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Abstract: This paper is concerned with inference on finite dimensional
parameters in semiparametric moment condition models, where the mo-
ment functionals are linear with respect to unknown nuisance functions.
By exploiting this linearity, we reformulate the inference problem via the
Riesz representer, and develop a general inference procedure based on non-
parametric likelihood. For treatment effect or missing data analysis, the
Riesz representer is typically associated with the inverse propensity score
even though the scope of our framework is much wider. In particular, we
propose a two-step procedure, where the first step computes the projec-
tion weights to approximate the Riesz representer, and the second step
reweights the moment conditions so that the likelihood increment admits
an asymptotically pivotal chi-square calibration. Our reweighting method
is naturally extended to inference on missing data, treatment effects, and
data combination models, and other semiparametric problems. Simulation
and real data examples illustrate usefulness of the proposed method. We
note that our reweighting method and theoretical results are limited to
linear functionals.
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1. Introduction

There is a broad and important class of semiparametric models where finite
dimensional parameters of interest are defined by moment conditions involv-
ing unknown nuisance functions, such as conditional mean functions. Examples
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include inference on missing at random observations, treatment effects, pol-
icy interventions, weighted average derivatives, and data combination models.
Many such semiparametric models share a common feature: the moment func-
tionals for identifying the finite dimensional parameters are linear with respect
to the unknown functions. By using the Riesz representation theorem, this lin-
earity allows us to reformulate the original moment conditions as multiplicative
or weighted moment conditions, where the weight function is given by the so
called Riesz representer.

In the context of treatment effect analysis, this weight function is associated
with the balancing weights or the inverse propensity score. Recently, several
methods that directly balance the distributional characteristics of covariates
have been proposed [19, 35, 17, 4, 10]. These methods, based on balancing
weights, have been employed to obtain point estimates for the population pa-
rameters of interest, and the above authors reported superior performance for
the empirical balancing approach.

This paper extends the balancing approach to more general contexts and
proposes nonparametric likelihood inference of finite dimensional parameters
defined via moment conditions or estimating equations containing the unknown
Riesz representer. To this end, one possibility is to construct an empirical like-
lihood (EL) statistic based on the estimated Riesz representer plugged in the
moment conditions. As shown by [23], however, the resulting EL statistic is not
asymptotically pivotal in general, invalidating calibration by the chi-squared
distribution. [6] restored the asymptotic pivotalness of the EL statistic by work-
ing with a debiased version of the original moment condition. In contrast to
these works, we show that the plug-in approach can, in fact, achieve asymptotic
pivotalness, once all the relevant information of the model has been properly
accounted for. However, it should be noted that our approach is limited to linear
functionals unlike the general results by [23] and [6] allowing nonlinear function-
als. A new insight from our paper is that in order for the plug-in approach to
restore the limiting chi-squared distribution, it is crucial to rewrite the original
moment condition as a system of growing moment conditions, where the addi-
tional growing moment conditions are derived from the definition of the Riesz
representer.

Our approach is general enough to cover many linear functional models in-
cluding balancing weights for the average treatment effect as a special case.
Specifically, our approach is composed of two steps that involve two different
weighting schemes. In the first step, we compute estimates of the Riesz rep-
resenter using a projection argument. Inspired by the balancing literature for
estimating average treatment effects, we call these estimates projection weights.
Importantly, our projection weights may take negative values, so they can be
applied for general linear functional models. In the second step, we reweigh the
original moment conditions: we capture the nonparametric likelihood increment
in going from the baseline likelihood based on the projection weights to the
one obtained by adding the original moment conditions for the parameters of
interest. The second reweighting step is the key to restoring asymptotic pivotal-
ness.
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Our new weighting scheme is useful for conducting statistical inference (i.e.,
interval estimation and hypothesis testing). Since our likelihood ratio statistic
is asymptotically pivotal, the resulting confidence set circumvents estimation of
the asymptotic variance, which typically involves several nonparametric com-
ponents (e.g., conditional means and variances and the Riesz representer). Also
the confidence set is range preserving and transformation respecting, and its
shape is determined by the data.

Our reweighting method for constructing asymptotically pivotal statistics
can be naturally extended for inference on treatment effect and data combina-
tion models. For treatment effects, we can employ empirical projection weights
– which are similar to the empirical balancing weights of [19] and [10] – and
reweigh the moment conditions in the second step to yield an asymptotically
pivotal likelihood ratio statistic. Our approach is general enough to cover average
and quantile treatment effects, among other quantities. For the data combina-
tion models, we consider the setup of [11] and the Reisz representer is then
related to projection weights that approximate the odds ratio of the propensity
scores. Our simulation evidence and real data example illustrate the usefulness
of the proposed method.

Moreover, in our framework the balancing weights are interpreted as the
Riesz representer for the moment conditions of the linear functional models.
Notably, since our framework allows the Riesz representer to take negative val-
ues, we are able to cover examples beyond the treatment effect or missing data
analysis, such as weighted average derivatives, effects of policy interventions,
data combination models, and bounds on consumer surplus. More broadly, this
paper contributes to the literature of estimation and inference on semiparamet-
ric models via the Riesz representer. For example, [13] and [25] introduced a
series-based estimator for the Riesz representer and considered estimation of
finite dimensional parameters with fast decays of the remainders. In a high di-
mensional framework, [14] considered Wald-type inference with L1-regularized
Riesz representers. [22] proposed to estimate the Riesz representer by applying
the minimax approach. However, none of these papers considers likelihood-based
inference on finite dimensional parameters by developing an asymptotically piv-
otal statistic.

This paper also contributes to the literature on EL methods (see, [27], for a
survey). [29] introduced the EL approach for missing response problems with
parametric propensity scores. Subsequently, [30] proposed a unified EL approach
to missing data problems. We refer [28] for a comprehensive survey on the EL
methods, particularly in the context of missing and biased samples. Our paper
shares a similar motivation with the recent work of [6], but our approach is
inherently different. Working in a more general framework, [6] proposed asymp-
totically pivotal nonparametric EL inference by using a bias corrected moment
equation. They modify the original moment by adding a correction term that
accounts for the impact of the nuisance parameters on the identifying moment.
This term, which is nonparametric in nature, is estimated using kernel meth-
ods. Our paper complements their work by showing that in a large class of
moment models, the bias corrected moment in [6] is not required for asymp-
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totical pivotalness (although their correction terms can be easily computed for
all the examples considered in our paper), and it is possible to work with the
original moment instead. We rely on a reweighting scheme that effectively cap-
tures the same information as the bias corrected moment without estimating
the additional nuisance parameters or functions. Furthermore, our first step in
the reweighting procedure involves computing balancing weights, which practi-
tioners would compute anyway (at least in the case of missing data models) to
obtain point estimates. Our confidence intervals also have a useful property that
they always include these point estimates. We thus believe our methods may be
more appealing to users of balancing weight methods that have gained in pop-
ularity in recent years. On the other hand, it should be acknowledged that our
reweighting approach and theoretical analysis are confined to linear functionals
and that the bias corrected moment approach by [6] is broadly applicable for
nonlinear functionals as well.

This paper is organized as follows. Section 2 introduces the basic setup and
some examples. In Section 3, we develop the reweighted nonparametric likeli-
hood ratio statistic. Section 4 discusses extensions to inferences on treatment
effects, data combination models, and over-identified models. Sections 5 and 6
present simulation results and a real data example, respectively.

2. Setup and examples

Our dataset consists of a random sample of (X,Y ) ∼ P with support X × Y ⊆
R

dx × R
dy . Let E[·] be expectation under P and L2

X = {f : X → R,E[f(X)2] <
∞}. We consider inference on a finite dimensional vector of parameters θ0 ∈
Θ ⊆ R

dθ that can be identified by the moment conditions

E[m(X, γ
(l)
θ0
, θ0)] = 0 for l = 1, . . . , dθ, (1)

where for each x ∈ X and θ ∈ Θ, γ �→ m(x, γ, θ) is a known linear mapping such
that m(x, γ, θ) − m(x, 0, θ) is linear in γ ∈ L2

X , and γ
(l)
θ0

(·) = E[h(l)(Y,X, θ0) |
X = ·] ∈ L2

X is the conditional expectation function for some known function
h(l) : Y × X × Θ → R. We emphasize that our methodology and asymptotic
theory are limited to linear functionals unlike other methods, such as [6].

Based on this moment condition, we are interested in testing the parameter
hypothesis

H0 : θ0 = c against H1 : θ0 �= c,

for a given c ∈ R
dθ . Assume that γ �→ E[m(X, γ, θ0)] is a continuous mapping

on L2
X . Then by the Riesz representation theorem, there exists a unique Riesz

representer αθ0 : X → R such that

E[m(X, γ, θ0) −m(X, 0, θ0)] = E[αθ0(X)γ(X)] for each γ ∈ L2
X . (2)

By (2) and the law of iterated expectations, the moment condition (1) can be
alternatively written as

E[αθ0(X)h(l)(Y,X, θ0) + m(X, 0, θ0)] = 0 for l = 1, . . . , dθ. (3)
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Note that (1) does not restrict how θ0 enters into m or h. Therefore, γθ0 and/or
αθ0 may depend on θ0 in a possibly nonlinear manner.

This setup covers many well-known statistical inference problems. We give
some examples below. In particular, our setup can deal with quantile models in
missing data problems and other less investigated problems, such as consumer
welfare analysis and data combination models, which are further discussed in
Section 4. We note that for these examples with linear functionals, the bias
corrected moments in [6] are easy to compute.

Example 1 (Missing data model). Consider a sequence of random variables
{Y1i, Zi}Ni=1, where Y1i is observed only for a limited selection of individuals,
and Zi is a observable vector of covariates. In particular, we observe Yi = Y1iDi

for all i = 1, . . . , N , where Di is the selection indicator (taking the value of one
if Y1i is observable, and zero otherwise). We wish to conduct statistical inference
on the parameter θ0, which is identified by the moment condition

E[ψ(Y1, Z, θ0)] = 0, (4)

where ψ is possibly nonlinear in θ0. Let X = (D,Z), h(Y,X, θ0) = ψ(Y,Z, θ0),
and γθ0(d, z) = E[h(Y,Z, θ0)|D = d, Z = z]. Further assume that ignorability
(i.e., Y1 ⊥ D|X) and overlap assumptions hold. Then it is easy to see that
the identifying moment (4) can be rewritten as E[γθ0(1, Z)] = 0. In this case,
m(X, γθ0 , θ0) = γθ0(1, Z), and the Riesz representer is written as αθ0(d, z) =

d
P(D=1|Z=z) so that

E[αθ0(X)h(Y,X, θ0)] = 0. (5)

Example 2 (Average effect after policy intervention). Let γ0(x) = E[Y |X = x]
be the conditional expectation and π(·) be a known policy function shifting the
distribution of X to π(X) after the policy intervention. The average policy effect
is defined as E[γ0(π(X))] − E[γ0(X)]. The first term θ0 = E[γ0(π(X))] can be
analyzed by setting m(x, γ0, θ0) = γ0(π(x))−θ0 and h(y, x) = y. Then the Riesz
representer can be found by applying change of measure so that α0(x) = dFπ

dF (x),
where Fπ is the cdf of π(X), and E[α0(X)h(Y,X) − θ0] = 0.

Example 3 (Bound on average equivalent variation and consumer surplus). Let
P1 and P2 denote the price of good 1 and a vector of prices of other goods in the
consumption set, respectively. Also let V and Q be consumer’s income and the
quantity of good 1 bought by the consumer, respectively. We are interested in
determining an upper bound θ0 on the average equivalent variation for a price
change from pa to pb of good 1, averaged over the other prices P2 and income V .
Let B denote a lower bound on the income effect for all individuals. [20] showed
that

θ0 = E

[∫
l(p, V )γ0(p, P2, V )dp

]
,

where l(p, V ) = w(V )I{pa ≤ p ≤ pb} exp(−B(p−pa)) with some known function
w, and γ0(P1, P2, V ) = E[Q|P1, P2, V ]. It is easy to see that this setting can be
subsumed into our framework by letting X = (P1, P2, V ) and m(X, γ0, θ0) =
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l(p, V )γ0(p, P2, V )dp−θ0. The bound on the consumer surplus can be obtained

similarly: we simply get rid of the conditioning variable P2 in the above setup.

Example 4 (Average derivative). Consider the average partial derivative of the
regression function γ0(x) = E[Y |X = x]:

θ0 = E

[
w(X)∂γ0(X)

∂x

]
,

for some known weight function w(· ). In this case, γθ0 and h(Y,X, θ0) do not
involve θ0, and we set as m(x, γ0, θ0) = w(x)dγ0(x)

dx − θ0 and h(y, x) = y. As-
suming w(x) = 0 at boundaries of X , the Riesz representer is obtained as
αθ0(x) = − 1

fX(x)
d[w(x)fX(x)]

dx , where fX is the density of X.

3. Reweighted nonparametric likelihood inference

In this section we present our inference method for θ0 defined by the linear func-
tional model in (1), or alternatively (3). Let {qj(·)}∞j=1 denote basis functions
for the space L2

X . Then the condition for the Riesz representer αθ0 in (2) is
equivalent to the infinite set of moment conditions

E[m(X, qj , θ0) −m(X, 0, θ0) − αθ0(X)qj(X)] = 0, for all j = 1, 2, . . . . (6)

The equivalence between (2) and (6) exploits the fact that γ �→ m(·, γ, ·) is
a linear functional, which ensures that for each γ ∈ L2

X , there exists some
sequence {ξj}∞j=1 satisfying

∑∞
i=1 ξ

2
j < ∞ and E[m(X, γ, θ0) − m(X, 0, θ0)] =∑∞

j=1 ξjE[m(X, qj , θ0) − E[m(X, 0, θ0)].
To approximate the Riesz representer αθ0 , we employ a finite but growing

number of the moment conditions from (6). Let QK(· ) = (q1(·), . . . , qK(·))′
denote a vector of basis functions, and MK(Xi, θ0) denote a K-dimensional
vector whose k-th element is m(Xi, qk, θ0) − m(Xi, 0, θ0) for k = 1, . . . ,K. As
in [25], we approximate {αθ0(Xi)}Ni=1 by the projection weights {α̂i}Ni=1, which
are obtained as a solution of

min
α1,...,αN

1
2

N∑
i=1

α2
i s.t. 1

N

N∑
i=1

{MK(Xi, θ0) − αiQK(Xi)} = 0,

i.e.,

α̂i = QK(Xi)′
[

1
N

N∑
i=1

QK(Xi)QK(Xi)′
]−1

1
N

N∑
i=1

MK(Xi, θ0), (7)

for i = 1, . . . , N . Following [31], one can interpret E[αθ0(X)2] as the resid-
ual variance for estimation of θ0, and supγ∈L2

X
E[m(X, γ, θ0) − αθ0(X)γ] as the

residual bias. Thus, (7) has an attractive interpretation of minimizing the em-
pirical variance subject to a zero empirical bias constraint within the sieve space
spanned by QK(·).
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The construction of (7) is similar to, but distinct from, the empirical balanc-
ing weights that have been proposed in the literature on missing data, see e.g.,
[35, 10, 32]. Recall that in Example 1 on missing data models, the Riesz repre-
senter is expressed as αθ0(Di, Zi) = Di/P(Di = 1|Zi). The empirical balancing
weights estimate the ‘tilting function’, 1/P(Di = 1|Zi), instead of directly es-
timating αθ0(Di, Zi). Although the estimates of αθ0(Di, Zi) are only computed
for observations without missing outcomes (but note that αθ0(Di, Zi) = 0 when
Di = 0 anyway), given the empirical balancing weights (say, ŵi), it is straight-
forward to obtain the estimates α̂i of αi as α̂i = ŵi when Di = 1, and α̂i = 0
otherwise. A drawback of the empirical balancing weights, however, is that they
are not applicable more generally, e.g., to average derivative estimation, where
the Riesz representer may take negative values.

Based on the projection weights {α̂i}Ni=1 in (7), we now construct our non-
parametric likelihood function. The basic idea is to ‘reweigh’ both the moment
functions (2) and (3) after incorporating the the projection weights in (7). The
‘reweighted’ likelihood ratio then captures the likelihood increments associated
with (3). Formally, let

φς(ω) = 2
ς(ς + 1){(Nω)ς+1 − 1},

denote the Cressie and Read [12] power divergence family if ς �= {−1, 0}, other-
wise φ−1(ω) = −2 log(nω) and φ0(ω) = 2nω log(nω). The cases of ς = −1 and
ς = 0 are often called EL and exponential tilting, respectively. Other popular
choices for ς include the Neyman’s modified χ2 (ς = 1), Hellinger or Freeman-
Tukey (ς = −1/2), and Pearson’s χ2 (ς = −2). Based on this divergence, we
consider the following reweighted likelihood:

(θ0) = min
ω1,...,ωN

N∑
i=1

φς(ωi),

s.t.
N∑
i=1

ωi{MK(Xi, θ0) − α̂iQK(Xi)} = 0,
N∑
i=1

ωi = 1, ωi ≥ 0,

N∑
i=1

ωi{α̂ih
(l)(Yi, Xi, θ0) + m(Xi, 0, θ0)} = 0 for l = 1, . . . , dθ, (8)

where {α̂i}Ni=1 are the projection weights obtained in (7). Note that without
the last condition in (8) (corresponding to the primary moment condition),
the above maximization problem is solved by uniform weights ωi = 1/N for
all i = 1, . . . , N (because of (7)). Therefore, the above minimum (θ0) indeed
corresponds to the likelihood increment by adding the last condition in (8). Let

gKi =

⎛
⎜⎜⎜⎝

MK(Xi, θ0) − α̂iQK(Xi)
α̂ih

(1)(Yi, Xi, θ0) + m(Xi, 0, θ0)
...

α̂ih
(dθ)(Yi, Xi, θ0) + m(Xi, 0, θ0)

⎞
⎟⎟⎟⎠ .
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By applying the Lagrange multiplier method, the dual representation of the
reweighted nonparametric likelihood ratio statistic is

(θ0) = max
λ

2
N∑
i=1

{ρς(λ′gKi ) − ρς(0)}, (9)

where
ρς(v) = − 1

ς + 1(1 + ςv)(ς+1)/ς ,

if ς �= {−1, 0}, otherwise ρ−1(v) = log(1 − v) and ρ0(v) = −ev. In practice, we
employ this dual form to implement our inference procedure.

Remark 1. Our approach is reminiscent of the generalized empirical likelihood
(GEL) inference for moment condition models [26]. In fact, if the Riesz repre-
senter is known up to θ0 in (3), then the GEL methodology directly applies
for inference on θ0. In our setup, however, the Riesz representer is unknown.
Therefore, our setup is more involved than the standard GEL framework and
needs to consider the impact of not knowing the Riesz representer in our asymp-
totic analysis. The growing set of moment constraints in (8) exactly captures
the price we need to pay to restore the asymptotic pivotalness of the likelihood
ratio statistic.

Remark 2. On the other hand, our inference approach has some connection
to extended versions of the GMM/GEL approach since we may interpret our
inference problem using just-identified but growing number of moment condi-
tions. To elaborate on this connection, suppose αθ0(·) can be approximated by
a′0QK(·) with the K-dimensional vector of basis functions QK(·). Then our setup
in (1) and (2) can be alternatively characterized as

E[a′0QK(X)h(Y,X, θ0) + m(X, 0, θ0)] = 0, (10)
E[m(X, qj , θ0) −m(X, 0, θ0) − qj(X)Q′

K(x)a0] = 0, (11)

for j = 1, . . . ,K, where (10) is the moment condition to identify θ0, and (11)
is the auxiliary moment conditions to estimate αθ0(·). A similar argument as in
[16] indicates that these moment conditions lead to the semiparametric efficiency
bound for θ0 as K → ∞, i.e., (10) and (11) contain all relevant information
for θ0. Furthermore, the GEL ratio statistic (say, GELRK) for H0 : θ0 = c
may be constructed based on (10) and (11), and we expect that GELRK will
converge to the χ2

dθ
distribution.

Compared to GELRK , our approach offers new insight for the popular plug-
in approach of EL inference. As opposed to the well-known result in [23], we
show that in fact, plug-in approach can still achieve asymptotic pivotalness,
once the information of the model has been properly accounted for. Indeed, if
the Reisz representer is actually known, and we use them in place of α̂i in (8),
(θ0) will converge to χ2

K+dθ
. Surprisingly, however, we show that plugging-in

the estimates from balancing leads to a χ2
dθ

distribution. The construction of
balancing weights and the definition of (θ0) implies that the latter does behave
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like a likelihood ratio test statistic, and is in sharp contrast of the result in [23].
In terms of the treatment of the unknown Riesz representer, our approach relies
on the first step balancing in (7), while GELRK requires a sieve approximation.
Moreover, (θ0) also has computational advantage over GELRK particularly
when we compute confidence sets for θ0. To construct the confidence set by
inverting GELRK , we need to profile out the nuisance parameters a0 for each
hypothetical value of θ0. On the other hand, the confidence interval obtained
by inverting our statistic (θ0) does not involve such profiling out.

Remark 3. Note that when ς = 1, the criterion ρς(v) becomes the least square
likelihood (as in [7]) or the Euclidean likelihood (as in [26]), where ρ1(v) =
−1

2 (1 + v)2. In this case, the minimization problem in (8) admits an explicit
solution that depends only on α̂i in (7). Thus, this likelihood ratio statistic is
computationally attractive.

To derive the limiting distribution of (θ0), we impose the following as-
sumptions. Let ζK = sup

x∈X
|QK(x)|, εK(x) = αθ0(x)QK(x) −MK(x, θ0), ζε,K =

sup
x∈X

|εK(x)|, and m̃(x, ·, θ0) = m(x, ·, θ0) −m(x, 0, θ0).

Assumption.

(i) {Xi, Yi}Ni=1 is iid. For each x ∈ X , γ �→ m(x, γ, θ0) is a linear mapping,
and γ �→ E[m(x, γ, θ0)] is a continuous mapping from L2

X to R.
(ii) All eigenvalues of E[QK(X)QK(X)′] and E[εK(X)εK(X)′] are bounded

from above and away from zero for each K ∈ N, ζ2
K logK

N → 0, and
ζ2
ε,K logK

N → 0.
(iii) supx∈X |α̂(x) − αθ0(x)| = Op(δα,N ) for some δα,N → 0. For each l =

1, . . . , dθ and K ∈ N, there exists some β
(l)
K ∈ R

K such that

sup
x∈X

|γ(l)
θ0

(x) − β
(l)′
K QK(x)| � ηK and E[m̃(X, γ

(l)
θ0

− β
(l)′
K QK , θ0)2] � ηK

for some ηK → 0.
(iv) For each l = 1, . . . , dθ, it holds sup

x∈X
E[{h(l)(X,Y, θ0) − γ

(l)
θ0

(X)}2|X =

x] � 1, E[{α0(X)γ(l)
θ0

(X) − m̃(X, γ
(l)
θ0
, θ0)}2] � 1, E[m(X, γ

(l)
θ0
, θ0)2] � 1,

sup
x∈X

|αθ0(x)| � 1, and there exists some κ > 2 such that

E[|h(l)(X,Y, θ0)|κ] � 1 and N1/κδα,N → 0.

(v) For each j, k = 1, . . . ,K,

E[m̃(X, qj(·)m̃(·, qk, θ0), θ0)] = E[m̃(X, qj , θ0)m̃(X, qk, θ0)], (12)
E[m̃(X,m(·, 0, θ0)qj(·), θ0)] = E[m(X, 0, θ0)m̃(X, qj , θ0)].

Assumption (i) is reasonable for all the examples listed in this paper. An
extension to dependent data is left for future research. Assumption (ii) is on
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the vector of basis functions QK(·) and the approximation error εK(·). The
first condition in Assumption (iii) imposes basic approximation quality of α̂i

in terms of sup norm. This could be verified by more primitive conditions; see
[26]. The second condition in Assumption (iii) is on the approximation error
for the conditional mean function γ

(l)
θ0

(·) by the vector of basis functions QK(·).
Assumption (iv) is a set of regularity conditions. Notably, we require the Riesz
representer αθ0 to be bounded, and existence of higher moments for h.

Assumption (v) is a key requirement that needs to be checked for each ap-
plication. It can be thought of as placing some constraints on the form of m(·).
All our examples satisfy this assumption except for the average derivative ex-
ample. The assumption is trivially satisfied if the moment function is multi-
plicative in γ (in addition to being linear). For instance, in the missing data
example, m(X, 0, θ0) = 0 and m̃(X, γθ0 , θ0) = γθ0 , and it is easy to see that (12)
is satisfied. A similar reasoning also applies to the average effect after policy
intervention. For the average equivalent variation and consumer surplus exam-
ple, m(X, γ0, θ0) =

∫
l(p, V )γ0(p, P2, V )dp − θ0, and so m(x, 0, θ0) = −θ0 and

m̃(x, γ0, θ0) =
∫
l(p, V )γ0(p, P2, V )dp. The second equation of (12) is satisfied

trivially. As for the first equation:

E[m̃(X, qj(·)m̃(·, qk, θ0), θ0)]

= E

⎡
⎣∫

l(p, V )qj(p, P2, V )
∫

l(p, V )qk(p, P2, V )dp︸ ︷︷ ︸ dp
⎤
⎦

= E

⎡
⎣∫

l(p, V )qk(p, P2, V )dp︸ ︷︷ ︸
∫

l(p, V )qj(p, P2, V )dp

⎤
⎦

= E[m̃(X, qj , θ0)m̃(X, qk, θ0)],

where we can take ·︸︷︷︸ out since it is not a function of p.
For the average derivative example, the condition in (12) is not generally

satisfied. One exception is the setting where w(x) = 1 and d2qk(x)/dx2 = 0
for all k, i.e., the basis functions all have zero second derivatives. This implies
that the assumption is valid if one employs basis functions of indicator or linear
form, such as linear regression splines or Ströberg wavelets of order 0 (assuming
compact support for X and that its density fX(·) is bounded).

Based on these assumptions, the asymptotic distribution of the likelihood
ratio statistic (θ0) is obtained as follows.

Theorem. Suppose that Assumptions (i)–(v) hold true, and

δα,NζKζε,K → 0,
√
KηK → 0, and

√
Nδα,NηK → 0.

Then,
(θ0)

d→ χ2
dθ
, as N → ∞.

This theorem says that our likelihood ratio statistic is asymptotically pivotal
and converges to the chi-squared distribution under the null hypothesis. Based
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on this result, the 100(1−α)% asymptotic confidence set for θ0 can be given by
{θ : (θ) ≤ χ2

dθ,α
}, where χ2

dθ,α
is the (1−α)-th quantile of the χ2

dθ
distribution.

Furthermore, it is straightforward to extend this theorem for testing the null
H0 : r(θ) = r0 for a possibly nonlinear function r : Rdθ → R

dr with dr ≤ dθ.
In this case, the likelihood ratio statistic is obtained by minθ:r(θ)=r0 (θ), which
can be shown to converge to the χ2

dr
distribution.

If Assumption (v) is violated, the reweighted statistic (θ0) loses its asymp-
totic pivotalness and converges to a weighted χ2 distribution, where the weights
involve unknown components. In particular, suppose the condition (5) does not
hold but δα,NζKζ3

ε,K → 0 and 1
N

∑N
i=1 Pi(m(γ0)|εK)Pi(m(γ0)|εK) p→ V ∗ for

some dθ × dθ matrix V ∗, where Pi(m(γ0)|εK) is the empirical projection of
m(γ0) = (m(X1, γ0, θ0), . . . ,m(XN , γ0, θ0))′ with

m(Xi, γ0, θ0) = (m(Xi, γ
(1)
0 , θ0), . . . ,m(Xi, γ

(dθ)
0 , θ0))′

on εK = (εK(X1), . . . , εK(XN ))′. Then by inspection the proof of this theorem,
we obtain

(θ0)
d→ U ′(V − V ∗)U, as N → ∞,

where U ∼ N(0, V ) and V is the variance matrix of the dθ-dimensional random
vector whose l-th element is m(X, γ

(l)
0 , θ0) + α0(X){h(l)(X,Y, θ0) − γ

(l)
θ0

(X)}.
One may conduct inference based on this limiting distribution by estimating
the variance components V and V ∗, or by bootstrapping (see, Section 2.3 of
[23]). However, given the asymptotic pivotalness in our theorem, we recommend
employing basis functions QK(·) that satisfy the condition in (3).

The proof of this theorem indicates that under our assumptions, our like-
lihood ratio statistic has the same local power function as the Wald or t-test
based on the globally semiparametric efficient estimator. However, in contrast
to the Wald test, we circumvent estimation of the asymptotic variance which
can be quite involved.

4. Extensions

4.1. Treatment effects

It is straightforward to extend our likelihood ratio construction to conduct in-
ference on various measures of treatment effects under unconfoundedness. Let
Y1 and Y0 be potential outcomes associated with a binary treatment variable
D ∈ {0, 1}. The observed outcome is Y = DY1 +(1−D)Y0. Let Z be a vector of
covariates. Suppose we want to conduct inference on the parameter θ0 identified
by the moment condition

E[ψ1(Y1, Z, θ0) − ψ0(Y0, Z, θ0)] = 0, (13)

where ψ1 and ψ0 have the same dimension as θ0. This setup accommodates
many popular inferential problems as special cases. For example, if we set
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ψ1(Y1, X, θ0) = Y1−θ0 and ψ0(Y0, X, θ0) = Y0, then θ0 is the average treatment
effect.

To see how this fits into our setup, let us denote X = (D,Z), γ(1)
θ0

(D,Z) =
E[ψ1(Y,Z, θ0)|D,Z] and γ

(0)
θ0

(D,Z) = E[ψ0(Y,Z, θ0)|D,Z]. Under conditional
independence assumption, (13) can be rewritten as

E[γ(1)
θ0

(1, Z) − γ
(0)
θ0

(0, Z)] = 0. (14)

Further, under the overlap condition, (13) gives rise to the two Riesz representers
α

(1)
θ0

(x) = d
P(D=1|Z=z) and α

(0)
θ0

(x) = 1−d
1−P(D=1|Z=z) for x = (d, z) so that

E[α(1)
θ0

(X)γ(X)] = E[γ(X)], for each γ ∈ L2
X ,

E[α(0)
θ0

(X)γ(X)] = E[γ(X)], for each γ ∈ L2
X .

Again, we consider the testing problem H0 : θ0 = c against H1 : θ0 = c. Note
that the identifying moment for θ0 is

E[α(1)
θ0

(X)ψ1(Y,Z, θ0) − α
(0)
θ0

(X)ψ0(Y,Z, θ0)] = 0, (15)

Applying our methodology, in the first step we calibrate two sets of projection
weights {α̂(1)

i }Ni=1 and {α̂(0)
i }Ni=1 according to

min
α

(1)
1 ,...,α

(1)
N

1
2

N∑
i=1

Diα
2
i s.t. 1

N

N∑
i=1

{QK(Xi) − α
(1)
i DiQK(Xi)} = 0;

min
α

(0)
1 ,...,α

(0)
N

1
2

N∑
i=1

(1 −Di)α2
i s.t. 1

N

N∑
i=1

{QK(Xi) − α
(0)
i (1 −Di)QK(Xi)} = 0;

Based on the approximated Riesz representers

{Diα̂
(1)
i }Ni=1 and {(1 −Di)α̂(0)

i }Ni=1,

our reweighted likelihood ratio statistic can be constructed as

̄(θ0) = min
ω1,...,ωN

N∑
i=1

φς(ωi),

s.t.
N∑
i=1

ωiQK(Xi)(α̂(1)
i Di − 1) = 0,

N∑
i=1

ωiQK(Xi)(α̂(0)
i (1 −Di) − 1) = 0,

N∑
i=1

ωi = 1, ωi ≥ 0,

N∑
i=1

ωi{α̂(1)
i Diψ1(Yi, Xi, θ0) − α̂

(0)
i (1 −Di)ψ0(Yi, Xi, θ0)} = 0.
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The dual form of ̄(θ0) is obtained in the same manner as (θ0). Also, un-
der analogous conditions to the ones in the Theorem, it can be shown that
−2̄(θ0)

d→ χ2
dθ

under H0, where dθ is the dimension of θ0. Again, our likelihood
ratio statistic is asymptotically pivotal, and is free from variance estimation. If
we are interested in some p1-dimensional function r(β) (e.g., quantile treatment
effects), the likelihood ratio statistic for H0 : r(β) = r0 can be modified as
minβ:r(β)=r0 ̄(β) d→ χ2

p1
.

4.2. Data combination models

Data combination models are another important class of missing data models.
Let W = (Y1, Y0, Z

′)′ denote a vector of random variables from a study popu-
lation. We are interested in conducting inference for the dθ-dimensional vector
of parameters, θ0, which is just-identified by the moment condition

Es[ψ(W, θ0)] = 0,

where Es[·] denotes the expectation under the study sample. However we do
not observe the entire vector W . Rather, we only observe Ns measurements of
(Y1, Z

′)′ from the study sample, but we have access to Na measurements of
(Y0, Z

′)′ drawn from an auxiliary sample. Thus the variables Z are common to
the both samples.

We shall assume that the conditional distribution of Y0 given Z is the same
in the both samples (however the marginal distributions of Z may differ). Also,
we assume that the support of Z in the auxiliary sample is at least as large
as the study sample. Under these conditions, [11] showed that the parameter
vector θ0 is identified as long as ψ(·) is separable in Y1 and Y0 in the sense that

ψ(Y1, Y0, Z, θ0) = ψs(Y1, Z, θ0) − ψa(Y0, Z, θ0),

for some ψs(·) and ψa(·). This framework covers many important statistical
problems including estimation of the average treatment effect on the treated
(ATT), two-sample instrumental variables [3], counterfactual distributions [15],
semiparametric differences-in-differences [1], and models with mismeasured re-
gressors in the presence of validation samples [9].

Following [17], we employ a multinomial sampling framework by assuming
that a unit is drawn at random from the distribution of the study sample with
probability π, and from that of the auxiliary sample with probability 1−π. Let
D denote a binary random variable that takes value 1 when the observation is in
the study sample and 0 when it is in the auxiliary sample. Under this framework
we can treat the ‘merged’ realization (Di, Zi, DiY1i, (1 − Di)Y0i) as a random
draw from a synthetic ‘merged’ population ([18]). Let P(·) and E[·] denote the
probability and expectation, respectively, in this merged population. Finally, let
Y = DY1 + (1 −D)Y0 denote the observed ‘outcome’ variable.

This set of models also fits into our current setup. To observe this, let
us denote X = (D,Z), γ

(1)
θ (D,Z) = E[ψs(Y,Z, θ0)|D,Z] and γ

(2)
θ (D,Z) =
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E[ψu(Y,Z, θ0)|D,Z]. Then the identifying moment condition can be rewritten
as∫

{γ(1)
θ (z, 1) − γ

(2)
θ (z, 0)}dFs(z) =

∫
{γ(1)

θ (z, 1) − γ
(2)
θ (z, 0)}dFs(z)

dF (z) dF (z) = 0.

The support condition above assures existence of some κ > 0 such that κ ≤
P(D = 1|Z = z) ≤ 1 for all z ∈ R

dZ . Importantly, we do not place any func-
tional form assumptions on the propensity score, apart from some smoothness
assumptions. As before, we consider the testing problem H0 : θ = θ0 against
H1 : θ �= θ0, which is equivalent to test the identifying moment

E

[
Dψs(W,X, θ0) − (1 −D) P(D = 1|Z)

1 − P(D = 1|Z)ψa(W,X, θ0)
]

= 0,

subject to the auxiliary moment conditions identifying the Riesz representer as
αθ0(x) = (1 − d) P(D=1|Z=z)

1−P(D=1|Z=z) since

E[αθ0(X)γ(X)] = E[Dγ(X)], for each γ ∈ L2
X ,

(see, [16]). Let N = Na + Ns. We shall order the observations such that the
first Na terms correspond to the auxiliary sample (i.e., Di = 0 for i = 1, . . . , Na

and 1 for i = Na + 1, . . . , N). The projection weights (α̃1, . . . , α̃Na) for data
combination models are obtained as the solution of

min
α1,...,αN

N∑
i=1

1
2(1 −D)α2

i s.t. 1
N

N∑
i=1

DiQK(Xi) = 1
N

N∑
i=1

α̃i(1 −Di)QK(Xi).

In this case, our likelihood ratio statistic is obtained as

̃(θ0) = max
ω1,...,ωN

N∑
i=1

φς(ωi),

s.t.
N∑
i=1

ωi{Di − α̃i(1 −Di)}QK(Xi) = 0,
N∑
i=1

ωi = 1, ωi ≥ 0

N∑
i=1

ωi{Diψs(Wi, Xi, θ0) − (1 −Di)α̃iψa(Wi, Xi, θ0)} = 0.

The dual form of ̃(θ0) is obtained in the same manner as (θ0). Also under
analogous conditions to the ones in Theorem, it can be shown that ̃(θ0)

d→ χ2
dθ

under H0, where dθ is the dimension of θ0.

4.3. Over-identified models

Thus far we have considered inference under just-identification. In some appli-
cations however, the parameters β could be over-identified (e.g., moment condi-
tions with side information, and two-sample instrumental variable models with
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more instruments than regressors). While our testing procedure still controls
size in such contexts, it is no longer first-order efficient. In this section we show
how it can be modified to recover efficiency.

Consider the missing data setup in Section 2. Suppose now that the dimen-
sion p1 of the moment function ψ(·) is greater than p, the dimension of β. Then
we can construct a likelihood ratio test by considering the discrepancy in the
log-likelihoods evaluated at the estimated and hypothesized values of β. In par-
ticular, based on the likelihood ratio statistic in (8), the likelihood ratio test
statistic for testing H0 : β = β0 against H1 : β �= β0 is given by

R(β0) = (β0) − min
β

(β).

Under analogous conditions to the Theorem in Section 3, it can be shown that
R(β0)

d→ χ2
p under H0. Note that the degree of freedom of the limiting distri-

bution is p, the dimension of β. On the other hand, the statistic (β0) converges
to the chi-square distribution with degree of freedom p1, the dimension of ψ.

5. Simulation

In this section, we study the finite sample performance of the proposed likeli-
hood ratio test in a missing data setup. Our main findings are: when the data
generating process (DGP) is relatively simple and when the overlap is good, all
methods perform well for testing the mean. However, when the overlap worsens,
the performance of the Wald statistic is less satisfactory. The debiased likeli-
hood ratio (DLR) test proposed in [6] performs better than the Wald statistic
but appears to perform worse than our method particularly when the support of
outcome variables is unbounded. When it comes to testing the median, the Wald
statistic using bootstrapped variance performs erratically while the both like-
lihood ratio tests perform much better. The DLR test performs slightly better
than our method for testing the median.1

We consider two different DGPs. The first DGP (DGP1) is taken from [2]
(Supplementary material) adapted for the case of missing data. We generate a
two dimensional vector (Z1, Z2) of covariates by drawing both variables from the
Uniform[−1/2, 1/2] distribution independently of each other. The ‘true’ outcome
variable is generated as Y1 = 5 + 2Z1 + 4Z2 +U , where U is a standard normal

1For example, the conventional Wald test using the inverse probability weighting requires
the propensity score to be correctly specified and highly smooth (i.e., continuously differen-
tiable of order larger than 7dx as in [21]). On the other hand, our test basically requires√
nδα,NηK → 0, where δα,N and ηK are the sup-norm convergence rates for estimating the

Riesz representer and the conditional expectation function, respectively. This condition may
be significantly weaker than the one for the Wald test. Compared with [6] approach, their test
also needs estimation of the propensity score, which enters the moment condition nonlinearly.
Our method avoids estimating the propensity score, and instead estimates the Riesz represen-
ter, which enters the moment condition linearly. These features could be reasons to explain
robustness of our test for different degrees of overlaps compared to the other tests.
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random variable. The propensity score is given by the logistic function

P(D = 1|Z) = exp(Z1 + tZ2)
1 + exp(Z1 + tZ2)

, (16)

for t ∈ [1, 6]. The effect of increasing t is to reduce amount of overlaps in the
propensity score. The treatment D is generated by this probability, and the
observed outcome variable is generated by Y = DY1.

The second DGP (DGP2) is a more challenging case, where the potential
outcome has an unbounded support. We generate Y1 = 1+Z1 +2Z2 +U , where
(Z1, Z2) follows the bivariate standard normal, and U is a standard normal
random variable independent of (Z1, Z2), and the true propensity score is set as

P(D = 1|Z) = exp(tZ2)
1 + exp(tZ2)

,

for t ∈ [1, 6]. Again the larger value of t implies reduced overlaps in the propen-
sity score.

We compare inference on the average outcome βa = E[Y1] using four methods:
(1) reweighted likelihood ratio (RLR) test proposed in our paper, with ς = −1,
corresponding to EL; (2) Wald statistic (Wald 1) using inverse propensity score
weighting proposed in [21]; (3) Wald statistic (Wald 2) using balancing and the
variance estimate proposed by [10]; (4) debiased likelihood ratio (DLR) test
proposed in [6] with EL.

Figures 1 and 2 plot the rejection frequencies under the null H0 : βa = 5 for
different values of t under DGP1 and DGP2, respectively. The nominal signifi-
cance level is 0.05. We report the results with the sample size N = 100, 200, and
500, and with the number of basis functions K = 3 (corresponding to qK(X) =
(1, Z1, Z2)′) and K = 5 (corresponding to qK(X) = (1, Z1, Z2, Z

2
1 , Z

2
2 )′). All

simulation results are based on 5,000 Monte Carlo repetitions.
For DGP1 displayed in Figure 1, when the overlap is good (say, t ≤ 2), all

four methods perform reasonably well. However, the Wald statistics are highly
sensitive to overlap conditions and their performance deteriorate quickly as t
increases. For example, when t = 6, K = 3, and N = 100, 200, the null rejection
frequencies of Wald 1 are around 20% for the nominal 5% level. When t = 6,
K = 5, and N = 100, the null rejection frequency of Wald 2 is around 15%.
Although RLR and DLR also exhibit over-rejections as t increases particularly
when n is small, they are less sensitive to the Wald statistics, and achieve valid
size controls when N = 500. For DGP1, the performances of RLR and DLR are
comparable.

DGP2 displayed in Figure 2 is a clear case that our proposed method (RLR)
outperforms other methods. First of all, the over-rejections by the Wald statis-
tics become much severer; both may over-rejects around 50% or more in some
cases. Second, when K = 5, DLR severely over-rejects as well; around 30% for
N = 100, and 20% even for N = 500 for the nominal 5% level. Although such
over-rejections for DLR are relatively less severe when K = 3 (but still larger
than 10%), these results indicate sensitivity of DLR for the number of basis
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Fig 1. Rejection frequencies under the null for inference on βa, DGP1.

functions K. Finally, the proposed RLR exhibits robust size properties across
all the cases.

Table 1 reports the size adjusted power of the proposed method as well
as the other methods for testing alternative hypotheses H1 : βa = b, where
b ∈ {4, 4.1, . . . , 5.9, 6}. Since the results for other specifications are similar, we
only report the results for K = 3 and N = 100. We find that after size ad-
justment, the power of the four methods are similar. However, we note that
our procedure, RLR, has slightly better power than DLR for most alternative
hypotheses considered in Table 1.

Finally, we explore the performance of the tests on the median outcome
βm = median(Y1). Here the moment condition for βm is given by E[I{Y <
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Fig 2. Rejection frequencies under the null for inference on βa, DGP2.

βm} − 0.5] = 0. Thus the parameter of interest βm enters the moment condi-
tion in a nonlinear way. The data generating process follows that of DGP1. We
first compare the rejection frequencies of the tests under the null H0 : βm = 5
and with nominal size 0.05. For Wald statistic, the point estimator is the IPW-
GMM estimator, which is similar to the one proposed in [11]. Note in this case
the Wald statistic is difficult to obtain due to the complicated nature of the
variance estimate for quantile estimators. We instead use a bootstrapped vari-
ance estimator with 500 bootstrap replications. In this simulation, the number
of Monte Carlo replications is set as 2500.

Figure 3 plots the rejection frequencies under the null. Notice that the Wald
statistic does not have the correct coverage in all scenarios and under-reject in
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Table 1

Size adjusted power under alternatives for inference on βa, DGP1.
DGP1, t = 2, K = 3, N = 100

H1 RLR (our method) Wald 1 (IPW) Wald 2 (Balancing) DLR (Bravo et al.)
4.0 0.9988 0.997 0.9984 0.9932
4.1 0.9928 0.9884 0.9936 0.9836
4.2 0.9728 0.9664 0.9724 0.9612
4.3 0.918 0.9124 0.9196 0.9032
4.4 0.814 0.8036 0.8172 0.7936
4.5 0.6824 0.6772 0.688 0.6576
4.6 0.4836 0.4816 0.4916 0.4704
4.7 0.312 0.31 0.3188 0.3076
4.8 0.158 0.1664 0.164 0.1572
4.9 0.0828 0.0876 0.0796 0.0812
5.0 0.05 0.05 0.05 0.05
5.1 0.0848 0.0828 0.0748 0.0828
5.2 0.1636 0.1516 0.1524 0.1644
5.3 0.3228 0.2976 0.3032 0.3176
5.4 0.5208 0.4916 0.5028 0.5116
5.5 0.7216 0.6884 0.7036 0.7188
5.6 0.8712 0.8544 0.8552 0.8628
5.7 0.9448 0.9256 0.9352 0.9352
5.8 0.9828 0.9752 0.98 0.9796
5.9 0.994 0.9912 0.9924 0.9924
6.0 0.9984 0.998 0.9984 0.998

most cases. We speculate that this under-rejection is due to the optimization
error involved in the bootstrap repetitions when it comes to estimating the
nonlinear parameter βm. On the other hand, the both likelihood ratio statistics
perform much better since their optimization is carried out only under the null.
However, DLR perform slightly better than our RLR in most cases. Since the
performance of the Wald statistic is dominated by the LR tests under the null,
we compares the size-adjusted power of the two competing LR tests (RLR and
DLR) under H1 : βm = b for b ∈ {4, 4.1, . . . , 5.9, 6} in Table 2. Since the results
are similar, we only report the results for K = 3 and N = 100 with 5000 Monte
Carlo replications. The power properties are overall comparable for RLR and
DLR.

6. Real data example

We illustrate our inference procedure by applying it on data taken from the
influential study of [8]. These authors were interested in studying the effect of
the raise, in 1993, of New Jersey’s state minimum wage on employment. To this
end, they collected data on employment in fast food restaurants in New Jersey
and neighboring Pennsylvania, following the minimum wage hike. The restau-
rants in Pennsylvania, which did not witness a change in the minimum wage,
form the control group. While the original study was based on a differences-
in-differences design, later authors including [33] and [24] re-analyzed the data
as if it arose from an unconfoundedness assumption, i.e., conditional on covari-
ates, the probability of being treated (i.e., being from New Jersey as opposed
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Fig 3. Rejection frequencies under the null for inference on βm, DGP1.

to Pennsylvania) does not depend on the potential outcomes. Subsequently, our
results in this section are based on the latter assumption.

The data consist of 273 restaurants from New Jersey (treated units), and 67
from Pennsylvania (control units). The covariate data consist of the following
pre-treatment variables: number of employed in each restaurant prior to mini-
mum wage hike (empft), starting wages (wage_st), average duration for the first
raise (inctime), and indicators for the identity of the chain:

(burger king, kfc, roys, wendys).

The outcome (Y) is the number of employed in each restaurant after the increase
in minimum wage (part time employees are weighted by 0.5). Our parameter
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Table 2

Size adjusted power under alternatives for inference on βm, DGP1.
DGP1, t = 2, K = 3, N = 100

H1 RLR (our method) DLR (Bravo et al.)
4.0 0.9244 0.8984
4.1 0.8676 0.8284
4.2 0.78 0.7508
4.3 0.6836 0.6504
4.4 0.5476 0.5164
4.5 0.4164 0.3932
4.6 0.288 0.2748
4.7 0.1828 0.1772
4.8 0.112 0.1068
4.9 0.0568 0.06
5.0 0.05 0.05
5.1 0.0576 0.0624
5.2 0.0948 0.1036
5.3 0.188 0.2008
5.4 0.2944 0.2984
5.5 0.4408 0.448
5.6 0.6112 0.6244
5.7 0.7196 0.724
5.8 0.8376 0.8344
5.9 0.908 0.9032
6.0 0.9564 0.954

Table 3

Confidence regions for β0 using Likelihood Ratio and Wald procedures.
K = 2 K = 7

Estimate β̂ = 0.840 β̂ = 0.873
90% CI 95% CI 90% CI 95% CI

LR [−0.782, 2.382] [−1.110, 2.682] [−0.608, 2.262] [−0.909, 2.527]
Wald [−0.766, 2.445] [−1.073, 2.753] [−0.590, 2.335] [−0.870, 2.615]

of interest, β0, is the average treatment effect on employment levels due to the
minimum wage hike.

To provide inference on β0, we consider two empirical balancing schemes:
one where we only balance a single covariate, empft, i.e., qK(X) = (1, empft),
corresponding to K = 2; and the other where we balance all the covariates Z,
i.e., qK(X) = Z, corresponding to K = 7. The first scheme in particular is based
on the analysis of [24] who found that empft was the only variable selected by
their iterative balance checking algorithm for inclusion in the propensity score.
Table 3 presents 90 and 95% confidence regions for β0 based on our inferential
procedure, along with the Wald confidence regions. We also report the estimates,
β̂, of β0 under both K = 2 and 7. Both values are very close to the estimate of
β̂m = 0.84 obtained by [24] using matching.

Appendix A: Mathematical appendix

Notation Hereafter we use the following notation: Let |A| mean the Euclidean
norm for a vector A and the spectral norm for a matrix A, “wpa1” mean “with
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probability approaching one”, and

hi = h(Yi, Xi, θ0), α0i = αθ0(Xi), γ0i = γθ0(Xi),
mi(γ0) = m(Xi, γ0, θ0), mi(0) = m(Xi, 0, θ0),
m̃i(γ) = mi(γ) −mi(0),
QKi = QK(Xi), MKi = MK(Xi, θ0),
ε̂Ki = α̂iQKi −MKi, εKi = α0iQKi −MKi,

ε̂hi = α̂ihi − m̃i(γ0), εhi = α0ihi − m̃i(γ0),
ε̂γ0i = α̂iγ0i − m̃i(γ0), εγ0i = α0iγ0i − m̃i(γ0).

Also recall ζK = sup
x∈X

|QK(x)| and ζε,K = sup
x∈X

|εK(x)|. Let

Pi(ai|ε̂Ki) = ε̂′Ki(ε̂′ε̂)−1ε̂′a

for i = 1, . . . , N be the empirical projection of a vector a = (a1, . . . , aN )′ to
ε̂ = (ε̂K1, . . . , ε̂KN )′.

A.1. Proof of Theorem

By Lemma 1 (iv), (θ0) exists uniquely wpa1, and we can establish a quadratic
expansion of the dual form in (9) as

(θ0) =
(

1√
N

N∑
i=1

gKi

) (
1
N

N∑
i=1

gKi gK′
i

)−1 (
1√
N

N∑
i=1

gKi

)
+ RN , (17)

where RN is the remainder term. Based on Lemma 3 (v) and max1≤i≤N |gKi | ≤
max1≤i≤N |D1i| + max1≤i≤N |D2i| = op(

√
N) (by Lemma 1 (i)–(ii)), a similar

argument as that used in [23] (proof of Theorem 2.1, p. 1105) yields RN
p→ 0.

Since
∑N

i=1(MKi − α̂iQKi) = 0 (due to (7)), the definition of gKi and inversion
formula for partitioned matrices imply that the first term on the right hand side
of (17) can be written as(

1√
N

N∑
i=1

{α̂ihi + mi(0)}
)′

[V̂0 − V̂1]−1

(
1√
N

N∑
i=1

{α̂ihi + mi(0)}
)
,

where V̂0 = 1
N

∑N
i=1{α̂ihi + mi(0)}2 and

V̂1 =
(

1
N

N∑
i=1

{α̂ihi + mi(0)}ε̂Ki

)′ [
1
N

N∑
i=1

ε̂Kiε̂
′
Ki

]−1

×
(

1
N

N∑
i=1

{α̂ihi + mi(0)}ε̂Ki

)
.
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Now, Lemma 2 implies 1√
N

∑N
i=1{α̂ihi + mi(0)} d→ N(0, V ), and Lemma 4

implies V̂0 − V̂1
p→ V0 − V1. Since the condition in (12) guarantees V = V0 − V1,

the conclusion follows.
On the other hand, if (12) does not hold, the conclusion follows by Lemma 6.

A.2. Lemmas

Lemma 1. Let D1i = (ε′Ki, α0ihi + mi(0))′ and D2i = ((α̂i − α0i)Q′
Ki, (α̂i −

α0i)hi)′. Under Assumptions (i)–(v), the following statements hold true.

(i) max1≤i≤N |D1i| = op(
√
N).

(ii) max1≤i≤N |D2i| = op(1).
(iii) all eigenvalues of E[D1iD

′
1i] are bounded away from zero for all K ∈ N.

(iv) P{0 ∈ Cn} → 1, where Cn is the interior of the convex hull of {gK+1
i , i =

1, . . . , N}.
Proof of (i). The triangle inequality implies max1≤i≤N |D1i| ≤ D11+D12, where

D11 = max
1≤i≤N

|εKi|, D12 = max
1≤i≤N

|α0ihi + mi(0)|.

Note that D11 ≤ ζε,K = o(
√
N) by the definition of ζε,K and Assumption (ii).

Also, since E[α0ihi + mi(0)]2 < ∞ by assumption, [27] (Lemma 11.2) implies
that D12 = op(

√
N). Thus, we obtain the conclusion.

Proof of (ii). Note that for each ε > 0, there exists Cε > 0 such that

P

{
max

1≤i≤N
|hi| > n1/κCε

}
≤

N∑
i=1

P{|hi| > n1/κCε} ≤ E[|hi|κ]
Cκ

≤ ε,

where the first inequality follows from the union bound, the second inequality
follows from Markov’s inequality, and the last inequality follows from Assump-
tion (iv). Therefore, by Assumption (iv),

max
1≤i≤N

|D2i| ≤ δα,N

(
max

1≤i≤N
|QKi| + max

1≤i≤N
|hi|

)
= δα,N (ζK + Op(n1/κ)) = op(1). (18)

Proof of (iii). Note that λmin{E[D1iD
′
1i]} = min{V̊ , λmin{E[εKiεKi]}, where

V̊ = E[α0ihi + mi(0)]2

− E[(α0ihi + mi(0))εKi]′ (E[εKiεKi])−1
E[(α0ihi + mi(0))εKi].

Similar to Lemma 4 (ii), we can show

E[(α0h + m(0))εQK ]′
(
E[εQKεQK ′]

)−1
E[(α0h + m(0))εQK ]
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→ E[{α0iγ0i + mi(0) −mi(γ0)}2] + 2E[mi(γ0){α0iγ0i + mi(0) −mi(γ0)}

as well. Hence V̊ → E[mi(γ0) + α0i(hi − γ0i)]2 > 0 as well. And by assumption
λmin(E[εQKεQK ′]) has all eigenvalues bounded away from zero by assumption.
Conclusion follows.

Proof of (iv). Denote Ĥn(a) = min1≤i≤N (a′gK+1
i ). It suffices to show

P

{
max
a∈SK

Ĥn(a) < 0
}

→ 1, (19)

as n → ∞, where S
K = {a ∈ R

K+1 : |a| = 1}. To this end, let Hn(a) =
min1≤i≤N (a′D1i). Observe that

|Ĥn(a) −Hn(a)| ≤ max
1≤i≤N

|a′D2i| ≤ max
1≤i≤N

|D2i| = op(1)

for all a ∈ S
K , where the last inequality follows from Lemma 1 (i). Similarly,

we have |Hn(a) − Hn(b)| ≤ |a − b|max1≤i≤N |D1i| ≤ |a − b|op(
√
N) for all

a, b ∈ SK , where the last inequality follows from Lemma 1 (ii). Let UN,K be
the union of a finite number CK,N of rectangles with side length δN , where
CK,NδK−1

N ≥ 2πK/2/Γ(K/2) for the gamma function Γ(·) [note: 2πK/2/Γ(K/2)
is the the surface area of of SK ]. It follows

max
a∈SK

Ĥn(a) ≤ max
a∈UN,K

Hn(a) + δn max
1≤i≤N

|D1i| + max
1≤i≤N

|D2i|.

For (19), it is sufficient to show show that for each ε > 0,

P

{
max

1≤i≤N
|D2i| ≤

ε

2

}
→ 1, (20)

P

{
δN max

1≤i≤N
|D1i| ≤

ε

2

}
→ 1, (21)

P

{
max

a∈UN,K

Hn(a) < −ε

}
→ 1. (22)

The convergence in (20) is guaranteed by max1≤i≤N |D2i| = op(1). The con-
vergence in (21) is guaranteed by setting δN = ε

C
√
N

for some C > 0 since
max1≤i≤N |D1i| = op(

√
N). By [23] (2009, Lemma 4.2), the convergence in (22)

is guaranteed if K logN
N → 0 and E[D1iD

′
1i] has eigenvalues bounded away from

zero, which follow by Assumption (ii) and Lemma 1 (iii).

Lemma 2. Under the assumptions of Theorem, it holds

1√
N

N∑
i=1

{α̂ihi + mi(0)} d→ N(0, V ),

where V = E[{mi(γ0) + α0i(hi − γ0i)}2].
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Proof. Decompose 1√
N

∑N
i=1{α̂ihi + mi(0)} = 1√

N

∑N
i=1 φi + E1 + E2, where

φi = mi(γ0) + α0i(hi − γ0i),

E1 = 1√
N

N∑
i=1

(α̂i − α0i)(hi − γ0i), E2 = 1√
N

N∑
i=1

(α̂iγ0i − m̃i(γ0)).

Since 1√
N

∑N
i=1 φi

d→ N(0, V ) by the central limit theorem, it is sufficient for
the conclusion to show that E1

p→ 0 and E2
p→ 0.

Since E[hi − γ0i|Xi = x] = 0 (by the definition of γ0), the law of iterated
expectations yields

E[E1] = 1√
N

N∑
i=1

E [(α̂i − α0i)E[hi − γ0i|X1, . . . , XN ]] = 0.

Also as sup
x∈X

E[(hi − γ0i)2|Xi = x] � 1, the same argument in [31] (Lemma S4)

implies

V ar

(
1√
N

N∑
i=1

(α̂i − α0i)(hi − γ0i)
)

� E

[
V ar

(
1√
N

N∑
i=1

(α̂i − α0i)(hi − γ0i)

∣∣∣∣∣X1, . . . , XN

)]

= 1
N

N∑
i=1

E[(α̂i − α0i)2V ar(hi − γ0i|X1, . . . , XN )]

= 1
N

N∑
i=1

E[(α̂i − α0i)2V ar(hi − γ0i|Xi)]

� 1
N

N∑
i=1

E(α̂i − α0i)2 ≤ sup
x∈X

|α̂(x) − α0(x)|2.

Thus, Markov’s inequality and Assumption (iii) imply E1
p→ 0.

We now show E2
p→ 0. By linearity of m̃ and γ0i = β′

KQKi + rKi, we have
E2 = E21 + E22 + E23, where

E21 = 1√
N

N∑
i=1

β′
K(α̂iQKi −MKi), E22 = 1√

N

N∑
i=1

(α0irKi − m̃(rKi)),

E23 = 1√
N

N∑
i=1

(α̂i − α0i)rKi.

Note that E21 = 0 by the construction of α̂i in (7). For E22, note that E[α0irKi−
m̃(rKi)] = 0 and

E[E2
22] � E[α2

0ir
2
Ki] + E[m̃(rKi)2] � η2

K ,
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where the last inequality follows from Assumption (iii). So, Markov’s inequality
implies E22

p→ 0. Finally, Assumptions (iii)–(iv) and the condition
√
Nδα,NηK →

0 guarantee |E23| ≤
√
Nδα,NηK = op(1). Combining these results, we obtain

E2
p→ 0, and the conclusion follows.

Lemma 3. Under Assumptions (i)–(v), the following statements hold true.

(i)
∣∣∣ 1
N

∑N
i=1 QKiQ

′
Ki − E[QKiQ

′
Ki]

∣∣∣ p→ 0, and

λmin

{
1
N

N∑
i=1

QKiQ
′
Ki

}

is bounded away from zero wpa1.
(ii)

∣∣∣ 1
N

∑N
i=1 εKiε

′
Ki − E[εKiε

′
Ki]

∣∣∣ p→ 0, and

λmin

{
1
N

N∑
i=1

εKiε
′
Ki

}

is bounded away from zero wpa1.
(iii)

∣∣∣ 1
N

∑N
i=1 ε̂Kiε̂

′
Ki

∣∣∣ = Op(1).

(iv) Under δα,NζKζε,K → 0, it holds
∣∣∣∣( 1

N

∑N
i=1 ε̂Kiε̂

′
Ki

)−1
∣∣∣∣ = Op(1).

(v) λmax

{
1
N

∑N
i=1 g

K
i gK′

i

}
= Op(1) and λmin

{
1
N

∑N
i=1 g

K
i gK′

i

}
= Op(1).

Proof of (i). The proof is similar to that of Part (ii).

Proof of (ii). It follows from [5] (Lemma 6.2) for the first statement, and [34]
(Theorem 5.1.1) for the second statement.

Proof of (iii). By the triangle inequality, stated assumptions and Lemma 3
(i)–(ii), we have∣∣∣∣∣ 1

N

N∑
i=1

ε̂Kiε̂
′
Ki

∣∣∣∣∣ = max
s∈SK−1

{
1
N

N∑
i=1

(s′ε̂Ki)2
}

� max
s∈SK−1

{
1
N

N∑
i=1

(s′εKi)2
}

+ max
s∈SK−1

{
1
N

N∑
i=1

(s′(α̂i − α0i)QKi)2
}

≤
∣∣∣∣∣ 1
N

N∑
i=1

εKiε
′
Ki

∣∣∣∣∣ + sup
x∈X

|α̂(x) − α0(x)|
∣∣∣∣∣ 1
N

N∑
i=1

QKiQ
′
Ki

∣∣∣∣∣
= Op(1) + Op(δα,N )Op(1) = Op(1).
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Proof of (iv). Since (a + b)2 ≥ a2 + b2 − 2|ab| for a, b ∈ R, we have

λmin

{
1
N

N∑
i=1

ε̂Kiε̂
′
Ki

}
= min

s∈SK−1

{
1
N

N∑
i=1

(s′ε̂Ki)2
}

≥ min
s∈SK−1

{
1
N

N∑
i=1

(s′(α̂i − α0i)QKi)2
}

+ min
s∈SK−1

{
1
N

N∑
i=1

(s′εKi)2
}

− 2 max
s∈SK−1

{
1
N

N∑
i=1

|(α̂i − α0i)(s′QKi)(s′εKi)|
}
.

Note that

max
s∈SK−1

{
1
N

N∑
i=1

|(α̂i − α0i)(s′QKi)(s′εKi)|
}

= Op(δα,NζKζε,K) = op(1).

Also mins∈SK−1

{
1
N

∑N
i=1(s′(α̂i − α0i)QKi)2

}
= op(1), and

min
s∈SK−1

{
1
N

N∑
i=1

(s′εKi)2
}

is bounded away from zero wpa1 by Lemma 3 (i)–(ii). Thus,

λmin

{
1
N

N∑
i=1

ε̂Kiε̂
′
Ki

}

is also bounded away from zero wpa1, and the conclusion follows.

Proof of (v). By the definitions of eigenvalue and determinant for partitioned
matrix, we have

λmax

{
1
N

N∑
i=1

gKi gK′
i

}
= max

{
V̂ , λmax

{
1
N

N∑
i=1

ε̂Kiε̂Ki

}}
,

λmin

{
1
N

N∑
i=1

gKi gK′
i

}
= min

{
V̂ , λmin

{
1
N

N∑
i=1

ε̂Kiε̂Ki

}}
.

Thus, the conclusion follows from Lemmas 4 and 3 (iii), and 0 < E[mi(γ0) +
α0i(hi − γ0i)]2 < ∞.

Lemma 4. Under Assumptions (i)–(v), the following statements hold true.

(i) V̂0 = 1
N

∑N
i=1{α̂ihi + mi(0)}2 p→ V0, where

V0 = E[{α0ihi + mi(0)}2] = E[α2
0i{hi − γ0i}2] + E[{α0iγ0i + mi(0)}2].
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(ii) V̂1
p→ V1, where

V1 = E[{α0iγ0i +mi(0)−mi(γ0)}2]+2E[mi(γ0){α0iγ0i +mi(0)−mi(γ0)}]

Proof of (i). Note that V̂0 − V0 = V̂01 + V̂02, where

V̂01 = 1
N

N∑
i=1

{α̂ihi + mi(0)}2 − 1
N

N∑
i=1

{α0ihi + mi(0)}2.

V̂02 = 1
N

N∑
i=1

{α0ihi + mi(0)}2 − E[{α0ihi + mi(0)}2].

Since the weak law of large numbers implies V̂02
p→ 0, it suffices to show V̂01

p→ 0.
By using a2 − b2 = 2b(a− b) + (a− b)2 for a, b ∈ R, and the triangle inequality,

|V̂01| ≤ 2

∣∣∣∣∣ 1
N

N∑
i=1

(α̂i − α0i)hi{α0ihi + mi(0)}
∣∣∣∣∣ +

∣∣∣∣∣ 1
N

N∑
i=1

(α̂i − α0i)2h2
i

∣∣∣∣∣ .
The weak law of large numbers implies

1
N

N∑
i=1

|hi{α0ihi + mi(0)}| p→ E|hi{α0ihi + mi(0)}|

≤
√
E[h2

i ]
√
E[{α0ihi + mi(0)}2],

and 1
N

∑N
i=1 h

2
i

p→ E[h2
i ]. Thus, V̂01

p→ 0 follows from Assumption (iii).

Proof of (ii). Recall ε̂hi = α̂ihi + mi(0) −mi(γ0). Decompose

V̂1 =
(

1
N

N∑
i=1

{ε̂hi + mi(γ0)}ε̂Ki

)′ [
1
N

N∑
i=1

ε̂Kiε̂
′
Ki

]−1

×
(

1
N

N∑
i=1

{ε̂hi + mi(γ0)}ε̂Ki

)

= AN + 2BN + CN ,

where

AN =
(

1
N

N∑
i=1

ε̂hiε̂Ki

)′ [
1
N

N∑
i=1

ε̂Kiε̂
′
Ki

]−1 (
1
N

N∑
i=1

ε̂hiε̂Ki

)
,

BN =
(

1
N

N∑
i=1

mi(γ0)ε̂Ki

)′ [
1
N

N∑
i=1

ε̂Kiε̂Ki

]−1 (
1
N

N∑
i=1

ε̂hiε̂Ki

)
,

CN =
(

1
N

N∑
i=1

mi(γ0)ε̂Ki

)′ [
1
N

N∑
i=1

ε̂Kiε̂
′
Ki

]−1 (
1
N

N∑
i=1

mi(γ0)ε̂Ki

)
.
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Thus, it is sufficient for the conclusion to show that

AN
p→ E[{α0iγ0i + mi(0) −mi(γ0)}2], (23)

BN
p→ E[mi(γ0){α0iγ0i + mi(0) −mi(γ0)}], (24)

CN
p→ 0. (25)

Proof of (23). Let ehi = hi − γ0i. Observe that AN can be decomposed as
AN = AN1 + AN2 + 2AN3, where

AN1 =
(

1
N

N∑
i=1

ε̂γ0iε̂Ki

)′ [
1
N

N∑
i=1

ε̂Kiε̂
′
Ki

]−1 (
1
N

N∑
i=1

ε̂γ0iε̂Ki

)
,

AN2 =
(

1
N

N∑
i=1

α̂iehiε̂Ki

)′ [
1
N

N∑
i=1

ε̂Kiε̂
′
Ki

]−1 (
1
N

N∑
i=1

α̂iehiε̂Ki

)
,

AN3 =
(

1
N

N∑
i=1

α̂iehiε̂Ki

)′ [
1
N

N∑
i=1

ε̂Kiε̂
′
Ki

]−1 (
1
N

N∑
i=1

ε̂γ0iε̂Ki

)
,

ε̂γ0i = α̂iγ0i − m̃i(γ0).

First, we show AN1
p→ E[{α0iγ0i + mi(0) −mi(γ0)}2]. Observe that

AN1 = 1
N

N∑
i=1

P2
i (ε̂γ0 |ε̂K) = 1

N

N∑
i=1

ε̂2
γ0i −

1
N

N∑
i=1

Ê2
γ0i,

where Ê2
γ0i

is the projection error of the empirical projection of ε̂γ0 onto ε̂K .
Recall εγ0i = α0iγ0i−m̃i(γ0). For the first term in AN1, note triangle inequality
implies∣∣∣∣∣ 1

N

N∑
i=1

ε̂2
γ0i − E[ε2

γ0i]

∣∣∣∣∣ ≤ 2

∣∣∣∣∣ 1
N

N∑
i=1

(α̂i − α0i)γ0iεγ0i]

∣∣∣∣∣ + 1
N

N∑
i=1

(α̂i − α0i)2γ2
0i

+

∣∣∣∣∣ 1
N

N∑
i=1

ε2
γ0i − E[ε2

γ0i]

∣∣∣∣∣ .
Thus, Assumptions (iii) and (ii) and the weak law of large numbers imply

1
N

N∑
i=1

ε̂2
γ0i

p→ E[ε2
γ0i]. (26)

For the second term in AN1, note that

1
N

N∑
i=1

Ê2
γ0i ≤

1
N

N∑
i=1

{α̂i(γ0i − β′
KQKi) − m̃i(γ0 − β′

KQK)}2
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≤ 2 1
N

N∑
i=1

{α̂i(γ0i − β′
KQKi)}2 + 2 1

N

N∑
i=1

m̃i(γ0 − β′
KQK)2

= 2AN11 + 2AN12,

where the first inequality follows from the fact that Êγ0i is the empirical projec-
tion error.

For AN11, Assumption (iii) and the triangle inequality imply AN11 ≤
η2
K,N

{
1
N

∑N
i=1(α̂i − α0i)2 + 1

N

∑N
i=1 α

2
0i

}
, and the weak law of large numbers

and Assumption (iii) yield AN11
p→ 0.

For AN12, note AN12
p→ 0 by Assumption (iii). Combining these results, we

have AN1
p→ E[α0iγ0i − m̃i(γ0)]2.

Next, we show AN2
p→ 0. Observe by linearity of empirical projection and

triangle inequality

AN2 = 1
N

N∑
i=1

P2
i (α̂eh|ε̂K) ≤ 2 1

N

N∑
i=1

P2
i ((α̂−α0)eh|ε̂K)+2 1

N

N∑
i=1

P2
i (α0eh|ε̂K).

By definition of empirical projection

1
N

N∑
i=1

P2
i ((α̂− α0)eh|ε̂K)

≤ 1
N

N∑
i=1

(α̂i − α0i)2e2
hi ≤

(
sup
x∈X

|α̂(x) − α0(x)|
)2 1

N

N∑
i=1

e2
hi = op(1),

where the last inequality follows by law of large numbers under Assumption (iv)
and supx∈X |α̂(x) − α0(x)| p→ 0 by Assumption (iii). Next, we show

1
N

N∑
i=1

P2
i (α0eh|ε̂K) = op(1)

as well. Since

1
N

N∑
i=1

P2
i (α0eh|ε̂K) =

(
1
N

N∑
i=1

α0iehiε̂Ki

)′ (
1
N

N∑
i=1

ε̂Kiε̂
′
Ki

)−1

×
(

1
N

N∑
i=1

α0iehiε̂Ki

)
,

and
∣∣∣∣( 1

N

∑N
i=1 ε̂Kiε̂

′
Ki

)−1
∣∣∣∣ = Op(1) by Lemma 3 (ii), it suffices to show

∣∣∣∣∣ 1
N

N∑
i=1

α0iehiε̂Ki

∣∣∣∣∣ = op(1).
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Note∣∣∣∣∣ 1
N

N∑
i=1

α0iehiε̂Ki

∣∣∣∣∣ ≤
∣∣∣∣∣ 1
N

N∑
i=1

α0iehi(α̂0i − α0i)QKi

∣∣∣∣∣ +

∣∣∣∣∣ 1
N

N∑
i=1

α0iehiεKi

∣∣∣∣∣ ,
where the first term is bounded as∣∣∣∣∣ 1

N

N∑
i=1

α0iehi(α̂0i − α0i)QKi

∣∣∣∣∣ ≤ sup
x∈X

|α̂(x) − α0(x)|ζK
1
N

N∑
i=1

|α0iehi|

= Op(δα,NζK) = op(1),

by Assumption (iii) and law of large numbers by Assumption (iv). For the second
term, by definition of ehi and iid assumption

E

∣∣∣∣∣ 1
N

N∑
i=1

α0iehiεKi

∣∣∣∣∣
2

= 1
N

Eα2
0ie

2
hiε

′
KiεKi �

ζ2
ε,K

N
→ 0.

It follows by Markov inequality that 1
N

∑N
i=1 α0iehiεKi = Op(

ζ2
ε,K

N ) = op(1) as
well.

Finally, we show AN3
p→ 0. Observe that by Cauchy-Schwarz inequality,

|AN3| =

∣∣∣∣∣ 1
N

N∑
i=1

Pi(α̂eh|ε̂K)ε̂γ0

∣∣∣∣∣ ≤
√√√√ 1

N

N∑
i=1

P2
i (α̂eh|ε̂K)

√√√√ 1
N

N∑
i=1

ε̂2
γ0

= op(1),

by AN2
0→ 0 and (26).

Proof of (24). Recall ε̂hi = α̂ihi − m̃i(γ0). By using the empirical projections,
decompose

BN =
(

1
N

N∑
i=1

mi(γ0)ε̂Ki

)′ [
1
N

N∑
i=1

ε̂Kiε̂
′
Ki

]−1 (
1
N

N∑
i=1

ε̂hiε̂Ki

)

= 1
N

N∑
i=1

mi(γ0)Pi(ε̂h|ε̂K)

= 1
N

N∑
i=1

mi(γ0)Pi(α̂γ0 + m(0) −m(γ0)|ε̂K) + 1
N

N∑
i=1

mi(γ0)Pi(α̂eh|ε̂K)

= BN1 + BN2.

Let Êi be the empirical projection error of α̂γ0 +m(0)−m(γ0) onto ε̂K . By the
definition of the empirical projection

BN1 = 1
N

N∑
i=1

mi(γ0){α̂iγ0i + mi(0) −mi(γ0)} −
1
N

N∑
i=1

mi(γ0)Êi.
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For the first term of BN1, the triangle inequality implies∣∣∣∣∣ 1
N

N∑
i=1

mi(γ0){α̂iγ0i + mi(0) −mi(γ0)} − E[mi(γ0){α0iγ0i + mi(0) −mi(γ0)}]
∣∣∣∣∣

≤ 1
N

N∑
i=1

|(α̂i − α0i)mi(γ0)γ0i|

+

∣∣∣∣∣ 1
N

N∑
i=1

mi(γ0){α0iγ0i+mi(0)−mi(γ0)}−E[mi(γ0){α0iγ0i+mi(0)−mi(γ0)}]
∣∣∣∣∣

p→ 0,

where the convergence follows from the weak law of large numbers and Assump-
tion (iii).

For the second term of BN1, the definition of the empirical projection and
assumptions imply

1
N

N∑
i=1

Ê2
i ≤ 1

N

N∑
i=1

{α̂i(γ0i − β′
KQKi) + m̃i(β′

KQK − γ0)}2

� 1
N

N∑
i=1

{α̂i(γ0i − β′
KQKi)}2

+ 1
N

N∑
i=1

m̃i(β′
KQK − γ0)2. (27)

For the first term of (27), it holds

1
N

N∑
i=1

{α̂i(γ0i − β′
KQKi)}2 � η2

K

1
N

N∑
i=1

α̂2
i = op(1)

by Assumption (iii). For the second term of (27), the weak law of large numbers
and Assumption (iii) yield 1

N

∑N
i=1 m̃i(β′

KQK − γ0)2 = op(1). Thus, we have
1
N

∑N
i=1 Ê2

i
p→ 0. By this and the Cauchy Schwarz inequality, we obtain

∣∣∣∣∣ 1
N

N∑
i=1

mi(γ0)Êi

∣∣∣∣∣ ≤
√√√√ 1

N

N∑
i=1

mi(γ0)2

√√√√ 1
N

N∑
i=1

Ê2
i = op(1).

Therefore, BN1 satisfies BN1
p→ E[mi(γ0){α0iγ0i + mi(0) −mi(γ0)}].

For the term BN2, by Cauchy-Schwarz inequality

|BN2| =

∣∣∣∣∣ 1
N

N∑
i=1

mi(γ0)Pi(α̂eh|ε̂K)

∣∣∣∣∣
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≤

√√√√ 1
N

N∑
i=1

m2
i (γ0)

√√√√ 1
N

N∑
i=1

P2
i (α̂eh|ε̂K).

By law of large numbers and Assumption (iv), 1
N

∑N
i=1 m

2
i (γ0) = Op(1), and

by the proof of AN2
p→ 0, 1

N

∑N
i=1 P2

i (α̂eh|ε̂K) = op(1). Thus, BN2 = op(1).
Conclusion follows by combining the probability limits of BN1 and BN2.

Proof of (25). Recall εKi = α0iQKi −MKi. Decompose

CN =
(

1
N

N∑
i=1

{mi(γ0)(α̂i − α0i)QKi + mi(γ0)εKi}
)′ [

1
N

N∑
i=1

ε̂Kiε̂
′
Ki

]−1

×
(

1
N

N∑
i=1

{mi(γ0)(α̂i − α0i)QKi + mi(γ0)εKi}
)

= CN1 + 2CN2 + CN3,

where

CN1 =
(

1
N

N∑
i=1

mi(γ0)(α̂i − α0i)QKi

)′ [
1
N

N∑
i=1

ε̂Kiε̂
′
Ki

]−1

×
(

1
N

N∑
i=1

mi(γ0)(α̂i − α0i)QKi

)
,

CN2 =
(

1
N

N∑
i=1

mi(γ0)(α̂i − α0i)QKi

)′ [
1
N

N∑
i=1

ε̂Kiε̂
′
Ki

]−1(
1
N

N∑
i=1

mi(γ0)εKi

)
,

CN3 =
(

1
N

N∑
i=1

mi(γ0)εKi

)′ [
1
N

N∑
i=1

ε̂Kiε̂
′
Ki

]−1 (
1
N

N∑
i=1

mi(γ0)εKi

)
.

For CN2, we further decompose CN2 = CN21 + CN22, where

CN21 =
(

1
N

N∑
i=1

mi(γ0)(α̂i − α0i)QKi

)′ [
1
N

N∑
i=1

ε̂Kiε̂
′
Ki

]−1

×
(

1
N

N∑
i=1

mi(γ0)εKi − E[mi(γ0)εKi]
)
,

CN22 =
(

1
N

N∑
i=1

mi(γ0)(α̂i − α0i)QKi

)′ [
1
N

N∑
i=1

ε̂Kiε̂
′
Ki

]−1

E[mi(γ0)εKi].

Also, CN3 = CN31 + 2CN32 + CN33, where

CN31 =
(

1
N

N∑
i=1

mi(γ0)εKi − E[mi(γ0)εKi]
)′ [

1
N

N∑
i=1

ε̂Kiε̂
′
Ki

]−1
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×
(

1
N

N∑
i=1

mi(γ0)εKi − E[mi(γ0)εKi]
)
,

CN32 =
(

1
N

N∑
i=1

mi(γ0)εKi − E[mi(γ0)εKi]
)′ [

1
N

N∑
i=1

ε̂Kiε̂
′
Ki

]−1

E[mi(γ0)εKi],

CN33 = E[mi(γ0)εKi]′
[

1
N

N∑
i=1

ε̂Kiε̂
′
Ki

]−1

E[mi(γ0)εKi].

Note that∣∣∣∣∣ 1
N

N∑
i=1

mi(γ0)(α̂i − α0i)QKi

∣∣∣∣∣ ≤ ζK sup
x∈X

|α̂(x) − α0(x)|
(

1
N

N∑
i=1

mi(γ0)
)

= Op(ζKδα,N ),

and ∣∣∣∣∣ 1
N

N∑
i=1

mi(γ0)εKi − E[mi(γ0)εKi]

∣∣∣∣∣ = Op(ζε,K/
√
N),

where the last equality follows from Markov inequality combined with

E

⎡
⎣∣∣∣∣∣ 1

N

N∑
i=1

mi(γ0)εKi − E[mi(γ0)εKi]

∣∣∣∣∣
2⎤⎦ = 1

N
E[mi(γ0)2|εKi|2] ≤

ζ2
ε,K

N
.

By these results, Lemma 5, and Assumption (iii), we have

|CN1| = Op(ζ2
Kδ2

α,N ) = op(1),

|CN21| = Op(ζKδα,Nζε,K/
√
N) = op(1),

|CN22| = Op(ζKδα,N
√
KηK) = op(1),

|CN31| = Op(ζ2
ε,K/N) = op(1),

|CN32| = Op(ζε,KηK
√

K/N) = op(1),
|CN33| = Op(Kη2

K) = op(1),

and the conclusion follows.

Lemma 5. Under Assumptions (i)–(v), it holds |E[mi(γ0)εKi]| = O(
√
KηK).

Proof. Note that E[mi(γ0)εKi] = E[mi(0)εKi] + E[m̃i(γ0)εKi]. Let rK = γ0 −
β′
KQK . It follows

E[m̃i(γ0)εKi] = E[m̃i(γ0)α0iQKi] − E[m̃i(γ0)MKi]
= E[{β′

KMKi + m̃i(rK)}α0iQKi]
− E[{β′

KMKi + m̃i(rK)}MKi]
= Ξ1 + Ξ2,
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where
Ξ1 = E[α0iQKiM

′
Ki]βK − E[MKiM

′
Ki]βK ,

and
Ξ2 = E[(α0iQKi −MKi)m̃i(rK)].

Note that (5) implies Ξ1 = 0. By Cauchy and Schwarz inequality, we have

|Ξ2|2 ≤ E[|α0iQKi −MKi|2]E[m̃i(rK)2]
� trace(E[εKiε

′
Ki])E[r2

K ] � Kη2
K → 0.

Also, by (5),

E[mi(0)εKi] = E[mi(0)α0iQKi] − E[mi(0)MKi]

= E

⎡
⎢⎣ m̃i(m(0)q1)

...
m̃i(m(0)qK)

⎤
⎥⎦ − E

⎡
⎢⎣ mi(0)m̃i(q1)

...
mi(0)m̃i(qK)

⎤
⎥⎦ = 0.

Combining these results, the conclusion follows.

Lemma 6. Suppose assumptions of the Theorem hold true except display (12).
In addition, (1) if ζ3

ε,KζKδα,N → 0, and plim
[

1
N

∑N
i=1 Pi(m(γ0)|εK)2

]
= V∗,

then CN
p→ V∗; (2) otherwise, if 1

N

∑N
i=1 Pi(m(γ0)|ε̂K)2 p→ V∗∗, then CN

p→ V∗∗.

Proof. Statement (2) is straightforward. We only show statement (1). Note the
following decomposition of CN still holds:

CN = CN1 + 2CN2 + CN3,

where CN1, CN2, CN3 are defined in the proof of for display (25). Specifically,
it still holds |CN1| = Op(ζ2

Kδ2
α,N ) = op(1). It remains to bound CN2 and CN3.

Note ∣∣∣∣∣ 1
N

N∑
i=1

mi(γ0)εKi

∣∣∣∣∣ ≤ ζε,K
1
N

N∑
i=1

|mi(γ0)| = Op(ζε,K),

since
1
N

N∑
i=1

|mi(γ0)| = Op(1)

by the law of large numbers. Recall∣∣∣∣∣ 1
N

N∑
i=1

mi(γ0)(α̂i − α0i)QKi

∣∣∣∣∣ = Op(ζKδα,N ).

Hence, by Lemma 3(iii),

|CN2| ≤
∣∣∣∣∣ 1
N

N∑
i=1

mi(γ0)(α̂i − α0i)QKi

∣∣∣∣∣
∣∣∣∣∣∣
(

1
N

N∑
i=1

ε̂Kiε̂
′
Ki

)−1∣∣∣∣∣∣
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×
∣∣∣∣∣ 1
N

N∑
i=1

mi(γ0)εKi

∣∣∣∣∣
= Op(ζKδα,Nζε,K) = op(1).

For CN3, notice

CN3 =
(

1
N

N∑
i=1

mi(γ0)εKi

)′ [
1
N

N∑
i=1

ε̂Kiε̂
′
Ki

]−1 (
1
N

N∑
i=1

mi(γ0)εKi

)

= C̃N31 + C̃N32,

where

C̃N31 =
(

1
N

N∑
i=1

mi(γ0)εKi

)′ ⎧⎨
⎩

[
1
N

N∑
i=1

ε̂Kiε̂
′
Ki

]−1

−
[

1
N

N∑
i=1

εKiε
′
Ki

]−1⎫⎬
⎭

×
(

1
N

N∑
i=1

mi(γ0)εKi

)
,

C̃N32 =
(

1
N

N∑
i=1

mi(γ0)εKi

)′ [
1
N

N∑
i=1

εKiε
′
Ki

]−1 (
1
N

N∑
i=1

mi(γ0)εKi

)
.

Let 1
N

∑N
i=1 ε̂Kiε̂

′
Ki = Σ̂N , 1

N

∑N
i=1 εKiε

′
Ki = ΣN . Then

|ΣN − Σ̂N |

=

∣∣∣∣∣ 1
N

N∑
i=1

(ε̂Ki − εKi)(ε̂Ki − εKi)′ + 1
N

N∑
i=1

εKi(ε̂Ki − εKi)′

+ 1
N

N∑
i=1

(ε̂Ki − εKi)ε′Ki

∣∣∣∣∣
≤

∣∣∣∣∣ 1
N

N∑
i=1

(α̂i − α0i)2QKiQ
′
Ki

∣∣∣∣∣ +

∣∣∣∣∣ 1
N

N∑
i=1

(α̂i − α0i)εKiQ
′
Ki

∣∣∣∣∣
+

∣∣∣∣∣ 1
N

N∑
i=1

(α̂i − α0i)QKiε
′
Ki

∣∣∣∣∣ .
Note

∣∣∣ 1
N

∑N
i=1 QKiQ

′
Ki

∣∣∣ = Op(1) by Lemma 3 (i), so

∣∣∣∣∣ 1
N

N∑
i=1

(α̂i − α0i)2QKiQ
′
Ki

∣∣∣∣∣
= max

a∈SK−1

1
N

N∑
i=1

(α̂i − α0i)2(a′QKi)2
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≤
(

sup
x∈X

|α̂(x) − α0(x)|
)2

max
a∈SK−1

1
N

N∑
i=1

(a′QKi)2

=
(

sup
x∈X

|α̂(x) − α0(x)|
)2

∣∣∣∣∣ 1
N

N∑
i=1

QKiQ
′
Ki

∣∣∣∣∣ = Op(δ2
α,N ).

Also,∣∣∣∣∣ 1
N

N∑
i=1

(α̂i − α0i)εKiQ
′
Ki

∣∣∣∣∣ ≤ sup
x∈X

|α̂(x) − α0(x)|sup
x∈X

|εK(x)|sup
x∈X

|QK(x)|

= Op(ζKδα,Nζε,K).

Similarly
∣∣∣ 1
N

∑N
i=1(α̂i − α0i)QKiε

′
Ki

∣∣∣ = Op(ζKδα,Nζε,K) as well. So,

|ΣN − Σ̂N | = Op(δ2
α,N + ζKδα,Nζε,K) = Op(ζKδα,Nζε,K).

It follows

|C̃N31| =

∣∣∣∣∣∣
(

1
N

N∑
i=1

mi(γ0)εKi

)′

Σ̂−1
N {ΣN − Σ̂N}Σ−1

N

(
1
N

N∑
i=1

mi(γ0)εKi

)∣∣∣∣∣∣
= Op(ζ3

ε,KζKδα,N ) = op(1)

by assumption and Lemmas 3 (i) and (iv). Finally

C̃N32 = 1
N

N∑
i=1

Pi(m(γ0)|εK)2 p→ V ∗

by assumption. The conclusion follows.
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