of participants, and that certain self-selection biases 
might have been present (e.g., individuals who are more confident with technology being more likely to participate). We 
aimed to minimize any potential impact of such biases on our findings by measuring various relevant variables and using 
them in statistical analyses. For example, one of the covariates we used in the machine learning models (Study 6; see 
Supplementary Tables 11-12) was a variable indicative of technological proficiency involving robots (i.e., people’s previous 
frequency of interaction with robots). It is also important to emphasize that these panels generally contain more diverse 
(Buhrmester, Kwang, & Gosling, 2011; Buhrmester, Talaifar, & Gosling, 2018; Casler, Bickel, & Hackett, 2013) and more 
attentive participants than typical university research pools (Hauser & Schwarz, 2016) and are widely used in psychological 
and behavioural sciences research. Moreover, it is not a given that other modes of recruitment (e.g., participant pools of 
university research labs) would avoid technological proficiency as a potential bias of online recruitment panels, considering 
that research participation is often advertised online and participants such as students tend to use technology for their 
studies.

Ethics oversight This research complies with the ethics policy and procedures of the London School of Economics and Political Science and has 
also been approved by its Research Ethics Committee (ref. 20810).

Note that full information on the approval of the study protocol must also be provided in the manuscript.

Field-specific reporting
Please select the one below that is the best fit for your research. If you are not sure, read the appropriate sections before making your selection.

Life sciences Behavioural & social sciences  Ecological, evolutionary & environmental sciences

For a reference copy of the document with all sections, see nature.com/documents/nr-reporting-summary-flat.pdf
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Behavioural & social sciences study design
All studies must disclose on these points even when the disclosure is negative.

Study description - Study 1: Developing a definition of robots based on how participants perceive them. This study employed mixed-methods and 
therefore produced both qualitative and quantitative data. Two different samples of participants were tested. In Sample 1, 
participants were asked to generate as many characteristics of robots as possible. Then, we recruited Sample 2 and asked them to 
group the characteristics identified by the previous sample into common categories. Using hierarchical cluster analysis (Kaufman & 
Rousseeuw, 2005; Nielsen, 2016; Šulc & Řezanková, 2019), we then identified the main clusters that comprise the robot 
characteristics and used them to construct the robot definition. 
 
- Study 2: Identifying all domains of human functioning in which robots operate. This study was qualitative and therefore produced 
qualitative data. In the study, we used the robot definition developed in Study 1 to identify a comprehensive list of all domains of 
human functioning in which robots can be encountered. Participants were presented with the definition and asked to generate all 
such domains they could think of. To develop an extensive inventory of domains, we analyzed their responses using inductive 
content analysis (Elo & Kyngäs, 2008; Elo et al., 2014; Hsieh & Shannon, 2005; Mayring, 2004; Vaismoradi, Turunen, & Bondas, 2013). 
 
- Study 3: Mapping the content space of psychological processes toward robots. This study was qualitative and therefore produced 
qualitative data. In this study, the aim was to identify a comprehensive range of psychological processes regarding robots. 
Participants were asked to write about any feelings, thoughts, and behaviors they could think of in relation to robots from the 
domains developed in Study 2. Their responses were analyzed using iterative categorization (Neale, 2016) to generate the final list of 
psychological processes.  
 
- Study 4: Establishing dimensions of the psychological processes. This was a quantitative study (i.e., it used a cross-sectional, 
correlational design) and therefore produced quantitative data. Two different samples of participants were tested. We randomly 
allocated participants from each sample to an example of a robot from one of the 28 domains established in Study 2 and asked them 
to answer questions measuring each of the 149 psychological processes established in Study 3 in relation to this specific robot. To 
identify the dimensions, the data were analyzed using exploratory factor analyses (EFAs; Schmitt, 2011). 
 
- Study 5: Confirming the dimensions of the psychological processes. This was a quantitative study (i.e., it used a cross-sectional, 
correlational design) and therefore produced quantitative data. We tested two samples to confirm the dimensions established in 
Study 4 using exploratory structural equation modeling (ESEM; Asparouhov & Muthén, 2009). 
 
- Study 6: Determining the main individual difference predictors of the dimensions confirmed in Study 5. This was a quantitative 
study (i.e., it used a cross-sectional, correlational design) and therefore produced quantitative data. To select the most predictive 
individual differences from the ones we tested, we employed a range of commonly used machine learning algorithms (e.g., lasso, 
random forests; Helwig, 2017; Jacobucci, Brandmaier, & Kievit, 2019; Joel et al., 2020; Kuhn, 2008, 2022) in combination with k-fold 
cross validation (de Rooij & Weeda, 2020).  
 
- Study 7: Confirming the predictors and establishing the mechanism. This was a quantitative study (i.e., it used a longitudinal, 
correlational design in 2 waves) and therefore produced quantitative data. In this study, we aimed to explain the relationship 
between the most predictive individual differences from Study 6 and the dimensions of psychological responses regarding robots 
identified in Studies 4 and 5. The study therefore consisted of two waves. In wave 1, we measured the individual differences, and in 
wave 2 we first assessed a range of potential mediators and then asked participants to answer the items measuring the dimensions. 
Linear regressions and linear regression-based mediation analyses (Hayes, 2018) were used to analyze the data. 

Research sample As indicated under “Recruitment” (see the “Human research participants” section), the information regarding how participants were 
recruited is summarized in Table 1 in the manuscript. In Studies 1 (Sample 1), 4 (Samples 1 and 2), 5 (Samples 1 and 2), and 6, 
participants were recruited via Pureprofile (https://www.pureprofile.com/). In Studies 1 (Sample 2), 2, and 3, participants were 
recruited via Amazon Mechanical Turk (https://www.mturk.com/). In Study 7, participants were recruited via Prolific (https://
www.prolific.co/). Therefore, all data were collected using online participant panels. In Studies 1 (Sample 1), 4 (Sample 1), and 5 
(Sample 1) participants were UK adults, and in Studies 1 (Sample 2), 2, 3, 4 (Sample 2), 5 (Sample 2), 6, and 7 participants were US 
adults. Participants in Studies 4-6 were recruited to be reasonably representative of the UK/US populations in terms of age, gender, 
and geographical region, whereas for Study 1 (Sample 1) the focus was on gender only. Supplementary Tables 1-2 contain more 
comprehensive breakdowns of these variables, the criteria that were used to guide representative sampling, and various 
demographic characteristics. We targeted specifically UK and US samples because the type of online panels we used to recruit 
participants are typically able to provide large and in some cases reasonably representative samples from these countries, which can 
be more difficult when it comes to recruiting participant from other countries. As stated in the Discussion section of the present 
article when discussing the limitations, since our research proposed and investigated a construct (i.e., psychological processes 
regarding robots) from scratch, our priority was to establish its foundations, and combining the investigation of cultural differences 
with this agenda using equally meticulous methods would have exceeded the scope of a single article. 
 
Overall, Table 1 in the article provides basic demographic information for our participants, whereas Supplementary Tables 1 and 2 
contain more comprehensive information in this regard. Below we present mean age, standard deviation of age, and the number of 
female, male, other, and undisclosed participants who completed each study (see Table 1 in the article).  
- Study 1 (Sample 1): 49.496, 13.598, 132, 133, 1, 0 
- Study 1 (Sample 2): 36.510, 10.566, 42, 58, 0, 0 
- Study 2: 36.257, 10.270, 31, 39, 0, 0 
- Study 3: 40.693, 12.194, 193, 153, 1, 3 
- Study 4 (Sample 1): 47.932, 16.611, 852, 812, 4, 0 
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- Study 4 (Sample 2): 48.004, 16.772, 976, 830, 2, 0 
- Study 5 (Sample 1): 46.648, 16.616, 590, 601, 6, 3 
- Study 5 (Sample 2): 46.656, 16.914, 616, 598, 5, 0 
- Study 6: 47.405, 17.262, 1299, 1186, 15, 5 
- Study 7: 42.910, 13.535, 552, 555, 9, 0 
 

Sampling strategy As indicated above, participants were recruited via online panels commonly used in psychological and behavioural research (Prolific, 
Pureprofile, and Amazon Mechanical Turk). These and other online participant panels generally use some form of convenience 
sampling (e.g., Chandler & Shapiro 2016; Armitage & Eerola, 2020; see also https://researcher-help.prolific.co/hc/en-gb/
articles/360009223133-Is-online-crowdsourcing-a-legitimate-alternative-to-lab-based-research-), and the sampling strategy used in 
the present research was therefore convenience sampling. More information about the composition of our participant samples is 
provided in the section “Research sample” above.  
 
In the Methods section for each study in the article, there is a section on "Sample size" that explains how the sample size was 
predetermined (see also Supplementary Methods). For studies that had qualitative elements (Study 1, Sample 1; Study 2; and Study 
3), we recruited sample sizes larger than 50 participants, given that simulations have indicated that sample sizes larger than 30-50 
participants (Mayring, 2019; van Rijnsoever, 2017) tend to reach the point of data saturation, which implies that adding new 
participants beyond this number produces very little new information (Faulkner & Trotter, 2017). For Study 1 (Sample 2; see section 
“Sample Size” for that study in the article), in which we used hierarchical cluster analysis, the sample size was based on recent 
simulations, according to which the most important determinant of power seems to be the number of observations per cluster, with 
20 observations yielding sufficient power to detect a cluster (Dalmaijer et al., 2022). For Study 4 (see section “Sample Size” for that 
study in the article), we consulted several resources to determine the number of participants to test for each sample because there is 
no consensus regarding sample size requirements for EFA (Costello & Osborne, 2005; Hogarty, Hines, Kromrey, Ferron, & Mumford, 
2005; Kyriazos, 2018; MacCallum, Widaman, Zhang, & Hong, 1999; Reio Jr & Shuck, 2015). First, a few resources posit that the ratio 
of the number of participants to the number of items should be at least 10:1 (Everitt, 1975; Gorsuch, 1983; Reio Jr & Shuck, 2015). 
Second, some studies estimated that, if the ratio of the number of items to the number of factors is larger than 10:3, recruiting 
approximately 400 participants leads to high power, even under low communalities (MacCallum et al., 1999). Third, it has been 
proposed that a sample size larger than 300 is sufficient for a wide range of factor solutions (Dimitrov, 2012; Guadagnoli & Velicer, 
1988). Our sample sizes for Study 4 met all these criteria. For Study 5, we determined the number of participants to test using Monte 
Carlo simulations (Muthén & Muthén, 2002) based on the data from Samples 1 and 2 (Study 4). Concerning Study 6, there are no 
clear guidelines for the use of machine learning algorithms combined with cross-validation regarding sample size and power. In a 
series of simulations, Song, Tang, and Wee (2021) showed that, for 10-fold cross-validations that we were planning to use, a sample 
size of 2000 leads to high generalizability (i.e., likelihood that the results will apply to other samples from the same population) 
without inflating time taken to run the models. We therefore aimed to recruit a sample that would result in roughly 2200 participants 
after applying the exclusion criteria, in case of any additional missing data. Finally, we determined the sample size for Study 7 by 
computing a-priori power analyses (Faul, Erdfelder, Buchner, & Lang, 2009) based on the data from Study 6. 
 

Data collection Qualtrics (https://www.qualtrics.com/) was used to collect the data (for the versions of Qualtrics that were used, see the "Data 
collection" field above). This is an online survey software widely used by universities across the world. Participants were anonymous 
and completed the study in their own surroundings. Participation was allowed on PCs, laptops, and tablets, but not on mobile 
phones. The researchers (i.e., authors of this paper) were not blinded to study predictions and aims. However, since the participants 
were anonymous and there was no contact between the researchers and participants, it is implausible that experimenter demand 
effects played a role in the present research. Importantly, since the present research used a data-driven approach as described in the 
Introduction section of the article, the majority of studies did not have a priori predictions. Only Study 5, in which we aimed to 
confirm the dimensions of psychological processes established in Study 4, and Study 7, in which we aimed to corroborate the main 
individual difference predictors identified in Study 6, were confirmatory. This is another reason why experimenter demand effects 
concerning study predictions were unlikely to play a role in the present research. 

Timing Start and stop dates for data collection in each study: 
- Study 1 (Sample 1): 27 February – 4 March 2019 
- Study 1 (Sample 2): 26 July – 27 July 2019 
- Study 2: 24 September 2019 
- Study 3: 21 October – 24 October 2019 
- Study 4 (Sample 1): 4 March – 11 March 2021 
- Study 4 (Sample 2): 8 April – 24 April 2021 
- Study 5 (Sample 1): 29 June – 3 July 2021 
- Study 5 (Sample 2): 24 June – 2 July 2021 
- Study 6: 23 September – 15 October 2021 
- Study 7: 13 December 2021 

Data exclusions The exclusion criteria were pre-established (e.g., see pre-registration for Study 7: https://osf.io/nejvm?
view_only=79b6eeee42e24cb2a977927712bdcdd2). They are comprehensively described in the Methods section in the article and in 
Supplementary Methods. In general, participants were excluded from analyses if they did not correctly answer seriousness checks 
(Aust, Diedenhofen, Ullrich, & Musch, 2013), instructed-response items (Kung, Kwok, & Brown, 2018; Meade & Craig, 2012; Thomas 
& Clifford, 2017), and understanding checks in which they were asked to identify the main topic of the study amongst a range of 
dummy topics. Table 1 in the article summarizes participants who completed the study and who were included in analyses after the 
exclusion criteria were applied. From the participants who completed the study, the following number of participants were excluded 
from data analyses: 
- Study 1 (Sample 1): 42 
- Study 1 (Sample 2): 5 
- Study 2: 3 
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- Study 3: 16 
- Study 4 (Sample 1): 140 
- Study 4 (Sample 2): 271 
- Study 5 (Sample 1): 93 
- Study 5 (Sample 2): 111 
- Study 6: 302 
- Study 7: 45

Non-participation Considering that participation in the present research took place anonymously and online, we only have knowledge of participants 
who completed the study (see Table 1 in the article). In some cases, online participants recruited via the online panels we used 
(Prolific, Pureprofile, and Amazon Mechanical Turk) test the survey and answer one or few questions and then leave - these data are 
captured under incomplete data but we are not aware of whether and how many of these participants are unique participants. 
Overall, non-participation data for the present research are not available. 

Randomization As can be seen under "Study description", the present research was not experimental. Therefore, there were no different conditions 
to which participants could be randomized. However, it is important to emphasize that in Studies 4-7, in which participants were 
allocated to robot examples from 28 possible robot domains, this allocation was random. 

Reporting for specific materials, systems and methods
We require information from authors about some types of materials, experimental systems and methods used in many studies. Here, indicate whether each material, 
system or method listed is relevant to your study. If you are not sure if a list item applies to your research, read the appropriate section before selecting a response. 

Materials & experimental systems
n/a Involved in the study

Antibodies

Eukaryotic cell lines

Palaeontology and archaeology

Animals and other organisms

Clinical data

Dual use research of concern

Methods
n/a Involved in the study

ChIP-seq

Flow cytometry

MRI-based neuroimaging
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