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Abstract
We investigate and prove the mathematical properties of a general class of one-dimensional
unimodal smoothmaps perturbedwith a heteroscedastic noise. Specifically,we investigate the
stability of the associatedMarkov chain, show the weak convergence of the unique stationary
measure to the invariant measure of the map, and show that the average Lyapunov exponent
depends continuously on the Markov chain parameters. Representing the Markov chain in
terms of random transformation enables us to state and prove the Central Limit Theorem,
the large deviation principle, and the Berry-Esséen inequality. We perform a multifractal
analysis for the invariant and the stationary measures, and we prove Gumbel’s law for the
Markov chain with an extreme index equal to 1. In addition, we present an example linked to
the financial concept of systemic risk and leverage cycle, and we use the model to investigate
the finite sample properties of our asymptotic results
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1 Introduction

In this paper, we investigate and prove some mathematical properties—detailed below—for
the following discrete-time random dynamical system:

φt = T (φt−1) + σn(φt−1)Yt−1. (1)

Here φt , t ∈ N≥1
1, is a sequence of real numbers in a bounded interval of R, T is a deter-

ministic map on [0, 1] perturbed with the additive and heteroscedastic2 noise σn(φt−1)Yt−1,
being n ∈ N≥1 a parameter that modulates the intensity of the noise; n is such that one
retrieves the deterministic dynamic as n → ∞. Finally, Yt , t ∈ N≥1, is a sequence of
independent and identically distributed (i.i.d.) real-valued random variables defined on some
filtered probability space (�,F, (Ft )t≥0,P) satisfying to the usual conditions. The precise
assumptions on T , σn, and Yt , t ∈ N≥1, will be given in Sect. 2. The peculiarity of the model
in Eq. (1) is that the law of the random perturbation, particularly its variance, depends on
the position φt−1 of the point, and therefore of its iterates by the dynamics. The model in
(1) can be used to describe situations where a slow deterministic dynamics interacts with a
fast random one, and more generally when the two systems interact with a separation of time
scales; in such a description, the parameter 1/n � 1 is the fast to slow timescale ratio. It turns
out that data from physical dynamical systems commonly exhibit multiple (separated) time
scales. In particular, many problems in science—physics, chemistry, and biology (e.g., [12]),
meteorology (e.g., [44]), neuroscience (e.g., [33]), econometrics and mathematical finance
(e.g., [67])—can be described as systems possessing motions on two time scales, especially
the slow-fast dynamical systems with random perturbations (e.g., [9, 18]). In this respect, we
cite the chemical reaction dynamics model (e.g., [39]), the cell modelling (e.g., [40]), and
the laser systems (e.g., [19]). Because of this popularity, in the first part of the present paper,
we put (1) in a very general setting. In Sect. 7, instead, we will present an example taken
from a specific financial problem whose dynamics can be brought back to (1).

To study the mathematical properties of (1), we describe the dynamics of φt , t ∈ N≥1,
using a Markov chain parametrized by n; we will study the regime of finite n and the limit
for n → ∞. As far as we know, the Markov chains with the kind of heteroscedastic noise
we introduce are new (see [24] for another type of heteroscedastic nonlinear auto-regressive
process applied to financial time series). Since the paper is unavoidably technical and present
several rigorous mathematical derivations, we provide hereafter a detailed description of the
main results.

The paper is divided in two parts: in the first part we present several results concerning
the properties of the generic discrete-time random dynamical system of Eq. (1) whereas in
the second part we consider a specific example of relevance for the modeling of financial
systemic risk and leverage dynamics. A part from the specific interest for this model, we use
it to perform numerical simulations and test the finite size effect of some asymptotic results
presented in the first part.

More specifically, in the first part of the paper, we prove the following results:

• Stationary measures. We investigate the stability of the Markov chain. Some specific
properties of the stochastic kernel that defines our model do not allow us to apply general

1 In this paper, the symbol N≥1 denotes the set of natural numbers greater or equal than one.
2 A sequence of random variables is heteroscedastic if the variance is not constant.
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results available in the literature, as e.g., [3, 48]. For instance, we do not know if our chain
is Harris recurrent. We look, instead, at the spectral properties of the Markov operator
associated with the chain on suitable Banach spaces and prove the quasi-compactness
of such an operator. This result allows us to get finitely many stationary measures with
bounded variation densities. The uniqueness of the stationary measure is achieved when
the chain perturbs the map T , which is either topologically transitive on a compact subset
of [0, 1] or an attracting periodic orbit.

• Convergence to the invariant measure. We show the weak convergence of the unique
stationary measure to the invariant measure of the map. This step is not trivial because
the stochastic kernel becomes singular in the limit of large n.

• Lyapunov exponent and Central Limit Theorem. we introduce the average Lyapunov
exponent by integrating the logarithm of the derivative of the map T with respect to the
stationary measure and show that the average Lyapunov exponent depends continuously
on the Markov chain parameters. The previous result hinges on the explicit construction
of a sequence of random transformations close to T , which allows us to replace the
deterministic orbit of T with a random orbit given by the concatenation of the maps
randomly chosen in the sequence. Representing the Markov chain in terms of random
transformation enables us to state and prove some important limit theorems, such as the
Central Limit Theorem, the large deviation principle, and the Berry-Esséen inequality.

• Multifractal analysis. For the class of unimodal maps T of the chaotic type, we perform
a multifractal analysis for the invariant and the stationary measures. In particular, the
detailed analysis of the multifractal structure of a set invariant for a chaotic dynamical
system allows one to obtain a more refined description of the chaotic behavior than
the description based upon purely stochastic characteristics. It turns out that multifractal
signals satisfy power-law scaling invariance, or scaling, (e.g., [59]) and exhibit singularity
exponents associated to subset of points with different fractal dimension (cfr. Eq. (24)).
In our case, the signal is the distribution of the probability measure which rules our
system at the equilibrium, namely the invariant measure for the deterministic system
and the stationary measure for the randomly perturbed system. The invariant measure of
a deterministic map has usually fine properties which reveal themselves in a fractal or
multifractal structure of the density. Instead, the equilibrium measure of Markov chains
are usuallymoreuniform and indistinguishable fromabsolutely continuousmeasureswith
bounded densities. In this respect, the multifractal analysis of the equilibrium measure
might be useful as one of the approaches for discriminating between the chaotic motion
associated with a deterministic map and the randomness inherent to a Markov chain.

• ExtremeValue Theory. Finally, we develop anExtreme Value Theory (EVT, henceforth)
for our Markov chain with finite values for the parameter n. In particular, EVT was
originally introduced by Fisher and Tippett [21] and later formalized by Gnedenko [25].
The attention of researchers to the problem of understanding extreme value theory is
growing. Indeed, this theory is crucial in a wide class of applications for defining risk
factors such as those related to instabilities in the financial markets (e.g., [20]) and to
natural hazards related to seismic, climatic and hydrological extreme events (e.g., [10,
46]). In the context of, eventually random, dynamical systems, an application of EVT
informed by the dynamics of the system, allows the formalization of two questions related
to the recurrence statistics of specific system states. Let U be a set in the phase space
of small measure, and thus named rare set or location of an extreme event. The first
question is: What is the probability that the first visit to U of our physical system is
larger than some prescribed time? Suppose now that the system has entered the set U .
The second question is: What is the probability that it resides there a predetermined time
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in a prescribed time interval? These two very simple questions allow to quantify the
rarity of an event and its persistence—both essential characteristics for understanding
extremes in several circumstances of relevant physical nature, for instance in geophysics
and climate. In addition to the above EVT-related references, we defer to the book [43]
for a presentation and a discussion of such systems. In the present work, we prove
Gumbel’s law for the Markov chain with an extreme index equal to 1. Such an index can
be related to a local persistence indicator [49], suitable to estimate the average cluster size
of the trajectories in the set U . Notice that an EVT for Markov chains with the spectral
techniques we will use is, as far as we know, a new result. In particular, it allows to treat
dynamical system perturbed with a noise more general than the additive noise, which is
the standard way of adding randomness to the system.

In the second part of the paper, we present an example linked to the financial concept of
systemic risk to which our theory applies. In this setting, φt in (1) represents the suitably
scaled financial leverage of a representative investor (a bank) that invests in a risky asset.
At each point in time, the scaling is a linear function of the leverage itself. The bank’s risk
management consists of two components. First, the bank uses past market data to estimate
the future volatility (the risk) of its investment in the risky asset. Second, the bank uses
the estimated volatility to set its desired leverage. However, the bank is allowed maximum
leverage, which is a function of its perceived risk because of the Value-at-Risk (VaR) capital
requirement policy. More specifically, the representative bank updates its expectation of
risk at time intervals of unitary length, say (t, t + 1] with t ∈ N≥1, and, accordingly, it
makes new decisions about the leverage. Moreover, the model assumes that over the unitary
time interval (t, t + 1] the representative bank re-balances its portfolio to target the leverage
without changing the risk expectations. The re-balancing takes place inn sub-intervals within
(t, t + 1]. In particular, the considered model is a discrete-time slow-fast dynamical system;
as described in the first paragraph in the introduction. After showing that the dynamics of the
scaled leverage follows—under suitable approximations—a deterministic unimodal map on
[0, 1] perturbed with additive and heteroscedastic noise of the type of Eq. (1), we perform a
detailed numerical analysis in support of our theory. The numerical analysis also investigates
the finite-size validity of some of our asymptotic results. In addition, we provide a financial
discussion of the results. Notice that the example presented is a non-trivial extension of the
models in [14, 42, 47], where the scaling of the leverage is constant. In particular, in [42],
the authors were also able to show that the constant-scaled leverage follows a (different)
deterministic unimodal map with heteroscedastic noise. Also, they were able to prove the
existence of a unique stationary density with bounded variation, the stochastic stability of
the process, and the almost certain existence and continuity of the Lyapunov exponent for
the stationary measure. In the present paper, we prove and extend the previous results but for
a more general class of maps, and, as said, we generalize the model in [42].

Organization of the paper. Section 2 presents and discuss the working assumptions of the
dynamics in (1). Section 3 details the construction of the Markov chain. Section 4 represents
our model regarding random transformations. In Sect. 5, we investigate the mathematical
properties of our model. An EVT theory for the Markov chain in 3 is provided in Sect. 6. In
Sect. 7, we present the financial model of a representative bank managing its leverage. We
show that the model leads to a slow-fast deterministic random dynamical system which can
be recast into a unimodal deterministic map with heteroscedastic noise of the type of Eq. (1).
We present and discuss some numerical investigation of this system in connection with our
theory.
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2 Assumptions

In this section, we define and discuss assumptions on T , σn and Yt , t ∈ N≥1, as in Eq. (1).

(A1) The map T satisfies the following assumptions:

(a) T is a continuous map of the unit interval I
def= [0, 1] with a unique maximum at the

point c such that �
def= T (c) < 1.

(b) There exists a closed interval [d1, d2] ⊂ I which is forward invariant for the map
and upon which T and all its power T t , t ∈ N≥1 are topologically transitive3

(c) T preserves a unique Borel probability measure η, which is absolute continuous with
respect to the Lebesgue measure.

Assumption (A1)–(b) is necessary in order to prove the mathematical properties in Sect. 5;
in general, one could ask for several transitive component but this would be an additional
technicality that would not add to the present work’s conceptual advancements. Assumption
(A1)-(c) is used only in the proof of the stochastic stability; see Sect. 5.1. We give now the
following important Example.

Example 2.1 An important class of maps susceptible to verify (A1) is given by the class of
unimodal maps T [15, 63] with negative Schwarzian derivative4; notice that in this case,
one has to require that the maps are at least C3 on the interval I . Moreover, if T verifies
T (�) < c < �, then the interval [T (�),�], called dynamical core, is mapped onto itself and
absorbs all initial conditions; in particular [d1, d2] in (A1)–(b) coincides with the dynamical
core. The latter could exhibit motions other than simply attracting fixed points or 2-cycles. In
the general class of unimodalmapsT with negativeSchwarzianderivative, one candistinguish
two types:

(i) T is periodic if there is a globally attracting fixed point or a globally attracting cycle.
(ii) T is chaotic if (A1)–(b) and (A1)–(c) hold.

Perturbations of unimodal maps with uniform additive noise were studied in [4, 6]. As we
already mentioned in the Introduction, [42], instead, studies the perturbations of unimodal
maps with heteroscedastic noise.

Before presenting the assumptions on σn, we need to introduce the following quantities to
which in the following we will refer. First, we introduce

�
def= 1 − �, (2)

i.e., the gap between T (c) and 1. Second, we define a positive constant a satisfying one of
the following two bounds:

a ≤ 1

σmax

�

2
, (3)

or

a ≤ 1

σmax
min

{
�

2
,
q

2
,
1

2
T

(
1 − �

2

)}
, (4)

3 A map T on a topological space X is called topologically transitive if for all nonempty open setsU , V ⊂ X
there exists some positive integer t such that T t (U ) ∩ V 
= ∅. Notice that the topological transitivity of T t ,
t ∈ N≥1 will be substantially used in Sects. 5.2, 5.3, and 7.3.

4 The Schwarzian derivative S(T ) of the map T is defined as S(T ) := T
′′′
T ′ − 3

2

(
T

′′′
T ′

)2
.
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where σmax
def= maxx∈I σn(x), and the positive constant q is the eventual intercept of the

map T at zero (see Assumption (B1.2)).

(B1) The function σn is a non-negative differentiable function for x ∈ (0, 1) such that ∀x
σn(x) → 0 as n → ∞.

Note that σn(x) modulates the effect of the noise. In particular, 1/n can be interpreted as the
time-scale separation parameter, while σn dictates the size of the noise; see the first paragraph
of the Introduction.

We distinguish the following two sub-cases of (B1):

(B1.1) T (0) = 0, and σn(0) = 0. In this case, we assume that for any fixed n ∈ N≥1 there
exists εn ∈ R such that:

• T (x) − aσn(x) > 0 for x ∈ (0, 1 − �/2].
• T (x) − aσn(x) > x for x ∈ (0, εn) (in particular, T

′
(0) > 0).

• T (x) − aσn(x) > εn for x ∈ (εn, 1 − �/2).

� is defined in (2), and a satisfies (3).
(B1.2) T (0) = q > 0. In this case, the positive multiplicative constant a in (B1.1) satisfies

(4).

The following remark better clarifies Assumptions (B1.1)–(B1.2).

Remark 2.2 The objective of assumptions (B1.1)–(B1.2) is twofold:

(i) it allows us to define the transition probabilities for constructing our Markov chain.
Indeed, the probability density pn(x, · ) defining those probabilities will be supported
on [sa,−(x), sa,+(x)] with sa,±(x) = T (x) ± aσn(x); see Sect. 3. Moreover, notice that
(B1.1) requires T to be C1.

(ii) It enables us to determine precisely the support of the stationary measure μn; see Sect.
5.1. In particular the example presented in Sect. 7 verifies the condition (B1.2) which sim-
ply requires to choose the parameter “a" small enough to satisfy the bound (4). Instead,
condition (B1.1) covers the case studied in (our former paper) [42]: since both T and σn
vanishes at 0, we need to compare them in the neighborhood of 0 and this explains the
introduction of the quantity εn. The role of εn appears clearly in the construction of the
support of the stationary measure in Sect. 5.1 since it determines a measurable set where
the chain is not recurrent.

Finally, we have that

(C1) Yt , t ∈ N≥1 is a sequence of i.i.d real-valued random variables defined on some filtered
probability space (�,F, (Ft )t≥0,P) satisfying to the usual conditions. Their distribu-
tion function ga , depending on the parameter a in (B1), is such that ∀ω ∈ � and x ∈ Ĩ ,
with Ĩ ⊃ I , we have T (x) + σn(x)Y1 ∈ Ĩ . The interval Ĩ is slightly larger than I and
will be precisely determined later. Accordingly, the map T will be extended on Ĩ . The
distribution function ga has the following form:

ga(y)
def= caχa(y)e

− y2

2 , y ∈ R, (5)

where χ is a C∞ bump function5 on [−a, a] and

ca =
(∫

R

χa(y)e
− ε2

2 dy

)−1

.

5 Essentially a smooth version of a step function. See [42] for a precise definition and example.
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Assumption (C1) has two main objectives. On the one hand, the perturbation should not
be too strong so that T admits an extension to some compact interval Ĩ ⊃ I . On the other
hand, the stochastic kernel associated with our Markov chain must be uniformly bounded on
some interval to prove theMarkov operator’s quasi-compactness. As said in the Introduction,
the Markov operator’s quasi-compactness will provide stationary measures for the chain.
From now on, we will denote by

Sn
def= (T , σn, Y ) (6)

the triple composed by a map T satisfying ((A1)), perturbed with an additive heteroscedas-
tic noise in which the variance-like function σn and the noise verifies ((B1)) and ((C1)),
respectively.

Under (A1), (B1), and (C1), we define the following stochastic process:

F (n)
t (x) = T (x) + σn(x)Yt , t ∈ N≥1, x ∈ Ĩ . (7)

In addition, the random orbit associated with our initial difference equation is given by:

Ft,(n)
Y (x) = F (n)

t ◦ F (n)
t−1 ◦ . . . ◦ F (n)

1 (x), x ∈ Ĩ . (8)

Before proceeding, the following observation is in order. In Sects. 3, we will see that
several results valid under Assumption (A1) could also be extended for the class of maps
in Example 2.1 that are periodic. This will be in particular relevant for the leading example
in Sect. 7. The validity of (A1) is much easier to verify for uniformly or even piecewise
continuous maps. In principle, one could also consider multimodal maps as having several
critical points. However, in the latter case, one has to handle the construction of the stationary
measure as outlined in Sect. 5. Notice that such a construction is also based on Assumption
(B1) and (C1).

3 Markov Chain

In this section, we define aMarkov chain that describes ourmodel.We obtain it as a determin-
istic map T satisfying Assumption (A1) perturbed with an additive noise as in Assumptions
(B1)-(C1). In particular, for fixed T we parametrize the chain by the intensity of the noise
n, consequently indexing with n the chain (X (n)

t ), the transition probabilities P(n)
x , and the

stochastic kernel pn(x, y). According to the theory of random transformations, a Markov
chain can be constructed as follows; see, e.g., [38]. Take an initial point x ∈ I 6 and define
the following stochastic process for any t ∈ N≥1:

X (n)
t+1 = F (n)

t+1(X
n
t ). (9)

Then, for x ∈ I the transition probabilities are defined as:

P(n)
x (A) = P(X (n)

t+1 ∈ A|X (n)
t = x) = P(Fn

t+1(x) ∈ A) = P(F (n)
1 ∈ A), (10)

6 One could also consider the initial point as a random variable X0 independent of the Yt ; in this case, the
measurable and bounded initial distribution is ρ0(A) = P(X0 ∈ A).
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because all the F (n)
t , t ∈ N≥1, have the same distribution. By Assumption (C1), and ∀x :

σn(x) > 0, we have:

P(n)
x (A) =

∫
R

1A(F1(x))ga(y) dy =
∫
R

1A(T (x) + σn(x)y)ga(y) dy

=
∫
R

1A(z)
1

σn(x)
ga

(
z − T (x)

σn(x)

)
dz

def=
∫
A
pn(x, z) dz,

(11)

where pn(x, y) is the stochastic kernel and in the third equality, we use the following change
of variable: z = T (x) + σn(x)y. Instead, if for some x we have σn(x) = 0, the transition
probability verifies Px (A) = 1A(T (x)) (meaning Px = δT (x), where δT (x) is the Dirac mass
at x). So, the stochastic kernel is

pn(x, y) = 1

σn(x)
ga

(
z − T (x)

σn(x)

)
= 1

σn(x)
χa

(
z − T (x)

σn(x)

)
e
− (z−T (x))2

σ2n (x) , (12)

with
∫
pn(x, y) dy = 1 for every x ∈ I , σn(x) > 0. Therefore, z ∈ [sa,−, sa,+] with

sa,± = T (x) ± aσn(x).
Since the noise varies in a neighborhood of 0, we need to enlarge the domain of definition

of the map T to take into account the action of the noise. More precisely, we extend the

domain of T to the larger interval Ĩ
def= [−�, 1]. On the interval [−�, 0], T is extended

continuously and decreasing with T (−�) < � and with the same slope of T restricted to the
interval [0, εn], where εn is given in (B1.1). With abuse of language and notation, we will
continue to call T the map after its redefinition, and we put I = Ĩ . We have the following
remark.

Remark 3.1 [6] consider a similar extension to allow perturbations with additive noise; in
particular, it was supposed that T admits an extension to some compact interval J ⊃ I ,
preserving all the previous properties and satisfying T (∂ J ) ⊂ ∂ J . Notice that, in our case
and with these extensions, the map T could lose smoothness in 0. However, this regularity
persists on the interval (0, 1), and this will be enough for the subsequent considerations,
particularly for the construction of the stationary measure whose support will be strictly
included in (0, 1).

We look at theMarkov operator corresponding to the transition probabilities. To this aim,
we denote by M the space of (real-valued) Radon measure on Ĩ , and by L : M → M the
Markov operator acting by

Lρ(A) =
∫
R

P(n)
x (A) dρ(x), ρ ∈ M,

for every Borel set A ∈ I , or, equivalently,∫
R

ϕ dLρ =
∫
R

∫
R

ϕ(y)dP(n)
x (y)dρ(x)

for all ϕ ∈ C0, where C0 denotes the Banach space of continuous function on I with the sup
norm. In our case σn(x̃) = 0 in at most two points, x̃ = 0, 1. Therefore in such a case we
could write∫

ϕdLρ =
∫∫

R×{{0}∪{1}}
ϕ(y)dPx (y)dρ(x) +

∫∫
R×{R/{0}∪{1}}

ϕ(y)dPx (y)dρ(x)

= [φ(T (0))ρ({0}) + φ(T (1))ρ({1}]) +
∫∫

R×{R/{0}∪{1}}
ϕ(y)pn(x, y)dydρ(x).
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We note that L : L1 → L1 is an isometry, where L1 is intended, from now on, with respect
to the Lebesgue measure. In Sect. 5.1, we will be interested in stationary measures ρ, which
are absolutely continuous with respect to the Lebesgue measure and, therefore, non-atomic.
If we denote by h ∈ L1 the density of such a measure, it will be a fixed point of the operator
L : L1 → L1, i.e.,

(Lh)(y) =
∫
R

pn(x, y)h(x) dx, h ∈ L1, (13)

where pn is the stochastic kernel in formula (12). In particular, it should satisfy

h(z) =
∫
R

pn(x, z)h(x) dx . (14)

We will return to the previous formula in Sect. 5. Now, in the next section, we present a
slightly different, yet equivalent (see, e.g., [38]), approach for representing the model in Eq.
(1), namely the random transformation approach.

4 Random Transformations

We consider the following identity:

Tη(x) = T (x) + σn(x)η, η ∈ [−a, a]. (15)

Assumption (C1) implies that Tη can be seen as a family of random maps of I into itself.

Let θ(η)
def= ga(η) dη be the probability measure of η with density ga . Now, let ρ ∈ M (see

Sect. 3 for the definition of M) a measure with density h ∈ L1. By requiring its invariance,
we have that:

Lρ(A) = ρ(A) =
∫
R

P(n)
x (A) dρ(x).

In addition, by using the definition of ρ(A), we have

ρ(A) =
∫
R

1A(x)h(x) dx =
∫
R

∫
R

1A(Tη(x))h(x) dx dθ(η)

=
∫
R

dθ(η)

∫
R

1A(Tη(x))h(x) dx =
∫
R

dθ(η)

∫
R

1A(x)Lηh(x) dx,

where Lη : L1 → L1 is the Perron-Fröbenius operator associated to the map Tη
7. By

changing the order of integration again, we finally get that the Markov operator in Eq. (13)
satisfies for any h ∈ L1 the following identity

(Lh)(x) =
∫

(Lηh)(x) dθ(η). (16)

We now present a correlation integral that we will use to derive some statistical properties
of our model. In order to do this, let (ηt )t≥1 be an i.i.d. stochastic process where each ηt has

distribution θ , η̄t
def= (η1, . . . , ηt ), and θ t (η̄t )

def= θ(η1)× . . .×θ(ηt ) the product measure.We
call the following concatenation, or composition, of randomly chosen maps Tηt ◦ . . . ◦ Tη1 ,

7 The Perron-Fröbenius operator associated to themap Tη is defined by the duality relationship
∫
R
Lηh g dx =∫

R
hg ◦ Tη(x) dx , where h ∈ L1 and g ∈ L∞.
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where (ηs)
t
s=1 are i.i.d. with distribution θ , as random transformation. In particular, the

above-mentioned correlation integral reads as∫
R

(Lt h)(x)g(x) dx =
∫
R

∫
R

h(x)g(Tη1 ◦ . . . ◦ Tηt )(x)dθ t (η̄t ) dx, (17)

where h ∈ L1 and g ∈ L∞. Notice that in [42], authors use the Lebesgue measure instead
of the probability measure θ . By using the latter, we do not need to modify the map T as in
the Lebesgue measure case.

5 Mathematical Properties of theModel

In this section, we investigate some mathematical properties of our model. In Sect. 5.1, we
show the existence and uniqueness of an absolutely continuous stationary measure and estab-
lish its convergence to the invariant measure of the deterministic map. This result allows us to
define the Lyapunov exponent and prove its continuity with respect to the model parameters.
We also discuss some limit theorems in Sect. 5.3. Finally, Sect. 7.3 concerns a multi-fractal
analysis of our model.

5.1 Stationary Measure and Stochastic Stability

In this subsection, we establish the existence of a unique stationary measure for the Markov
chain associated with our model.

In Sect. 3, we extended the domain of definition of the map T to the set Ĩ = [−�, 1]. In
particular, if the constant a satisfies the bound in Eq. (4), then the support of the stationary
measure μn, say supp(μn) ⊂ I� , where

I�
de f=

[
1

2
T

(
1 − �

2

)
, 1 − �

2

]
. (18)

Indeed, on the one hand, if we take a point z ∈ (
1 − �

2 , 1
]
, then it will be surely greater

than T (x) ± aσn(x), x ∈ I . In order to understand the left-hand side of the interval in Eq.
(18), suppose first that T (0) = q > T

(
1 − �

2

)
. If z ∈ supp(h), being h the density of μn,

then T (x) ∈ [s̃a,−, s̃a,+] with s̃a,± = z ± aσn(x), where x ∈ supp(μn) too. If z is in a
neighborhood of 0, then the values of x , which could contribute in T (x) are smaller than(
1 − �

2

)
by choice of a. So, if we take z < 1

2T
(
1 − �

2

)
and we require that aσn(x) <

1
2T

(
1 − �

2

)
, then z /∈ supp(h).

If, instead, the constant a satisfies Eq. (3), then the interval Iεn ,�
de f= [

εn, 1 − �
2

]
is

invariant for Tη, ∀η ∈ [−a, a] (see Eq. (15)). In particular, if x ∈ I cεn ,� , where I cεn ,� is the
complementary set of Iεn ,� , then x will spend finitely many times in I cεn ,�; note that x = 0

is a fixed point. In particular, the chain X (n)
t visits finitely many times any open set K in

I cεn ,� . Therefore, the chain is not recurrent and μn(K ) = 0.

The above considerations implies that the subspace {h ∈ L1 : supp(h) ⊂ I�} (resp.
{h ∈ L1 : supp(h) ⊂ Iεn ,�}) is L-invariant, and that the stochastic kernel pn(x, z) has
total variation of order 1

σn (x) . Therefore, it is uniformly bounded
8 when restricted to I� × I�

8 In general, we say that a stochastic kernel p(x, y) has uniformly bounded variation if |p(x, ·)|T V ∈ L∞,
i.e., there is C > 0 such that |p(x, ·)|T V ≤ C for almost every x ∈ I .
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(resp. Iεn ,� × Iεn ,�). In particular, we can apply Proposition 4.2 and Theorem 4.3 in [42] to
conclude that the following proposition hold.

Proposition 5.1 The random system in Eq. (6) admits a unique stationary measure μn with
density hn of bounded variation and such that [d1, d2] ⊂ supp(hn). Moreover, for any
observable f ∈ L1, g ∈ BV , there exists 0 < r < 1 and C > 0, depending only on the
system, such that, for all t ∈ N≥0, we have∣∣∣

∫
R

∫
R

(Lt f )(x)g(x) dx −
∫
R

f dμn

∫
R

g(x) dx
∣∣∣ ≤ Crt‖ f ‖1‖g‖BV .

Proof Let BV the Banach space of bounded variation functions on I� (or I�,εn ) equipped
with the complete norm

‖ f ‖BV = | f |T V + ‖ f ‖1,
where | f |T V is the total variation of the function f ∈ L1. Because the stochastic kernel has
uniformly bounded variation on I� × I� (or on I�,εn × I�,εn ), we have

‖Lρ‖T V ≤ C‖ρ‖1 and ‖Lρ‖BV ≤ (C + 1)‖ρ‖1;
see Lemma 4.1 in [42]. By the previous equation, we have

‖Lρ‖BV ≤ (C + 1)‖ρ‖1 ≤ η‖ρ‖BV + (C + 1)‖ρ‖1
for any η < 1; this is the Lasota-Yorke inequality for the operator L. The latter, plus the fact
that BV is compactly embedded in L1, implies that the operator L has the following spectral
decomposition

L =
∑
i

vi�i + Q,

where all vi are eigenvalues of L of modulus 1, �i are finite-rank projectors onto the associ-
ated eigenspaces, Q is a bounded operator with a spectral radius strictly less than one. They
satisfy the following properties:

�i� j = δi j�i , Q�i = �i Q = 0.

Standard techniques show that 1 is an eigenvalue and therefore the chain will admit finitely
many absolutely continuous ergodic stationary measures, with supports that are mutually
disjoint up to sets of zero Lebesguemeasure.Moreover the peripheral spectrum is completely
cyclic. We require that 1 is a simple eingenvalue of L, and that there is no other peripheral
eigenvalue, hence implying that our Markov chain is mixing and therefore the norm of
‖Lt f ‖BV goes exponentially fast to zero when t → ∞, for f ∈ BV and

∫
R
f dx = 0

(exponential decay of correlations). These properties, which are consequences of the Ionescu-
Tulcea-Marinescu theorem, are summarized by saying that the operator L acting on BV is
quasi-compact, see, e.g., [30]; we will implicitly assume in the following that the operator
has the mixing property too. In order to prove that 1 is a simple eigenvalue of L, and that
there is no other peripheral eigenvalue we first observe that the peripheral spectrum of L
consists of a finite union of finite cyclic groups; then there exists t ∈ N≥1 such that 1 is the
unique peripheral eigenvalue ofLt . It suffices then to show that the corresponding eigenspace
is one-dimensional. Standard arguments show there exists a basis of positive eigenvectors
for this subspace, with disjoint supports. At this point we use a simple generalization of
Theorem 4.3 in [42] for the powers of Lt plus the assumption on the topological transitivity
of T t , t ≥ 1 on [d1, d2] to get that the basis is one dimensional. ��
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We investigate now the stochastic stability of the system, which means to determine if
a sequence of stationary measure will converge weakly9 to the invariant measure of the

unperturbed map. In our case, the sequence of probability measure is given by μn
def= hn dx .

Notice that hn ∈ L∞, ∀n because they have finite total variation. Nonetheless, to prove the
above-mentioned stochastic stability, we need the following assumption

(Ap) There exists p > 1 and Cp > 0 such that for all n ≥ 1 we have ‖hn‖p ≤ Cp; the L p

norm is taken again with respect to Lebesgue.

We have the following

Proposition 5.2 For the random system in Eq. (6), under Assumption (Ap), the sequence of
stationary measureμn converges weakly to the unique T invariant probabilityμ asn → ∞,
in the sense that for any real-valued function g ∈ C0(I ), we have∫

R

gdμn →
∫
R

gdμ, as n → ∞.

Proof See Theorem 5.3 in [42]. ��
We will see in the next section that with the preceding assumption we can prove the con-
vergence of the Lyapunov exponent (Proposition 5.5) and then verify it numerically on the
examples in Sect. 7, which is an indirect indication of the validity of (Ap).

We conclude this section with the following observations.

Observation 5.3 Proposition 5.2 is proved by using the representation of the Markov chain
in terms of random transformation; in particular, one uses the correlation integral in Eq.
(17) and the continuity of the map η → Fη ∈ C0(I ).

Observation 5.4 Proposition 5.2 can be extended to periodic unimodal maps under the fol-
lowing additional assumption:

(Ap.1) ∀n sufficiently large and ∀ x ∈ supp(μn) we have that |T ′
(x)| < 1.

In particular, if T has a globally attracting periodic orbit carrying the discrete measure μ

and satisfies (Ap.1), then the sequence μn converges to μ in the weak-�topology as n → ∞.
This requirement can be strengthened by adding the following assumption

(Ap.2) If T is a unimodal periodic map (see Example 2.1) and the critical point of the
map c does not belong to the attracting periodic orbit, then hn → 0 uniformly in a
neighbourhood of c as n → ∞.

5.2 Lyapunov Exponent

As done in Sect. 4.3 of [42], we define the so-called average Lyapunov exponent; see [23,
52]. If the chain admits a unique stationary measureμn, then the average Lyapunov exponent
is defined as:

�(μn) :=
∫
I
log |T ′

(x)|dμn. (19)

9 Notice that this result could be strengthened by showing that ‖hn − h‖1 → 0, which is called the strong
stochastic stability.
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In particular, because the stationarymeasureμn has density of bounded variation, it is enough
that log |T ′ | ∈ L p(μn) for some p ≥ 1. For instance, this is the case when T is chaotic or
periodic unimodal map (see Example 2.1) with a non-flat critical point10.

The average Lyapunov exponent in Eq. (19) is introduced to prove that it converges to the
analogous quantity computed with respect to the invariant measure μ of T . The following
proposition holds.

Proposition 5.5 Suppose that one of the following conditions is satisfied:

(a) The random system in Eq. (6) verifies (Ap) with the additional assumption that log |T ′ | ∈
L p(μn) for some p ≥ 1, where μn is the unique stationary measure of the associated
Markov chain.

(b) The deterministic map T is a unimodal periodic map (see Example 2.1) and verifies
Assumptions (Ap.1) and (Ap.2).

Then, the average Lyapunov exponent in Eq. (19) converges to the Lyapunov exponent of the
deterministic map T as n → ∞. Moreover, for n large enough, it is positive if T verifies
(A1), and negative if T is a periodic unimodal map (see Example 2.1, (i)).

Proof See [42], Appendix B, Sect. B.5. ��
The average Lyapunov exponent was associated with the phenomenon of noise induced

order [61], which happens when the perturbed system admits a unique stationary measure
depending on some parameter, say θ , and the Lyapunov exponent depends and exhibits a

transition frompositive to negative values.Denote by�
def= {θ ∈ �̃ | �̃ is open and max Tθ <

1} the (extended) parameter space of the map T . We use the term “extended" because also
the parameter n belongs to �. Moreover, let index the map T as Tθ to make explicit the
dependence on the parameters. Suppose that Tθ (x) ∈ C3(�̃× I ) and pθ (x, y) ∈ C2(�̃× I 2),
and let �̄ ⊂ �̃ be the set of parameters for which there exists a unique stationary measure
μn with a density of bounded variation. We can now state the following

Theorem 5.6 The mapping �̄ � θ �→ �θ ∈ R is continuous.

Proof See [42], Theorem 4.12. ��

5.3 Limit Theorems

Wewill take advantage of theMarkov chain description of our model to state a few important
limit theorems for fixed n. These limit theorems are relatively easy to obtain for a fixed n,
but they could become very technical for the unperturbed map T because they depend in a
non-obvious way on the parameters defining T ; see, e.g., [63, 66] for a discussion in the case
of unimodal maps.

As observed above, if T satisfies Assumption (A1), then theMarkov operatorL associated
with the Markov chain is quasi-compact on the Banach space BV of bounded variation
functions. The adjoint operator U of L acts in the following way∫

R

f1(x)(L f2)(x) dx =
∫
R

(U f1)(x) f2(x) dx,

10 A unimodal map T is said to have a non-flat critical point c of order � if there is a constant D such that

D−1|x − c|�−1 ≤ |T ′
(x)| ≤ D|x − c|�−1. In this case, [53] prove that the invariant density for T is in Lq

with q < �
�−1 .
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where f1 ∈ L∞ and f2 ∈ L1. In particular

(U f1)(x) =
∫
R

f1(Tη(x))dθ(η),

where θ(η) is as in Sect. 4. In particular, we can write the correlation integral in Eq. (17) in
terms of the adjoint operator:∫

R

(Lt h)(x)g(x) dx =
∫
R

∫
R

h(x)g(Tη1 ◦ . . . ◦ Tηt )(x)dθ t (η̄t ) dx =
∫
R

(U t g)(x)h(x) dx

(20)

We take now a function g ∈ BV such that
∫
R
gdμn = 0. In addition, let Wk(η̄k, x) =

g(Tηk ◦ . . . ◦ Tη1)(x), where η̄k = (η1, . . . , ηk), and

St =
t−1∑
k=0

Wk . (21)

We now apply the Nagaeev-Guivarc’s perturbative approach [26, 51]. This technique enables
us to get our limit theorem by twisting the transfer operator L; see [30]. Before stating

the results, we precise that the underlying probability is P̃n
def= θ⊗N ⊗ μn. If we use this

probability, then we should choose a realization (ηt )t≥1 where any ηt
d∼ η, and the initial

condition x ∈ I is chosen μn-a.s. The following theorem holds:

Theorem 5.7 Suppose the deterministic map T satisfies Assumption (A1) and g ∈ BV . In
addition, let Tη be the random transformation in Eq. (15). Then, we have:

(e1) The limit ι2
de f= limt→∞ 1

t EP̃n
(S2t ) exists and is equal to

ι2 =
∫
I
g2 dμn + 2

∞∑
t=1

g(U t g) dμn. (22)

(e2) (Central Limit Theorem). Suppose ι > 0. The process
(

St√
t

)
t≥1

converges in law to

N (0, ι2) under the probability P̃n.
(e3) (Large Deviation Principle). There exists a non-negative rate function R, continuous,

strictly convex, vanishing only at 0, such that for every ε sufficiently small we have

lim
t→∞

1

t
log P̃n(St > tε) = −R(ε).

(e4) (Berry-Essén inequality). There exists D > 0 such that

sup
r∈R

∣∣∣̃Pn

(
St√
t

≤ r

)
− 1

ι
√
2π

∫ r

−∞
e
− u2

2ι2 du
∣∣∣ ≤ D‖hn‖BV√

t
(23)

Proof See [2], Sect. 3. ��
We conclude this section with the following

Remark 5.8 The previous theorem hinges on the following exponential decay of correlations
(see Proposition 5.1), which is a consequence of the spectral gap prescribed by the Markov
operator’s quasi-compactness and the uniqueness and mixing property of the absolutely
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continuous stationary measure. For any observables, f ∈ L1 and g ∈ BV , there exists
0 < v < 1 and C > 0, depending only on the system, such that, for all k ≥ 0,

∣∣∣
∫
R

∫
R

g(x) f (Tηt ◦ . . . ◦ Tη1)(x) dη̄ dx −
∫
R

g dμn

∫
R

f (x) dx
∣∣∣ ≤ Crt‖ f ‖1‖g‖BV .

5.4 AMultifractal Analysis

We now focus on unimodal maps T of chaotic type, as defined in the Example 2.1, and
preserving a unique absolute continuous invariant measure μ. The latter is not essentially
bounded, but its density is in L p(μ), for some p ≥ 1. The presence of divergent values for
the density could generate a non-trivial multi-fractal spectrum for the measure μ.

We start with a few reminders about multi-fractal theory; see, e.g., [7, 32, 34, 55, 56]. Let
μ be a probability measure, and B(x, r) the ball of center and radius r on the interval I . We
denote by

dμ(x)
de f= lim

r→0

logμ(B(x, r))

log r
,

the local dimension of the measure μ at the point x , provided that the limit exists. Then, the
generalized dimension Dq(μ), or simply Dq , where q ∈ Z is obtained as

τ(q)
def= Dq(q − a) = inf

α
{qα − f (α)}, (24)

where f (α) denotes the Haursdorff dimension of the set of points for which dμ(x) = α.
Interest in the generalized dimensions originated in the eighties of the last century (e.g., [27,
57]), primarily for the study of chaotic attractors and fully developed turbulence (e.g., [8, 54]),
and rapidly became important also from themathematical viewpoint. Themeasureμ is called
multifractal when τ(q) is not affine, or Dq is not a constant, otherwise it is simply named
fractal, where the latter attribute is always reserved to non-integer values for the dimension.
The quantity τ(q), also called Legendre transformation, can be linked to the scaling exponent
of a suitable correlation integral. In fact, for several dynamical systems (M, μ, T ), where M
is a metric space, we have that the following limit

lim
r→0

1

log r
log

∫
M

μ(B(x, r))q−1 dμ (25)

exists and coincides with τ(q) in Eq. (24). Notice that for q = 1, the limit in Eq. (25) is
replaced by

lim
r→0

1

log r

∫
M
logμ(B(x, r)) dμ, (26)

by an application of the Hôpital’s rule. For unimodal maps of Benedicks-Carleson type11

preserving an absolute continuous invariant measureμ, it is possible to compute the spectrum
of generalized dimensions. Authors in [5] prove the remarkable result that the density h of

11 A unimodal map T is of Benedicks-Carleson type if it is defined on the interval [−1, 1], is C4 and has
negative Schwarzian derivative. In addition, if c = 0 is the critical point and zk = T k (0), then: (i) T is a

Collet-Eckmann unimodal map verifying |(T k )
′
(T (c))| > λkc , with λc > 1 ∀k > H0, where H0 is a constant

larger than 1; (ii) T verifies the Benedicks-Carleson property: ∃0 < γ <
log λc
14 such that |T k (c)− c| > e−λk ,

∀k > H0.
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μ has the form

h(x) = ψ0(x) +
∑
k≥1

φk(x)χk(x)√|x − zk | ,

with ψ0 ∈ C1, φk ∈ C1 is such that ||φk ||∞ ≤ e−ak for some a > 0 and χk = 1[−1,zk ] if
f k has a local maximum at z0, while χk = 1[zk ,1] if f k has a local minimum at z0. For such
a measure, one can explicitly compute the generalized dimensions via the definition in Eq.
(24) (see [11]):

Dq =
{
1 if q < 2,

q
2(q−1) otherwise.

(27)

We think that a similar result holds for the class of unimodal maps considered in Example
2.1. We said similar and not the same result because the non-constant part of Dq depends
on the order of divergence at the singular points zk of the density, which for the Benedicks-
Carleson type maps, behaves like |x − zk |−1/2. The values of Dq are constant for negative q
whenever the invariant density h is bounded away from zero, see [11]; in this case it is also
very ease to see that all the dimensions are less or equal to 1.

Now, it becomes interesting to explore the spectrum of the generalized dimensions for
randomly perturbed orbits. We do not expect any multifractal structure for the stationary
measure when its density is essentially bounded, so Dq = 1, q ∈ R. Nevertheless the density
could become locally very large when n → ∞making it numerically indistinguishable from
the unbounded density of the deterministic map on the orbit of the critical point. To study the
dimensions for the stationary measure it is convenient to adopt the point of view of random
transformations (see Sect. 4), and consider a realization Tηt ◦ . . . ◦ Tη1 of a random orbit
producing the following empirical measure for a given n:

νn,t = 1

t

t∑
j=1

δη̃t , (28)

where η̃t = Tηt−1 ◦ . . . ◦ Tη1(x) for a suitable point x (see below). Again, each ηk has
distribution θ . From the ergodic theorem for random transformations, it now follows that

∫
R

gd νn,t = 1

t

t∑
j=1

g(η̃t ) →
∫
R

g dμn as t → ∞, (29)

where μn is the stationary measure, g ∈ L1(μn), and the point x is chosen μn-a.e., and
the sequence (ηt )t≥1 is chosen θ⊗N-a.e.. Since the support of μn contains the dynamical
core, by taking an arbitrary point x in such a core and by fixing a realization (ηt )t≥1, the
generalized dimensions of the stationary measure μn could be computed directly via the
correlation integral formula (25) by using the empirical measure (28) for large t ; see, e.g.,
[11].

6 Extreme Values Distribution

In this subsection, we develop an EVT for the Markov chain defined in 3 for finite values
for the parameter n. In particular, we consider the chain (X (n)

t )t≥1 with the stochastic kernel
pn(x, y), endowedwith the canonical probabilityPn having initial distributionμn = hn dx .
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We focus on the derivation of the Gumbel law for a particular observable by deriving the
distribution of the first entrance of the chain in a small set, which we name rare set12. To
this aim, we index with t the rare set defined as a ball of center z ∈ I and with radius e−ut ,

Bt (z)
def= B(z, e−ut ), where ut is a sequence called boundary levels such that ut → ∞ as

t → ∞, and verifying

tμn(B(z, e−ut )) → τ as t → ∞, (30)

where τ ∈ R>0. Then, we consider the observable

ϕ(x)
def= − log(dist(x, z)), (31)

where x ∈ I , and dist( · ) denotes the usual distance on R. Then, we define the following
random variable with values in I

M (n)
t

def= max{ϕ ◦ X (n)
0 , . . . , ϕ ◦ X (n)

t−1}. (32)

We will be interested in the distribution Pn(M (n)
t ≤ ut ) as t → ∞. In particular, by the

stationarity of the Markov chain, this distribution is equivalent to the probability that the first
entrance of the chain into the ball Bt (z) is larger than t .

Condition (30) enables us to get verifiable prescriptions on the sequence of boundary levels
ut . If the stationary measure μn is non-atomic, then the measure of a ball is a continuous
function of the radius. Therefore, for any given τ ∈ R+ and t ∈ N≥1, we can find ut such
that μn(B(z, e−ut )) = τ

t . Now, we denote by Bc
t (z) the complement of the ball Bt (z), and

define the perturbed operator L̃(t) for g ∈ BV as

L̃(t)g
def= L(g1Bc

t (z)). (33)

It is straightforward to check that

Pn(M (n)
t ≤ ut ) = Pn(X (n)

0 ∈ Bc
t (z), . . . , X

(n)
t−1 ∈ Bc

t (z))

=
∫
Bc
t (z)

hn dx0

∫
Bc
t (z)

pn(x0, x1) dx1 . . .

∫
Bc
t (z)

pn(xt−1, xt ) dxt

=
∫
R

(L̃t
(t)hn)(x) dx .

(34)

We now show that the operator L̃(t) approaches L in a precise sense that allows us to control
the asymptotic behavior of the integral in (34). This result allows us to control the asymp-
totic behavior of the integral in (34). In order to make the argument rigorous, we need more
assumptions on the operator L, in addition to the quasi compactness. The same quasi com-
pactness property is shared by the operator L̃(t), provided that t is large enough, and provided
that L̃(t) is close to L in the following sense

‖(L − L̃(t))(g)‖1 ≤ c(t)‖g‖BV , (35)

where c(t) → ∞ as t → ∞. Indeed, we have∫
R

|(L − L̃(t))(g)| dx =
∫
R

|L(g1Bt )| dx ≤
∫
R

L(|g|1Bt ) dx ≤ ‖g‖BVLeb(Bt ), (36)

because the space BV is continuously embedded into L∞ with constant equal to one. We can
apply the perturbation theorem of Keller-Liverani, which gives the asymptotic behavior of

12 See, e.g., the monograph [41] for a general presentation of EVT.
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the top eigenvalue of L̃(n) around one; see [36, 37]. In addition, see, e.g., [43], Chapter 7, for
an application of that theory to Markov chains. At this point, we need a further assumption:

(E1) The density hn of the stationary measure is bounded away from zero on the rare set
Bt (z).

Therefore, we can prove that

Pn(M (n)
t ≤ ut ) → e−θτ , as t → ∞,

where the so-called extremal index (EI) θ satisfies

θ = 1 −
∞∑
k=0

qk, (37)

with qk = limt→∞ qk,t , provided that the limit exists, with:

qk,t = Pn(X (n)
0 ∈ Bt (z), . . . , X

(n)
k ∈ Bt (z), X

(n)
k+1 ∈ Bt (z))

μn(Bt (z))
. (38)

Namely, qk,t is the probability of μn-distributed stationary chain to start in Bt (z) and then
return to it after exactly (k + 1) steps. It is now easy to show that all the qk,t vanishes in the
limit as t → ∞ since we have

qk,t ≤ Pn(X (n)
0 ∈ Bt (z), X

(n)
k+1 ∈ Bt (z))

μn(Bt (z))
≤ cnLeb(Bt (z))μn(Bt (z))

μn(Bt (z))
, (39)

where, to estimate the right-hand side of (39), we use the fact that for a fixed n, the stochastic
kernel pn(x, y) is uniformly bounded by a constant cn. In particular, the right-hand side
converges to zero as t → ∞. We have just proved the following

Proposition 6.1 Suppose that our Markov chain is constructed upon a map T verifying
Assumption (A1), and that Pn is the canonical probability with initial distribution μn =
hndx. Then, we get Gumbel’s law:

lim
t→∞Pn(M (n)

t ≤ ut ) = e−τ ,

where M (n)
t is defined in Eq. (32), ϕ(·) in Eq. (31), the boundary level ut verifies

μn(B(z, e−ut )) = τ
t , and on the set B(z, e−ut ) the density hn of the stationary measure

is bounded away from zero for large t (Assumption (E1)).

Our Markov chain visits infinitely often the neighborhood Bt (z) of any point z. Therefore,
we expect that the exponential law e−τ given by the extreme value distribution describes
the time between successive events in a Poisson process. To formalize this, we introduce the
random variable

N (t)
z (s) :=

� s
μn (Bt (z))

�∑
k=0

1Bt (z)(X
(n)
k ), (40)

and we consider the following distribution

Pn(N (t)
z (s) = k). (41)

We have the following
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Proposition 6.2 Suppose that our Markov chain is constructed upon a map T verifying
Assumption (A1), and that Pn is the canonical probability with initial distribution μn =
hndx. Then, we have:

lim
t→∞Pn(N (t)

z (s) = k) = tke−s

k! , (42)

where the density hn of the stationary measure is bounded away from zero for large t on the
set B(z, e−ut ) (Assumption (E1)).

Proof See [28]. ��
In particular, we have shown that the EI is equal to 1. Such an index is less than one when

clusters of successive recurrences happen, which is the case, for instance, when the target
point z is periodic. Our heteroscedastic noise breaks periodicity, so we expect an EI equal to
one.

We conclude this section with the following observation and example.

Observation 6.3 While we rigorously prove an EVT for the Markov chain, we are still deter-
mining if a similar result holds for the deterministic map T with respect to its invariant
measure. Moreover, there are, in fact, only a few results on EVT for unimodal maps; see, for
instance, [13, 22, 50].

7 An Application to Systemic Risk

This section presents a stylized model of the leverage dynamics to which our theory applies.
A part from providing a potential application of the models considered in this paper, we will
use the specific model to perform numerical simulations of the maps and to test the finite
size effect of some asymptotic results presented above. The model is an extension of the
one presented in [42] since we add here a possible relation between liquidity and leverage,
whereas in [42] liquidity was considered constant. The description of the model follows the
same lines as the presentation in [42].

A representative financial institution (hereafter a bank) takes investment decisions at dis-
crete times t ∈ Z, which defines the slow time scale of the model. At each time the bank’s
balance sheet is characterized by the asset At and equity Et , which together define the leverage
λt := At/Et . The bank wants to maximize leverage (by taking more debt) to increase profits,
but regulation constraints the bank’sValue-at-Risk (VaR) in such away that λt = 1

ασe,t
, where

α depends on the return distribution and VaR constraint13, and σe,t is the expected volatility
at time t of the asset, which in this model is composed by a representative risky investment.
Thus at each time t the bank recomputes σe,t and chooses λt . Then, in the interval [t, t + 1]
the bank trades the risky investment to keep the leverage close to the target λt . The trading
process occurs on the points of a grid obtained by subdividing [t, t + 1] in n subintervals of
length 1/n (the fast time scale). The dynamics of the investment return can be written as

rt+k/n = εt+k/n + et+(k−1)/n, k = 1, 2, . . . ,n, (43)

where εt+k/n and et+(k−1)/n are, respectively, the exogenous and endogenous component of
the return. The former is a white noise term with variance σ 2

ε , while the latter depends on
the banks’ demand for the risky investment in the previous step. For each bank, the demand

13 For example, if returns are Gaussian and the probability of VaR is 5%, it is α = 1.64.
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for the risky investment at time t + k/n is the difference between the target value of At to
reach λt and its actual value. Since the bank’s asset is composed by the risky investment,
an investment return rt+k/n modifies At and the bank trades at each grid point to reach the
target leverage. It is possible to show (see [14, 47]) that to achieve this, at each time t + k/n
the bank’s demand for the risky investment is

Dt+k/n = (λt − 1)A∗
t+(k−1)/nrt+k/n,

where A∗
t+(k−1) is the target asset size in the previous step. If there are M identical banks, the

aggregated demand isMDt+k/n. The endogenous component of returns et+k/n is determined
by the aggregated demand by the equation

et+k/n = 1

γt

MDt+k/n

Ct+k/n
, (44)

where Ct+k/n = MA∗
t+(k−1)/n is a proxy of the market capitalization of the risky asset, and

γt is a parameter measuring at each point in time the investment liquidity. Notice that in [42]
this parameter is considered constant. Using the above expression, it is

et+k/n = λt − 1

γt
et+(k−1)/n = φt et+(k−1)/n

and thus in the period [t, t+1] the return rt+k/n follows anAR(1) processwith autoregression
parameter φt = (λt − 1)/γt and idiosyncratic variance σ 2

ε . In the present paper, we assume
that γt is linked to the level of the leverage λt by the following relation:

γt = γ0 + cλt , (45)

where γ0 is a positive constant, and |c| ≤ 1. As far aswe know, there is not a unified consensus
in the literature on the type (linear or not), and the sign of the relationship between the
market14 leverage and liquidity. For instance, [64] states, “The relationship between market
leverage ratio and liquidity risk in the long term is negative and statistically significant only
for commercial banks belonging to the old EU countries". In particular, it seems that there is
no a universal statement on the sign of c. As regards as the type of dependence, we decide for
a linear relationship. Admittedly, the linear relationship may seem too crude, but a non linear
dependence would be an additional technicality that would not add to the present work’s
conceptual advancements.

To close the model, we specify how the bank forms expectations σe,t on future volatility
at time t . We assume that bank uses adaptive expectations, which implies that

σ 2
e,t = ωσ 2

e,t−1 + (1 − ω)σ̂ 2
e,t ,

whereω ∈ [0, 1] is a parameter weighting between the expectation at t−1 and the estimation
σ̂ 2
e,t of volatility obtained by the return data in [t − 1, t]. As done in practice, this is obtained

by estimating the sample variance of the returns in [t − 1, t], i.e.

14 In the financial literature, one finds also the notion of book leverage. Book leverage is defined as the ratio
of total assets to book equity, while market leverage is defined as the ratio of enterprise value (total assets -
book equity + market equity) to market equity. Empirically, book-measured leverage and market-measured
leverage lead to different inferences about the time series properties of leverage; see the debate between [1,
29]. We here refer to the market leverage in our discussion because in order to be consistent with our empirical
application in [42].
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σ̂ 2
e,t = V̂ar

[
n∑

k=1

rt−1+k/n

]

=
(
1+2

φ̂t−1(1−φ̂n
t−1)

1−φ̂t−1
−2

(nφ̂t−1 − n − 1)φ̂n+1
t−1 + φ̂t−1

n(1 − φ̂t−1)2

)
nσ̂ 2

ε

1 − φ̂2
t−1

, (46)

where the last expression gives the aggregated variance of an AR(1) process as a function of
the AR estimated parameters φ̂t−1 and σ̂ 2

ε . In the following we will assume that these are the
Maximum Likelihood Estimators (MLE).We remind that when n is large, φ̂t−1 is a Gaussian
distributed variable with mean φt−1 and variance (1 − φ2

t−1)/n.
In conclusion, the leverage dynamics is described by the following equations:⎧⎪⎨

⎪⎩
λt =

(
ω 1

λ2t−1
+ (1 − ω)α2V̂ar[∑n

k=1 rt−1+k/n]
)−1/2

,

rs = φt−1rs−1/n + εs, s = t − 1 + k/n, k = 1, 2, . . . ,n,

(47)

Since slow variables evolve depending on averages of the fast variables, the model is a slow-
fast deterministic-random dynamical system. By using the expression above for the variance,
we can rewrite the equation for the slow component only as

λt =
(

ω
1

λ2t−1

+ (1 − ω)α2σ̂ 2
e,t

)−1/2

,

where the estimator σ̂ 2
e,t can be seen as a stochastic term depending on λt−1 and whose

variance goes to zero when n → ∞.
If n is large, the above map reduces to

λt =
(

ω
1

λ2t−1

+ (1 − ω)α2nσ̂ 2
ε

(1 − φ̂t−1)2

)−1/2

,

When changing n also σ 2
ε changes, since the AR(1) can be seen as the discretization

of a continuous time stochastic process (namely an Ornstein-Uhlenbeck process). A simple
scaling argument shows that the quantity �ε = σ 2

ε n is instead constant and independent

from the discretization step 1/n. With abuse of notation, we set: �ε
def= limn→∞ nσ̂ 2

ε , and

we define �ε
de f= (1 − ω)α2�ε . At this point, we observe that since in the large n limit the

MLE estimator φ̂t−1 is a Gaussian variable with mean φt−1 and variance (1 − φ2
t−1)/n, we

can write

φ̂t−1 = φt−1 + ηt−1, ηt−1
d∼ N

(
0,

(1 − φ2
t−1)

n

)
.

By using the definition of γt in Eq. (45), by defining φt
def= λt−1

γt
, and by introducing the

function V : R2 → R given for any (u, v) ∈ R
2 by

V (u, v)
def=

(
ω(1 − cu)2

(1 + γ0u)2
+ �ε

(1 − (u + v))2

)−1/2

, (48)

we get

φt = V (φt−1, ηt−1) − 1

γ0 + cV (φt−1, ηt−1)

def= F(φt−1, ηt−1) (49)
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If the noise ηt−1 is small (i.e., n is large), we can perform a series expansion, obtaining:

V (φt , ηt ) = A(φt ) + B(φt )ηt ,

where

A(u)
def= 1 + γ0u

[ω(1 − cu)2 + �ε(1 − u)−2(1 + γ0u)2]1/2

B(U )
def= �ε(1 − u)−1(1 + γ0u)3

[ω(1 − cu)2 + �ε(1 − u)−2(1 + γ0u)2]3/2
Accordingly, Eq. (49) becomes:

φt = A(φt−1) + ηt−1B(φt−1) − 1

γ0 + cA(φt−1) + cηt−1B(φt−1)
.

By performing, again, a series expansion we obtain:

φt = A(φt−1) − 1

γ0 + cA(φt−1)
+ (1 − φt−12)

1/2(γ0 + c)B(φt−1)√
n(γ0 + cA(φt−1))

η̃t−1,

de f= T (φt−1) + σn(φt−1)η̃t−1

(50)

with η̃t−1
d∼ N (0, 1), t ∈ N≥1. Notice that we performed a series expansion for ηt−1 small,

which is justified whenever the variable φ stays far from one. Because we are going to iterate
the map F in Eq. (49) for φ ∈ [0, 1] and |η| � 1, it is enough to show that:

max
φ∈[0,1],|η|�1

|F(φ, η)|,< 1.

because in this case all the successive iterates |F t (φ, η)|, t ∈ N≥1, satisfy the same bound.
It is not difficult to see that the bound holds true provided that γ0 is sufficiently large.

Now, we study the deterministic map T in Eq. (50), which is the deterministic component
of F for η small. By arguing as above, we have that

�
def= max

φ∈[0,1] |T (φ)| < 1, (51)

provided that γ0 is sufficiently large.
Figure 1 shows the map T for some suitably chosen parameters:

• γ0 = 15.969; this value is taken from the empirical analysis in [42], Sect. 7.2 (where it
is denoted simply by γ ). It corresponds to the maximum value of the leverage computed
over a 4,389 time series of US Commercial Banks and Saving and Loans Associations;
see [42], Sect. 7.1, for a detailed description of the dataset.

• α = 1.64; it corresponds to a VaR constraint of 5% in case of a Gaussian distribution for
the returns.

• �ε = 2.7 × 10−5; this value is taken from the numerical analysis in [47], Table 1,
and corresponds to the exogenous idiosyncratic volatility at the time scale of portfolio
decisions.

• The values for ω and c are free parameters and are randomly sampled (e.g., from the
dynamical core).

The figure shows that that T is a unimodal map with a negative Schwarzian derivative
(see below). In the figure, � is the iterate of the unique critical point (Blue dot) c of T , i.e.,
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Fig. 1 Plot of the deterministic component T (φ), γ0 = 15.969, α = 1.64, �ε = 2.7 × 10−5. The value
for γ0 is taken from the empirical analysis in [42], Sect. 7.2, (where it is denoted simply by γ ) . The value
α = 1.64 corresponds to a VaR constraint of 5% in case of a Gaussian distribution for the returns. The values
�ε = 2.7 × 10−5 is taken from [47], Table 1, and corresponds to the exogenous idiosyncratic volatility at
the time scale of portfolio decisions. The value for ω and c are randomly sampled from the dynamical core,
once fixed the other parameters. The Blue dot indicates the critical point c, the Green dot the intersection
between the map and the horizontal axis, the left-hand Red dot indicates the image of 0, the right-hand Red
dot indicates limφ→1− T (φ) = − 1

γ0
. The support of the invariant density belongs to the so-called dynamical

core [T (�), �] (Color figure online)

Table 1 Normality tests for the variable
(

St√
t

)
for different values of t

Normality test t
10 1000 5000 10000

Shapiro 0.952 0.968 0.997 0.998

(1.55 × 10−17) (5.7 × 10−14) (0.11) (0.86)

Normal test 714.16 67.55 4.19 0.282

(8.34 × 10−156) (2.15 × 10−15) (0.12) (0.86)

Jarque–Bera 61.83 79.73 4.26 0.33

(3.7 × 10−14) (4.85 × 10−18 (0.11) (0.84)

Each row reports the value af the tests and, between parentheses, the p-value
Bold numbers in the table denotes that two groups a sampled from populations with the same distribution
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� = T (c). Therefore, if we take the initial condition φ0 in the interval [�, 1], then all the
successive iterates |T t (φ0)|, t ∈ N>1 will stay in [0,�].

By definition, the (re-scaled) leverage of the representative bank is a positive quantity.
However, as one can also notice from the graph in Fig. 1, we have that limφ→1− T (φ) = − 1

γ0
.

Therefore, we need to slightly modify the definition of our map by restricting it to the interval
[0, b], being b the point of intersection between the map and the horizontal axis (Green dot in
Fig. 1) Notice that this definition makes sense when � < b < 1. In addition, as we verified
numerically, if we take the initial condition in the interval [�, b], then all the other iterates
will stay in [0,�]. In particular, the previous redefinition is legitimate also if we consider the
effect of the noise. Indeed, it is clear from the considerations in Sect. 2 that if we symmetrize
about the horizontal axis, the graph of T in the interval [b, 1] to make it positive, then the
equilibrium state for the chain, precisely its unique stationary measure, has support that does
not intersect the interval [b, 1] if a satisfies the bound in Eq. (4). Also, we verified numerically
that the condition � < b < 1 holds for a γ0 sufficiently large. We continue to denote by T
the map after this redefinition. We now modify the map T by enlarging on the left its domain
of definition to take into account the action of the additive noise. To do so, we first notice
that

T (0) = a = 1 −
√

ω + �ε

γ0

√
ω + �ε + c

> 0;

see, the Red-left dot in Fig. 1. With abuse of notation, (re)define15 �
def= b − �, and extend

the domain of definition T to the larger interval [−�, b] so that T is continuous at 0 and
on [−�, 0) is C4 smooth, positive and decreasing, with T (−�) < �. Again, with abuse
of notation, we will still denote by T the map after this second redefinition, and, hereafter,

write I
de f= [−�, b]. The map T just-defined verifies Assumption (B1.2) and we choose the

distribution of the random variables (η̃t )t≥1 in order to satisfy Assumption (C1). We need to
verify Assumption (A1)-(c). In order to do so, we verify numerically the following important
result taken from [35] (see, also, [30], Theorem 12). Define the number

�T (x) = lim
t→∞

1

t
log |(T t )

′
(x)| = lim

t→∞

t−1∑
i=0

log |T ′
(T t (x))|, x ∈ I . (52)

Suppose T is a unimodal map with negative a Schwarzian derivative, and non-flat critical
point with �T (x) = κ > 0 for Leb-almost all x ∈ I , then T admits a unique absolutely
continuous invariant probability measure ν. In this case, κ will be the Lyapunov exponent
of the map T with respect to ν. Figure 2 represents the value of �T in the same parameters
configuration of Fig. 1.

Once we have verified that our systemic riskmodel in Eq. (50) satisfies Assumptions (A1),
(B1), and (C1), we pass to investigate whether it satisfies, as it should be, the mathematical
properties in Sect. 5 and the EVT in Sect. 6. The order in which we present the results reflects
the order in which they were presented in the latter sections.

7.1 Dynamics Properties of theMap

The bifurcation diagram of a dynamical system shows how the asymptotic distribution of a
typical orbit varies as a function of a parameter. For our map, either the memory parameter ω

15 Cfr. Eq. (44)
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Fig. 2 Plot of the indicator in Eq. (52). Parameters’ configuration: See the caption of Fig. 1

or the parameter c can be employed as bifurcation parameter. Figure 3 shows the bifurcation
diagram as a function of c ∈ [−1, 1]. The choice of the parameter ω for this plot corresponds
to a value of ω for which a specific pair (c, ω) is in the dynamical core (ω = 0.669).

We now comment Fig. 3. Moving backward, between 1 and 0.3 there is an attracting fixed
point. Then, as c gets smaller and smaller, the period one behaviour splits into period two and
the two values are getting further apart. The situation is more complex for c in [−0.48, 0.3]
as small parameter variations can change the dynamics from chaotic to periodic and back.
Finally, when c is between −0.48 and −1 there is an attracting fixed point. However, in this
range, φt takes negative values and this does not make sense in our financial application,
since it would correspond to negative leverage. Figure 4 shows how the graph of the map T
changes as a function of c reflecting the description of the bifurcation diagram.

To identify more precisely the signature of a chaotic behaviour, we compute the Lyapunov
exponent as a function of c. For the deterministic map, the Lyapunov exponent is positive
if and only if T admits an absolutely continuous invariant measure. Figure 5, from top to
bottom, shows the estimated Lyapunov exponent for the deterministic map, as well as for the
random system for different intensities of the noise. The Lyapunov exponent is not displayed
for some values of the parameter c because of some numerical issues we encountered to
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Fig. 3 Bifurcation diagram for T . Parameters’ configuration: (γ0, α,�ε, ω) = (15.969, 1.64, 2.7 ×
10−5, 0.669) and c ∈ [−1, 1]

Fig. 4 Plot of the deterministic component T (φ). Parameters’ configuration: (γ0, α,�ε, ω) =
(15.969, 1.64, 2.7 × 10−5, 0.669). The specific value of c is reported in the title of each panel
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Fig. 5 Lyapunov exponent for deterministic and stochasticmaps.Parameters’ configuration: (γ0, α,�ε, ω) =
(15.969, 1.64, 2.7 × 10−5, 0.669)
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Fig. 6 Random maps in Eq. (15) together with the quantiles of the distribution of the graphs of the maps
associated with the random maps; n = 10, 100, 10000

determine the intersection between the map and the horizontal axis. For this reason, it is not
possible to fully appreciate that the exponent becomes a smooth function of c when add even
a small amount of noise, in agreement with Theorem 5.6. Figure 5 shows also the validity of
Proposition 5.5 and therefore indirectly of Assumption (Ap).

Finally, Fig. 6 displays the random map in Eq. (15) together with the quantiles of the
distribution of the graphs of the maps associated with the random maps. Notice that we use
a different set for the parameters to emphasize the effect of the noise.

7.2 Limit Theorems

We here investigate the validity of the Central Limit Theorem in Theorem 5.7-(e2). We
proceed in the following way. First, we choose as function g ∈ BV such that

∫
R
g dμn = 0

the function

g(x) = sin(x) −
∫
R

sin(t) dt .

Notice that in principle we would like to have a function g with null average with respect
the unknown measure μn; the function in the previous equation verifies this property with
respect the Lebesgue measure. Nonetheless, we verify numerically the validity of the cited
property also for μn. Then, we generate 20,000 orbits of length 10,000 by using the random
transformation. In this way, for each t ∈ {1, . . . , 10000} we have a sample of the quantity St
in Eq. (21). Therefore, we can test if the distribution of St√

t
becomes more and more Gaussian

as t increases. In order to do so, we apply three normality tests, namely the Shapiro [62], the
normal test of D’Agostino and Pearson’s [16, 17], and the Jarque–Bera’s test [31]. They all
tests the null hypothesis that a sample comes from a normal distribution. Table 1 reports the
results. Within each row, the two subrows are the value of the test and, between brackets,
the p-value From the table it is clear that the distribution of St√

t
becomes more and more

Gaussian as t increases, confirming the Central Limit Theorem stated above.

7.3 Multifractal Analysis

In this subsection, we compute the spectrum of the generalized dimension Dq as in Sect. 7.3
by combining Eq. (24) with Eqs. (25) and (26). The results are displayed in Fig. 7. The gray
line represents the value for the comparison as computed in Eq. (27). In order to compute
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Fig. 7 Spectrum of the generalized dimension Dq , for different values of the noise level n. The gray line
is derived from Eq. (27). Notice that for our unimodal map the picture shows the order of divergence as the
square root of the singular points as for the Benedicks-Carleson type

the other lines we proceed in the following way. For q > 1 we approximate the integral in
Eq. (25) by considering the so called partition sums

Zr (q) =
∑

μ(B)
=0

(μ(B))q ,

where the sum runs over all intervals B of size r . In particular, we follow, e.g., [45, 58] and
we restrict the variable r to a sequence rn in order to give meaningful results. Our values
of r are defined by: r = np.linspace(0.5 × 10−5, 10−5, 100). For a fixed r , the occupation
number ni (r) of the i-th interval is defined as the number of sample points it contains out of
N sample points from the trajectory of our dynamical system. The measureμi of the interval
Bi is the fraction of time which a generic trajectory on the attractor spends in the i-th interval
Bi and is roughly equal to ni (r)/N . Therefore, we compute D(q) as the slope of a linear fit
of

log Zr (q) = log

(∑
i

(ni (r))
q

)

against log r ; note that we have dropped the normalization factor N = ∑
i ni (r) since it is

independent of r . The computation of D(1) follows the same logic. Instead, for negative q
we follow [60] and we replace the occupation numbers ni (r) by the extended occupation
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Fig. 8 Top panel: the sequence ut as a function of t ; Bottom panel: estimated Pn(M(n)
t ≤ ut ), where M

(n)
t is

defined in Eq. (32), as a function of log t , together with the theoretical value e−τ (Red horizontal line) (Color
figure online)
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numbers n∗
i (r) which are defined by

n∗
i (r) =

∑
j : Bj⊂B∗

i

ni (r),

that is the number of sample points contained in the interval Bi and its neighboring boxes. By
looking, again, at Fig. 7, it is interesting to see that forn = 10 the quantity Dq for the random
maps becomes almost a constant equals to 0.8–0.9, whereas this quantity changes more for
higher values of n and, in particular, for the unperturbed map (proxied by n = 1015).
In particular, as we suspected in Sect. 7.3, the generalized dimension Dq becomes more
and more pronounced when n grows as the stationary measure converges (weakly) to the
invariant measure of the deterministic map. In this respect, we think, as pointed out in the
introduction, that the previous multifractal analysis could help us in discriminating between
chaotic and random behaviors. Indeed, the invariant measure of our unimodal map T has a
multifrctal structure due to the presence of countably many singularities for its density h.
Instead, the equilibriummeasure of the Markov chain is absolutely continuous with bounded
density. Notice that the curves in Fig. 7 resemble the curves in Fig. 3 in [65], where authors
investigate the multifractal features of liquidity in China’s stock market. They claim that
the liquidity time series at the studied time is no longer subject to a standard random walk
process, but subject to a fractal biased random walk process. This shows that, theoretically,
it is feasible to predict the liquidity of the Chinese securities market.

7.4 ExtremeValue Theory

Finallywe verify the validity of Proposition 6.1 onEVT.We proceed in the followingway.We
fix values for the parameters characterizing the map (γ0, ω, c, α,�ε) as described above, for
the initial point of each orbit x0 and z chosen randomly in the dynamical core (x0 = 0.38 and
z = 0.80), for the parameter τ (τ = log(10)), and for the intensity of the noise (n = 103).
Then, we determine numerically the sequence ut in such a way that μn(B(z, e−ut )) =
τ
t , where μn estimated from the histogram constructed with a very long orbit. The Left
Panel of Fig. 8 shows the sequence ut as a function of t and the Right Panel displays the
estimated Pn(M (n)

t ≤ ut ), where M (n)
t is defined in Eq. (32), as a function of t , together

with the theoretical value e−τ (Red horizontal line). The estimated probability converges to
the theoretical value, confirming our EVT results. From a financial point of view, this means
that we are able to compute what is the probability that, given an initial leverage, the first
time the leverage is “close" to a given target is larger than t .
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