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Abstract
In this paper, we construct an approximation to the
Pitman–Yor process by truncating its two-parameter
Poisson–Dirichlet representation. The truncation is
based on a decreasing sequence of random weights, thus
having a lower approximation error compared to the
popular truncated stick-breaking process. We develop an
exact simulation algorithm to sample from the approx-
imation process and provide an alternative MCMC
algorithm for the parameter regime where the exact sim-
ulation algorithm becomes slow. The effectiveness of the
simulation algorithms is demonstrated by the estima-
tion of the functionals of a Pitman–Yor process. Then we
adapt the approximation process into a Pitman–Yor pro-
cess mixture model and devise a blocked Gibbs sampler
for posterior inference.
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2 ZHANG and DASSIOS

1 INTRODUCTION

The Pitman–Yor process is a rich and flexible class of random probability measures that has been
widely used in Bayesian nonparametric statistics. Research on the Pitman–Yor process was initi-
ated by Pitman and Yor (1992), where it was used to study the ranked lengths of excursions of a
Markov process. Later on, Perman et al. (1992) demonstrated the connection between the random
weights of a Pitman–Yor process and the normalized jumps of a stable process. Pitman (1995)
introduced the partially exchangeable probability function and derived a sampling formula for
the Pitman–Yor process. Pitman (2006) designed a generative approach for sampling from the
Pitman–Yor process, which is known as the two-parameter Chinese restaurant process. The appli-
cation of the Pitman–Yor process has been found in many areas. For example, Favaro et al. (2009)
derived a species sampling formula from the Pitman–Yor process and constructed a Bayesian
nonparametric methodology to deal with the prediction issue within the species sampling prob-
lems; Jara et al. (2010) introduced a linear-dependent model based on the Pitman–Yor process
and used it to analyze a dataset generated by a dental longitudinal study; Carmona et al. (2019)
developed a Bayesian nonparametric mixture model based on the Pitman–Yor process prior and
studied its posterior inference method. Other applications can be found in bioinformatics and
computational biology (Lijoi et al., 2007, 2008), image segmentation (Sudderth & Jordan, 2008),
curve estimation (Jara et al., 2010), gene networks inference (Ni et al., 2018), and econometrics
(Bassetti et al., 2014).

The Pitman–Yor process is a random probability measure of the form

̃
𝛼,𝜃

∞ (.) =
∞∑

i=1
p̃i𝛿Ki (.), (1)

where 𝛿Ki (.) is a point mass at Ki, {Ki}i≥1 are independent and identically distributed random
variables with the distribution H on a Polish space  , and {p̃i}i≥1 are random weights such that
p̃i ≥ 0 and

∑
i≥1 p̃i = 1, independent of {Ki}i≥1. For simplicity, we will omit the hyperparameters

𝛼 and 𝜃 where possible. The random weights admit the following stick-breaking representation,

p̃i
d
= Vi

i−1∏

j=1
(1 − Vj) and Vj ∼ beta(1 − 𝛼, 𝜃 + j𝛼), i = 1, 2, 3,…, (2)

with the discount parameter 0 ≤ 𝛼 < 1 and the concentration parameter 𝜃 > −𝛼. By setting 𝛼 = 0,
we revert to the stick-breaking representation of a Dirichlet process. Throughout this paper, we
use the tilde notation to emphasize that the sequence {p̃i}i≥1 is presented in its original order. In
other words, it follows Equation (2) without any reordering. Based on the stick-breaking represen-
tation, several approximation methods have been proposed for the Pitman–Yor process. Ishwaran
and James (2001) introduced the truncated stick-breaking process with a fixed truncation level N,

̃N(.) =
N∑

i=1
p̃i𝛿Ki (.) + ẽN𝛿K0 (.), (3)

where p̃1,…, p̃N are defined as (2), ẽN ∶= 1 − p̃1 − · · · − p̃N such that ̃N is a valid random prob-
ability measure, and K0 has the distribution H independently. As N →∞, ̃N converges to ̃∞
in total variation distance almost surely (see, e,g“ Sec. 4.3.3 of Ghosal & van der Vaart, 2017),
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ZHANG and DASSIOS 3

hence a finite approximation for the distribution of the Pitman–Yor process is obtained. From
the definition, it is clear that the approximation error of this method is characterized by the tail
probability ẽN . A study about the expectation of the tail probability can be found in Ishwaran and
James (2001). On the other hand, Arbel et al. (2019) introduced a random stopping rule which can
achieve an almost sure control on the approximation error in total variation distance. Specifically,
they used the random truncation level

N(𝜖) ∶= min{n ≥ 1|ẽn < 𝜖}.

This leads to the 𝜖-Pitman–Yor process

̃
𝜖

(.) =
N(𝜖)∑

i=1
p̃i𝛿Ki(.) + ẽN(𝜖)𝛿K0(.).

The 𝜖-Pitman–Yor process generalizes the 𝜖-Dirichlet process proposed by Muliere and
Tardella (1998). It follows from the definition that the random stopping rule controls the approx-
imation error according to the total variation bound

dTV ( ̃∞, ̃𝜖

) = sup
A⊂

| ̃∞(A) − ̃
𝜖

(A)| ≤ 𝜖,

almost surely (see Prop. 4.20 of Ghosal & van der Vaart, 2017). The construction also guarantees
the almost sure convergence of the measurable functionals of ̃

𝜖

to that of ̃∞ as 𝜖 → 0. Numer-
ical implementation of the functional estimation can be found in Arbel et al. (2019). Finally,
Al Labadi and Zarepour (2014) proposed a different approximation method for the Pitman–Yor
process based on the decreasing sequences of random weights of a gamma process and a stable
process. They also provided a simulation scheme for the approximation.

In this paper, we propose a new random probability measure called the truncated
two-parameter Poisson–Dirichlet process and use it to approximate the distribution of the
Pitman–Yor process. Our construction is based on the ranked random weights of the Pitman–Yor
process. Since {Ki}i≥1 are i.i.d., it is clear that the Pitman–Yor process is invariant in distribution
to a reordering of {p̃i}i≥1. In particular, let p1 > p2 >…be the ranked values of {p̃i}i≥1, then the
random probability measure

∞(.) =
∞∑

i=1
pi𝛿Ki (.), (4)

is identical in distribution to the Pitman–Yor process (1). We call (4) a two-parameter
Poisson–Dirichlet process as the ranked random weights {pi}i≥1 follow the two-parameter
Poisson–Dirichlet distribution (see Pitman & Yor, 1997). In fact, the original sequence {p̃i}i≥1
is a size-biased permutation of {pi}i≥1, see McCloskey (1965) for more details. To derive a finite
approximation to the Pitman–Yor process, we truncate the two-parameter Poisson–Dirichlet pro-
cess at the fixed truncation level N. Then we get the truncated two-parameter Poisson–Dirichlet
process

N(.) =
N∑

i=1
pi𝛿Ki(.) + eN𝛿K0 (.),
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4 ZHANG and DASSIOS

where eN ∶=
∑∞

i=N+1pi. It is easy to see that N has a lower approximation error compared to ̃N
because the tail probability eN is almost surely smaller than ẽN for the same truncation level N. It
follows that supA⊂

| ̃∞(A) − N(A)| ≤ supA⊂
| ̃∞(A) − ̃N(A)| almost surely. Thus, we expect

the truncated two-parameter Poisson–Dirichlet process to provide a better approximation to the
Pitman–Yor process and its functionals. This will be examined by a comparison study based on
the truncation error and estimation accuracy.

Our approximation method is similar to the Ferguson–Klass representation of a random prob-
ability measure. Recall that a completely random measure (CRM) induced by the rate measure
v(dw) can be written as

Θ(.) =
∞∑

i=1
Ji𝛿Ki (.),

where Ji ∶= v←(Γi), v←(w) ∶= inf{x|v([x,∞)) ≤ w}, Γi ∶=
∑i

j=1Ej, and Ej ∼ Exp(1) are i.i.d. expo-
nential random variables. We can then derive a random probability measure from the CRM by
normalization, that is, by consideringΘ∕Θ(). Examples of random probability measures derived
from the normalized CRM include the Dirichlet process, the normalized inverse-Gaussian process
and the generalized gamma process. Since the sequence {Ji}i≥1 is decreasing, the Ferguson–Klass
representation is based on a decreasing sequence of random weights. This means the truncated
random probability measure ΘN∕Θ(), where

ΘN(.) ∶=
N∑

i=1
Ji𝛿Ki(.) + 𝜃N𝛿K0 (.) and 𝜃N ∶=

∞∑

i=N+1
Ji,

has the lowest truncation error compared to other approximations. See Campbell et al. (2019) for
further discussion. Although the Pitman–Yor process is not a normalized CRM, its connection to
the stable process CRM has been revealed by a change of measure in Pitman and Yor (1997). Thus,
we will construct the truncated Ferguson–Klass representation of a stable process and derive the
truncated two-parameter Poisson–Dirichlet process from it via the change of measure.

A typical application of the finite approximation of the Pitman–Yor process is the posterior
inference of the Pitman–Yor process mixture models (PYMM). Consider the mixture model

(Xi|Yi) ∼ (Xi|Yi), i = 1,…,n,

(Yi| ̃P)
iid∼ ̃P,
̃P ∼ ̃∞, (5)

where X1,…,Xn represent the observations, they are assumed to be independent conditional on
the latent variables Yi, (Xi|Yi) denotes the conditional distribution of Xi given Yi, the latent
variables Yi are i.i.d. with the distribution ̃P, and ̃P is a sample of the Pitman–Yor process prior.
The joint distribution of Y = (Y1,…,Yn) is characterized by the predictive distribution of the
Pitman–Yor process

P(Yi+1|Y1,…,Yi) =
𝜃 +mi𝛼

𝜃 + i
𝛿H +

mi∑

j=1

nj − 𝛼

𝜃 + i
𝛿K∗

j
, i = 1, 2, 3,…, (6)
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ZHANG and DASSIOS 5

where mi is the number of distinct values K∗
j observed in the first i draws, and nj is the number

of latent variables taking the value of K∗
j such that

∑mi
j=1nj = i. The predictive distribution implies

a Pólya urn scheme for sampling from the posterior of the Pitman–Yor process, which leads to
the marginalization method for the posterior inference of PYMM. See Ishwaran and James (2001)
for the details. The marginalization method is easy to use, but it also suffers from the side effects
of slow mixing of the Markov chain and allowing the inference to be based only on the latent
variables. To avoid these limitations, Ishwaran and James (2001) replaced the Pitman–Yor pro-
cess prior ̃∞ in model (5) by a truncated stick-breaking process ̃N and developed a blocked
Gibbs sampler for posterior inference. They showed that the truncation method provides a good
approximation to the PYMM. In this paper, we will provide a new approximation to the PYMM
using the truncated two-parameter Poisson–Dirichlet process. Based on a lower-error approx-
imation, our approach is expected to have better inferential quality. We will verify this by a
comparison study.

The rest of the paper is organized as follows. Section 2 constructs the truncated two-parameter
Poisson–Dirichlet process and studies its truncation error. Section 3 designs the simulation algo-
rithms for the truncated two-parameter Poisson–Dirichlet process and uses the algorithms to
estimate the functionals of the Pitman–Yor process. Section 4 adapts the truncated two-parameter
Poisson–Dirichlet process into the Pitman–Yor process mixture model and develops a posterior
inference scheme. Section 5 presents some numerical results. Section 6 summarizes the paper
with a discussion of open questions. The supplementary materials contain the derivations of the
main results.

2 CONSTRUCTION AND DISTRIBUTIONAL PROPERTIES

In this section, we construct the truncated two-parameter Poisson–Dirichlet process and study its
distributional properties. For a positive integer N, a truncated two-parameter Poisson–Dirichlet
process is a random probability measure defined as


𝛼,𝜃

N (.) =
N∑

i=1
pi𝛿Ki(.) + eN𝛿K0 (.), (7)

where 0 < 𝛼 < 1, 𝜃 > −𝛼, {pi}i≥1 denotes the components of the two-parameter Poisson–Dirichlet
distribution PD(𝛼, 𝜃), eN =

∑∞
i=N+1pi, 𝛿Ki (.) is a point mass at Ki, and {Ki}i≥0 are i.i.d. random

variables with the distribution H. From the definition, it is clear that the construction of the trun-
cated two-parameter Poisson–Dirichlet process hinges on the components of the two-parameter
Poisson–Dirichlet distribution. To obtain these components, recall that Pitman and Yor (1997)
gave a connection between the PD(𝛼, 0) distribution and the stable process. Consider a stable pro-
cess 𝜏s with the Lévy measure v(dw) = 𝛼w−𝛼−11{0<w<∞}dw. The Lévy–Khintchine representation
of 𝜏s is

E(exp(−𝛽𝜏s)) = exp
(
−s
∫

∞

0
(1 − e−𝛽w)𝛼w−𝛼−1dw

)
.

Let {Ji}i≥1 be the ranked jumps of 𝜏s on the time interval [0, t], such that J1 > J2 >… and
𝜏t =

∑∞
i=1Ji, then the normalized jumps (J1∕𝜏t, J2∕𝜏t,…) follow the PD(𝛼, 0) distribution.
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6 ZHANG and DASSIOS

Thus, we get a special case of the two-parameter Poisson–Dirichlet process in terms of


𝛼,0
∞ (.) =

∑∞
i=1(Ji∕𝜏t)𝛿Ki (.), and a truncation can be made based on this representation.

To generalize this method to any 𝜃 > −𝛼, recall that Pitman and Yor (1997) provided a change
of measure between the components of the PD(𝛼, 0) and PD(𝛼, 𝜃) distributions. Next, we use this
method to construct the truncated two-parameter Poisson–Dirichlet process.

To facilitate the construction, we first prepare some preliminary results about the jumps of a
stable process. Note that to construct a random probability measure, we do not need the whole
time history of the stable process, so any compact interval will suffice, and we pick [0, 1]. Let
{Ji}i≥1 be the ranked jumps of a stable process on the time interval [0, 1]. Denote by (N)

𝜏1 the
N-trimmed subordinator (Ipsen & Maller, 2017) derived from 𝜏1, that is, the process obtained
by removing the N largest jumps from 𝜏1, such that (N)𝜏1 ∶= 𝜏1 −

∑N
i=1Ji. The following lemma

derives the conditional density of (N)𝜏1.

Lemma 1 (Conditional density of N-trimmed stable process). Conditioning on the
N-th largest jump JN of the stable process 𝜏1, the density of the N-trimmed stable process
(N)

𝜏1 is given by

f
𝛼,JN (w)dw = J−1

N gZ
(

wJ−1
N ; 𝛼, J−𝛼N

)
dw,

where gZ(z; 𝛼, t) is defined as

gZ(z; 𝛼, t) =
n−1∑

i=0

(−t)i

i!
Li(z; 𝛼, t),

for n − 1 < z ≤ n, n = 1, 2,…, and Li(z; 𝛼, t) is defined recursively as follows,

L0(z; 𝛼, t) = et 1
𝜋
∫

𝜋

0

𝛼

1 − 𝛼

A(u)z−
1

1−𝛼 (tΓ(1 − 𝛼))
1

1−𝛼 e−A(u)z−
𝛼

1−𝛼 (tΓ(1−𝛼))
1

1−𝛼 du, z > 0,

and

Li+1(z; 𝛼, t) =
∫

z−i

1
Li(z − s; 𝛼, t)𝛼s−𝛼−1ds, z > i + 1,

where

A(u) ∶=
[

sin (𝛼u)𝛼 sin ((1 − 𝛼)u)1−𝛼

sin(u)

] 1
1−𝛼

.

To illustrate the result of Lemma 1, we plot the density of (N)𝜏1 with different parameters
in Figure 1. We also apply the concentrated matrix-exponential functions method (CME, see
Horváth et al., 2020) to invert the Laplace transform of (N)𝜏1 numerically at some fixed points and
plot the results as stars. From the figures we can see that both methods produce similar results.
Next, we use this lemma to derive the joint density of the N largest jumps and the sum of the
smaller jumps of a stable process.

Lemma 2. Let J1 > J2 >…be the ranked jumps of a stable process on the time interval
[0, 1]. Denote by Rk ∶= Jk+1∕Jk the ratio between the (k + 1)th and kth largest jumps,
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ZHANG and DASSIOS 7

(a) (c)(b)

F I G U R E 1 Density plot for the N-trimmed stable process (N)𝜏1 using Lemma 1 (in solid line) and the
numerical inverse Laplace transform results using the CME method (in stars). The parameter values are
𝛼 ∈ {0.2, 0.4, 0.6, 0.8} and JN ∈ {1, 2, 3}. (a) JN = 1; (b) JN = 2; (c) JN = 3.

then the joint density of
(

J1,R1,…,RN−1,
(N)

𝜏1
)

is

P
(

J1 ∈ dx1,R1 ∈ dr1,…,RN−1 ∈ drN−1,
(N)

𝜏1 ∈ dy
)

= exp (−(x1r1…rN−1)−𝛼) 𝛼N x−N𝛼−1
1 r−(N−1)𝛼−1

1 …r−𝛼−1
N−1 f

𝛼,x1r1…rN−1(y)dydx1dr1…drN−1,

where x1 ∈ (0,∞), rk ∈ (0, 1), k = 1,…,N − 1, y ∈ (0,∞), and f
𝛼,x1r1…rN−1(y) denotes the

density of the N-trimmed stable process (N)𝜏1.

Using Lemma 2, we can construct the truncated Ferguson–Klass representation of the CRM
induced by the stable process, and hence the truncated two-parameter Poisson–Dirichlet process
with 𝜃 = 0. The following theorem generalizes this method to an arbitrary 𝜃 > −𝛼. It also provides
a representation in law for the random weights of the truncated two-parameter Poisson–Dirichlet
process, which can be used in the numerical implementation.

Theorem 1. The N largest components of a two-parameter Poisson–Dirichlet distribu-
tion have the representation

pi =
J1
∏i−1

j=1Rj

J1 + J1R1 + · · · + J1R1…RN−1 + (N)
𝜏1
, (8)

for i = 1,…,N, and the sum of the smaller components can be represented by

eN =
∞∑

i=N+1
pi =

(N)
𝜏1

J1 + J1R1 + · · · + J1R1…RN−1 + (N)
𝜏1
. (9)

The random variables (J1,R1,…,RN−1,
(N)

𝜏1) have the joint density

P(J1 ∈ dx1,R1 ∈ dr1,…,RN−1 ∈ drN−1,
(N)

𝜏1 ∈ dy)

= Γ(𝜃 + 1)Γ(1 − 𝛼)𝜃∕𝛼

Γ(𝜃∕𝛼 + 1)
exp(−(x1r1…rN−1)−𝛼)𝛼N x−N𝛼−1

1 r−(N−1)𝛼−1
1 …r−𝛼−1

N−1

(x1 + x1r1 + · · · + x1r1…rN−1 + y)𝜃

× f
𝛼,x1r1…rN−1(y)dydx1dr1…drN−1, (10)

where x1 ∈ (0,∞), rk ∈ (0, 1), k = 1,…,N − 1, y ∈ (0,∞), and f
𝛼,x1r1…rN−1(y) denotes the

density of the N-trimmed stable process (N)𝜏1.
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8 ZHANG and DASSIOS

Next, we investigate the truncation error eN of the truncated two-parameter Poisson–Dirichlet
process. Since {pi}i≥1 are the ranked values of the stick-breaking random weights {p̃i}i≥1, it is
clear that

∑N
i=1pi ≥

∑N
i=1p̃i a.s. Combining this with the fact that

∑∞
i=1pi =

∑∞
i=1p̃i = 1, we have

eN ≤ ẽN a.s. Thus, the truncated two-parameter Poisson–Dirichlet process has a lower truncation
error compared to the truncated stick-breaking process almost surely. To further investigate the
truncation error, we use the representation (9) to express eN in terms of

{eN = y|J1,R1,…,RN−1}

=
{
(N)

𝜏1 =
y

1 − y
(x1 + x1r1 + · · · + x1r1…rN−1)|J1 = x1,R1 = r1,…,RN−1 = rN−1

}
,

where y ∈ (0, 1). Using the joint density of J1,R1,…,RN−1, it is possible to integrate out the condi-
tion to derive the explicit distribution of eN . However, the integral is too complicated to calculate
explicitly. Handa (2009) made a significant contribution to this problem by deriving the joint
density of the random weights (p1,…, pN), and the probability P(eN > y) could be obtained by
integrating the joint density over ∇N(y) ∶= {p1 > 0, · · · , pN > 0, p1 + · · · + pN ≤ y}, while the
explicit expression of the probability remains an open question. For this reason, we focus on the
expectation of the truncation error. From Prop. 17 of Pitman and Yor (1997), we know

E(pn) =
Γ(1 − 𝛼)𝜃∕𝛼Γ(𝜃∕𝛼 + n)

Γ(n)Γ(𝜃∕𝛼 + 1) ∫

∞

0
t𝜃e−t

𝜙

𝛼

(t)n−1
𝜓

𝛼

(t)−𝜃∕𝛼−ndt, (11)

where

𝜙

𝛼

(𝜆) = 𝛼

∫

∞

1
e−𝜆xx−𝛼−1dx and 𝜓

𝛼

(𝜆) = Γ(1 − 𝛼)𝜆𝛼 + 𝜙

𝛼

(𝜆).

Then the expectation of the tail probability can be expressed as E(eN) = 1 −
∑N

i=1E(pi). On the
other hand, since

E(p̃n) =
(

1 − 1 − 𝛼

(1 − 𝛼) + (𝜃 + 𝛼)

)
…
(

1 − 1 − 𝛼

(1 − 𝛼) + (𝜃 + (n − 1)𝛼)

)
1 − 𝛼

(1 − 𝛼) + (𝜃 + n𝛼)
, (12)

the expectation of the tail probability of the stick-breaking process is given by E(ẽN) =
1 −

∑N
i=1E(p̃i). We plot the difference between the expectations of the tail probabilities, that is,

E(ẽN) − E(eN), in Figure 2. The figures illustrate the improvement of the prior approximation
quality by using the ranked random weights. We can see that the improvement is more signifi-
cant for small N and large 𝜃. On the other hand, we plot the mean truncation error with different
parameters in Figure 3. The figures show that the truncated stick-breaking process requires
more terms to achieve the same prior approximation accuracy as the truncated two-parameter
Poisson–Dirichlet process.

3 PRIOR SIMULATION ALGORITHMS

In this section, we design two simulation algorithms for the truncated two-parameter
Poisson–Dirichlet process and use them to estimate the functionals of the Pitman–Yor process
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ZHANG and DASSIOS 9

(a) (c)(b)

F I G U R E 2 Difference between the mean truncation error of the stick-breaking process and the
two-parameter Poisson–Dirichlet process. The results are obtained by evaluating E(ẽN ) −E(eN ) numerically
using Equations (11) and (12). The parameter values are 𝛼 ∈ (0, 1), 𝜃 ∈ (0, 5) and N ∈ {10, 20, 50}. (a) N = 10;
(b) N = 20; (c) N = 50.

(a) (c)(b)

F I G U R E 3 Comparison between the mean truncation error of the stick-breaking process (in dashed curves)
and the two-parameter Poisson–Dirichlet process (in solid curves) using Equations (11) and (12). The value of 𝛼
is denoted by the color of the curves, 𝛼 = 0.2 (black), 0.5 (green) and 0.8 (blue). (a) 𝜃 = 1; (b) 𝜃 = 2; (c) 𝜃 = 10.

numerically. It follows from Theorem 1 that to sample from the random weights of the trun-
cated two-parameter Poisson–Dirichlet process, we only need to simulate the random vector
(J1,R1,…,RN−1,

(N)
𝜏1). Next, we develop an algorithm for this purpose. The algorithm involves

the simulation of the N-trimmed stable process (N)
𝜏1, which can be done via Alg. 4.3 of Das-

sios et al. (2020). We denote this algorithm by AlgorithmTS(., .) and attach the full steps in the
Appendix S1.

Algorithm 1. When 𝜃 > 0, the simulation algorithm for the random vector
(J1,R1,…,RN−1,

(N)
𝜏1) is given as follows.

1. For every i = 1,…,N − 1, sample from a beta distribution Ri ← Beta(𝜃 + i𝛼, 1).
2. Sample from a gamma distribution Z ← Gamma(𝜃∕𝛼 + N, 1).
3. Sample from a N-trimmed stable process (N)

𝜏1 ← Z−1∕𝛼 × AlgorithmTS
(𝛼,Γ(1 − 𝛼)Z).

4. Sample from a uniform distribution U ← U[0, 1], if

U ≤
[
(1 + R1 + · · · + R1…RN−1) + Z1∕𝛼(R1…RN−1)(N)𝜏1

]−𝜃
,

accept the candidates and output J1 ← Z−1∕𝛼(R1…RN−1)−1
,R1,…,RN−1,

(N)
𝜏1.

Otherwise, return to Step 1.
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10 ZHANG and DASSIOS

Algorithm 1 uses the acceptance-rejection method, so we need to investigate its acceptance
rate. From the derivation of Algorithm 1 (see Appendix S1) we know the expected number of iter-
ations for an acceptance is M = M(𝛼, 𝜃) ∶= Γ(𝜃 + 1)Γ(1 − 𝛼)𝜃∕𝛼 . It follows that the efficiency of
the algorithm suffers less from the truncation level N, although a large N requires more beta ran-
dom numbers, but more from 𝛼 and 𝜃. Since M(𝛼, 𝜃) is increasing in both variables, Algorithm 1
works better with small 𝛼 and 𝜃. When these parameters are large, the algorithm becomes com-
putationally expensive. To avoid this pitfall, we provide an alternative algorithm using the MCMC
method. This algorithm is simply described as running Algorithm 4, which will be explained later,
iteratively with an empty set of observations (n = 0). The idea is to draw from the joint density of
(J1,R1,…,RN−1,

(N)
𝜏1) using the MCMC method. This approach suffers less from the values of the

parameters. Next, we use Algorithm 1 and Algorithm 4 to sample from the five largest compo-
nents of the two-parameter Poisson–Dirichlet distribution. To achieve a fair comparison, we run
both algorithms for a fixed time duration of 30 s. When 𝜃 = 10, the exact simulation algorithm
is too slow, and we only use the MCMC algorithm. The sample averages are recorded in Table 1.
The table shows that both algorithms can achieve a reasonable level of Monte Carlo error. We
remark that the MCMC algorithm completes the study in Dassios and Zhang (2021), where the
large values of 𝜃 were considered only when 𝜃∕𝛼 is an integer.

The truncated two-parameter Poisson–Dirichlet process and its simulation algorithms can be
used to estimate the functionals of the Pitman–Yor process. We demonstrate this method with the
cumulative distribution function F of the Pitman–Yor process. Denote by ̃FN and FN the cdf of
̃N and N . From the total variation bound, we know |F(.) − ̃FN(.)| < ẽN and |F(.) − FN(.)| < eN .
Thus, we can estimate the cdf of the Pitman–Yor process by that of the truncated stick-breaking

T A B L E 1 Monte Carlo estimation for E(pi), i = 1,…,N, and E(eN ) using Algorithm 1 and Algorithm 4.

Algorithm p1 p2 p3 p4 p5 eN

Sample
size

𝛼 = 0.2, 𝜃 = 1.0 True mean 0.5408 0.1970 0.0970 0.0545 0.0332 0.0774 N.A.

Algorithm 1 0.5406 0.1974 0.0971 0.0545 0.0332 0.0772 219,532

Algorithm 4 (n = 0) 0.5399 0.1979 0.0975 0.0546 0.0331 0.0770 41,547

𝛼 = 0.5, 𝜃 = 1.0 True mean 0.4028 0.1574 0.0881 0.0573 0.0406 0.2537 N.A.

Algorithm 1 0.4034 0.1579 0.0885 0.0574 0.0407 0.2522 203,490

Algorithm 4 (n = 0) 0.4043 0.1587 0.0885 0.0572 0.0406 0.2507 49,603

𝛼 = 0.8, 𝜃 = 1.0 True mean 0.2322 0.0898 0.0530 0.0368 0.0278 0.5604 N.A.

Algorithm 1 0.2317 0.0897 0.0530 0.0368 0.0278 0.5610 76,953

Algorithm 4 (n = 0) 0.2365 0.0903 0.0532 0.0367 0.0275 0.5559 40,965

𝛼 = 0.2, 𝜃 = 10.0 True mean 0.1726 0.1097 0.0823 0.0659 0.0547 0.5148 N.A.

Algorithm 4 (n = 0) 0.1717 0.1096 0.0825 0.0657 0.0556 0.5149 17,616

𝛼 = 0.5, 𝜃 = 10.0 True mean 0.1353 0.0834 0.0619 0.0495 0.0412 0.6286 N.A.

Algorithm 4 (n = 0) 0.1340 0.0832 0.0614 0.0490 0.0404 0.6321 30,057

𝛼 = 0.8, 𝜃 = 10.0 True mean 0.0866 0.0493 0.0354 0.0278 0.0229 0.7781 N.A.

Algorithm 4 (n = 0) 0.0853 0.0477 0.0339 0.0262 0.0213 0.7856 23,467

Notes: The true means are derived from the numerical evaluation of Equation (11). The parameter values are
𝛼 ∈ {0.2, 0.5, 0.8}, 𝜃 ∈ {1, 10}, N = 5, and the running time is 30 s for all the simulation algorithms and parameter settings.

 14679469, 0, D
ow

nloaded from
 https://onlinelibrary.w

iley.com
/doi/10.1111/sjos.12688 by T

est, W
iley O

nline L
ibrary on [30/10/2023]. See the T

erm
s and C

onditions (https://onlinelibrary.w
iley.com

/term
s-and-conditions) on W

iley O
nline L

ibrary for rules of use; O
A

 articles are governed by the applicable C
reative C

om
m

ons L
icense



ZHANG and DASSIOS 11

(a) (b) (c)

(d) (e) (f)

(g) (h) (i)

F I G U R E 4 Density plot for the random probability F(1∕2) using Algorithm 1 (in red solid line, 𝜃 = 1, 2),
Algorithm 4 (in red solid line, 𝜃 = 10) and the truncated stick-breaking process (in blue dashed curve, using
Equation 3) to approximate the Pitman–Yor process. The sample size is 104. The density under the Pitman–Yor
process is the black dotted line. The parameter 𝛼 is fixed at 0.5, 𝜃 is, respectively, equal to {1, 2, 10} on the first,
second and third row, and N ∈ {20, 50,100, 150,200}. (a) 𝛼 = 0.5, 𝜃 = 1,N = 20; (b) 𝛼 = 0.5, 𝜃 = 1,N = 50; (c)
𝛼 = 0.5, 𝜃 = 1,N = 100; (d) 𝛼 = 0.5, 𝜃 = 2,N = 20; (e) 𝛼 = 0.5, 𝜃 = 2,N = 50; (f) 𝛼 = 0.5, 𝜃 = 2,N = 100; (g)
𝛼 = 0.5, 𝜃 = 10,N = 100; (h) 𝛼 = 0.5, 𝜃 = 10,N = 150; (i) 𝛼 = 0.5, 𝜃 = 10,N = 200.

process and the truncated two-parameter Poisson–Dirichlet process. On the other hand, the exact
distribution of F has been derived in James et al. (2010). In particular, if 𝛼 = 0.5 and H is a uniform
distribution on [0, 1], then F(1∕2) ∼ Beta(𝜃 + 1∕2, 𝜃 + 1∕2), and the density of F(1∕3) is given by

f (w)dw = 2√
𝜋

9𝜃 Γ(𝜃 + 1)
Γ(𝜃 + 1∕2)

(w(1 − w))𝜃−1∕2

(1 + 3w)𝜃+1 dw.

In Figure 4, we use Algorithm 1 and Algorithm 4 to draw from FN(1∕2) so to illustrate that the
estimation becomes more accurate as the truncation level grows higher. As for F(1∕3), we record
the Kolmogorov distance between the exact and estimated distributions, together with their quan-
tiles, in Table 2. The results suggest a lower Kolmogorov distance arising from the truncated
two-parameter Poisson–Dirichlet process compared to the truncated stick-breaking process.
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12 ZHANG and DASSIOS

T A B L E 2 Summary statistics for F(1∕3) using Algorithm 1 (PD, 𝜃 = 1, 2), Algorithm 4 (PD, 𝜃 = 10, 20) and
the truncated stick-breaking process (SB, using Equation 3) to approximate the Pitman–Yor process.

dK 25% Median 75%

𝜽 N SB PD SB PD PY SB PD PY SB PD PY
1 50 7.69 5.12 0.1365 0.1369 0.1394 0.2816 0.2817 0.2821 0.4917 0.4912 0.4890

1 100 3.94 3.68 0.1392 0.1393 0.1394 0.2833 0.2823 0.2821 0.4918 0.4907 0.4890

2 50 18.74 15.04 0.1748 0.1825 0.1813 0.3059 0.3025 0.3017 0.4657 0.4642 0.4576

2 100 11.43 10.95 0.1785 0.1800 0.1813 0.3014 0.3014 0.3017 0.4591 0.4493 0.4576

10 100 93.30 39.85 0.2315 0.2503 0.2603 0.3192 0.3257 0.3255 0.4236 0.4126 0.3981

10 200 34.28 23.21 0.2517 0.2560 0.2603 0.3255 0.3240 0.3255 0.4074 0.3991 0.3981

20 100 282.89 150.73 0.2063 0.2447 0.2817 0.2822 0.3194 0.3293 0.4726 0.4192 0.3807

20 200 136.34 82.30 0.2479 0.2655 0.2817 0.3185 0.3236 0.3293 0.4140 0.3948 0.3807

Notes: The Kolmogorov distance (dK ) is between the cumulative distribution function of F(1∕3) and the empirical cdf
(multiplied by a factor of 1000). The parameter values are 𝛼 = 0.5, 𝜃 ∈ {1, 2, 10, 20}, N ∈ {50,100, 200}, and the running time is
30 s for all the simulation algorithms and parameter settings.

Recall that the same experiments were carried out by Arbel et al. (2019) for the 𝜖-Pitman–Yor
process, and we can compare our numerical results to Fig. 2 and Table 3 of Arbel et al. (2019).
For example, when 𝛼 = 0.5, 𝜃 = 1 and N = 50, the Kolmogorov distance between the exact dis-
tribution of F(1∕3) and the estimation FN(1∕3) is 0.00512, while the distance between the exact
distribution and the estimated curve derived from the 𝜖-Pitman–Yor process with 𝜖 = 0.01 is
0.00570. Thus, the truncation level of 50 and running time of 30 s give us an approximation for
F(1∕3) whose accuracy is slightly better than the 𝜖-Pitman–Yor process with 𝜖 = 0.01.

4 POSTERIOR INFERENCE SCHEME

In this section, we develop a posterior inference scheme for the truncated two-parameter
Poisson–Dirichlet process and illustrate its usage in the Pitman–Yor process mixture models. Call
Y = {Y1,…,Yn} a sample of the Pitman–Yor process if

(Yi| ̃P)
iid∼ ̃P, i = 1,…,n, ̃P ∼ ̃∞, (13)

then the joint distribution of Y1,…,Yn can be characterized by the Pólya urn scheme (6). To
approximate the posterior distribution of model (13), we replace the Pitman–Yor process prior
with the truncated two-parameter Poisson–Dirichlet process. Then we consider a sequence of
observations Y = {Y1,…,Yn} from PN , that is,

(Yi|PN)
iid∼ PN =

N∑

j=1
pj𝛿Kj (.) + eN𝛿K0 (.), i = 1,…,n, PN ∼ N . (14)

Denote by nj the number of observations taking the value of Kj, such that
∑N

j=0nj = n, then the
observations can be written as Y = (n1,…,nN ,n0). To make inference about the random weights
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ZHANG and DASSIOS 13

P ∶= (p1,…, pN , eN), we need to sample from the posterior P(P|Y). But to determine P, it is
sufficient to find out the values of (J1,R1,…,RN−1,

(N)
𝜏1) in the representations (8) and (9). To

facilitate the posterior inference scheme, we re-express the representations as

pi =
Z−1∕𝛼Π−1

Z−1∕𝛼Π−1Σ + (N)
𝜏1

i−1∏

j=1
Rj, i = 1,…,N, and eN =

(N)
𝜏1

Z−1∕𝛼Π−1Σ + (N)
𝜏1
, (15)

where Π ∶= R1…RN−1, Σ ∶= 1 + R1 + R1R2 + · · · + R1R2…RN−1, and the joint density of
(R1,…,RN−1,Z, (N)𝜏1) is (see the proof of Algorithm 1)

f (r1,…, rN−1, z, y)

∶= Γ(𝜃 + 1)Γ(1 − 𝛼)𝜃∕𝛼

Γ(𝜃∕𝛼 + 1)
e−z

𝛼

N−1z𝜃∕𝛼+N−1r(𝜃−1)+𝛼
1 …r(𝜃−1)+(N−1)𝛼

N−1

(Σ + z1∕𝛼Πy)𝜃
f
𝛼,z−1∕𝛼 (y)dydzdr1…drN−1.

On the other hand, the likelihood of the truncated two-parameter Poisson–Dirichlet process is
given by P(Y|P) ∼ Multi(n1,…,nN ,n0; p1,…, pN , eN). Thus, we can express the posterior of the
truncated two-parameter Poisson–Dirichlet process as

P(r1,…, rN−1, z, y|Y) ∝
zn0∕𝛼Πn0 rn2+···+nN

1 …rnN
N−1yn0

(Σ + z1∕𝛼Πy)n
f (r1,…, rN−1, z, y). (16)

To sample from (16), we develop a blocked Gibbs sampler to draw iteratively from
P(r1,…, rN−1|z, y,Y) and P(z, y|r1,…, rN−1,Y). We use the Hamiltonian Monte Carlo method
(HMC; see Neal, 2011, see also Sect. 7.2 of Caron & Fox, 2017 for a similar application in posterior
sampling) to sample from

P(r1,…, rN−1|z, y,Y) ∝ Πn0(Σ + z1∕𝛼Πy)−(n+𝜃)
N−1∏

i=1
r(ni+1+···+nN )+(𝜃−1)+i𝛼

i .

The HMC method is based on the computation of the gradient of the log-posterior,
which, after the change of variables i ∶= tan(𝜋(ri − 0.5)), is denoted by D(1,…,N−1) ∶=
∇ log(P(1,…,N−1|z, y,Y)). The derivation of the gradient is straightforward, we attach the
details in the Appendix S1.

Algorithm 2 (Hamiltonian Monte Carlo). Let L ≥ 1 be the number of leapfrog steps
and 𝜖 > 0 be the step size. The HMC algorithm for P(r1,…, rN−1|z, y,Y) is given as
follows.

1. Load the current values of (r1,…, rN−1), set ̃W (0)
← (tan(𝜋(r1 −

0.5)),…, tan(𝜋(rN−1 − 0.5))).
2. Sample from a multivariate normal distribution p ← (0, IN−1), set p̃(0) ← p +
(𝜖∕2)D( ̃W (0)).

3. For l = 1,…,L − 1, set ̃W (l)
← ̃W (l−1) + 𝜖p̃(l−1) and p̃(l) ← p̃(l−1) + 𝜖D( ̃W (l)).

4. Set ̃W ← ̃W (L−1) + 𝜖p̃(L−1), p̃ ← −{p̃(L−1) + (𝜖∕2)D( ̃W)} and (r̃1,…, r̃N−1) ← 0.5 +
(1∕𝜋) arctan( ̃W).
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14 ZHANG and DASSIOS

5. Sample from a uniform distribution U ← U[0, 1], if

U ≤
P(r̃1,…, r̃N−1|z, y,Y)
P(r1,…, rN−1|z, y,Y)

exp

(
−1

2

N−1∑

i=1
(p̃i

2 − p2
i )

)
,

accept the candidates and output (r̃1,…, r̃N−1). Otherwise, output (r1,…, rN−1).

Next, we use the Metropolis–Hastings algorithm to sample from

P(z, y|r1,…, rN−1,Y) ∝ z(n0+𝜃)∕𝛼+N−1e−zyn0 f
𝛼,z−1∕𝛼 (y)(Σ + z1∕𝛼Πy)−(n+𝜃).

Algorithm 3 (Metropolis–Hastings). The Metropolis–Hastings algorithm for
P(z, y|r1,…, rN−1,Y) is given as follows.

1. Load the current values of z, y.
2. Sample from a gamma distribution z̃ ← gamma((n0 + 𝜃)∕𝛼 + N, 1).
3. Sample from a truncated stable process ỹ ← z̃−1∕𝛼 × AlgorithmTS(𝛼,Γ(1 − 𝛼)z̃).
4. Sample from a uniform distribution U ← U[0, 1]. If

U ≤
ỹn0(Σ + z̃1∕𝛼Πỹ)−(n+𝜃)

yn0(Σ + z1∕𝛼Πy)−(n+𝜃)
,

accept the candidates and output (z̃, ỹ). Otherwise, output (z, y).

We can now formulate the blocked Gibbs sampler as follows.

Algorithm 4 (Blocked Gibbs sampler). Posterior inference for the truncated
two-parameter Poisson–Dirichlet process.

1. Update R1,…,RN−1: Sample from P(r1,…, rN−1|z, y,Y) using Algorithm 2.
2. Update Z, (N)𝜏1: Sample from P(z, y|r1,…, rN−1,Y) using Algorithm 3.
3. Update p1,…, pN , eN : Use the representations (15).

We obtain the posterior values of (p1,…, pN , eN) by running Algorithm 4 iteratively. If we input
an empty set of observations, that is, n = 0, the posterior (16) reverts to the prior distribution, and
the block Gibbs sampler draws directly from the prior. This gives us the MCMC algorithm for the
truncated two-parameter Poisson–Dirichlet process prior. Its performance has been demonstrated
in Table 1. As explained in the previous section, this algorithm is particularly useful when 𝜃 is
large.

Note that we have used fixed 𝛼 and 𝜃 in the blocked Gibbs sampler. It is also possible to put
priors on these parameters and estimate them in the posterior inference scheme. The existing
literature has considered various priors. For example, Lijoi et al. (2008) suggested the uniform
priors with finite and fixed support; Jara et al. (2010) used a pair of beta and truncated normal
priors; Carmona et al. (2019) applied a pair of beta and truncated gamma priors. Other methods
include the usage of fixed values (see Ishwaran & James, 2001), empirical Bayes rule specification
(see Lijoi et al., 2007), comparison between different combinations of fixed values (see Navarrete
et al., 2008) and learning these parameters (see Cereda et al., 2023; Favaro et al., 2009).
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ZHANG and DASSIOS 15

Next, we adapt the truncated two-parameter Poisson–Dirichlet process into a Pitman–Yor pro-
cess mixture model. We replace the Pitman–Yor process prior ̃∞ in model (5) by a truncated
two-parameter Poisson–Dirichlet process N . To achieve an efficient Markov chain Monte Carlo
sampling scheme, we also recast the model completely in terms of random variables. Then model
(5) is approximated by

(Xi|Z,K) ∼ (Xi|ZKi), i = 1,…,n,

(Ki|PN)
iid∼ PN =

N∑

j=1
pj𝛿j(.) + eN𝛿0(.),

PN ∼ N ,

Z ∼ 𝜋(Z), (17)

where K = (K1,…,Kn) are the classifiers that relate the random variables Z = (Z1,…,Zn) to
the latent variables Yi, that is, Yi = ZKi . Using the blocked Gibbs sampler for the truncated
two-parameter Poisson–Dirichlet process, we can devise a posterior inference scheme for model
(17). The sampler draws iteratively from the conditional distributions P(P|K), P(Z|K,X) and
P(K|P,Z,X), thus producing the posterior values from P(P,Z,K|X).

We illustrate the usage of the posterior inference scheme within a normal mean mixture
model. The model is in the format of (5) with(Xi|Yi) ∼ (Xi|𝜇i, 𝜎i). We choose the priors 𝜎−1 ∼
Ga(a0, b0) and 𝜇|𝜎 ∼ (𝜃

𝜇

, 5𝜎). Using (17), we approximate the normal mean mixture model by

(Xi|Z,K) ∼ (𝜇Ki , 𝜎Ki), i = 1,…,n,

(Ki|PN)
iid∼ PN =

N∑

j=1
pj𝛿j(.) + eN𝛿0(.),

PN ∼ N ,

(𝜇j|𝜎j) ∼ (𝜃
𝜇

, 5𝜎j), j = 0,…,N,

(𝜎−1
j |a0, b0) ∼ Ga(a0, b0), j = 0,…,N. (18)

We develop a blocked Gibbs sampler for the posterior of model (18) in the following algorithm.
Note that the derivation of Step 2, 3, and 4 of the algorithm can be found in Ishwaran and
James (2002).

Algorithm 5 (Normal mean mixture model). Posterior inference scheme for
model (18).

1. Update (p1,…, pN , eN): Sample from P(P|K) using Algorithm 4.
2. Update 𝜇: Let {K∗

1 ,…,K∗
m} denote the current m unique values of K. For each j ∈{

K∗
1 ,…,K∗

m
}

, draw

𝜇j ← (𝜃∗j , 𝜎
∗
Zj
), where 𝜃∗j = 𝜎

∗
Zj
(𝜃

𝜇

∕(5𝜎j) +
∑

{i∶Ki=K∗
j }

Xi∕𝜎j), 𝜎∗Zj
= (nj∕𝜎j+1∕(5𝜎j))−1

,

and nj is the number of times K∗
j occurs in K. Also, for each j ∈ K − {K∗

1 ,…,K∗
m},

simulate 𝜇j ← (𝜃
𝜇

, 5𝜎j).
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16 ZHANG and DASSIOS

3. Update 𝜎: Let {K∗
1 ,…,K∗

m} denote the current m unique values of K. For each j ∈{
K∗

1 ,…,K∗
m
}

, draw

(𝜎−1
j |X,Z,K) ∼ Ga(a0 + nj∕2, b0 +

∑

{i∶Ki=K∗
j }
(Xi − 𝜇j)2∕2).

Also, for each j ∈ K − {K∗
1 ,…,K∗

m}, simulate 𝜎−1
j ← Ga(a0, b0).

4. Update K: For i = 1,…,n, draw Ki from

Ki ←
N∑

j=1
p∗j,i𝛿j(.) + e∗N,i𝛿0(.),

where

(p∗1,i,…, p∗N,i, e∗N,i) ∝

(
p1√
𝜎1

exp
(
−1
2𝜎1

(Xi − 𝜇1)2
)
,…,

pN√
𝜎N

exp
(
−1
2𝜎N

(Xi − 𝜇N)2
)
,

× eN√
𝜎0

exp
(
−1
2𝜎0

(Xi − 𝜇0)2
))

.

The outcome of Algorithm 5 can be used to estimate the predictive density for a new
observation. We denote by f (Xn+1|X) the predictive density of Xn+1 conditioned on the current
observations X = (X1,…,Xn) and Yn+1 the latent variables of this new observation, then

f (Xn+1|X) =
∫
(Xn+1|Yn+1)dP(Yn+1|X) =

∫ ∫
(Xn+1|Yn+1)dP(Yn+1|PN)dP(PN |X).

Based on a truncated two-parameter Poisson–Dirichlet process prior, the inner integral can be
expressed as

∫
(Xn+1|Yn+1)dP(Yn+1|PN) =

N∑

j=1
pj(Xn+1|Yj) + eN(Xn+1|Y0). (19)

Thus, the predictive density f (Xn+1|X) can be estimated by averaging (19) over the posterior values
from different iterations.

5 NUMERICAL IMPLEMENTATIONS

In this section, we carry out a simulation study to examine the effectiveness of the posterior infer-
ence scheme in Section 4 and compare it with other inference methods. For the latter, we will
consider the truncated stick-breaking process in Ishwaran and James (2001), the dependent and
independent slice-efficient samplers proposed by Kalli et al. (2011) and the importance condi-
tional sampler (ICS) developed by Canale et al. (2022). The slice sampler was first proposed by
Walker (2007) as an exact sampler for the Dirichlet process mixture models that avoids introduc-
ing the truncation error. The slice-efficient sampler is a modification which solves the problems
of slow mixing and generating too many random weights that arise from the slice sampler. Even
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ZHANG and DASSIOS 17

F I G U R E 5 Posterior inference of the bimodal mixture with n = 100 observations using Algorithm 5. The
parameter values are 𝛼 = 0.3, 𝜃 = 1 and N = 100. The plots are based on a sample size of 10000 iterations
following an initial burn-in of 10,000 iterations. (a) Posterior mean values. The observations Xi and true values
for 𝜇X are denoted by green cross and red plus, respectively. (b) Twenty-five randomly selected predictive
densities evaluated over the same partition. The observations are presented by the histogram, and the true
density curve of the bimodal mixture is plotted in green. (c) Proportions of the number of occupied clusters.

though, when it comes to a Pitman–Yor process prior, the slice-efficient sampler could still be
extremely slow or even unfeasible due to the huge number of random variables generated, in par-
ticular when the discount parameter 𝛼 is large. See Canale et al. (2022) for further discussion.
To facilitate the posterior inference of a Pitman–Yor process mixture model, Canale et al. (2022)
proposed the importance conditional sampler, which combines the appealing features of both
conditional and marginal methods while avoiding their weaknesses. We will use these methods
to analyze the synthetic data generated by a bimodal mixture and a leptokurtic mixture. The
bimodal mixture assumes that f (xi) = 0.5 (−1, 0.52) + 0.5 (1, 0.52), and the leptokurtic mix-
ture assumes that f (xi) = (2∕3) (0, 1) + (1∕3) (0.3, 0.252). We will also consider the inference
problem of the galaxy velocity data, which is widely used in Bayesian non-parametric statistics.
The analysis is carried out on MATLAB 2023a on a 64-bit Windows desktop with an Intel i9-10900
processor and 64GB RAM.

The first part of our numerical study is to check the posterior inference results. We draw
n = 100 independent samples from the bimodal mixture and use Algorithm 5 to estimate the
model posterior. We choose the concentration parameter 𝜃 = 1, discount parameter 𝛼 = 0.3,
truncation level N = 100 and hyperparameters a0 = 2, b0 = 1, 𝜃

𝜇

= 0. In the HMC step, we use
the leapfrog steps L = 10 and adjust the step size to obtain an acceptance rate of around 0.6. The
numerical results are presented in Figure 5. From the figures we can see that the predictive density
induces two modes for the observations at −1 and 1. We also count the number of occupied clus-
ters in each iteration and record their proportions. The results suggest that the posterior distribu-
tion has at least two clusters, and it is unlikely to have more than 12 clusters. Clearly, the number
of occupied clusters is overestimated. To achieve a more concentrated posterior estimation, we
try a smaller concentration parameter 𝜃 = 0.3. The numerical results are given in Figure 6. We
can see that the posterior induces a similar predictive density as before but with fewer occupied
clusters.

In the second part of the numerical study, we compare the performance of the different pos-
terior inference schemes. We draw n = 100 independent samples from the leptokurtic mixture
and analyze the data using different methods. The numerical results are recorded in Table 3 and
Table 4. In these tables, “Slice (Dep.)” and “Slice (Ind.)” represent the dependent and indepen-
dent slice-efficient sampler, and “Truncation” stands for the truncated stick-breaking process.
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18 ZHANG and DASSIOS

F I G U R E 6 Posterior inference of the bimodal mixture with n = 100 observations using Algorithm 5. The
parameter values are 𝛼 = 0.3, 𝜃 = 0.3 and N = 100. (a) Posterior mean values; (b) Predictive densities; (c)
Proportions of occupied clusters.

T A B L E 3 Posterior of the leptokurtic mixture, sample size n = 100, 𝛼 = 0.3, 𝜃 = 1.0, and the running time
is 300 s for all the posterior inference schemes.

𝝉K 𝝉D K D EK ED SSE SSAE
Sample
size

Slice (Dep.) 26.8223 3.7556 14.1661 256.1072 274 1982 56.5466 78.6271 15,643

Slice (Ind.) 43.2989 3.9441 14.2197 255.9956 156 1255 56.7274 78.4549 12,338

ICS 9.8518 2.9189 9.5206 256.3662 9864 32792 60.3621 78.8972 199,070

Truncation (N = 50) 11.1042 2.6034 8.9575 256.8672 8898 32002 50.2342 79.4275 176,050

Truncation (N = 100) 10.8349 2.5288 8.9672 256.8431 6317 25807 50.1550 79.3786 131,480

Algorithm 5 (N = 50) 9.0631 2.3133 8.8879 256.8071 1725 5648 50.2038 79.4123 34,852

Algorithm 5 (N = 100) 8.4802 1.9134 9.3181 256.7904 582 2606 49.3115 79.4962 12,213

Abbreviations: and D, number of occupied deviance; E, effective sample size is rounded to the nearest integer; K, the number of
occupied clusters; SSAE, the sum of standardized absolute errors; SSE, sum of squared errors; 𝜏, the estimated IAT.

T A B L E 4 Posterior of the leptokurtic mixture, sample size n = 100, 𝛼 = 0.3, 𝜃 = 5.0, and the running time
is 300 s for all the posterior inference schemes.

𝝉K 𝝉D K D EK ED SSE SSAE
Sample
size

Slice (Dep.) 14.0635 2.1074 25.6977 256.1467 132 588 53.1386 77.5859 3419

Slice (Ind.) 16.4477 1.6796 27.9333 256.4582 62 476 53.2785 77.2834 2296

ICS 5.5329 1.7067 16.3845 256.1058 8311 26,493 55.2525 78.2405 99,010

Truncation (N = 50) 7.1361 1.3725 15.8804 256.4368 13697 64,508 45.8796 79.3409 175,480

Truncation (N = 100) 6.5592 1.2977 16.6150 256.4570 12415 45,583 45.7911 79.3852 124,310

Algorithm 5 (N = 50) 5.1625 1.3058 16.0237 256.4124 2794 11,029 45.2089 79.6978 30,443

Algorithm 5 (N = 100) 5.0519 1.2208 16.4793 256.3884 1139 3940 45.7102 79.4084 12,092

Abbreviations: SSAE, the sum of standardized absolute errors; SSE, sum of squared errors; 𝜏, the estimated IAT.
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ZHANG and DASSIOS 19

We would like to remind the reader of the remarkable BNPmix package developed by Cor-
radin et al. (2021), which contains the ICS and slice-efficient samplers. On the other hand, the
“Truncation” method is obtained by replacing Step 1 of Algorithm 5 with the posterior of the
truncated stick-breaking process, which can be found in Suppl. A of Jara et al. (2010). We also
include a concise derivation of the posterior in the supplementary materials. The running time
is set to 300 s for all the posterior inference schemes to achieve a fair comparison.

The inferential quality is monitored by four quantities: the number of occupied clusters, the
deviance of the estimated density, the sum of squared errors (SSE) and the sum of standardized
absolute errors (SSAE). For each iteration r of the blocked Gibbs sampler, denote by K(r) the num-
ber of occupied clusters and n(r)j the size of each occupied cluster, such that

∑K(r)

j=0 n(r)j = n. The
deviance is a function of all estimated parameters defined as

D(r) ∶= −2
n∑

i=1
log

⎛
⎜
⎜⎝

K(r)∑

j=0

n(r)j

n
(Xi|Y (r)

j )
⎞
⎟
⎟⎠
.

The SSE denotes the sum of the squared differences between the observation xi and the
predictive mean E(Xi|data). The SSAE stands for the sum of the standardized error |xi −
E(Xi|data)|∕

√
Var(Xi|data). These quantities have been used in the previous comparison stud-

ies of Neal (2000), Papaspiliopoulos and Roberts (2008), Fall and Barat (2012), Kalli et al. (2011),
Canale et al. (2022), and Argiento et al. (2016). The algorithm efficiency can be evaluated by cal-
culating the integrated autocorrelation time (IAT) and effective sample size (ESS) of K(r) and D(r).
The IAT of a variable is defined by Sokal (1997) as 𝜏 ∶= 0.5 +

∑∞
l=1𝜌l, where 𝜌l is the autocorre-

lation at lag l. It illustrates the statistical error of the target function in Monte Carlo estimation.
The difficulty of calculating 𝜏 arises from the covariance between the states, which have been
used to evaluate 𝜌l. Sokal (1997) suggested the estimator 𝜏 = 0.5 +

∑C−1
l=1 �̂�l for 𝜏, where �̂�l is the

estimated autocorrelation at lag l, and C is the cut-off point to be selected by the user. We will
use the same cut-off point as Kalli et al. (2011), that is, C ∶= min{l ∶ |�̂�l| < 2∕

√
M}, where M is

the number of iterations. This makes the cut-off point C the smallest lag for which we would not
reject the null hypothesis H0 ∶ 𝜌l = 0. See Kalli et al. (2011) for more details. On the other hand,
the ESS measures how many posterior samples are effective. Due to the autocorrelation, the num-
ber of effective samples would be smaller than the length of the Markov chain, and a higher ESS
implies a better sequence of posterior samples. In practice, the ESS can be computed by the CODA
package. We refer the reader to Plummer et al. (2006) and Canale et al. (2022) for more details.

From the IAT results, we can see that the slice samplers are less efficient than the other meth-
ods. Algorithm 5 and the ICS method have similar efficiency, and they are more efficient than
the truncated stick-breaking method with a reduction in IAT of 10 to 20 per cent. On the other
hand, we notice that Algorithm 5 provides the smallest SSE. It is known that the SSE is an index
favoring complex models and leading to better values when the data set is over-fitted (see, e.g.,
Argiento et al., 2016), and Algorithm 5 is preferable according to the SSE criterion. Finally, we
notice that Algorithm 5 generates fewer samples in the given time compared to the ICS and trun-
cated stick-breaking process. This is caused by the simulation of the truncated stable process,
which costs a lot of time. See Dassios et al. (2020) for a further discussion about the simulation
efficiency. We conduct another numerical experiment based on the bimodal mixture and provide
the results in the Appendix S1. The findings from the bimodal mixture are similar to those before.
Specifically, Algorithm 5 is more efficient than the truncated stick-breaking process method and
leads to the lowest SSE. In addition, we use Algorithm 5 to analyze the galaxy velocity data to
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20 ZHANG and DASSIOS

demonstrate its usage in real-world datasets. The posterior mean density estimation results are
provided in the Appendix S1.

6 DISCUSSION

In this paper, we have studied the finite approximation of the Pitman–Yor process by truncating its
two-parameter Poisson–Dirichlet representation. We call the approximation process a truncated
two-parameter Poisson–Dirichlet process. We have developed two simulation algorithms for the
truncated two-parameter Poisson–Dirichlet process and used them to estimate the functionals
of the Pitman–Yor process. The simulation results in Section 3 show that, for the same running
time, our method provides a better approximation to the functionals compared to the truncated
stick-breaking process. We have also adapted the truncated two-parameter Poisson–Dirichlet pro-
cess into a Pitman–Yor process mixture model and designed the posterior inference scheme for
the model. Numerical implementations suggest that our posterior inference scheme is more effi-
cient than the truncated stick-breaking process method and leads to a lower SSE than the other
methods.

The construction of the truncated two-parameter Poisson–Dirichlet process is based on the
ranked sequence of the stick-breaking random weights. Thus, the existing research about the
truncation error of the stick-breaking process provides an upper bound for the truncation error
of our process. In this paper, we have compared the truncation error of different approximation
methods. However, we did not give a rule for selecting the truncation level, except for simply
looking at the expectation of the truncation error. In fact, our construction method needs to deter-
mine all the random weights simultaneously. Thus, a predefined truncation level is required. But
it is still possible to use a random truncation level by looking at the ratio between two consecu-
tive random weights. For example, the existing literature has considered a random stopping rule
M in terms of JM∕

∑M
i=1Ji < 𝜖 for a completely random measure (see, e.g., Arbel & Prünster, 2017;

Gelfand & Kottas, 2002). We can extend this method to the current work by adding a condition
(R1…RM−1)∕(1 + R1 + · · · + R1…RM−1) < 𝜖 into Step 1 of Algorithm 1, such a random stopping
rule truncates the sequence when the newly sampled random weight is small enough compared
to the previous ones.

We find the application of the truncated two-parameter Poisson–Dirichlet process in the
approximation of the Pitman–Yor process mixture models. Numerical implementations suggest
a reasonable estimation quality by using the approximation. We also find that the simulation of
the truncated stable process slows down the posterior inference scheme. Specifically, Step 3 of
Algorithm 3 simulates a truncated stable process at time t ∶= Γ(1 − 𝛼)z̃. When t is large, the exact
simulation algorithm becomes less efficient. One potential improvement could be to split the
time into t =

∑⌊t⌋
i=11 + (t − ⌊t⌋), where ⌊t⌋ denotes the largest integer smaller than t. Then we can

simulate ⌊t⌋ number of truncated stable processes, each at time 1, parallelly, and a truncated sta-
ble process at time t − ⌊t⌋. Their summation gives us a sample of the truncated stable process at
time t. Alternatively, we could replace the exact simulation algorithm with a nonexact but faster
sampler. This problem will be further investigated in future work.
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