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1. Introduction

In this article, we study projective freeness and Hermiteness of certain function alge-
bras. Recall that a unital commutative ring R is said to be projective free if every finitely 
generated projective R-module is free (i.e., if M is an R-module such that M ⊕N ∼= Rn

for an R-module N and n ∈ Z+ (:= N ∪ {0}), then M ∼= Rm for some m ∈ Z+). In 
terms of matrices, the ring R is projective free if and only if for each n ∈ N every 
n × n matrix X /∈ {0n, In} over R such that X2 = X (i.e., an idempotent) has a form 
X = S(Ir ⊕ 0n−r)S−1 for some S ∈ GLn(R), r ∈ {1, . . . , n − 1}; here GLn(R) denotes 
the group of invertible n × n matrices over R and 0k and Ik are zero and identity k × k

matrices; see [13, Proposition 2.6].
Quillen and Suslin (see, e.g., [14]) proved, independently, that the polynomial ring 

over a projective free ring is again projective free; in particular settling affirmatively 
Serre’s problem from 1955, which asked if the polynomial ring F [x1, . . . , xn] is projective 
free for any field F (see [32]). Also, if R is any projective free ring, then the formal 
power series ring R�x� is again projective free [14, Theorem 7], and so the formal power 
series ring F�x1, . . . , xn� is projective free. In the context of rings arising in analysis, it 
is known that for example the algebra of complex continuous functions on a contractible 
topological space is projective free [56]. According to the Grauert theorem [24] and the 
Novodvorski-Taylor theory (see, e.g., [39], [54, §7.5]), the same holds for the algebra of 
holomorphic functions on a contractible reduced Stein space and a commutative unital 
complex Banach algebra with a contractible maximal ideal space.

In control theory, projective freeness of rings of stable transfer functions plays an 
important role in the stabilisation problem, since if the underlying ring of stable transfer 
functions is projective free, then the stabilisability of an unstable system is equivalent 
to the existence of a doubly coprime factorisation, see [40, Theorem 6.3].

The concept of a Hermite ring is a weaker notion than that of a projective free ring. 
A unital commutative ring R is Hermite if every finitely generated stably free R-module 
is free. An R-module M is stably free if it is stably isomorphic to a free module, i.e., 
M ⊕ Rk is free for some k ∈ Z+. Since every stably free module is projective, every 
projective free ring is Hermite. In terms of matrices, R is Hermite if and only if every 
left-invertible n × k matrix, k, n ∈ N, k < n, over R can be completed to an invertible 
one (see, e.g., [32, p.VIII], [55, p.1029]).

In control theory, Hermiteness of the underlying ring of stable transfer functions im-
plies that if the transfer function of an unstable system has a right (or left) coprime 
factorisation, then it has a doubly coprime factorisation; see [57, Theorem 66].

In the article, we study successively projective freeness and Hermiteness of algebras 
of complex-valued continuous functions on topological spaces (§2), Stein algebras (§3) 
and commutative unital complex Banach algebras (§4). We begin with a survey of some 
results describing the structure of finitely generated projective modules over these al-
gebras in terms of complex vector bundles over their maximal ideal spaces using the 
Swan and Vaserstein theorems [52] and [56], the Grauert Oka principle [23], [24] and 
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the Novodvorski-Taylor theory [39], [54]. Then, based on this description, we give new 
sufficient cohomology conditions for projective freeness and Hermiteness of the consid-
ered algebras and illustrate our results by nontrivial examples. In §5, we introduce and 
study a new class C of commutative unital complex Banach algebras A (namely those 
whose maximal ideal spaces are of trivial shape) such that for every commutative uni-
tal complex Banach algebra B the isomorphism classes of finitely generated projective 
modules over B are in a one-to-one correspondence with those over the projective tensor 
product A⊗̂πB. In particular, the projective tensor product with algebras in C preserves 
projective freeness and Hermiteness. Finally, in §6 several examples of algebras of class C
and of projective free function algebras are assembled. These include finitely generated 
algebras of symmetric functions (§6.1), Bohr-Wiener algebras (§6.2), algebras of holo-
morphic semi-almost periodic functions (§6.3), and algebras of bounded holomorphic 
functions on Riemann surfaces (§6.4). The Appendix contains auxiliary results used in 
§6.

2. Algebras of continuous functions

For a topological space X, we denote by C(X) the algebra (with pointwise operations) 
of complex-valued continuous functions on X. Also, by Cb(X) ⊂ C(X) we denote the 
subalgebra of bounded functions. Cb(X) equipped with the supremum norm, ‖f‖∞ =
supx∈X |f(x)|, is a complex commutative unital Banach algebra.

We recall that a bundle over X is of finite type if there is a finite set S of nonnegative 
continuous functions on X whose sum is 1 such that the restriction of the bundle to the 
set {x ∈ X : f(x) 	= 0} is trivial for each f in S.

Every bundle over a compact Hausdorff space X is of finite type. In turn, a bundle 
over a normal space X is of finite type if and only if there is a finite open covering U of 
X such that the restriction of the bundle to each U ∈ U is trivial.

Let Gr(Cn) be the set of all subspaces of Cn equipped with the topology of the disjoint 
union of the Grassmanian manifolds Grm(Cn), 0 � m � n. For each n ∈ Z+ there is a 
natural embedding Gr(Cn) ⊂ Gr(Cn+1) so that the space Gr(C∞) =

⋃
n∈Z+

Gr(Cn), 
equipped with the inductive limit topology, is well-defined.

The next result follows from Vaserstein’s extension [56, Theorem 2] of the Swan the-
orem [52].

Proposition 2.1. The following statements are equivalent:

(1) The algebra C(X) is projective free.
(2) The algebra Cb(X) is projective free.
(3) The space X is connected and each finite type complex vector bundle over X is trivial.
(4) Each continuous map X → Gr(C∞) with a relatively compact image is homotopic, 

via a homotopy with relatively compact image, to a constant map.
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In what follows, for a topological space Y and an abelian group G, the nth Čech 
cohomology group of Y with values in G is denoted by Hn(Y, G), n ∈ Z+.

Let βX be the Stone-Čech compactification of X. Then βX is naturally homeomorphic 
to the maximal ideal space of Cb(X), and C(βX) is isometrically isomorphic to Cb(X). 
Proposition 2.1 implies that if C(X) is projective free, then C(βX) is projective free, 
and so βX is connected and all finite rank complex vector bundles over βX are trivial.

Since isomorphism classes of rank one complex vector bundles over βX are in one-
to-one correspondence (determined by assigning to a bundle its first Chern class) with 
elements of H2(βX, Z), projective freeness of C(X) implies that H2(βX, Z) = 0. Also, in 
this case Proposition 2.1 implies that the Grothendieck group K0(Cb(X)) of the algebraic 
K-theory for Cb(X) (isomorphic to the group K0(βX) of the Atiyah-Hirzebruch theory) 
is Z. Since the Chern character ch determines a ring isomorphism K0(Cb(X)) ⊗ Q →
Heven(βX, Q), see, e.g., [31, Theorem 3, p.16-09], we obtain the following result.

Corollary 2.2. If the algebra C(X) is projective free, then βX is connected, H2(βX, Z) =
0, and H2n(βX, Q) = 0 for all n � 2.

For instance, if X is a connected closed orientable manifold such that the algebra 
C(X) is projective free, then the corollary along with the Poincaré duality imply that 
X has an odd dimension n and Hk(X, Q) = 0 for all k /∈ {0, n}. Note that even if 
Hk(X, Z) = 0 for all k /∈ {0, n}, C(X) is not necessarily projective free. In fact, it is not 
even necessarily Hermite; see Example 2.5 below.

Let Ωn = X × Cn denote the standard trivial rank n complex vector bundle over a 
topological space X. A complex vector bundle E over X is stably trivial if there exist 
m, n ∈ Z+ such that the bundle E ⊕ Ωm is isomorphic to Ωn.

Our next result can be easily deduced from [56, Theorem 2] as well.

Proposition 2.3. The following statements are equivalent:

(1) The algebra C(X) is Hermite.
(2) The algebra Cb(X) is Hermite.
(3) Each stably trivial finite type complex vector bundle over X is trivial.

Propositions 2.1 and 2.3 imply the following result.

Corollary 2.4. Projective freeness and Hermiteness of the algebra C(X) depend only on 
the homotopy type of X.

Example 2.5. Let Sn denote the n-dimensional unit sphere. Cutting the sphere Sn into 
two ‘bowls’ (each homeomorphic to an n-dimensional ball) such that their intersection is 
a ‘collar’ C containing the subsphere Sn−1, it can be seen that the isomorphism classes 
Vectk(Sn) of rank k complex vector bundles on Sn are in a one-to-one correspondence 
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with the elements of the (n − 1)st homotopy group πn−1(U(k)) of the unitary group 
U(k). As the homotopy group π4(U(2)) ∼= π3(S4) ∼= Z2, it follows that there exists a 
nontrivial rank 2 complex vector bundle E over S5. Hence, C(S5) is not projective free, 
although Hk(S5, Z) = 0 for all k /∈ {0, 5}. Moreover, since K0(C(S5)) = K0(S5) = Z

(see, e.g., [30, Corollary 5.2 on p.121 and p.150 of Chap. 11]), every finite rank complex 
vector bundle on S5 is stably trivial. Hence, C(S5) is not Hermite, as E is nontrivial.

Next, we formulate an auxiliary result used in our proofs which follows easily, e.g., 
from [16, Theorem 11.9, p.287], [33, Lemmas 1, 2], and [16, Theorem 3.1, p.261].

For preliminaries on projective and injective limits, see, e.g., [16, Chap. VIII, §2]. 
Recall that the projective limit of a projective system ((Xi)i∈I , (fij)i�j∈I) of nonempty 
compact Hausdorff spaces is a nonempty compact Hausdorff space in the limit topology. 
Henceforth, the projective limit will be denoted by lim←−−Xi, with the projective system 
((Xi), (fij)) being understood. As usual, the abbreviation ANR stands for absolute neigh-
bourhood retract (for the corresponding definition, see, e.g., [29, p.80]). Throughout the 
article, ∼= denotes an isomorphism of objects of a category in question, and ∼

h
a homo-

topy of maps or a homotopy equivalence of topological spaces.

Lemma 2.6. Suppose X = lim←−−Xi and πi : X → Xi are canonical continuous projections, 
where the Xi are nonempty compact Hausdorff spaces, and Y is an ANR.

(1) Given a continuous map f : X → Y , there exists an index i and a continuous map 
fi : Xi → Y such that fi ◦ πi∼

h
f .

(2) Given a finite rank complex vector bundle E over X, there exists an index i and 
a complex vector bundle Ei over Xi such that the pullback bundle π∗

i (Ei) ∼= E. 
Moreover, if E is stably trivial, then Ei is stably trivial as well.

(3) For each k ∈ Z+, the Čech cohomology group Hk(X, Z) = ∪i π
∗
i (Hk(Xi, Z)).1

The following result expresses continuity of projective freeness and Hermiteness for 
algebras C(X) on compact Hausdorff spaces X.

Proposition 2.7. Suppose X∼
h

lim←−−Xi, where the Xi are nonempty compact Hausdorff 
spaces such that either all algebras C(Xi) are projective free, or all algebras C(Xi) are 
Hermite. Then C(X) is projective free or Hermite, respectively.

Proof. Due to Corollary 2.4, we can assume X = lim←−−Xi. Then the required result follows 
from Propositions 2.1, 2.3 (applied to the algebras C(Xi)) and Lemma 2.6. �

To formulate our next result, we recall some definitions.

1 In other words, Hk(X, Z) ∼= lim−−→Hk(Xi, Z), the injective limit of the related injective system of groups 
(Hk(Xi, Z), f∗

ij).
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The covering dimension of a topological space X, denoted by dimX, is the smallest 
integer d such that every open covering of X has an open refinement of order at most 
d + 1. If no such integer exists, then X is said to have infinite covering dimension.

Given a finite open cover α = {U1, . . . , Ur} of a compact topological space X, its 
nerve is the abstract simplicial complex Aα, whose vertex set is α and such that the 
simplex σ = [Ui0 , Ui1 , . . . , Uin ] ⊂ Aα if and only if ∩n

j=0Uij 	= ∅.
We also recall that a path-connected topological space X is n-simple if for each x ∈ X, 

the fundamental group π1(X, x0) acts trivially on the nth homotopy group πn(X, x0), 
see, e.g., [28, Chap. IV, §16] for details. For instance, every path-connected topological 
group is n-simple for all n ∈ N.

The following result, generalising [8, Corollary 1.4] and [55, Theorem 5], gives a suf-
ficient condition for C(X) to be projective free or Hermite.

Theorem 2.8. If X∼
h

lim←−−Xi, where the Xi (	= ∅) are finite-dimensional compact Haus-
dorff spaces such that Hn(Xi, Z) = 0 for all n � 5, then C(X) is Hermite. In addition, 
if all spaces Xi are connected and satisfy H2(Xi, Z) = H4(Xi, Z) = 0, then C(X) is 
projective free.

Proof. In the proof, we use the fact that the rank of a stably trivial complex vector bundle 
or a complex vector bundle over a connected space is well-defined. Due to Proposition 2.7, 
it suffices to prove the result for each space Xi.

In what follows, we use the terminology from [27]. So Aα denotes the nerve of a 
finite open covering α = {U1, U2, . . . , Ur} of Xi and φα : Xi → Aα denotes a canonical 
map of α, i.e., for each point x ∈ Xi, φα(x) is contained in the closure of the simplex 
[Ui0 , Ui1 , . . . , Uin ] of Aα, where Ui0 , Ui1 , . . . , Uin denote the members of α containing x.

Given a continuous map f : Xi → Y , a continuous map ψα : Aα → Y is called a 
bridge if ψα ◦φα∼

h
f for each canonical map φα : Xi → Aα of the covering α. The family 

(Aα)α, together with the natural simplicial projection maps pβα : Aβ → Aα, where β is a 
finite refinement of α, forms a projective system with limit Xi.

Let Ei be a stably trivial complex vector bundle over Xi. Applying Proposition 2.6(2), 
we obtain for some α, a stably trivial bundle Eα over Aα such that φ∗

α(Eα) ∼= Ei; in 
particular its Chern classes ck(Eα) = 0 (∈ H2k(Aα, Z)), k ∈ N. If Eα is of complex 
rank one, then the latter implies that Ei is trivial. Next, suppose Eα has complex rank 
n � 2. Let A4

α be the 4th skeleton of Aα, that is, the totality of the simplexes of Aα with 
dimensions not exceeding 4. Consider the bundle E′ := Eα|A4

α
. Since the rank n of Ei is 

� 2, E′ is isomorphic to the Whitney sum E′′⊕Ωn−2, where Ωn−2 := A4
α×Cn−2, and E′′

is a rank 2 complex vector bundle over A4
α (see [30, Part II, Chap. 9, Theorem 1.2]). Since 

the Chern classes of E′ are zeros, the latter implies that Chern classes of E′′ are zeros as 
well. In turn, A4

α is four-dimensional, and therefore the vanishing of Chern classes of E′′

implies that E′′ is trivial (it follows, e.g., from [36, Problem 14-C, p.171]). Hence, the 
bundle Eα|A4

α
= E′ = E′′⊕Ωn−2 is trivial as well. In particular, due to the construction 

of [30, Part I, Theorem 3.5.5], there is a continuous map into a complex Grassmanian, 
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h : Aα → Grn(Cn+k), constant in a neighbourhood of A4
α, such that h∗(γn,n+k) ∼= Eα, 

where γn,n+k is the tautological bundle over Grn(Cn+k). Let the value of h on A4
α be x. 

Consider the continuous maps f0 := h ◦φα : Xi → Grn(Cn+k) and f1 : Xi → Grn(Cn+k)
of constant value x. According to the definition of n-homotopy2 in [27, §6], f0 and f1 are 
4-homotopic. Moreover, by the hypotheses we have Hs(Xi, Z) = 0 for all s � 5 which 
implies that Hs(X, G) = 0 for all s � 5, for any abelian group G (by the Universal 
Coefficient Theorem for Čech cohomology [48, Chap. 6, §8, Theorem 10]). In particular, 
Hs(X, πs) = 0 for all s � 5 where πs is the sth homotopy group of Grn(Ck+n). Since the 
latter is a simply connected manifold, it is r-simple for all r � 1. Hence, the previous facts 
based on [29, Theorem 8.1] imply that f0 and f1 are homotopic maps. Thus f∗

0 (γn,n+k)
and f∗

1 (γn,n+k) are isomorphic bundles over Xi. But the former is isomorphic to the 
original bundle Ei by our construction, and the latter is trivial. This proves that Ei is 
trivial. Thus every stably trivial complex vector bundle over C(Xi) is trivial. Hence, all 
C(Xi), and therefore C(X), are Hermite due to Proposition 2.7.

Now, assume in addition that Xi is connected and H2(Xi, Z) = H4(Xi, Z) = 0. Let 
Ei be a finite rank complex vector bundle over Xi. Then as above, there exist α and 
a complex vector bundle Eα over Aα, such that φ∗

α(Eα) ∼= Ei. Due to Lemma 2.6 (3), 
we can choose the α such that the Chern classes ci(Eα) = 0 (∈ H2i(Aα, Z)), i = 1, 2. 
Hence, the complex vector bundle E′ := Eα|A4

α
is trivial. So arguing as above, we obtain 

that the bundle Ei is trivial. Thus every finite rank complex vector bundle over C(Xi) is 
trivial. Hence, all C(Xi), and therefore C(X), are projective free by Proposition 2.7. �

We deduce from the theorem the following result.

Theorem 2.9. Let X be a Hausdorff paracompact space of finite covering dimension such 
that Hn(X, Z) = 0 for all n � 5. Then the algebra C(X) is Hermite. If, in addition, X
is connected and H2(X, Z) = H4(X, Z) = 0, then C(X) is projective free.

Proof. Due to the Dieudonné theorem, a Hausdorff paracompact space is normal; see, 
e.g., [17, Theorem 5.1.5]. So the embedding X ↪→ βX induces a natural isomorphism 
H∗

f (X, Z) ∼= H∗(βX, Z); here H∗
f (X, Z) are Čech cohomology groups of X defined with 

respect to finite open coverings, see [16, p. 282]. Further, for a paracompact space X, 
the groups H∗(X, Z) coincide with the Čech cohomology groups of X defined with re-
spect to numerable open coverings. Thus, according to [11, Corollary (6.3)], the group 
Hn

f (X, Z) coincides with the Čech cohomology group Hn(X, Z) for all n � 2. These 
facts and our hypotheses imply that Hn(βX, Z) = 0 for all n � 5. Moreover, since X
is normal, dim βX = dimX, and in particular, βX is finite-dimensional; see, e.g., [17, 
Theorem 7.1.17, p.390]. Thus, applying Theorem 2.8 to βX, we obtain that the algebra 

2 Let X be a normal space, Y be a connected ANR, and either X or Y be compact. Continuous maps 
f0, f1 : X → Y are n-homotopic if there exists a bridge α for the pair (f0, f1) with bridge map ψi : Aα → Y
for fi (i = 0, 1) such that ψ0 = ψ1 on the n-dimensional skeleton An

α of the nerve Aα of the covering α of 
X.
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C(βX) is Hermite. Then Proposition 2.3 implies that the algebra C(X) is Hermite as 
well.

In the second case, the previous argument implies that H2(βX, Z) = H4(βX, Z) = 0
also. Moreover, if X is connected, then βX is connected as well. Then, under these ad-
ditional assumptions, Theorem 2.8 implies that the algebra C(βX) is projective free. 
Therefore due to Proposition 2.1, the algebra C(X) is projective free as well, as re-
quired. �
Example 2.10. Let X ⊂ R5 be a closed subset. Then Hn(X, Z) = 0 for all n � 5. (In fact, 
the Čech cohomology groups of a closed subset of Rm are isomorphic to the injective 
limit of Čech cohomology groups of its open neighbourhoods; see, e.g., [48, Chap. 6, §1, 
Theorem 12, §8, Corollary 8]. Also, by a result due to Whitehead [58, Theorem 3.2], an 
open subset U of Rm is homotopy equivalent to an m −1 dimensional simplicial complex 
Γ ⊂ U . As the dimension of Γ is m − 1, Hn(U, Z) = Hn(Γ, Z) = 0 for all n > m − 1.) 
Thus, due to Theorem 2.9, the algebra C(X) is Hermite.

In connection with Theorems 2.8, 2.9 the following question seems quite natural:

Question. Is there a Hausdorff topological space X with Hn(X, Z) 	= 0 for some n � 5
such that the algebra C(X) is Hermite?

3. Stein algebras

For basic facts about complex analytic spaces and Stein spaces we refer the readers 
to the book [25].

Let Γ(X, OX) be the ring of global sections of the structure sheaf OX on a finite-
dimensional complex analytic space (X, OX). There is a natural algebra homomorphism 
ˆ : Γ(X, OX) → C(X) with image O(X), the ring of holomorphic functions on X, 
injective if (X, OX) is reduced. A space (X, OX) is said to be Stein if it is holomorphically 
convex (i.e., for each infinite discrete set D ⊂ X there exists an f ∈ O(X) which is 
unbounded on D) and holomorphic separable (i.e., for all x, y ∈ X, x 	= y, there exists 
an f ∈ O(X) such that f(x) 	= f(y)).

By the Cartan and Oka theorem, the nilradical n(OX) of OX (i.e., the union of 
nilradicals of stalks Ox, x ∈ X) is a coherent sheaf of ideals on X and so if (X, OX)
is Stein, then by Cartan’s Theorem B we have the following exact sequence of global 
sections of sheaves

0 → Γ(X, n(OX)) → Γ(X,OX) r∗→ Γ(X,OredX) → 0, (3.1)

where OredX := OX/n(OX) is the structure sheaf on the reduction of X. It easily 
seen that Γ(X, n(OX)) is the Jacobson radical of Γ(X, OX), i.e., the intersection of all 
maximal ideals of Γ(X, OX); see, e.g., [19, §1.4]. Moreover, the algebra Γ(X, OX) is 
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Γ(X, n(OX))-complete, i.e., the natural homomorphism from Γ(X, OX) to the projective 
limit of quotient algebras lim←−−Γ(X, OX)

/
Γ(X, n(OX))N is an isomorphism,3 see, e.g., [25, 

Ch. V, §4.3].

Theorem 3.1. Let (X, OX) be a finite-dimensional Stein space. The homomorphism ˆ :
Γ(X, OX) → C(X) induces a bijection between isomorphism classes of finitely generated 
projective Γ(X, OX) and C(X) modules.

Proof. Since the algebra Γ(X, OX) is Γ(X, n(OX))-complete, the correspondence

P ∼= Γ(X,OX) ⊗Γ(X,OX) P
r∗⊗idP

−−−−→ Γ(X,OredX) ⊗Γ(X,OX) P (3.2)

determines a bijection between isomorphism classes of finitely generated projective 
Γ(X, OX) modules and finitely generated projective Γ(X, OredX) modules, see, e.g., [53, 
Theorem 2.26].

For the reduced Stein space (X, OredX), the algebra Γ(X, OredX) can be naturally 
identified with O(X). Then it follows from [20, Sätze 6.7, 6.8] (see also [38, Theorem 2.1]) 
that there is a bijection between isomorphism classes of finitely generated projective 
O(X) modules and isomorphism classes of holomorphic vector bundles over X of bounded 
rank.4 Moreover, according to the Grauert theorem (see [23], [24] and [12]) the inclusion 
of sheaves i : OredX ↪→ CX (the sheaf of germs of continuous functions on X) induces 
a bijection between isomorphism classes of holomorphic and continuous complex vector 
bundles over X of bounded rank. Next, since X is a Hausdorff paracompact of finite 
covering dimension (by the definition of a finite-dimensional complex analytic space), 
each continuous complex vector bundle over X is of bounded rank if and only it is 
of finite type (see, e.g., [30, Ch. 3, Proposition 5.4]) and, hence, by Swan’s theorem 
(see [56, Theorem 2]), there is a bijection between isomorphism classes of continuous 
complex vector bundles over X of bounded rank and of finitely generated projective 
C(X) modules. This implies that the correspondence

P ∼= O(X) ⊗O(X) P
i⊗idP

−−−→ C(X) ⊗O(X) P (3.3)

determines a bijection between isomorphism classes of finitely generated projective O(X)
modules and finitely generated projective C(X) modules.

The composition of the bijections in (3.2) and (3.3) gives the required statement: the 
correspondence

3 Equivalently, in the topology on Γ(X, OX) determined by letting the family of ideals {
Γ(X, n(OX))N

}
N∈N

be a base of open neighbourhoods of 0, every Cauchy sequence converges to a unique 
limit.
4 I.e., the complex ranks of restrictions of such bundles to connected components of X are uniformly 

bounded from above.
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P ∼= Γ(X,OX) ⊗Γ(X,OX) P
ˆ⊗idP

−−−→ C(X) ⊗Γ(X,OX) P (3.4)

determines a bijection between isomorphism classes of finitely generated projective 
Γ(X, OX) modules and finitely generated projective C(X) modules. �

Theorems 3.1 and 2.9 imply the following:

Theorem 3.2. The algebra Γ(X, OX) is projective free or Hermite if and only if the algebra 
C(X) is projective free or Hermite.
In particular, if Hn(X, Z) = 0 for all n � 5, then Γ(X, OX) is Hermite, and if, in 
addition, X is connected and H2(X, Z) = H4(X, Z) = 0, then it is projective free.

Example 3.3. (1) According to [26], a reduced Stein space X of (complex) dimension k
is homotopy equivalent to a k-dimensional CW complex. Hence, Hn(X, Z) = 0 for all 
n > k. Thus, due to Theorem 3.2 if X is of dimension � 4, then O(X) is Hermite, and 
if X is one-dimensional and connected, then O(X) is projective free.
(2) Let U be an open subset of a Stein manifold X. Equipped with the topology of uniform 
convergence on compact subsets of U , the algebra O(U) becomes a complex Fréchet 
space. Each nonzero homomorphism O(U) → C is an element of the dual space O(U)∗
(see, e.g., [25, Chap. 5, §7.1]). The space of such homomorphisms equipped with the 
weak-∗ topology of O(U)∗ is denoted by M(O(U)). If f ∈ O(U), then f̂ ∈ C(M(O(U)))
is defined by f̂(α) = α(f) for each α ∈ M(O(U)).

Since X is Stein, M(O(X)) = X (see, e.g., [25, Chap. 5, §7]), so we have the natural 
restriction map πU : M(O(U)) → X given by πU (α)(f) = α(f |U ). Rossi [41] has shown 
that M(O(U)) admits the structure of a Stein manifold in such a way that: (i) the map 
U → M(O(U)) sending z ∈ U to the evaluation homomorphism at z is a biholomorphism 
of U with an open subset of M(O(U)) (we will regard U as an open subset of M(O(U))); 
(ii) if f ∈ O(U), then f̂ is the unique holomorphic extension of f to M(O(U)) (so that 
O(M(O(U))) ∼= O(U)); (iii) πU is locally a biholomorphism. This and Theorem 3.2
imply that
• if X is of dimension � 4, then the algebra O(U) is Hermite.

Assume, in addition, that the set U is holomorphically contractible (e.g., X = Ck and 
U ⊂ X is a star-shaped domain), then
• the algebra O(U) is projective free.

Indeed, let the holomorphic contraction be given by a continuous map H : U×[0, 1] →
U , so that H(·, 1) = idU , H(·, 0) = zo ∈ U , and H(·, t) : U → U is holomorphic for all 
t ∈ [0, 1]. Then H determines the map H∗ from [0, 1] to the set of homomorphisms 
O(U) → O(U) given by (H∗(t))(f) = f(H(·, t)). The transpose of each H∗(t) induces 
a holomorphic map Ĥ(·, t) : M(O(U)) → M(O(U)) such that Ĥ(·, t)|U = H(·, t). 
Let us show that Ĥ : M(O(U)) × [0, 1] → M(O(U)) is continuous. To this end, let 
{(zn, tn)}n∈N ⊂ M(O(U)) × [0, 1] be a sequence converging to (z, t) ∈ M(O(U)) × [0, 1]. 
For each f ∈ O(U),
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lim
n→∞

|(Ĥ(zn, tn) − Ĥ(z, t))(f)|

� lim
n→∞

|(Ĥ(zn, tn) − Ĥ(zn, t))(f)| + lim
n→∞

|(Ĥ(zn, t) − Ĥ(z, t))(f)|

= lim
n→∞

|zn(f(H(·, tn)) − f(H(·, t)))| + lim
n→∞

|(zn − z)(f(H(·, t)))| =: I + II.

By the definition of convergence in the weak-∗ topology, the limit II equals 0. Similarly, 
by continuity of H, the sequence of functions {f(H(·, tn))}n∈N ⊂ O(U) converges uni-
formly on compact subsets of U to the function f(H(·, t)) ∈ O(U). Since zn ∈ O(U)∗, 
the latter implies that the limit I equals 0 as well. Hence, limn→∞ Ĥ(zn, tn) = Ĥ(w, t)
in the topology of M(O(U)), as required.

Thus, Ĥ : M(O(U)) × [0, 1] → M(O(U)) is a homotopy between Ĥ(·, 1) = idM(O(U))
and Ĥ(·, 0) = zo, i.e., the Stein manifold M(O(U)) is holomorphically contractible. From 
here and Theorem 3.2, it follows that the algebra O(U) ∼= O(M(O(U))) is projective 
free.

4. Commutative unital complex Banach algebras

Recall that for a commutative unital complex Banach algebra A, the maximal ideal 
space M(A) ⊂ A∗ is the set of nonzero homomorphisms A → C5 endowed with the 
Gelfand topology, the weak-∗ topology of A∗. It is a compact Hausdorff space contained in 
the unit sphere of A∗. The Gelfand transform ̂ : A → C(M(A)), defined by â(ϕ) := ϕ(a)
for a ∈ A and ϕ ∈ M(A), is a nonincreasing-norm morphism of Banach algebras.

Theorem 4.1. Let A be a commutative unital complex Banach algebra. Then:

(1) A is projective free if and only if C(M(A)) is projective free.
(2) A is Hermite if and only if C(M(A)) is Hermite.

In particular, if M(A)∼
h

lim←−−Xi, where the Xi are finite-dimensional compact Hausdorff 
spaces such that Hn(Xi, Z) = 0 for all n � 5, then A is Hermite. If, in addition, each 
space Xi is connected and H2(Xi, Z) = H4(Xi, Z) = 0, then A is projective free.

Parts (1) and (2) of the theorem follow from a one-to-one correspondence (determined 
via the Gelfand transform) between the isomorphism classes of finitely generated projec-
tive A modules and the isomorphism classes of complex vector bundles over M(A) (see 
[39], and also [54, §7.5, Theorem on p.199]) along with the Swan theorem [52, Theorem 
2]. In turn, the last statement follows from Theorem 2.8.

Let Ā be the uniform closure in C(M(A)) of the image under the Gelfand transform 
of algebra A. It is known that M(Ā) = M(A), see, e.g., [42, Proposition 3]. Then we 
obtain from Theorem 4.1:

5 Every such homomorphism is continuous, see, e.g., [34, §23(A), Theorem].
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Corollary 4.2. A is projective free or Hermite if and only if Ā is projective free or Her-
mite.

Example 4.3. (1) Let L1[0, 1] be the Banach space of complex-valued Lebesgue integrable 
functions on [0, 1] with the norm ‖f‖1 :=

∫ 1
0 |f(t)|dt. The space L1[0, 1] equipped with 

the multiplication given by truncated convolution (f ∗g)(t) :=
∫ t

0 f(τ)g(t −τ)dτ becomes 
a complex commutative Banach algebra V called the Volterra algebra. The algebra V
is non-unital without maximal ideals, see, e.g., [37, Example 9.82]. Let V1 denote the 
algebra of pairs (f, c), where f ∈ V and c ∈ C with addition and multiplication given by

(f, c) + (f ′, c′) := (f + f ′, c + c′), (f, c) · (f ′, c′) := (f ∗ f ′ + c · f ′ + c′ · f, c · c′).

We equip V1 with the norm ‖(f, c)‖ := ‖f‖1 + |c|. Then V1 becomes a commutative 
unital complex Banach algebra. Since V is without maximal ideals, V × {0} is the only 
maximal ideal of V1. Thus due to Theorem 4.1 the algebra V1 is projective free.
(2) Let A be a commutative unital complex Banach algebra such that the algebra Ā ⊂
C(M(A)) is generated by k elements (this is true, e.g., if A itself is generated by k
elements). Then A is Hermite if k � 5, and projective free if k � 2 and A does not 
contain nontrivial idempotent elements. Indeed, in this case M(A) is homeomorphic to a 
polynomially convex subset of Ck (see, e.g., [21, Chap. III, Theorem 1.4]). Recall that a 
compact set K ⊂ Ck is polynomially convex if for every z /∈ K there is a polynomial p ∈
C[z1, . . . , zk] such that |p(z)| > supw∈K |p(w)|. It is known, see, e.g., [50, Corollary 2.3.6], 
that if K ⊂ Ck is a compact polynomially convex set, then Hn(K, Z) = 0 for all n � k. 
This and Theorem 4.1 imply that A is Hermite if k � 5. If k � 2 and A does not contain 
nontrivial idempotent elements, then due to the Shilov idempotent theorem (see, e.g., 
[21, Chap. III, Corollary 6.5]) M(A) is connected. Hence, in this case Theorem 4.1 implies 
that A is projective free.
(3) Let L∞(S) be the Banach algebra of essentially bounded measurable complex-valued 
functions on a measure space S, with pointwise operations and the supremum norm. 
Then the maximal ideal space M(L∞(S)) is totally disconnected (see, e.g., [21, Chap. I, 
Lemma 9.1]) and, hence, dimM(L∞(S)) = 0. Thus, Theorem 4.1 implies that the algebra 
L∞(S) is Hermite.
(4) Let D := {z ∈ C : |z| < 1} and T := {z ∈ C : |z| = 1}. With pointwise operations and 
the supremum norm, L∞ denotes the Banach algebra of essentially bounded Lebesgue 
measurable functions on T , and H∞ the Banach algebra of all bounded holomorphic 
functions in D. Via identification with boundary values, H∞ is a uniformly closed sub-
algebra of L∞. According to the Chang-Marshall theorem, see, e.g., [22, Chap. IX, §3], 
any uniformly closed subalgebra A between H∞ and L∞ is a Douglas algebra generated 
by H∞ and a family BA ⊂ H∞ of functions conjugate to some inner functions of H∞

(written A = [H∞, BA]). If H∞ � A, then the maximal ideal space M(A) is a closed 
subset of M(H∞) \D of the form (see, e.g., [22, Chap. IX, Theorem 1.3]):
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M(A) =
⋂

ū∈BA

{x ∈ M(H∞) : |x(u)| = 1}.

According to the results of Suárez [51], for each closed set K ⊂ M(H∞) dimK � 2 and 
H2(K, Z) = 0. This and Theorem 4.1 imply that A is Hermite and it is projective free 
if M(A) is connected. Next, due to the Shilov idempotent theorem, M(A) is connected 
if and only if A does not contain nontrivial idempotents in L∞. For instance, M(A) is 
connected if A is one of the algebras: H∞, H∞+C, where C := C(T ), or B1 = [H∞, C1]
(the closed subalgebra generated by H∞ and the Banach algebra C1 of all complex-valued 
functions on T which are continuous except possibly at z = 1 but which have one-sided 
limits at z = 1; for details, see e.g., [45] or [22, Chap. IX, Exercise 7]). Thus, in these 
special cases, A is projective free.

5. The class C

One way to construct new Banach algebras from known ones is to take their projective 
tensor product. In general, the projective tensor product of projective free or Hermite 
Banach algebras does not inherit the property. In this section we introduce a new class of 
projective free Banach algebras such that their projective tensor product with projective 
free or Hermite Banach algebras continues to be projective free or Hermite, respectively.

A topological space X is said to be of trivial shape if every continuous map from X to 
an ANR is homotopic to a constant map; see, e.g., [35, p.248]. A space of trivial shape 
generalises the notion of a contractible space, and, in particular, if a space of trivial shape 
is homotopy equivalent to an ANR, then it is contractible. If X is a compact Hausdorff 
space of trivial shape, then it is connected and Čech cohomology groups Hk(X, Z) = 0
for all k � 1.

We say that a commutative unital complex Banach algebra A belongs to the class C
if M(A) is a space of trivial shape. In this section, we study some properties of class C .

Let B, C be unital closed subalgebras of a commutative unital complex Banach algebra 
A, and let B⊗̂AC ⊂ A be the closure of the subalgebra 〈B, C〉 generated by B and C. 
Following [1], we assume that the following property is satisfied:

There exists a constant c such that for all ξ ∈ M(B) and every n ∈ N and bi ∈ B, 
ci ∈ C, 1 � i � n, ∥∥∥∥∥

n∑
k=1

ξ(bk)ck

∥∥∥∥∥
C

� c

∥∥∥∥∥
n∑

k=1

bkck

∥∥∥∥∥
A

. (5.1)

Example 5.1. (For basic definitions and results on topological tensor products, see, e.g., 
[44].)

Let B, C be commutative unital complex Banach algebras and let B⊗̂αC be the 
completion of the algebraic tensor product B⊗C equipped with a reasonable crossnorm
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‖·‖α, i.e., such that ‖v‖ε � ‖v‖α � ‖v‖π for all v ∈ B ⊗ C. Here ‖·‖π and ‖·‖ε denote 
the projective and injective tensor norms on B ⊗ C, given for v ∈ B ⊗ C by

‖v‖π := inf
{ n∑

i=1
‖bi‖B ‖ci‖C : v =

n∑
i=1

bi ⊗ ci, n ∈ N
}
,

‖v‖ε := sup{|(ξ ⊗ η)(v)| : ξ ∈ B∗, ‖ξ‖B∗ � 1, η ∈ C∗, ‖η‖C∗ �1}.

(As usual, B∗ and C∗ stand for duals of B and C, respectively.)
Suppose that B⊗̂αC is a Banach algebra with operations compatible with operations 

on B ⊗ C. Then (5.1) is satisfied with c = 1 when A := B⊗̂αC. This is the case, e.g., 
if A is (a) the projective tensor product B⊗̂πC; (b) the injective tensor product B⊗̂εC

where either B or C is a uniform algebra; see, e.g., [15, §1.3] for the references. (For 
other examples see, e.g., [47, Theorem 4].)

Let iB denote the embedding B ↪→ B ⊗̂AC.

Theorem 5.2. If C ∈ C , then the correspondence

P ∼= B ⊗B P
iB⊗idP

−−−→ (B ⊗̂AC) ⊗B P (5.2)

determines a bijection between isomorphism classes of finitely generated projective B
modules and finitely generated projective B ⊗̂AC modules.

Remark 5.3. The result shows that the class C is an analog of the class of local rings 
(i.e., those with unique maximal ideals) in commutative algebra (see, e.g., [2] for the 
corresponding definitions and results). Indeed, if S is a local commutative ring with the 
maximal ideal m and R is a commutative ring, then for the completion in the Krull 
topology R̂⊗ SI := lim←−−(R ⊗ S)/In with respect to the ideal I = R ⊗ m, we obtain an 

analog of Theorem 5.2, i.e., the correspondence R �→ R̂⊗ SI induces a bijection between 
isomorphism classes of finitely generated projective R modules and finitely generated 
projective R̂⊗ SI modules. Note that the canonical map π from R ⊗ S to R̂⊗ SI is 
injective on R⊗1S (∼= R). If, in addition, S is Noetherian, then by the Krull intersection 
theorem, ∩∞

n=1m
n = 0 and, hence, π is injective on 1R × S (∼= S) (here 1S and 1R are 

units in S and R). Moreover, the subalgebra generated by π(R ⊗ 1S) and π(1R ⊗ S)
is dense in R̂⊗ SI . Thus, in this case the completion R̂⊗ SI is an analog of B⊗̂AC in 
Theorem 5.2.

To prove Theorem 5.2, first, we prove the following general result.

Lemma 5.4. Under condition (5.1), M(B ⊗̂AC) is homeomorphic to M(B) ×M(C).



A. Brudnyi, A. Sasane / Advances in Mathematics 434 (2023) 109322 15
Proof. Condition (5.1) implies that for ξ ∈ M(B) the map 〈B, C〉 → C,(
n∑

k=1

bkck

)
�→

n∑
k=1

ξ(bk)ck ∈ C, (5.3)

extends by continuity to a bounded multiplicative projection

Pξ : B⊗̂AC → C.

In particular, η ◦ Pξ ∈ M(B ⊗̂AC) for each η ∈ M(C). It is easily seen that the map

F : M(B) ×M(C) → M(B ⊗̂AC), F (ξ, η) := η ◦ Pξ,

is continuous. Also, F is injective, as if η1◦Pξ1 = η2◦Pξ2 for some (ξi, ηi) ∈ M(B) ×M(C), 
i = 1, 2, then for all b ∈ B, c ∈ C,

ξ1(b)η1(c) = ξ2(b)η2(c). (5.4)

Applying (5.4) with c = 1 (the unit of A) and then again with b = 1, we get ξ1 = ξ2 and 
η1 = η2, as required.

Further, the map F is surjective, as if ϕ ∈ M(B ⊗̂AC), then clearly ξ := ϕ|B ∈ M(B)
and η := ϕ|C ∈ M(C) and due to (5.3)

F (ξ, η)
(

n∑
k=1

bkck

)
= (η ◦ Pξ)

(
n∑

k=1

bkck

)
= η

(
n∑

k=1

ϕ(bk)ck

)

=
n∑

k=1

ϕ(bk)ϕ(ck) = ϕ

(
n∑

k=1

bkck

)
,

i.e., F (ξ, η) = ϕ.
This completes the proof of the lemma. �

Proof of Theorem 5.2. Due to Lemma 5.4 without loss of generality we will identify 
M(B ⊗̂AC) with M(B) ×M(C). Then the transpose of iB restricted to M(B ⊗̂AC) is 
the map pB : M(B) ×M(C) → M(B), pB(x, y) = x for all (x, y) ∈ M(B) ×M(C).

According to the Novodvorski-Taylor theorem ([39], [54, §7.5]) and the Swan theorem 
[52], to prove the result we must show that the pullback by pB determines a bijection 
between isomorphism classes of complex vector bundles over M(B) and M(B) ×M(C). 
In turn, it suffices to prove the same for complex vector bundles of constant rank over 
clopen subsets U ⊂ M(B) and U ×M(C) ⊂ M(B) ×M(C).

To this end, we present U as lim←−−Ui, where all Ui are finite-dimensional compact 
simplicial complexes (cf. the argument of the proof of Theorem 2.8). Then U ×M(C) =
lim(Ui ×M(C)). Moreover, if πi : U → Ui are canonical projections for the first limit, 
←−−
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then π̃i := (πi, idM(C)) : U × M(C) → Ui × M(C) are canonical projections for the 
second one.

Suppose E is a complex vector bundle of rank n over U×M(C). Due to Lemma 2.6(2) 
there is an index i and a complex vector bundle Ei over Ui × M(C) such that the 
pullback bundle π̃∗

i (Ei) ∼= E. Then there is a map h ∈ C(Ui, Grn(Cm))6 from Ui into a 
complex Grassmanian such that h∗(γn,m) ∼= Ei, where γn,m is the tautological bundle 
over Grn(Cm), see, e.g., [30, Part I, Theorem 3.5.5]. Consider the map H : M(C) →
C(Ui, Grn(Cm)),

H(y)(x) := h(x, y), y ∈ M(C), x ∈ Ui.

Since Ui is an ANR (as it is a compact simplicial complex; see, e.g., [29, Chap. III, 
Corollary 8.4]), and also Grn(Cm) is an ANR (as it is a compact complex manifold 
[29, Chap. III, Corollary 8.3]), the space C(Ui, Grn(Cm)) of continuous maps from Ui

to Grn(Cm) equipped with the topology of uniform convergence is an ANR as well; 
see, e.g. [29, Chapter VI, Theorem 2.4]. Moreover, since every continuous map between 
compact metrisable spaces is uniformly continuous, the map H is continuous. Thus by 
the definition of a space of trivial shape, H is homotopic to a constant map M(C) →
C(Ui, Grn(Cm)). This homotopy gives rise to a homotopy between h and a map ho :
Ui ×M(C) → Grn(Cm), ho(x, y) := h(x, o) for all (x, y) ∈ Ui ×M(C), where o ∈ M(C)
is a fixed point. In particular, we have the following isomorphisms of bundles

Ei
∼= h∗(γn,m) ∼= h∗

o(γn,m) ∼= p∗i (Ei), (5.5)

where pi : Ui×M(C) → Ui×{o} is defined by the formula pi(x, y) = (x, o) for all x ∈ Ui. 
Applying to (5.5) the pullback map π̃∗

i we obtain that the bundle E is isomorphic to the 
pullback by the natural projection U×M(C) → U×{o} of the restriction of E to U×{o}. 
Since pB maps Ui × {o} homeomorphically onto U , this shows that E is isomorphic to 
a bundle pulled back by pB from U . Thus the map p∗B determines a surjection between 
isomorphism classes of complex vector bundles over M(B) and M(B) ×M(C). Clearly, 
it determines an injection between these sets as well, since if E1, E2 are bundles over 
M(B) such that the pullback bundles p∗B(E1) and p∗B(E2) are isomorphic, then their 
restrictions to M(B) × {o} are isomorphic and so E1 and E2 must be isomorphic.

The proof of the theorem is complete. �
Theorem 5.2 leads straightforwardly to the following:

Corollary 5.5. Let B, C ⊂ A be Banach algebras satisfying conditions of Theorem 5.2. If 
C ∈ C and B is Hermite, then B ⊗̂AC is Hermite. If C ∈ C and B is projective free, 
then B ⊗̂AC is projective free.

6 For topological spaces X, Y we denote by C(X, Y ) the set of continuous maps from X to Y .
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Let B, C be commutative unital complex Banach algebras and ‖·‖α be a norm on 
the algebraic tensor product B ⊗ C. Let A := B⊗̂αC be the completion of B ⊗ C

with respect to ‖·‖α. Suppose that A is a Banach algebra. Identifying B and C with 
subalgebras B⊗ 1C and 1B ⊗C of A (here 1B and 1C are units of B and C), we assume 
that the triple B, C, A satisfies condition (5.1). Then we have:

Proposition 5.6. If B, C ∈ C , then A ∈ C .

Proof. According to Lemma 5.4, M(A) is homeomorphic to the direct product M(B) ×
M(C). Let f : M(B) × M(C) → X be a continuous map to an ANR X. Since by the 
hypotheses M(C) is of trivial shape, repeating the arguments of the proof of Theorem 5.2, 
we obtain that f is homotopic to the continuous map fo : M(B) ×M(C) → X, where 
fo(x, y) := f(x, o) for all (x, y) ∈ M(B) ×M(C); here o ∈ M(C) is a fixed point. In turn, 
since M(B) is of trivial shape, the restriction fo|M(B) is homotopic to a constant map. 
This implies that fo (and, hence, f) is homotopic to a constant map. Thus, M(B) ×M(C)
is of trivial shape, as required. �
6. Examples

In Sections 6.1 and 6.2 we present some examples of algebras of class C . We restrict 
ourselves to the case of semisimple algebras only. The choice of examples of Sections 6.3
and 6.4 is based on the research interests of the authors.

6.1. Banach algebras of symmetric functions

Recall that the polynomial convex hull of a bounded set K ⊂ Cn is the minimal 
polynomially convex set K̂ � Cn containing K, i.e.,

K̂ :=
{
z ∈ Cn : |p(z)| � sup

w∈K
|p(w)| for all p ∈ C[z1, . . . , zn]

}
.

If A is a finitely generated semisimple commutative unital complex Banach algebra 
with generators f1, . . . , fn, then the map

F (x) := (x(f1), . . . , x(fn)), x ∈ M(A), (6.1)

is an embedding with image a polynomially convex subset of Cn (see, e.g., [21, Chap. 
III, Theorem 1.4]). If we identify M(A) with F (M(A)), then A becomes a (not neces-
sarily closed) subalgebra of C(F (M(A))) such that the restriction of polynomial algebra 
C[z1, . . . , zn] to F (M(A)) is dense in A. In what follows, we consider a more general 
situation of a unital complex Banach algebra A ⊂ Cb(K) on a subset K � Cn such that 
C[z1, . . . , zn]|K is dense in A. We also assume that A is weakly inverse closed, that is, it 
possesses the following property:
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(wi) If f ∈ A, and supK |f(x)| < 1, then 1
1−f ∈ A.

Under these conditions, M(A) is naturally identified with K̂, see, e.g., [42, Proposition 
1] and [21, Chap. III, Theorem 1.4].

Let G ⊂ GLn(C) be a finite group of order |G|. We say that the Banach algebra 
A ⊂ C(K) is G-invariant if G(K) = K and A is invariant with respect to the action 
of G on C(K): g∗(f) = f ◦ g for all f ∈ C(K), g ∈ G. (Since C[z1, . . . , zn] is invariant 
with respect to the action of G, this implies that G(K̂) = K̂ as well.) In this case, each 
g∗ : A → A, g ∈ G, is an automorphism of A, and since A is semisimple, each g∗ is 
continuous (see, e.g., [34, §24B, Theorem]).

For a G-invariant algebra A, the subalgebra AG ⊂ A of elements invariant with respect 
to the action of G on A (i.e., such f ∈ A that g∗(f) = f for all g ∈ G) is said to be 
G-symmetric.

Let PG ⊂ C[z1, . . . , zn] be the subalgebra of polynomials invariant with respect to 
the action of G. If f ∈ AG and (pj)j∈N ⊂ C[z1, . . . , zn] is a sequence such that f =
limj→∞ pj |K , then all p̃j := 1

|G|
∑

g∈G g∗(pj) ∈ PG and f = limj→∞ p̃j |K (because all 
g∗ : A → A are continuous). Hence, PG|K is a dense subalgebra of AG.

By the Hilbert basis theorem, see, e.g., [2, Theorem 7.5], there exist homogeneous 
polynomials h1, . . . , hm ∈ C[z1, . . . , zn], m � n, invariant with respect to the action of G
which generate PG.7 Hence, AG is generated by elements h1|K , . . . , hm|K . In particular, 
the continuous map FG : M(AG) → Cm,

FG(x) := (x(h1|K), . . . , x(hm|K)), x ∈ M(AG), (6.2)

embeds M(AG) into Cm as a polynomially convex subset. On the other hand, by 
Lemma 7.1 we obtain that M(AG) can be identified with the quotient space K̂/G. 
In this identification, if π : K̂ → K̂/G is the quotient map, then AG is isomorphic to a 
subalgebra ÃG ⊂ C(K̂/G) such that π∗(f)|K ∈ AG for all f ∈ ÃG. Let h̃i ∈ ÃG be such 
that π∗(h̃i) = hi|K̂ , 1 � i � m. Then the map FG becomes

FG(x) := (h̃1(x)), . . . , h̃m(x)), x ∈ K̂/G.

This implies that the map H := (h1, . . . , hm) : Cn → Cm maps K̂ onto FG(K̂/G).

Remark 6.1. The image H(Cn) is an n-dimensional complex algebraic subvariety of Cm. 
For each polynomially convex set S ⊂ Cn invariant with respect to the action of G on Cn, 
the uniform algebra P (S) (defined as the closure in C(S) of the algebra C[z1, . . . , zn]|S) 
is n-generated, G-invariant, and M(P (S)) = S. Hence, the map H determines a one-to-
one correspondence S �→ H(S) between G-invariant polynomially convex subsets of Cn

and polynomially convex subsets of Cm lying in H(Cn).

7 For instance, if G = Sn acts by permutation of coordinates, then we can choose hi to be the elementary 
symmetric polynomial of degree i, 1 � i � n.
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Proposition 6.2. Suppose A ⊂ C(K) is G-invariant for some finite group G ⊂ GLn(C)
and K � Cn star-shaped with respect to the origin. Then AG ∈ C . In particular, AG is 
projective free.

Proof. Since K is star-shaped with respect to the origin and all hi are homogeneous 
polynomials, we have t · z ∈ K for all z ∈ K, t ∈ [0, 1] and

H(t · z) =
(
tdegh1 · h1(z), . . . , tdeghm · hm(z)

)
.

We set for w = (w1, . . . , wm) ∈ Cm and t ∈ [0, 1],

D(w, t) :=
(
tdegh1 · w1, . . . , t

deghm · wm

)
.

Then D : Cm × [0, 1] → Cm is continuous, maps FG(K̂/G) × [0, 1] into FG(K̂/G) and 
is such that D(·, 1) = id

FG(K̂/G) and D(·, 0) = 0. Hence, FG(K̂/G) is contractible and 
therefore AG ∈ C , as required. �

Let us consider several explicit examples of nonuniform algebras A.
(1) Let ω : R+ → R+ be a nondecreasing concave function, not identically zero, and 
such that ω(0) = 0. We set

d(z1, z2) := ω(‖z1 − z2‖), z1, z2 ∈ Cn,

where ‖ · ‖ is the Euclidean norm on Cn (∼= R2n).
Then d is a metric on Cn compatible with its topology.
For a bounded set K ⊂ Cn, let Lipd(K) ⊂ C(K) be the Banach algebra of complex-

valued Lipschitz functions on K with respect to d, equipped with norm

‖f‖Lip := sup
K

|f | + sup
x
=y

|f(x) − f(y)|
d(x, y) .

In this case, A is defined to be the completion in Lipd(K) of the algebra C[z1, . . . , zn]|K . 
Clearly, A is weakly inverse closed, see (wi).
(2) Let Cp(K) ⊂ C(K) be the restriction to K of the algebra Cp(Cn) of bounded 
complex-valued functions f on Cn having bounded continuous partial derivatives up to 
order p with the norm the sum of supremum norms of f and of all its partial derivatives. 
Equipped with the quotient norm, Cp(K) becomes a unital commutative Banach algebra. 
In this case, A is defined to be the completion in Cp(K) of the algebra C[z1, . . . , zn]|K . 
Clearly, A is weakly inverse closed, see (wi).

If G ⊂ GLn(C) is a finite group and K is invariant with respect to the action of G
on Cn, then it is easy to check that algebras Lipd(K) and Cp(K) are G-invariant. Since 
C[z1, . . . , zn]|K is invariant with respect to the corresponding action of G, this implies 
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that the algebras AG of G-symmetric Lipd(K) and Cp(K) functions are G-invariant as 
well. If, in addition K is star-shaped with respect to the origin, then by Proposition 6.2, 
these algebras are projective free.

6.2. Bohr-Wiener algebras

Let G be a connected compact abelian group and let Γ be its (multiplicative) char-
acter group. Thus Γ consists of continuous homomorphisms of G into the group T of 
unimodular complex numbers and separates points of G. As G is connected, Γ can be 
made into a linearly ordered group (see e.g. [43, 8.1.8]). Let � be a fixed linear order 
such that (Γ, �) is an ordered group. We henceforth write Γ additively and denote its 
identity element by 0.

Standard widely used examples of Γ are Zk and Rk (k ∈ Z+) with a lexicographic 
ordering; here we use usual addition in Z and in R, and the discrete topology in both 
cases.

For a nonempty set I, we denote by �1(I) the complex Banach space of complex-valued 
sequences a = (ai)i∈I with pointwise operations and the norm

‖a‖1 :=
∑
i∈I

|ai|.

If ∅ 	= J ⊂ I, then we view �1(J) as a subset of �1(I).
If I = Γ, then �1(Γ) is a commutative unital complex Banach algebra with multipli-

cation given by convolution:

(a ∗ b)j =
∑
k∈Γ

akbj−k, a = (aj)j∈Γ, b = (bj)j∈Γ ∈ �1(Γ).

The algebra �1(Γ) is semisimple and its maximal ideal space is G. The Gelfand trans-
form ˆ : �1(Γ) → C(G) is given by the formula

â(g) :=
∑
j∈Γ

ajej(g), g ∈ G, a = (aj)j∈Γ ∈ �1(Γ). (6.3)

Here ej(g) := 〈j, g〉 ∈ T is the action of j ∈ Γ on g ∈ G.
The function â is called the symbol of a with Bohr-Fourier coefficients aj and with the 

Bohr-Fourier spectrum {j ∈ Γ : aj 	= 0}. The image of �1(Γ) under ̂ is denoted by W (G). 
For a subsemigroup Σ of Γ, we denote by W (G)Σ the algebra of symbols of elements 
in �1(Σ). We let C(G)Σ be the closure of W (G)Σ in C(G) (so that C(G)Γ = C(G)). 
The notions of Bohr-Fourier coefficients and spectrum are extended from functions in 
W (G) to C(G) by continuity. The Bohr-Fourier spectrum of an element of C(G) is at 
most countable, and C(G)Σ coincides with the set of functions having the Bohr-Fourier 
spectra in Σ.
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Assume that Σ ⊂ Γ is pointed, i.e., such that

0 ∈ Σ, and Σ ∩ (−Σ) = {0}. (6.4)

(E.g., if Γ+ = {j ∈ Γ : 0 � j}, Γ− = {j ∈ Γ : j � 0}, then Γ+ and Γ− are pointed 
subsemigroups.)

Theorem ([9, Theorem 1.2]). If Σ is a pointed subsemigroup, then the algebras W (G)Σ
and C(G)Σ belong to the class C .

Next, for a commutative unital complex Banach algebra B with norm ‖ · ‖B , we let 
�1(Σ, B) denote the complex Banach space of B-valued sequences b = (bj)j∈Σ with 
pointwise operations and the norm

‖b‖1,B :=
∑
j∈Σ

‖bj‖B .

Then the projective tensor product B⊗̂πW (G)Σ consists of B-valued continuous func-
tions on G

b̃(g) :=
∑
j∈Σ

bjej(g), g ∈ G, b = (bj)j∈Σ ∈ �1(Σ, B),

with norm ‖b̃‖ := ‖b‖1,B .
In turn, the injective tensor product B⊗̂εC(G)Σ is the closure of the commutative algebra 
B⊗̂πW (G)Σ in C(G, B) equipped with norm ‖f‖ := maxg∈G ‖f(g)‖B .

Now Theorem 5.2 implies the following:

Corollary. If Σ is a pointed subsemigroup, then the correspondences

P ∼=B ⊗B P
(idB⊗1)⊗idP

−−−−−−−−→ (B⊗̂πW (G)Σ) ⊗B P

P ∼=B ⊗B P
(idB⊗1)⊗idP

−−−−−−−−→ (B⊗̂εC(G)Σ) ⊗B P

determine bijections between isomorphism classes of finitely generated projective B mod-
ules and finitely generated projective B⊗̂πW (G)Σ and B⊗̂εC(G)Σ modules, respectively.

In particular, if B is projective free (or Hermite), then the algebras B⊗̂πW (G)Σ and 
B⊗̂εC(G)Σ are projective free (respectively, Hermite).

6.3. Algebras of holomorphic semi-almost periodic functions

Recall that f ∈ Cb(R) is almost periodic if the family {Sτf : τ ∈ R} of its translates, 
where (Sτf)(x) := f(x + τ) (x ∈ R), is relatively compact in Cb(R). Let AP (R) be the 
Banach algebra of almost periodic functions endowed with the supremum norm.
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Let T be the boundary of the unit disc D, with the counterclockwise orientation. 
For s := eit, t ∈ [0, 2π), let γk

s (δ) := {seikx : 0 � x < δ < 2π}, k ∈ {−1, 1}, be two 
open arcs having s as the right and the left endpoints (with respect to the orientation), 
respectively.

A function f ∈ L∞(:= L∞(T )) is semi-almost periodic if for any s ∈ T , and any ε > 0
there exist a number δ = δ(s, ε) ∈ (0, π) and functions fk : γk

s (δ) → C, k ∈ {−1, 1}, such 
that functions

f̃k(x) := fk(seikδe
x

), −∞ < x < 0, k ∈ {−1, 1},

are restrictions of some almost periodic functions from AP (R), and

sup
z∈γk

s (δ)
|f(z) − fk(z)| < ε, k ∈ {−1, 1}.

By SAP we denote the Banach algebra of semi-almost periodic functions on T endowed 
with the supremum norm. The algebra SAP contains as a special case an algebra in-
troduced by Sarason [46] in connection with some problems in the theory of Toeplitz 
operators.

It is easy to see that the set of points of discontinuity of a function in SAP is at 
most countable. For a closed subset S of T , we denote by SAP (S) the Banach algebra 
of semi-almost periodic functions on T that are continuous on T \ S.

Next, for a semi-almost periodic function f ∈ SAP , k ∈ {−1, 1}, and a point s ∈ S, 
the left (k = −1) and the right (k = 1) mean values of f over s are given by the formulas

Mk
s (f) := lim

n→∞
1

bn − an

bn∫
an

f(seike
t

)dt, (6.5)

where (an)n∈N and (bn)n∈N are arbitrary sequences of real numbers converging to −∞
such that lim

n→∞
(bn − an) = +∞.

The Bohr-Fourier coefficients of f over s can be then defined by the formulas

akλ(f, s) := Mk
s (fe−iλ logk

s ), (6.6)

where

logks(seikx) := log x, 0 < x < 2π, k ∈ {−1, 1}.

The spectrum of f over s is

specks(f) := {λ ∈ R : akλ(f, s) 	= 0}. (6.7)

Let Σ : S × {−1, 1} → 2R be a set-valued map which associates with each s ∈ S, 
k ∈ {−1, 1}, a unital semi-group Σ(s, k) ⊂ R. By SAPΣ(S) ⊂ SAP (S), we denote the 
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Banach algebra of semi-almost periodic functions f with specks(f) ⊂ Σ(s, k) for all s ∈ S, 
k ∈ {−1, 1}.

Let H∞ be the Banach algebra of bounded holomorphic functions in D with the 
supremum norm. Then SAPΣ(S) ∩H∞ is called the algebra of holomorphic semi-almost 
period functions with spectrum Σ.

If f ∈ SAPΣ(S) ∩H∞, then

spec−1
s (f) = spec1

s(f) =: specs(f) (6.8)

and, moreover,

a−1
λ (f, s) = eλπa1

λ(f, s) for each λ ∈ specs(f), (6.9)

see [10, Proposition 3.3]. Thus, SAPΣ(S) ∩H∞ = SAPΣsym(S) ∩H∞, where Σsym(s) :=
Σsym(s, ±1) = Σ(s, −1) ∩ Σ(s, 1) for all s ∈ S.

Let AS
Σ be the closed subalgebra of H∞ generated by the disk-algebra A(D) and the 

functions of the form geλh, where Re(h)|T is the characteristic function of the closed 
arc going in the counterclockwise direction from the initial point at s to the endpoint 
at −s such that s ∈ S, λπ ∈ Σsym(s) and g(z) := z + s, z ∈ D (in particular, geλh has 
discontinuity at s only). It is shown in [10, Corollary 3.7] that

SAPΣ(S) ∩H∞ = AS
Σ.

Let bSΣ denote the maximal ideal space of the algebra SAPΣ(S) ∩ H∞. The structure 
of bSΣ is described in [10, Theorem 3.13]. Specifically, the transpose of the embedding 
A(D) ↪→ SAPΣ(S) ∩H∞ determines a continuous epimorphism aSΣ : D̄ \ S → D̄ one-to-
one over D̄\S and such that for each s ∈ S the fibre of aSΣ over s is homeomorphic to the 
maximal ideal space bΣsym(s)(T ) of the algebra APHΣsym(s)(T ) of holomorphic almost 
periodic functions on the closed strip T = {z ∈ C : Im(z) ∈ [0, π]} with the spectrum 
in Σsym(s).

Now, we have (cf. [9, Theorem 1.2]):

Theorem ([10, Theorem 3.19]).

(1) The map of cohomology groups induced by embeddings (aSΣ)−1(s) ↪→ bSΣ, s ∈ S, 
produces an isomorphism

Hk(bSΣ,Z) ∼=
⊕
s∈S

Hk(bΣsym(s)(T ),Z), k � 1.

(2) Suppose that each Σsym(s) is a subset of R+ or R−. Then Hk(bSΣ, Z) = 0 for all 
k � 1 and the algebra SAPΣ(S) ∩H∞ is projective free.
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6.4. Algebras of bounded holomorphic functions

Let X be a connected Riemann surface such that the Banach algebra H∞(X) of 
bounded holomorphic functions on X separates points of X. Since X is homotopy equiv-
alent to a one-dimensional CW -complex, Theorem 2.8 and Proposition 2.1 imply that the 
algebras C(X) and Cb(X) are projective free. The transpose of the isometric embedding 
H∞(X) ↪→ Cb(X) induces a continuous map p : β(X) → M(H∞(X)) of the maximal 
ideal spaces, with image clX, the closure of X (identified with the set of evaluations 
at points of X) in M(H∞(X)). Since dimX = 2 and H2(X, Z) = 0, dim βX = 2 and 
H2(βX, Z) = 0 as well (see the proof of Theorem 2.9 for the references). Moreover, the 
map p is identical on X. These make the following conjecture plausible (cf. the Question 
in [7]):

Conjecture 6.3. The covering dimension of clX is 2 and the Čech cohomology group 
H2(clX, Z) = 0.

If the conjecture is true, it implies the validity of the following:

Conjecture 6.4. If clX = M(H∞(X)),8 then H∞(X) is a projective free algebra.

Let us describe some classes of Riemann surfaces X for which one of the conjectures is 
valid.
(1) Let R be an unbranched covering of a bordered Riemann surface and X be a domain 
in R such that inclusion i : X ↪→ R induces a monomorphism i∗ : π1(X) → π1(R)
of fundamental groups. The corona theorem, clX = M(H∞(X)), was proved in [5, 
Corollary 1.6] and projective freeness of H∞(X) was established in [8, Theorem 1.5]
using an analog of the classical Lax-Halmos theorem proved in [6, Theorem 1.7]. Thus 
Conjecture 6.4 is valid for such X.

In the special case X = R, it was proved in [7, Theorem 1.3] that Conjecture 6.3 is 
valid as well.

Remark 6.5. Conjecture 6.4 is false if X has a nonempty corona, i.e., if M(H∞(X)) \
clX 	= ∅. Indeed, using [4, Theorem 1.2], given an integer n � 2, one can construct 
an unbranched covering of a compact Riemann surface X for which H∞(X) separates 
points, dimM(H∞(X)) � n, and H2(M(H∞(X)), Z) 	= 0. The latter implies that 
H∞(X) is not projective free.

(2) A wide class of planar domains, the so-called B-domains, was introduced and studied 
by Behrens [3]. A set X ⊂ C is called a B-domain if it is obtained from a domain Y ⊂ C

by deleting a (possibly finite) hyperbolically-rare sequence of closed discs (Δn) contained 

8 I.e., that the corona theorem is valid for H∞(X).
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in Y with centres αn, i.e., such that there are disjoint closed discs Dn with centres αn

satisfying Δn � Dn ⊂ Y and 
∑ radΔn

radDn
< ∞. It was shown in [7, Theorem 1.1] that if 

X is obtained from a domain Y ⊂ C by deleting a (possibly finite) hyperbolically-rare 
sequence of closed discs such that (i) clY = M(H∞(Y )) and (ii) Conjecture 6.3 is valid 
for Y , then clX = M(H∞(X)) and Conjecture 6.3 is valid for X as well. (In particular, 
algebras H∞(Y ) and H∞(X) are projective free.)

The class of domains Y satisfying (i), (ii) includes planar unbranched coverings of 
bordered Riemann surfaces (see part (1)) and domains obtained from them by deleting 
compact subsets of analytic capacity zero (e.g., totally disconnected compact subsets). 
Starting from such a Y one can construct a descending chain Y := Y0 ⊃ Y1 ⊃ Y2 ⊃ · · · ⊃
Yn, n ∈ N, of B-domains, such that each Yi is defined by deleting a hyperbolically-
rare sequence of closed discs and then a compact subset of analytic capacity zero from 
Yi−1. Then all Yi satisfy assumptions (i), (ii), and, in particular, all algebras H∞(Yi) are 
projective free.

Recall that every bordered Riemann surface S is a domain in a compact Riemann 
surface S̃ such that S̃ \ S is the disjoint union of finitely many discs with analytic 
boundaries (see [49]). Here are some examples of planar unbranched coverings of S:

(a) It is known (see, e.g., [18, Chap. X]) that each S̃ is the quotient of a planar domain Ω
by the discrete action of a Schottky group G (the free group with g generators, where g is 
the genus of S̃) by Möbius transformations. The corresponding quotient map r : Ω → S̃

determines the regular covering of S̃ with the deck transformation group G. Then Y :=
r−1(S) ⊂ Ω is a regular covering of S satisfying conditions (i), (ii). By definition, Y is 
the complement in Ω of the finite disjoint union of G-orbits of compact simply connected 
domains with analytic boundaries biholomorphic by r to the connected components of 
S̃ \ S.

(b) Consider the universal covering ru : S̃u → S̃ of S̃ (where S̃u = D if g � 2, S̃u =
C if g = 1, and S̃u = CP if g = 0), then Y := r−1

u (S) ⊂ S̃u satisfies conditions 
(i), (ii) as well. Here Y is the complement in S̃u of the finite disjoint union of orbits 
under the action by Möbius transformations of the fundamental group π1(S̃) of S̃ of 
compact simply connected domains with analytic boundaries biholomorphic by ru to the 
connected components of S̃ \ S.

Finally, let us mention that if a connected Riemann surface X is such that H∞(X)
separates its points, clX = M(H∞(X)), dim clX = 2 and H2(clX, Z) = 0, then by the 
Künneth formula (see, e.g., [48, Chap. 6, Exercise E]) for M(H∞(X))i, 2 � i � 4, the 
Čech cohomology groups Hn(M(H∞(X))i, Z) = 0 for all n � 5 and dimM(H∞(X))i =
2i. Hence, due to Theorem 4.1, for all 2 � i � 4, the uniform algebra (H∞(X))⊗̂εi (the 
ith injective tensor power of H∞(X)) is Hermite.
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7. Appendix

Let A be a commutative unital complex Banach algebra and G be a finite subgroup of 
automorphisms of A. By AG ⊂ A we denote the Banach subalgebra of elements invariant 
with respect to the action of G, i.e.,

AG := {a ∈ A : g(a) = a ∀g ∈ G}.

There is a natural projection PG : A → AG given by the formula

PG(a) := 1
|G|

∑
g∈G

g(a) for all a ∈ A. (7.1)

Here |G| is the cardinality of the set G.
For each g ∈ G, the transpose of the map a �→ g(a) : A → A induces a homeomorphism 

g∗ of the maximal ideal space M(A) of A. Thus we obtain an action of G on M(A). Let 
M(A)/G be the quotient space by this action and π : M(A) → M(A)/G be the quotient 
map. We equip M(A)/G with the smallest topology in which the map π is continuous. 
Then M(A)/G becomes a compact Hausdorff space homeomorphic to the maximal ideal 
space of the subalgebra C(M(A))G ⊂ C(M(A)) of continuous functions invariant with 
respect to the action of G on M(A). We have:

Lemma 7.1. M(A)/G is homeomorphic to the maximal ideal space of the algebra AG.

Proof. Let {g∗(x) : g ∈ G} ⊂ M(A) be the equivalence class representing π(x) ∈
M(A)/G for x ∈ M(A). Since for each a ∈ AG,

(g∗(x))(a) = x(g(a)) = x(a)

(as elements of AG are invariant with respect to the action of G on A), the functional 
ϕz, z ∈ M(A)/G,

ϕz(a) := x(a), x ∈ π−1(z), ∀a ∈ AG,

is well-defined and is an element of M(AG). Thus, we have a map Φ : M(A)/G →
M(AG), Φ(z) := ϕz. Let us show that Φ is continuous. Indeed, by the definition of the 
Gelfand topology on M(AG), it suffices to show that for an open set Ua := {y ∈ M(AG) :
|y(a)| < 1} ⊂ M(AG) with a ∈ AG, the set Φ−1(Ua) is open in M(A)/G. In turn, by the 
definition of topology on M(A)/G, the previous set is open if and only if its preimage 
under π is open in M(A). We have

π−1(Φ−1(Ua)) ={x ∈ M(A) : |ϕπ(x)(a)| < 1}
={x ∈ M(A) : |x(a)| < 1}.
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The latter is an open subset of M(A) by the definition of the Gelfand topology.
Next, let us show that the map Φ is injective.
Let z1, z2 be distinct points of M(A)/G. Since every finite subset of M(A) is interpo-

lating for A, there is a ∈ A such that

x(a) = 0 for all x ∈ π−1(z1), and y(a) = 1 for all y ∈ π−1(z2).

Then, for PG(a) ∈ AG (see (7.1)) we obtain

ϕz1(PG(a)) = 0, and ϕz2(PG(a)) = 1,

i.e., Φ(z1) 	= Φ(z2). Therefore Φ is injective and, hence, embeds M(A)/G as a compact 
subset of M(AG).

Finally, let us show that the map Φ is onto. If, on the contrary, there is y ∈ M(AG) \
Φ(M(A)/G), then by the definition of the Gelfand topology on M(AG), there exist 
a1, . . . , ak ∈ AG such that

y(a1) = · · · = y(ak) = 0 and max
1�i�k

min
z∈M(A)/G

|ϕz(ai)| � δ > 0. (7.2)

This implies that

max
1�i�k

min
x∈M(A)

|x(ai)| � δ > 0.

Equivalently, the family a1, . . . , an does not belong to a maximal ideal of A, i.e., there 
exist b1, . . . , bn ∈ A such that

b1a1 + · · · + bnan = 1. (7.3)

We set

b̃i := PG(bi), 1 � i � k.

Then each b̃i ∈ AG, and since 1 and all ai ∈ AG, equation (7.3) implies that

b̃1a1 + · · · + b̃nan = 1. (7.4)

Applying y to (7.4), we get due to (7.2),

1 = y(1) = y(b̃1)y(a1) + · · · + y(b̃n)y(an) = 0,

a contradiction which shows that Φ is a surjection. Therefore Φ : M(A)/G → M(AG) is 
a homeomorphism, as required. �
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