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a b s t r a c t

Consider the hypergraph bootstrap percolation process in which,
given a fixed r-uniform hypergraph H and starting with a given
hypergraph G0, at each step we add to G0 all edges that create
a new copy of H . We are interested in maximising the number
of steps that this process takes before it stabilises. For the case
where H = K (r)

r+1 with r ≥ 3, we provide a new construction
for G0 that shows that the number of steps of this process can
be of order Θ(nr ). This answers a recent question of Noel and
Ranganathan. To demonstrate that different running times can
occur, we also prove that, if H is K (3)

4 minus an edge, then
the maximum possible running time is 2n − ⌊log2(n − 2)⌋ − 6.
However, if H is K (3)

5 minus an edge, then the process can run
for Θ(n3) steps.
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1. Introduction

The hypergraph bootstrap percolation process is an infection process on hypergraphs which was
introduced by Bollobás in 1968 under the name of weak saturation [6]. For an integer r ≥ 2 and
set S, denote by

(S
r

)
the set of all subsets of S of size r . Given an r-uniform hypergraph H and a

ositive integer n, the H-bootstrap percolation process is a deterministic process defined as follows.
e start with a given r-uniform hypergraph G0 on vertex set [n] := {1, . . . , n}. For each time step
≥ 1, we define the hypergraph Gt on the same vertex set [n] by letting

E(Gt ) := E(Gt−1) ∪

{
e ∈

(
[n]
r

)
: ∃ an H-copy H ′ s.t. E(H ′) ⊈ E(Gt−1) and E(H ′) ⊆ E(Gt−1) ∪ {e}

}
,

hat is, Gt is an r-uniform hypergraph on [n] defined by including all edges of Gt−1 together with
ll edges e ∈

(
[n]
r

)
which create a new copy of H with the edges of Gt−1. The hypergraph G0 is called

he initial infection, and the edges E(Gt )\E(Gt−1) are said to be infected at time t . If there exists some
≥ 0 such that GT = K (r)

n , we say that G0 percolates under this process. The hypergraph G0 is said to
e weakly H-saturated if G0 is H-free and percolates under H-bootstrap percolation, that is, if there
xists an ordering of E(K (r)

n ) \ E(G0) = {e1, . . . , et} such that the addition of ei to G0 ∪ {e1, . . . , ei−1}

ill create a new copy of H , for every i ∈ [t].
Given a fixed hypergraph H , one of the most studied extremal problems in this setting is

stablishing the minimum size of an n-vertex hypergraph which is weakly H-saturated. For the most
asic case, where r = 2 and H = Kk, it was conjectured by Bollobás [6] that the minimum size of a
eakly Kk-saturated n-vertex graph is (k−2)n−

(k−1
2

)
. About a decade after, Lovász [15] was the first

o confirm this conjecture (using a generalisation of the Bollobás Two Families Theorem [5]). This
as later independently reproved by Alon [1], Frankl [9] and Kalai [12,13] using methods from linear
lgebra. For the hypergraph case, the work of Frankl [9] proving the Skew Two Families Theorem
strengthening the Bollobás Two Families Theorem) also settles this problem for K (r)

k with r ≥ 3.
his problem has also been studied for other graphs H , and for host graphs other than the complete
raph, and other related settings; see, e.g., [1,8,14,17,19,20,22].
Even though the initial infection graphs which are solutions to the weak saturation problem

ave the minimum possible number of edges, it is interesting to note that, in many of the known
xamples, they require only very few steps until the infection process stabilises. For example, the
tandard construction of a weakly Kk-saturated graph achieving the minimum size is given by
removing the edges of a clique of size n−k+2 from Kn, which means that only one step is needed in
order to complete the infection process. In this direction, Bollobás raised the problem of finding the
initial infection for which the running time of the H-bootstrap percolation process is maximised.
This was previously studied in the related setting of neighbourhood percolation by Benevides and
Przykucki [3,4,21], and for a random initial infection by Gunderson, Koch and Przykucki [10].

Here we consider this problem in the hypergraph bootstrap percolation setting. Given a fixed
r-uniform hypergraph H and an r-uniform initial infection G0, we define the running time of the
-bootstrap percolation process on G0 to be

MH (G0) := min{t ≥ 0 : Gt = Gt+1}.

e denote the maximum running time over all r-uniform hypergraphs G0 on n vertices as MH (n).
e shall simplify these notations to Mr

k (G0) and Mr
k (n) when H = K (r)

k is the complete r-uniform
ypergraph on k vertices, and drop the superscript to Mk(n) in the graph setting (r = 2). Note that
trivial upper bound for MH (n) is given by

(n
r

)
, the total number of edges of K (r)

n .
The simplest setting to consider is for graph bootstrap percolation and H = Kk. For k =

, it is not hard to see that M3(n) = ⌈log2(n − 1)⌉, where an extremal example is given by
n n-path (see, e.g., [7] for the details). Bollobás, Przykucki, Riordan and Sahasrabudhe [7] and
ndependently Matzke [16] considered this problem for higher values of k. By carefully analysing the
rowth of cliques during the percolation process, both groups of authors showed that M4(n) = n−3.
oreover, for k ≥ 5, Bollobás, Przykucki, Riordan and Sahasrabudhe [7] obtained the lower bound
(n) ≥ n2−αk−o(1), where α = (k − 2)/(

(k)
− 2), using a probabilistic argument. The authors of [7]
k k 2
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conjectured that Mk(n) = o(n2) for all k ≥ 5. However, in a subsequent paper, Balogh, Kronenberg,
okrovskiy and Szabó [2] disproved this conjecture for k ≥ 6, showing that the natural upper bound
s tight up to a constant factor. The authors of [2] also improved the lower bound for k = 5 to
5(n) ≥ n2−O(1/

√
log n), using Behrend’s construction of ‘dense’ 3-AP-free sets, and conjectured that

M5(n) = o(n2). It remains an open problem to determine whether this is the case.
In this paper we consider the question of the maximum running time when H is an r-uniform

hypergraph with r ≥ 3. This was recently investigated by Noel and Ranganathan [18]. By providing
an explicit construction to establish the lower bound (noting the trivial upper bound of

(n
r

)
), they

proved the following theorem for the case k ≥ r + 2.

Theorem 1 (Noel and Ranganathan [18]). Let r ≥ 3. If k ≥ r + 2, then Mr
k (n) = Θ(nr ).

For the case k = r + 1, they established the following lower bound.

Theorem 2 (Noel and Ranganathan [18]). Let r ≥ 3. If k = r + 1, then Mr
k (n) = Ω(nr−1).

This theorem leaves a gap between the lower bound and the trivial upper boundMr
r+1(n) = O(nr ).

Noel and Ranganathan conjectured that M3
4 (n) = O(n2) [18, Conjecture 5.1], but suggested that, for

sufficiently large r , it is indeed true that the maximum running time achieves Mr
r+1(n) = Θ(nr ) [18,

Question 5.2].
In this paper, we show the conjecture to be false and prove that the trivial upper bound is in

fact tight, up to a constant factor, for all r ≥ 3. This also gives a positive answer to their question,
in a strong sense.

Theorem 3. For any fixed integer r ≥ 3, we have Mr
r+1(n) = Θ(nr ).

Another proof for Theorem 3 was independently announced by Hartarsky and Lichev [11].
We note that Theorem 3 establishes a clear difference with respect to the graph case r = 2,

where Mk(n) = o(nr ) for k ∈ {r + 1, r + 2} (and possibly also r + 3). It may therefore seem that the
behaviour of hypergraph bootstrap percolation is less rich than its graph counterpart. We propose
a modification of the problem above that shows this is not the case, and that different (and very
interesting) asymptotic running times may still occur in the hypergraph setting.

Indeed, recall that we may think of H-bootstrap percolation as an infection process where the
infection spreads to a new copy of H if only one edge of said copy was not infected in the previous
step. It is reasonable then to consider models where the infection is more powerful, in the sense
that it will extend to copies of H which are missing at most m edges, for some fixed integer
m. We consider here in particular the case m = 2. Note that if m = 2 and H is a complete
hypergraph (which is the case we will focus on), then this modified model is equivalent to the
original hypergraph percolation process for the hypergraph H ′ obtained by deleting an arbitrary
edge from H .

Formally, let H be a given r-uniform hypergraph, and let G be an r-uniform hypergraph on [n].
or each copy H ′ of H on [n], if |E(H ′) \ E(G)| ≤ m, we say that H ′ is m-completable in G. We define

the (H,m)-bootstrap percolation process on an initial infection G0 on [n] to be the sequence of
hypergraphs G0,G1, . . . on [n] given by setting, for each t ≥ 1,

E(Gt ) := E(Gt−1) ∪

⋃
H′ copy of H on [n]

H′ m-completable in Gt−1

E(H ′).

Note that the (H, 1)-bootstrap percolation process simply corresponds to the usual H-bootstrap
percolation process. Let us denote the running time of this hypergraph percolation process as
M(H,m)(G0) := min{t ≥ 0 : Gt = Gt+1}, and the maximum running time over all r-uniform n-vertex
hypergraphs G0 as M(H,m)(n). The next result shows that we get interesting new behaviour when
m = 2 and H = K (3)

4 (which is probably the most natural first case to consider).

Theorem 4. For all n ≥ 4, we have M (3) (n) = 2n − ⌊log (n − 2)⌋ − 6.
(K4 ,2) 2
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It is worth remarking here that this is the first nontrivial exact result about running times of
ypergraph bootstrap percolation. The only nontrivial exact results in graph bootstrap percolation
re those for K3- and K4-bootstrap percolation [7].
We also prove that in the next case, H = K (3)

5 , the running time can once again be cubic (i.e., as
arge as possible).

heorem 5. We have M(K (3)
5 ,2)(n) = Θ(n3).

Let K (r)
s − e denote the hypergraph obtained by deleting an edge from K (r)

s . As mentioned above,
the (K (r)

s , 2)-process is the same as the usual bootstrap percolation process for K (r)
s −e, so the results

bove can be reformulated as follows.

heorem 4′. For all n ≥ 4, we have MK (3)
4 −e(n) = 2n − ⌊log2(n − 2)⌋ − 6.

heorem 5′. We have MK (3)
5 −e(n) = Θ(n3).

We present our proof of Theorem 3 in Section 2. We defer the proofs of Theorems 4 and 5 to
ection 3. We also propose some open problems in our concluding remarks.

. Long running times for simple infections

In order to prove Theorem 3, we will use a result of Noel and Ranganathan [18] that allows us
o focus on the case r = 3. To state their result, we need to recall some definitions from [18]. Let
0 be an r-uniform hypergraph, let Gt be the hypergraph at time t for the K (r)

r+1-bootstrap process
tarting with G0 as initial infection, and let T = Mr

r+1(G0) be the time the process stabilises. We say
hat G0 is K (r)

r+1-civilised if the following conditions are satisfied for some edge e0 of G0.

(1) For each t ∈ [T ], Gt contains only one more edge et than Gt−1, and one more copy Ht of K
(r)
r+1.

(2) For all t ∈ [T ] we have E(Ht ) ∩ {e0, e1, . . . , eT } = {et−1, et}.
(3) The K (r)

r+1-bootstrap percolation process starting with G0 − e0 infects no edge.

Lemma 6 (Noel and Ranganathan [18, Lemma 2.11]). If for all n there exists a K (3)
4 -civilised hypergraph

G0 on Θ(n) vertices such that M3
4 (G0) = Θ(n3), then for all r ≥ 3 we have Mr

r+1(n) = Θ(nr ).

Before we give the formal proof of Theorem 3, let us give an informal description of the
construction that gives a lower bound for the number of steps of the percolation process. As noted
above, by Lemma 6 it is enough to consider the case r = 3. The main part of the construction consists
of three layers of vertices: ‘top’ vertices labelled ti, ‘bottom’ vertices labelled bj, and ‘middle’ vertices
labelled mℓ. In each time step, just one new edge will become infected. That infection will happen
because one copy of K (3)

4 , which had only two edges present in the initial infection, has a third edge
infected in the previous step of the process.

The process will consist mainly of chains of infections, where we move from one chain to another
by using special gadgets. The chains will have the format of the so-called ‘beachball hypergraph’.
The vertex set of this hypergraph consists of one top and one bottom vertex, and some ordered
vertices in the middle; the edges are the triples consisting of two consecutive middle vertices, and
either the top or the bottom vertex. See Fig. 1 for an illustration.

It will be convenient to think of the process as having n phases, each phase having Θ(n) stages,
nd each stage having Θ(n) infection steps. A phase will represent the infection process that occurs
hen we fix a top vertex ti. In each phase, we have Θ(n) stages, where each stage is the process
hat occurs when we fix bj (for the fixed ti of this phase). At a specified phase and stage, the
nitial infected set will be the above mentioned beachball hypergraph, and the infection will spread
hrough the middle vertices. This gives Θ(n) infection steps for each stage.

The challenge will then be to move to another top or bottom vertex without infecting more than

ne edge in each step of the process. For this purpose, we will introduce, at the end of each stage,

4
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Fig. 1. Initial infection G0 showing only the first top and bottom vertices, t1 and b1 . Each red or blue triangle represents
n edge of G0 , and together they form the first beachball hypergraph in our process. The green arc represents an edge
ontaining the vertices it passes through. To form G1 , the edge t1b1m1 is added, as this completes a copy of K (3)

4 on
t1,m0,m1, b1}. It is clear to see that subsequently all edges of the form t1b1mℓ for ℓ increasing from 2 to n are added
n turn. (For interpretation of the references to colour in this figure legend, the reader is referred to the web version of
his article.)

new middle vertex and a special ‘switching’ gadget. Each stage of the process will be represented
y a tuple of a top vertex ti, a bottom vertex bj, and consecutive middle vertices starting from ms

and ending in mℓ, where −(n − 1) ≤ s ≤ 0 and n ≤ ℓ ≤ 2n. For moving between phases, we will
ntroduce a different type of gadget.

Let us first describe the first few stages of the process to give a better intuition. The first n
nfection steps will come from a ‘path’ on the middle layer. The edges t1mℓmℓ+1 and b1mℓmℓ+1
ill be present at time zero for all 0 ≤ ℓ ≤ n − 1, as well as the edge t1b1m0. Once the edge

1b1mℓ becomes infected, it propagates the infection in the next step to t1b1mℓ+1. See Fig. 1 for an
llustration.

After Θ(n) such infections, we want to swap out b1 to another bottom vertex (labelled b−1). We
o this by making sure that the last infected edge using b1 (namely, the edge t1b1mn) makes the
iddle path longer, that is, it makes the edge t1mnmn+1 infected in the next step. To achieve this,
e will have b1mnmn+1 and t1b1mn+1 present in the original hypergraph G0; see Fig. 2.
Once t1mnmn+1 is infected, it can start a chain of infections using the new bottom vertex b−1.

owever, this time the chain of infections will go in the opposite direction on the middle path: we
ill first infect t1b−1mn (for this we will need the edges t1b−1mn+1 and b−1mnmn+1 to be present

initially, as in Fig. 2), then we infect t1b−1mn−1, and so on, until t1b−1m0.
At this point we again swap out the bottom vertex to a different one (labelled b2) — we do

this using the same trick as above, i.e., making the middle path one longer, and then changing the
direction we traverse the path. We keep repeating the steps above for Θ(n) bottom vertices to get
(n2) infections which all use the same top vertex t1.
Once we have the Θ(n2) infections using t1, we wish to swap out the top vertex t1 to a different

ne (labelled t2). We could do this similarly to how we swapped the bj’s, but it is more convenient
o simply introduce a gadget using three ‘dummy’ vertices d1, d2, d3 to do this swap. The last
infection using t1 (namely, t1m2n−1m2n) will start a short chain of infections using the K (3)

4 ’s given
y t1m2n−1m2nd1, m2n−1m2nd1d2, m2nd1d2d3, d1d2d3t2, d2d3t2m0, and d3t2m0m1. The last one of these
llows us to start a repeat of the previous infection process, using t instead of t . We will use three
2 1

5
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Fig. 2. Switching gadget to change from K (3)
4 copies containing b1 to those containing b−1 . The edges b1mnmn+1 and

b−1mnmn+1 are present in the initial infection G0 . After the edge t1b1mn is created by the percolation process, the copy
of K (3)

4 induced by the vertices {t1,mn,mn+1, b1} is present, except for the missing edge t1mnmn+1 shown in the dotted
blue line. Thus this edge is added, followed by t1b−1mn . This triggers the process to run backwards and create all edges
of form t1b−1mi , for i decreasing from i = n − 1 to i = 0, in turn. (For interpretation of the references to colour in this
figure legend, the reader is referred to the web version of this article.)

such dummy vertices di for each of the n − 1 swaps at the top — so only 3n − 3 = Θ(n) dummy
vertices in total. See Fig. 3 for an illustration.

Let us now turn to the formal proof of our theorem.

Proof of Theorem 3. By Lemma 6, it suffices to consider the case r = 3 and show that there are
K (3)
4 -civilised 3-uniform hypergraphs on Θ(n) vertices such that the K (3)

4 -bootstrap process takes
Θ(n3) steps to stabilise. We now describe a construction achieving this.

The initial infection hypergraph G0 has 9n − 4 = Θ(n) vertices, which are labelled as follows:
t1, . . . , tn, b1, . . . , bn, b−1, . . . , b−(n−1), m−(n−1),m−(n−2) . . . ,m2n, and di,1, di,2, di,3 for i ∈ [n−1]. The
edges of G0 are given below:

(a) t1m0m1;
(b) timℓmℓ+1 for all i ∈ [n] and ℓ ∈ [n − 1];
(c) bjmℓmℓ+1 for all j ∈ [n] and ℓ ∈ [−(j − 1), n + j − 1];
(d) b−jmℓmℓ+1 for all j ∈ [n − 1] and ℓ ∈ [−j, n + j − 1];
(e) tibjm−(j−1) and tibjmn+j for all i, j ∈ [n];
(f) tib−jmn+j and tib−jm−j for all i ∈ [n] and j ∈ [n − 1];
(g) tim2n−1di,1, tim2ndi,1, m2n−1m2ndi,2, m2n−1di,1di,2, m2ndi,1di,3, m2ndi,2di,3, di,1di,2ti+1,

di,1di,3ti+1, di,2di,3m0, di,2ti+1m0, di,3ti+1m1, and di,3m0m1, for all i ∈ [n − 1].

As mentioned in the informal discussion, it will be easier to think about the initial infected
hypergraph as a set of beachball hypergraphs, and gadgets connecting between them. For this
purpose, we note the following.
6
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Fig. 3. Switching gadget for changing the top vertex t1 to t2 . Edges present in the initial infection G0 are omitted for
clarity. When the dotted blue edge t1m2n−1m2n is infected, this causes the edges along the chain to become infected,
ending in t2m0m1 . This triggers the infection of t2b1m1 , and in turn the process from the stage as shown in Fig. 1, with
t1 replaced with t2 . (For interpretation of the references to colour in this figure legend, the reader is referred to the web
version of this article.)

• The edges from (b) and (c), as well as those from (b) and (d), (nearly) form beachball
hypergraphs. For the beachballs with edges from (b) and (c) the infection process increases
with the indices of the middle vertices, whereas for those from (b) and (d) it decreases with
the indices of the middle vertices. These hypergraphs are used as the main ingredients of the
infection process.

• The second type of edges from (e) together with the first type of edges from (f) form the
gadgets that help us swap from bj to b−j, where ti is fixed; that is, they help us move between
the beachball with ti, bj as top and bottom and the beachball with ti, b−j. Fig. 2 illustrates the
gadget swapping from b1 to b−1.

• The first type of edges from (e) and second type of edges from (f) create the gadgets that help
us swap from b−j to bj+1, where ti is fixed; that is, these help us move from the beachball with
ti, b−j as top and bottom to the beachball with ti, bj+1.

• The edges in (g) form the gadgets swapping between top vertices, from ti to ti+1, using the
dummy vertices di,s. In other words, these gadgets move us from the beachball with ti, bn as
top and bottom to the beachball with ti+1, b1. Fig. 3 illustrates the gadget swapping from t1 to
t2.

We will show that there are three types of edges that are being infected during the process:

(I) missing edges of the beachballs, that is, edges of the form tibjmℓ;
(II) edges from the gadgets swapping bottom vertices, of the form timℓmℓ+1, and
(III) edges from the gadgets swapping top vertices (these have several different forms).

We will now name the edges being infected during the process. For each i, j ∈ [n], let Ai,j denote
the following sequence of edges:

A := (t b m , t b m , . . . , t b m , t m m ). (2.1)
i,j i j −(j−2) i j −(j−3) i j n+j−1 i n+j−1 n+j

7
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These will be the edges infected in the stage of phase i corresponding to the bottom vertex bj.
imilarly, for each i ∈ [n] and j ∈ [n − 1], let

Ai,−j := (tib−jmn+j−1, tib−jmn+j−2, . . . , tib−jm−(j−1), tim−(j−1)m−j). (2.2)

These will correspond to the stage with b−j as bottom vertex. Concatenating these, we get the
sequence Ai of edges corresponding to phase i (these are edges of types (I) and (II) above):

Ai := Ai,1Ai,−1Ai,2Ai,−2 . . . Ai,n−1Ai,−(n−1)Ai,n.

For the phase change using the dummy vertices di,j, let us write, for each i ∈ [n − 1],

Di := (m2n−1m2ndi,1, m2ndi,1di,2, di,1di,2di,3, di,2di,3ti+1, di,3ti+1m0, ti+1m0m1). (2.3)

hese are the edges of type (III). Finally, let us write A for the concatenation

A := A1D1A2D2 . . . An−1Dn−1An.

e will show that during the infection process, edges become infected one-by-one, according to
he sequence A.

Let T be the number of triples in A, and let A = (e1, e2, . . . , eT ). Note that T = Θ(n3). Let us
lso write e0 for the edge t1m0m1, and for all a ∈ [T − 1] let Ha be the copy of K (3)

4 with vertex set
a−1 ∪ ea (note that |ea−1 ∩ ea| = 2 for all a). For each s ∈ [T ], let us write Gs for the hypergraph
ith edge set E(G0) ∪ {e1, e2, . . . , es}. (Note that we do not yet know that these coincide with the
ypergraphs obtained during the K (3)

4 -bootstrap process, but we will see that they do.) Let us also
rite G−1 := G0 − e0.

laim 1. Assume that s ∈ [−1, T ] is an integer and e = x1x2x3 is a triple not contained in E(Gs).
uppose that adding e to Gs completes a copy of K (3)

4 whose fourth vertex is x4. Then, s ∈ [0, T − 1],
= es+1 and {x1, x2, x3, x4} = V (Hs+1).

We note here that the case s = −1 is needed to formally justify that G0 is K (3)
4 -civilised below.

Proof. We consider the following two cases.
Case 1: a vertex di,c appears among x1, . . . , x4 (for some i ∈ [n] and c ∈ [3]). Let us temporarily

write di,−2 := ti, di,−1 := m2n−1, di,0 := m2n, di,4 := ti+1, di,5 := m0 and di,6 := m1, so the
edges di,adi,a+1di,a+3 and di,adi,a+2di,a+3 are present in G0 for all −2 ≤ a ≤ 3. Observe that the
only vertices appearing in an edge of Gs together with di,c (recall 1 ≤ c ≤ 3) are of the form
di,a with |c − a| ≤ 3 (see (g) as well as (2.3)). Hence, x1, . . . , x4 are all of the form di,a for some
−2 ≤ a ≤ 6. Observe furthermore that every edge of Gs of the form di,pdi,qdi,r (−2 ≤ p < q < r ≤ 6)
satisfies |r − p| ≤ 3, or (p, q, r) = (−2, 5, 6) or (p, q, r) = (−1, 0, 4). It is easy to deduce
that the only possible quadruples of vertices di,a forming a K (3)

4 minus an edge are of the form
{x1, x2, x3, x4} = {di,a, di,a+1, di,a+2, di,a+3} (for some −2 ≤ a ≤ 3). So exactly one of di,adi,a+1di,a+2
and di,a+1di,a+2di,a+3 appears in Gs, as the other two triples appear in G0 (recall (g)). Since these are
the edges eN and eN+1, respectively, for some N ∈ [T − 1], we must have e = eN+1 and eN ∈ Gs. So
N = s, e = es+1, and {x1, x2, x3, x4} = {di,a, di,a+1, di,a+2, di,a+3} = es ∪ es+1 = V (Hs+1), as claimed.

Case 2: no vertex of the form di,c (c ∈ [3]) appears among x1, . . . , x4. Then, x1, . . . , x4 are all
of the form ti, bj or mℓ. Observe that no pair of the form titi′ or bjbj′ appears simultaneously in an
edge of Gs (i ̸= i′, j ̸= j′), so X = {x1, . . . , x4} contains at most one vertex of the form ti and at
most one vertex of the form bj. So it must contain at least two vertices of the form mℓ. But mℓ and
mℓ′ appear simultaneously in an edge only if |ℓ − ℓ′

| ≤ 1. It follows that X must be of the form
{ti, bj,mℓ,mℓ+1} for some i, j, ℓ. Assume that j > 0 (the case j < 0 is similar). If ℓ ≤ −j, then
neither tibjmℓ nor bjmℓmℓ+1 appear in Gs (see (c), (e) and (2.1)), giving a contradiction. Similarly, if
ℓ ≥ n+ j, then neither tibjmℓ+1 nor bjmℓmℓ+1 appear in Gs, again giving a contradiction. Hence, we
have −(j − 1) ≤ ℓ ≤ n + j − 1. It follows that bjmℓmℓ+1 is an edge of G0 − e0. So e is one of tibjmℓ,
t b m and t m m .
i j ℓ+1 i ℓ ℓ+1
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First, consider the case e = tibjmℓ. Since tibjmℓ+1 is already present, we must have ℓ = n+ j− 1
(see (e)). But if timℓmℓ+1 = timn+j−1mn+j = eN appears in Gs, then so does its preceding edge
eN−1 = tibjmn+j−1 = tibjmℓ (see (2.1)), giving a contradiction.

If the new edge is e = tibjmℓ+1, then −(j − 1) ≤ ℓ ≤ n + j − 2. So we have e = eN for some
N ∈ [T ], and the edge eN−1 is either tibjmℓ (if ℓ ̸= −(j − 1)) or tim−(j−2)m−(j−1) = timℓmℓ+1 (if
ℓ = −(j − 1)). In either case, we have eN−1 ∈ E(Gs) and eN ̸∈ E(Gs), giving s = N − 1, e = es+1,
{x1, x2, x3, x4} = es ∪ es+1 = V (Hs+1), as claimed.

Finally, consider the case when the new edge is e = timℓmℓ+1. So tibjmℓ and tibjmℓ+1 are edges
of Gs. Note that tibjmℓ or tibjmℓ+1 is of the form eN for some N ∈ [T ]. It follows that all edges eN ′

with N ′ < N appear in Gs, so, in particular, timℓ′mℓ′+1 is in Gs for all −(j − 1) ≤ ℓ′
≤ n + j − 2.

Hence ℓ = n + j − 1. But then there is some M ∈ [T ] such that eM = timℓmℓ+1, and we have
eM−1 = tibjmn+j−1 = tibjmℓ, which appears in Gs. If follows that s = M − 1, e = es+1 and
{x1, x2, x3, x4} = es ∪ es+1 = V (Hs+1), as claimed. ◀

It is straightforward to check that for all s ∈ [T ] we have E(Hs) \ E(Gs−1) = {es} and E(Hs) ∩

{e0, e1, . . . , es} = {es−1, es}. Using these observations and the claim above, we see that all conditions
of being K (3)

4 -civilised are satisfied for G0, and the result follows from Lemma 6. □

Remark 7. It immediately follows from the construction and the proof above that our proposed
initial infection has 9n + O(1) vertices and that the infection process takes 4n3

+ O(n2) steps. It
therefore follows that M3

4 (n) ≥ 4n3/93
+ O(n2). We note that we have made no effort to optimise

the leading constant.

3. Long running times for double infections

3.1. Double infections for K (3)
4

We now move on to the proof of our results about the variant where we allow two edges to be
infected at the same time if they together complete a copy of H . We begin with Theorem 4, giving
tight bounds in the case H = K (3)

4 . Our approach is motivated by the proof of Bollobás, Przykucki,
Riordan and Sahasrabudhe [7] of the fact that M4(3) = n−3, but both the construction and the proof
of the upper bound are significantly more complicated here. We start with an informal description
of the infection process for the extremal construction.

We will construct the initially infected hypergraph inductively. Assume that for some n we have
already constructed a hypergraph G0 on n vertices {x1, . . . , xn} for which the process runs for T steps.
Furthermore, assume that GT is complete, but there exist two vertices u, v ∈ {x1, . . . , xn} such that
no edge of GT−1 contains u and v simultaneously. (These conditions might at first seem arbitrary, but
they are satisfied in the obvious construction when n = 4.) Then, we can add another vertex xn+1
and another edge xn+1uv to G0 without changing the first T steps of the infection process. (Indeed,
the process will only be altered if we create a new 2-completable copy of K (3)

4 , and this requires
having two edges sharing two vertices.) Moreover, at time T+1, the new edges that become infected
are all those of the form xn+1ws with w ∈ W1 := {u, v} and s ∈ {x1, . . . , xn} \ W1. Finally, at time
T +2, the vertices x1, . . . , xn+1 will form a complete hypergraph. This gives a construction on n+1
vertices with running time T + 2.

To obtain our construction for n+ 2 vertices, notice that if we pick some u2 ∈ {x1, . . . , xn} \W1,
then no edge of GT contains both xn+1 and u2. So if we add a new vertex xn+2 and a new edge
xn+2xn+1u2, then the first T + 1 steps of the infection will remain unaffected by this change.
Furthermore, one can check that at time T +2 the edges containing xn+2 are given as xn+2xn+1w and
xn+2u2w with w ∈ W1. Moreover, at time T + 3 the edges xn+2ws with w ∈ W2 := W1 ∪ {u2, xn+1}

and s ∈ {x1, . . . , xn+1} \W2 will become infected, and at time T + 4 we get a complete hypergraph.
We can keep repeating these steps: take some uj ∈ {x1, . . . , xn}\Wj−1, add a new vertex xn+j and

a new edge xn+jxn+j−1uj. This will extend the process by 2 steps, and at time T + 2j − 1 the edges
containing the new vertex xn+j will be of the form xn+jws with w ∈ Wj := Wj−1 ∪ {uj, xn+j−1} and
s ∈ {x , . . . , x }. Moreover, at time T+2j our hypergraph will contain all edges on {x , . . . , x }.
1 n+j−1 1 n+j
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This means that we can keep adding a vertex and extending the process by 2 steps each time.
However, the set Wj is growing, and at some point it will contain all of our vertices. When this
appens, we will no longer be able to pick an appropriate uj, and we will ‘lose’ 1 step of the
nfection process (i.e., by adding a new vertex we can only extend the process by 1 step at this
oint). So ‘usually’ adding a vertex extends the infection by 2 steps, giving the leading term 2n for
he running time, but sometimes (when W becomes everything) we only gain one extra step, and
his will contribute the term −⌊log2(n − 2)⌋.

Let us now start the formal construction. Let G0 be any 3-uniform hypergraph on some vertex
et V , and let G0,G1, . . . be the corresponding (K (3)

4 , 2)-process. Let T be the running time of this
rocess. We say that G0 is nice if T ̸= 0, GT is complete, and there exist distinct vertices u, v ∈ V
uch that no edge of GT−1 contains both u and v. The following lemma will be used to obtain the
ower bound.

emma 8. Suppose that there is a nice hypergraph on k ≥ 4 vertices such that the corresponding
K (3)
4 , 2)-process has running time T . Then, for all ℓ ∈ [k + 1, 2k − 3] we have

M(K (3)
4 ,2)(ℓ) ≥ T + 2(ℓ − k).

urthermore,

M(K (3)
4 ,2)(2k − 2) ≥ T + 2k − 5,

nd there exists a nice hypergraph on 2k−2 vertices whose corresponding (K (3)
4 , 2)-process has running

ime T + 2k − 5.

roof. Let G0 be a nice 3-uniform hypergraph on k vertices x1, . . . , xk such that the corresponding
K (3)
4 , 2)-process G0,G1, . . . has running time T , GT is complete, and x1, xk do not appear in any edge
f GT−1 simultaneously. Let ℓ ∈ [k+ 1, 2k− 2] be arbitrary. We define a hypergraph G′

0 on a vertex
et {x1, . . . , xℓ} of size ℓ as follows. For any i ∈ [ℓ − k], let

ei := xk+ixk+i−1xi,

nd let E := {ei : i ∈ [ℓ − k]}. Then, set

E(G′

0) := E(G0) ∪ E.

et G′

0,G
′

1, . . . be the corresponding (K (3)
4 , 2)-bootstrap percolation process with initial infection G′

0,
nd let us write Wj := {x1, . . . , xj, xk, xk+1, . . . , xk+j−1} for all j ∈ [ℓ − k].

laim 2. We have

E(G′

t ) =

⎧⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎩

E(Gt ) ∪ E if t ∈ [T ],(
{x1, . . . , xk+j−1}

3

)
∪ E ∪ F odd

j if t = T + 2j − 1 with j ∈ [ℓ − k],(
{x1, . . . , xk+j}

3

)
∪ E ∪ F even

j if t = T + 2j with j ∈ [0, ℓ − k],

here

F odd
j := {xk+jwxa : w ∈ Wj, a ∈ [k + j − 1], xa ̸= w}

and

F even
j := {xk+j+1wxa : w ∈ Wj, a ∈ {j + 1, k + j}},

unless j ∈ {0, ℓ − k}, in which case F even
j := ∅.

Proof. We show this statement by induction on t . The case t ∈ [T ] is straightforward. Indeed,

note that |ei ∩ ej| < 2 for all distinct i, j ∈ [ℓ − k], and |ei ∩ f | < 2 whenever f ∈ E(GT−1) (by our

10
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assumption that GT−1 does not contain any triple containing both x1 and xk). Recall that, if a copy
H of K (3)

4 is 2-completable in a hypergraph G, then G contains two edges of H , which must share
two vertices. Thus, in the first T steps of the process, the addition of the edges in E does not result
in any infections that did not occur for G0. Now assume that t > T and the statement above holds
for t − 1. We split the analysis into two cases.

Case 1. Consider first the case t = T + 2j − 1 (with j ∈ [ℓ − k]). By the induction hypothesis,

E(G′

t−1) =

(
{x1, . . . , xk+j−1}

3

)
∪ E ∪ F even

j−1 .

We first verify that F odd
j ⊆ E(G′

t ). Let w ∈ Wj and a ∈ [k + j − 1] with xa ̸= w, so that
xk+jwxa ∈ F odd

j . Then, there exists some w′
∈ Wj with xk+jww′

∈ E(G′

t−1). (Indeed, if we pick
w′ such that w′

∈ {xj, xk+j−1} and w′
̸= w, then xk+jww′

∈ F even
j−1 ∪ {ej}.) If xa = w′, then trivially

xk+jwxa ∈ E(G′
t ). If xa ̸= w′, then we also have ww′xa ∈ E(G′

t−1). It follows that the copy of K (3)
4 with

vertex set {xk+j, w,w′, xa} is 2-completable in G′

t−1, and so xk+jwxa ∈ E(G′
t ).

We next show that any edge infected at time t must belong to F odd
j . Indeed, if h ∈ [j + 1, ℓ − k]

then |eh ∩ f | < 2 for all f ∈ E(G′

t−1) \ {eh}, so eh cannot appear in a copy of K (3)
4 completed in

this step. It follows that any added edge must be of the form e = xk+jxaxb with a, b ∈ [k + j − 1]
distinct. Furthermore, either xa or xb must appear together with xk+j in an edge of E(G′

t−1) \ {ei : i ∈

[j+1, ℓ−k]}, so one of xa, xb must belong to Wj−1 ∪{xj, xk+j−1} = Wj. But then e ∈ F odd
j , as claimed.

Case 2. Consider now the case t = T + 2j (with j ∈ [ℓ − k]). By induction, we know

E(G′

t−1) =

(
{x1, . . . , xk+j−1}

3

)
∪ E ∪ F odd

j .

Observe first that, whenever a ∈ [k + j − 2], we have xk+jxk+j−1xa ∈ F odd
j ⊆ E(G′

t−1). It follows
that, whenever a, b ∈ [k + j − 2] are distinct, the copy of K (3)

4 with vertex set {xk+j, xk+j−1, xa, xb}
is 2-completable in G′

t−1. Hence, xk+jxcxd ∈ E(G′
t ) whenever c, d ∈ [k + j − 1] (distinct). Thus,(

{x1,...,xk+j}
3

)
⊆ E(G′

t ). Furthermore, assume that j ̸= ℓ − k and e ∈ F even
j , so e = xk+j+1wxa with

w ∈ Wj and a ∈ {j+ 1, k+ j}. Then, ej+1 = xk+j+1xk+jxj+1 ∈ E(G′

t−1) and xk+jwxj+1 ∈ F odd
j ⊆ E(G′

t−1),
so the copy of K (3)

4 with vertex set {xk+j+1, xk+j, xj+1, w} is 2-completable in G′

t−1, which implies
xk+j+1wxa ∈ E(G′

t ). So F even
j ⊆ E(G′

t ).
It remains to show that any edge added in this step must belong to

(
{x1,...,xk+j}

3

)
∪F even

j . Indeed, as
in the previous case, we see that any copy of K (3)

4 which is 2-completable in G′

t−1 must have vertex
set {xa, xb, xc, xd} with a, b, c, d ∈ [k+ j+ 1] (distinct). So any edge which is infected at time t is of
the form e = xaxbxc with a, b, c ∈ [k + j + 1]. If a, b, c ∈ [k + j], the containment holds trivially, so
we may assume that c = k + j + 1. In order for e to become infected at time t , we must have that
xk+j+1xaxd or xk+j+1xbxd appears in E(G′

t−1); we may assume that it is the former. But this edge must
be ej+1 = xk+j+1xk+jxj+1, and hence {a, d} = {j + 1, k + j}. It also follows that xk+j+1xbxd ̸∈ E(G′

t−1),
and hence xaxbxd ∈ E(G′

t−1), i.e., xk+jxbxj+1 ∈ E(G′

t−1). This implies xk+jxbxj+1 ∈ F odd
j and, therefore,

xb ∈ Wj. So c = k + j + 1, a ∈ {j + 1, k + j} and xb ∈ Wj, hence xaxbxc ∈ F even
j , as claimed. ◀

By the claim above, G′

T+2(ℓ−k) is complete, but G′

T+2(ℓ−k)−1 is not unless ℓ = 2k − 2 (indeed, if
ℓ ̸= 2k − 2, then xk−2xk−1xℓ /∈ E(G′

T+2(ℓ−k)−1)). Moreover, if ℓ = 2k − 2, then G′

T+2(ℓ−k−1) = G′

T+2k−6
does not contain an edge in which both x2k−2 and xk−1 appear. The statement of the lemma
follows. □

We are ready to deduce the lower bound.

Lemma 9. For all n ≥ 4 we have M(K (3)
4 ,2)(n) ≥ 2n − ⌊log2(n − 2)⌋ − 6.

Proof. Observe first that there is a nice 3-uniform hypergraph G0 on 4 vertices {x1, x2, x3, x4},
(3)
given by E(G0) = {x1x2x3, x2x3x4}, for which the running time of the (K4 , 2)-process is T = 1.
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A straightforward induction using Lemma 8 shows that for all m ≥ 1 there exists a nice hypergraph
n 2m

+2 vertices for which the running time of the (K (3)
4 , 2)-process is 2m+1

−(m+2). Furthermore,
also by Lemma 8, whenever 2m

+ 2 ≤ n < 2m+1
+ 2 we have

M(K (3)
4 ,2)(n) ≥ 2m+1

− (m + 2) + 2(n − 2m
− 2) = 2n − m − 6 = 2n − ⌊log2(n − 2)⌋ − 6,

s claimed. □

We now turn to the proof of the upper bound. For any t ≥ 1, let m := m(t) denote the unique
ositive integer which satisfies

2m+1
− (m + 2) ≤ t < 2m+2

− (m + 3).

he following key lemma essentially shows that the infections must contain a substructure similar
o the one in our construction.

emma 10. Let G0 be a 3-uniform hypergraph on n ≥ 4 vertices, and consider the (K (3)
4 , 2)-process

0,G1, . . . with G0 as the initial infection. Assume that a ≥ 1 and e ∈ E(Ga)\E(Ga−1). Then, there exist
ome te ≥ a, Se ⊆ V (G0), ve ∈ Se and We ⊆ Se \ {ve} such that, for m = m(te),

(P1) e ⊆ Se,
(P2) |Se| = (te + m + 6)/2,
(P3) |We| = te − (2m+1

− (m + 2)),
(P4) Gte [Se] is complete, and
(P5)

(Se\{ve}
3

)
∪ {vews : w ∈ We, s ∈ Se \ {ve, w}} ⊆ E(Gte−1).

roof. We prove the statement by induction on a. If a = 1, then we know e is in some copy H of
(3)
4 in G1. We can set te = 1 (so m = 1), Se = V (H), ve ∈ V (H) such that V (H) \ {ve} ∈ E(G0), and
e = ∅; the properties (P1)–(P5) are then satisfied.
Now assume that a ≥ 2 and the statement holds for smaller values of a. We know there is

ome copy H of K (3)
4 in Ga such that e ∈ E(H), |E(H) ∩ E(Ga−1)| ≥ 2 and |E(H) ∩ E(Ga−2)| < 2.

t follows that there is some f ∈ E(H) such that f ∈ E(Ga−1) \ E(Ga−2), i.e., f is infected at time
− 1. Furthermore, there is another edge f ′

∈ E(H) ∩ E(Ga−1) (with f ′
̸= f ). Let us write t := tf ,

:= Sf , W := Wf and v := vf , and let m = m(t). We consider several cases according to how e,
and f ′ overlap with S (and v, W ). Note that, if e ̸⊆ S, then there is some p ∈ V (G0) such that
\ f = e \ S = {p} and p ∈ f ′.
Case 1: e ⊆ S. Since e ̸∈ E(Ga−1) and Gt [S] is complete, we have t ≥ a. It follows that te = t ,

e = S, ve = v, We = W satisfy properties (P1)–(P5).
Case 2: e ̸⊆ S, f ′

∈ E(Gt−1), and f ′
= pss′ for some s, s′ ∈ S \ W (recall {p} = e \ S). By (P5)

or f , we know that, whenever w ∈ W , we have wss′ ∈ E(Gt−1). This, together with the fact that
′
= pss′ ∈ E(Gt−1), guarantees that

pws, pws′ ∈ E(Gt ). (3.1)

et u ∈ W ∪ {s, s′} and u′
∈ {s, s′} with u′

̸= u, and let z ∈ S \ {s, s′} with z ̸= u. Then, (3.1) and our
ssumption on f ′ tell us that puu′

∈ E(Gt ), and by (P4) for f we have that uu′z ∈ E(Gt ). This implies
uz ∈ E(Gt+1). That is, for all u ∈ W ∪ {s, s′} and all z ∈ S \ {u} we have puz ∈ E(Gt+1). This in turn
mplies that Gt+2[S ∪ {p}] is complete (as psz, psz ′

∈ E(Gt+1) implies pzz ′
∈ E(Gt+2)).

If t = 2m+2
− (m+4), then |W | = 2m+1

−2 and |S| = 2m+1
+1, so we have |W ∪ {s, s′}| = |S|−1

nd hence Gt+1[S∪{p}] is complete by the observation above that puz ∈ E(Gt+1) for all u ∈ W∪{s, s′}
and z ∈ S \ {u}. Hence, te = t + 1, Se = S ∪ {p}, ve = p, We = ∅ satisfy properties (P1)–(P5) (note
that in this case m(te) = m + 1).

On the other hand, if t ̸= 2m+2
− (m + 4), then t ≤ 2m+2

− (m + 6) (since t + m = 2|S| − 6 is
even by (P2)). So m(t + 2) = m(t). It follows that te = t + 2, Se = S ∪ {p}, ve = p, We = W ∪ {s, s′}
satisfy the properties.

Case 3: e ̸⊆ S, f ′
∈ E(Gt−1), and f ′

= pws for some w ∈ W , s ∈ S, {p} = e \ S. Then, by
(P5) for f , whenever z ∈ S \ {w, s} we have wsz ∈ E(G ). Since f ′

= pws ∈ E(G ), it follows
t−1 t−1

12
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a

that pwz ∈ E(Gt ) for all z ∈ S \ {w}. Therefore, whenever z, z ′
∈ S \ {w} are distinct, we have

pwz, pwz ′
∈ E(Gt ), and hence pzz ′

∈ E(Gt+1). Thus, Gt+1[S ∪ {p}] is complete.
If t = 2m+2

− (m+ 4), then te = t + 1, Se = S ∪ {p}, ve = p, We = ∅ satisfy properties (P1)–(P5).
On the other hand, assume that t < 2m+2

− (m+4) (as in case 2, we then have m(t +2) = m(t)).
Then, (P2) and (P3) imply that |W | < |S| − 3. Let W ′ be an arbitrary subset of S of size |W | + 2.
Then, te = t + 2, Se = S ∪ {p}, ve = p, We = W ′ satisfy properties (P1)–(P5).

Case 4: e ̸⊆ S, f ′
̸∈ E(Gt−1). Then, we must have t = a − 1 and f ′

∈ E(Gt ) \ E(Gt−1). We may
assume that tf ′ = t , since otherwise we can swap the roles of f and f ′ and we are done by the
previous cases. Let us write S ′ for Sf ′ . Note that |S| = |S ′

|, and S ∩ S ′
⊇ f ∩ f ′ has size at least 2.

Assume first that S ′
\S = {p} for some p ∈ V (G0) (where necessarily {p} = e\f ). Then, S\S ′

= {q}
for some q ∈ V (G0) (with {q} = e \ f ′). Observe that, by (P4), whenever s, s′ ∈ S ∩ S ′ are distinct,
we have pss′ ∈ E(Gt ) and qss′ ∈ E(Gt ). This implies that pqs ∈ E(Gt+1) for every s ∈ S ∩ S ′. Hence,
Gt+1[S ∪ S ′

] is complete, where |S ∪ S ′
| = |S| + 1. If t = 2m+2

− (m + 4), then properties (P1)–(P5)
are satisfied for te = t +1, Se = S ∪ S ′, ve = p and We = ∅. Otherwise, t ≤ 2m+2

− (m+6) (as t +m
is even), so (P1)–(P5) are satisfied for te = t + 2, Se = S ∪ S ′, ve = p, and We an arbitrary subset of
S of size |W | + 2.

Now assume that |S ′
\ S| ≥ 2. Observe that, whenever x, y ∈ S ∩ S ′ (distinct), s ∈ S \ S ′ and

s′ ∈ S ′
\ S, by (P4) we know xys, xys′ ∈ E(Gt ), and therefore xss′ ∈ E(Gt+1). By the same argument,

if s̄′ ∈ S ′
\ S (with s̄′ ̸= s′), then xss̄′ ∈ E(Gt+1). This then implies that ss′s̄′ ∈ E(Gt+2). Similarly, if

s′ ∈ S ′
\ S and s, s̄ ∈ S \ S ′ (distinct), then ss̄s′ ∈ E(Gt+2). Hence, Gt+2[S ∪ S ′

] is complete, where
|S ∪ S ′

| ≥ |S|+2. Now pick any two vertices p, p′
∈ S ′

\ S with e ⊆ S ∪{p, p′
}. If t = 2m+2

− (m+6),
then let te = t + 3, Se = S ∪ {p, p′

}, ve = p and We = ∅. If t = 2m+2
− (m + 4), then let te = t + 3,

Se = S∪{p, p′
}, ve = p andWe an arbitrary subset of S∩S ′ of size 2. Finally, assume t < 2m+2

−(m+6).
Since t + m is even, we have t ≤ 2m+2

− (m + 8). Then, let te = t + 4, Se = S ∪ {p, p′
}, ve = p and

We an arbitrary subset of S of size |W | + 4. These choices satisfy properties (P1)–(P5). This finishes
the proof of the lemma. □

Proof of Theorem 4. The lower bound follows from Lemma 9. For the upper bound, given an
arbitrary hypergraph G0 on a vertex set V of size n ≥ 4, consider the (K (3)

4 , 2)-process G0,G1, . . .

with G0 as initial infection. Let T := M(K (3)
4 ,2)(G0) be the running time of the process, and let

e ∈ E(GT ) \ E(GT−1) be arbitrary. By Lemma 10, there is some t ≥ T such that Gt contains a clique
of size t+m(t)+6

2 ≥
T+m(T )+6

2 . Hence,

T + m(T ) + 6
2

≤ n.

t follows that

T ≤ 2n − ⌊log2(n − 2)⌋ − 6,

s we wanted to prove. Indeed, if ⌊log2(n − 2)⌋ = α, then 2α
+ 2 ≤ n ≤ 2α+1

+ 1 and hence
2α+1

− (α +2) ≤ 2n−α −6 < 2α+2
− (α +3), giving m(2n−α −6) = α and (2n−α−6)+m(2n−α−6)+6

2 =

n. □

3.2. Double infections for K (3)
5

We now turn our attention to Theorem 5. In order to prove it, observe that, for an r-uniform
hypergraph H , the trivial upper bound M(H,k)(n) ≤

(n
r

)
still holds, so it suffices to provide a

lower bound. We will proceed by constructing an initial infection for which the (K (3)
5 , 2)-bootstrap

percolation process runs for a cubic number of steps. At most two edges will become infected in
each step of the infection process, which will make it easier to analyse the number of steps. Our
construction is intuitively similar to the one we constructed for the proof of Theorem 3, albeit a bit
more convoluted. Let us begin with an intuitive description.

Our vertex set will again be split into three layers, with vertices ti playing the role of ‘top’ vertices,
vertices b playing the role of ‘bottom’ vertices, and vertices m conforming the ‘middle’ layer. We
j ℓ

13
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will also have a number of ‘dummy’ vertices. For fixed top and bottom vertices, the vertices in the
middle layer will allow us to infect two edges at a time, while traversing this layer, for a linear
total number of steps. For each fixed bottom vertex, there will be some extra edges at the end of
the middle layer which will allow us to swap the bottom vertex for the next one and continue the
process. Finally, the dummy vertices will allow us to swap the top vertex and start the process
anew.

To be more precise, let us describe the first few stages of the infection process. For each
≤ ℓ ≤ 2n − 2, our initial infection will contain all edges of the copy of K (3)

5 with vertex set
1, b1,mℓ,mℓ+1,mℓ+2 except for t1mℓb1, t1mℓ+1b1, and t1mℓ+2b1. It will also contain t1m0b1. This
dge will trigger the infection of t1m1b1 and t1m2b1 in the first step of the process, then of t1m3b1

and t1m4b1, and the infection will keep propagating towards higher values of ℓ, until finally, after
n steps, the edges t1m2n−1b1 and t1m2nb1 become infected.

At this point, we will swap out b1 to b−1. This can be achieved in two steps of the infection
process. Our initial infection will already contain all edges of the copy of K (3)

5 with vertex set
t1, b1,m2n,m2n+1,m2n+2 except for t1m2nm2n+1, t1m2n+1m2n+2, and the edge t1m2nb1 which was
just added in the previous step; t1m2nm2n+1 and t1m2n+1m2n+2 will therefore become infected in
the next step. The initial infection also contains all the edges of the copy of K (3)

5 with vertex set
t1, b−1,m2n,m2n+1,m2n+2 except for t1m2nb−1, t1m2n+1b−1, and the two that were just added. These
two edges now become infected as well, and start a new infection process where now the indices
decrease through the middle layer.

Finally, suppose we have reached a point where the copy of K (3)
5 defined on the vertices t1, bn,

m4n−4, m4n−3, m4n−2 has been completely infected, with the edges infected in the last step of the
process being t1m4n−3bn and t1m4n−2bn. We now want to swap out the top vertex to t2, using for
this purpose four dummy vertices. Similarly as in the proof of Theorem 3, these will simply create
a short chain of infections that allows us to restart the process.

We now give a formal proof.

Proof of Theorem 5. Consider an initial infection hypergraph G0 whose vertex set consists of 12n−5
vertices, labelled as t1, . . . , tn, b1, . . . , bn, b−1, . . . , b−(n−1), m−2(n−1), . . . ,m4n, and di,1, di,2, di,3 for
i ∈ [n − 1]. For notational purposes, for each i ∈ [n] let di,−2 := ti, di,−1 := bn, di,0 := m4n−2,
di,4 := m0, di,5 := b1, and di,6 := ti+1. The edges of G0 appear in the following list:

(a) t1m0b1;
(b) mℓmℓ+1mℓ+2, for all −2(n − 1) ≤ ℓ ≤ 4n − 4;
(c) timℓmℓ+2, for all i ∈ [n] and −2(n − 1) ≤ ℓ ≤ 4n − 4;
(d) bjmℓmℓ+2, for all j ∈ [n] and −2(j − 1) ≤ ℓ ≤ 2(n + j − 1);
(e) b−jmℓmℓ+2, for all j ∈ [n − 1] and −2j ≤ ℓ ≤ 2(n + j − 1);
(f) timℓmℓ+1, for all i ∈ [n] and 0 ≤ ℓ ≤ 2n − 1;
(g) bjmℓmℓ+1, for all j ∈ [n] and −2(j − 1) ≤ ℓ ≤ 2(n + j) − 1;
(h) b−jmℓmℓ+1, for all j ∈ [n − 1] and −2j ≤ ℓ ≤ 2(n + j) − 1;
(i) tim2(n+j)−1bj, tim2(n+j)bj and tim2(n+j)b−j, for all i ∈ [n] and j ∈ [n − 1];
(j) tim−2j+1b−j, tim−2jb−j and tim−2jbj+1, for all i ∈ [n] and j ∈ [n − 1];
(k) di,jdi,j+1di,j+3, di,jdi,j+1di,j+4, di,jdi,j+2di,j+3, di,jdi,j+2di,j+4, di,jdi,j+3di,j+4, di,j+1di,j+2di,j+3,

and di,j+1di,j+3di,j+4, for all i ∈ [n − 1] and j ∈ {−2, 0, 2}.

o compare this with the construction hinted at before the proof, consider the following. The edge
n (a) is an edge e0 which starts the whole infection process. The edges in (b)–(h) are there to ensure
he correct propagation of the infection through the middle layer, where the edges in (d) and (g)
ill be used to propagate the infection towards larger values of ℓ, using some bottom vertex of the

orm bj, and those in (e) and (h) will be used to propagate the infection towards smaller values of
, using some bottom vertex of the form b−j. The edges in (i) and (j) are needed for swapping the
ottom vertices. Finally, the edges which appear in (k) are used to swap the top vertices.
14
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For each pair (i, j) with i, j ∈ [n], let Ai,j be the sequence of edges

Ai,j := (tim−2(j−1)+ℓbj)
2n+4(j−1)
ℓ=1 . (3.2)

Similarly, for each pair (i, j) with i ∈ [n] and j ∈ [n − 1], we define

Ai,−j := (tim2(n+j)−ℓb−j)
2n+4(j−1)+2
ℓ=1 . (3.3)

Note that each of these has an even number of elements. Using× to denote concatenation, for
each phase i ∈ [n] we define the sequence

Ai := Ai,1

n−1

×
j=1

(tim2(n+j−1)m2(n+j)−1, tim2(n+j)−1m2(n+j))Ai,−j(tim−2(j−1)m−2j+1, tim−2j+1m−2j)Ai,j+1.

(3.4)

inally, we set

A := A1

n−1

×
i=1

(di,−1di,0di,2, di,0di,1di,2, di,1di,2di,4, di,2di,3di,4, di,3di,4di,6, di,4di,5di,6)Ai+1

= A1

n−1

×
i=1

(bnm4n−2di,2,m4n−2di,1di,2, di,1di,2m0, di,2di,3m0, di,3m0ti+1,m0b1ti+1)Ai+1. (3.5)

e will sometimes abuse notation and treat each of the above sequences as sets. Observe that A
as an even number of elements and that none appear repeatedly. We may label these elements
s (e1, e′

1, e2, e
′

2, . . . , eT , e
′

T ), for some T > 0. Note that T = 4n3
+ O(n2) by construction. Note,

oreover, that by construction we are guaranteed that |{et , e′
t} ∩ Ai,j| ∈ {0, 2} for all i and j.

dditionally, any two consecutive triples in A share exactly two vertices, thus, it is easy to check
hat any three consecutive triples span five vertices.

Let e′

0 := t1m0b1. For each t ∈ [T −1], let Ht denote the copy of K (3)
5 with vertex set e′

t−1 ∪et ∪e′
t ,

nd let H ′
t denote the copy of K (3)

5 with vertex set et−1 ∪ e′

t−1 ∪ et (if t > 1). For each t ∈ [T ], let
t be the hypergraph with edge-set E(Gt−1)∪ {et , e′

t}. We will show that these hypergraphs indeed
oincide with those obtained by the K (3)

5 -bootstrap percolation process with initial infection G0.

laim 3. Let H be a copy of K (3)
5 on the vertex set of G0. Assume that, for some t ∈ [0, T − 1], we

ave that H ⊈ Gt but H is 2-completable in Gt . Then, the following hold.

• If H is 1-completable in Gt , suppose that adding e to Gt completes H. Then, t ≥ 1, e = et+1 and
H = H ′

t+1.
• If H is not 1-completable in Gt , suppose that adding e and e′ to Gt completes H. Then, {e, e′

} =

{et+1, e′

t+1} and H = Ht+1.

roof. Consider any copy H of K (3)
5 on V (G0). If H contains two vertices of the form ti and ti′ with

≤ i < i′ ≤ n, since GT does not contain any edge with two ‘top’ vertices (see (a)–(k) as well as
3.2)–(3.5)), H must be missing at least three edges in GT . As G0 ⊆ G1 ⊆ . . . ⊆ GT , it follows that H
s not 2-completable in Gt for any t ∈ [0, T−1]. The same argument holds if H contains two vertices
f the form bj and bj′ . Hence, we may assume that H contains at most one vertex ti and one vertex
j. Similarly, if H contains two vertices mℓ and mℓ′ with |ℓ − ℓ′

| ≥ 3, then GT does not contain any
dge containing both mℓ and mℓ′ , so H is not 2-completable in GT . Therefore, H contains at most
hree vertices of the form mℓ, and their indices must be within distance two of each other.

Assume first that H contains some vertex of the form di,c with i ∈ [n − 1] and c ∈ [3]. All
riples in GT containing one such vertex are of the form di,rdi,pdi,q with −2 ≤ r < p < q ≤ 6
nd q − r ≤ 4 (see (k) and (3.5)). It follows easily that, if V (H) does not consist of five consecutive
ertices d , d , . . . , d with −2 ≤ p ≤ 2, then H cannot be 2-completable in G . Moreover, if
i,p i,p+1 i,p+4 T

15
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we assume V (H) = {di,p+h : 0 ≤ h ≤ 4} for some i ∈ [n−1] and p ∈ {−1, 1}, then we also know that
he triples di,pdi,p+1di,p+4, di,pdi,p+2di,p+4 and di,pdi,p+3di,p+4 do not appear in GT , so again H cannot
be 2-completable. So we must have V (H) = {di,p+h : 0 ≤ h ≤ 4} with p ∈ {−2, 0, 2}. But then, by
(k) and (3.5), the only three edges missing from H in G0 are e′

N−1, eN and e′

N , for some N ∈ [T ]. Let
∈ [0, T −1] be such that H is 2-completable in Gt but E(H) ̸⊆ E(Gt ). It is easy to see that we must

have t = N −1; furthermore, H = Ht+1, H is not 1-completable in Gt , and E(Gt+1)\E(H) = {eN , e′

N},
as desired.

Assume next that H does not contain any vertex of the form di,c with i ∈ [n − 1] and c ∈ [3],
so it must contain one top vertex ti, one bottom vertex bj, and three consecutive middle vertices
mℓ, mℓ+1 and mℓ+2. Assume j > 0 (the other case can be argued analogously). If ℓ ≥ 2(n + j) − 1,
then GT is missing the edges timℓ+2bj, bjmℓ+1mℓ+2 and bjmℓmℓ+2 (see (d), (g), (i), (3.2) and (3.4)),
so H cannot be 2-completable at any stage of the process. Similarly, if ℓ < −2(j − 1), then GT
is missing the edges timℓbj, bjmℓmℓ+1 and bjmℓmℓ+2 (see (d), (g), (j), (3.2) and (3.4)), hence H is
not 2-completable. Thus, we must have −2(j − 1) ≤ ℓ ≤ 2(n + j − 1). However, for the case
when j = n and ℓ ∈ {4n − 3, 4n − 2}, it follows from (b), (c), (f) and (3.4) that GT is missing the
triples mℓmℓ+1mℓ+2, timℓmℓ+2 and timℓ+1mℓ+2, hence H cannot be 2-completable. So we must have
−2(j − 1) ≤ ℓ ≤ 2(n + j − 1) when j ∈ [n − 1] and −2(j − 1) ≤ ℓ ≤ 2(n + j − 2) when j = n. Let
t ∈ [0, T − 1] be such that H is 2-completable in Gt but E(Ht ) ̸⊆ E(Gt ). We now split the analysis
into further cases.

Assume first that j < n and ℓ = 2(n + j − 1). It follows from (b)–(j) that the only triples of
H missing from G0 are timℓbj, timℓmℓ+1 and timℓ+1mℓ+2. These three are added throughout the
sequence of edges defined above, as follows from (3.2) and (3.4), as e′

N−1, eN and e′

N , respectively,
or some N ∈ [T ]. Then, in order for H to be 2-completable in Gt , we must have e′

N−1 ∈ E(Gt ), and
hence t = N , H = Ht+1, H is not 1-completable, and E(Gt+1) \ E(H) = {eN , e′

N}, as desired.
Consider next the case that j < n and ℓ = 2(n + j − 1) − 1. The triples of H missing from G0

re timℓbj, timℓ+1bj and timℓ+1mℓ+2 (see (b)–(j)), which are eN−1, e′

N−1 and eN , respectively, for some
∈ [T ] (see (3.2) and (3.4)). Thus, in order for H to be 2-completable in Gt , this hypergraph must

ontain at least one of the missing triples; however, since eN−1 and e′

N−1 are added simultaneously
in the sequence of hypergraphs, we must have eN−1, e′

N−1 ∈ E(Gt ), and so H is 1-completable. Then,
the only edge that can complete H is e = eN , and so it follows that N = t + 1 and H = H ′

t+1.
Assume now that ℓ = −2(j − 1). Here we have two further subcases. If j = 1, then the only

triples of H missing in G0 are precisely e1 and e′

1 (see (a)–(j) as well as (3.2)). Therefore, we have
{e, e′

} = {e1, e′

1} and H = H1. So suppose that j ≥ 2. Then, the triples of H missing in G0 are
timℓmℓ+1, timℓ+1mℓ+2, timℓ+1bj and timℓ+2bj (see (b)–(j)). But then it follows from (3.2) and (3.4) that
these triples take the form eN−1, e′

N−1, eN , e
′

N , for some N ∈ [T ]. In order for H to be 2-completable
in Gt , we must have eN−1, e′

N−1 ∈ E(Gt ). Then, it follows that t = N − 1, H = Ht+1, H is not
1-completable, and E(Gt+1) \ E(H) = {eN , e′

N}.
Suppose now that ℓ = −2(j − 1) + 1. Again, we must consider two subcases. If j = 1, the edges

of H missing in G0 are timℓbj, timℓ+1bj and timℓ+2bj, which correspond to e1, e′

1 and e2 (see (b)–(j)
as well as (3.2)). Thus, in order for H to be 2-completable in Gt we must have e1, e′

1 ∈ E(Gt ), so
t = 1 and H is 1-completable in G1. It then follows that e = e2, and H = H ′

2. So suppose j ≥ 2.
Then, the triples of H missing in G0 are timℓmℓ+1, timℓbj, timℓ+1bj and timℓ+2bj (see (b)–(j)). By
(3.2) and (3.4), these triples take the form e′

N−2, eN−1, e′

N−1, eN , for some N ∈ [2, T ]. In order for
H to be 2-completable in Gt , at least two of these edges must be added. But eN−1 and e′

N−1 are
added simultaneously, so we conclude that e′

N−2, eN−1, e′

N−1 ∈ E(Gt ) and H is 1-completable in Gt .
Therefore, E(Gt+1) \ E(H) = {eN}, N = t + 1 and H = H ′

t+1.
Suppose finally that −2(j − 2) ≤ ℓ ≤ 2(n + j − 2). Then, the only edges of H missing in G0 are

timℓbj, timℓ+1bj and timℓ+2bj (see (b)–(j)). If ℓ is even, it follows from (3.2) that these edges take the
form e′

N−1, eN and e′

N , respectively, for some N ∈ [T ]; on the contrary, if ℓ is odd, then they take the
form eN−1, e′

N−1 and eN . In the former case, in order for H to be 2-completable in Gt , we must have
e′

N−1 ∈ E(Gt ), and it follows that E(Gt+1)\E(H) = {eN , e′

N}, N = t+1 and H = Ht+1. In the latter case,
we must have eN−1, e′

N−1 ∈ E(Gt ), so H is 1-completable, and it follows that E(Gt+1) \ E(H) = {eN},
N = t + 1 and H = H ′

t+1. ◀
16
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By applying Claim 3 iteratively, we conclude that the (K (3)
5 , 2)-bootstrap percolation process with

nitial infection G0 indeed generates the sequence of hypergraphs G0,G1, . . . ,GT , . . ., so its running
ime is at least T = 4n3

+ O(n2). By taking into account the number of vertices of the hypergraphs
e are considering, we conclude that M(K (3)

5 ,2)(n) ≥ 4n3/123
+ O(n2). □

. Concluding remarks

Graph and hypergraph bootstrap percolation have seen a lot of research in recent years, with
any intriguing questions remaining open and many possible avenues for further research. We
ave focused particularly on understanding the maximum running time of these processes. Our first
ain result, Theorem 3, building on the previous work of Noel and Ranganathan [18], has allowed
s to conclude that the maximum running time of K (r)

k -bootstrap percolation is of order Θ(nr ) for
ny k > r ≥ 3. A first very natural problem is to determine the leading constant in this asymptotic
ehaviour.

roblem 11. For each k > r ≥ 2, does limn→∞ Mr
k (n)/n

r exist? If so, what is the value of the limit?

In particular, all results in this hypergraph context have relied on the trivial upper bound that
r
H (n) ≤

(n
r

)
; obtaining better upper bounds should be the first step towards this problem. We also

ote that the lower bound arising from our construction (see Remark 7) is not tight.
Another very natural direction is to study the asymptotic growth of MH (n) when H is an r-

niform hypergraph which is not complete. We have made the first progress in this direction by
ddressing two particular cases, see Theorems 4′ and 5′. A more general study of this problem
or different instances of H is crucial towards a unified understanding of hypergraph bootstrap
ercolation.
More generally, the notion of more ‘powerful’ infections that we proposed when considering

H,m)-bootstrap percolation leads to many new open problems. Here we have only addressed two
articular instances to showcase that this notion leads to interesting results. In the case of (K (3)

5 , 2)-
ootstrap percolation, Theorem 5 shows that the maximum running time is cubic, that is, as large as
t could possibly be (up to constant factors). In the case of (K (3)

4 , 2)-bootstrap percolation, however,
he maximum running time is only linear, and in Theorem 4 we have determined the exact value of
his maximum running time for all values of n. Remarkably, this is the only nontrivial exact result
n the area other than those for K3- and K4-bootstrap percolation [7]. It would certainly be desirable
o understand the behaviour of the maximum running time of (H,m)-bootstrap percolation more
enerally. To begin, we propose the following problem.

roblem 12. Given k > r ≥ 2 and m ∈ [
(k
r

)
], determine the asymptotic behaviour of the maximum

unning time of the (K (r)
k ,m)-bootstrap percolation process.

It would also be interesting to consider this more general (H,m)-bootstrap percolation process in
ther contexts where (hyper)graph bootstrap percolation has been studied. In particular, one may
onsider the extremal problem, i.e., what is the minimum number of edges an initial r-uniform
nfection G0 on n vertices can have if we know the (H,m)-percolation process G0, . . . ,GT satisfies
T = K (r)

n ?
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