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We consider the problem of assessing and mitigating fire sales risk for banks under partial information. Using 
data from the European Banking Authority’s stress tests, we consider the matrix of asset holdings of different 
banks. We first analyse fire sales risk under both full and partial information using different matrix reconstruction 
methods. We then investigate how well some policy interventions aimed at mitigating fire sales risk perform if 
they are applied based on only partial information. We find that even under partial information, using suitable 
network reconstruction methods to decide on policy interventions can significantly mitigate risk from fire sales. 
Furthermore, we show that some interventions based on reconstructed networks significantly outperform ad hoc 
methods that decide on interventions only based on the size of an institution and do not account for overlapping 
portfolios.
1. Introduction

Fire sales pose a key threat to financial stability since they can sig-
nificantly amplify initial losses. They are one of the main channels of 
systemic risk. During the 2007-2008 Global Financial Crisis (GFC) am-
plification mechanisms played a major role. It was estimated that $
300bn of subprime mortgage-related losses were turned into over $ 2.5 
trillion of potential write-downs in the global banking sector within a 
year (Brazier, 2017). Therefore it is a key concern for financial regu-
lators to identify any potential channels of systemic risk and find tools 
and mechanisms to mitigate their impact. In this paper, we will focus 
on fire sales.

While significant progress on modelling fire sales has been made, the 
models proposed usually assume that the asset holdings of the financial 
institutions are observable, see e.g., Shleifer and Vishny (2010); Cont 
and Wagalath (2013); Greenwood et al. (2015); Cont and Schaanning 
(2017, 2019). In practice, however, often only partial information about 
the asset holdings is available. Usually, regulators have only detailed 
information on the banks that they regulate and not beyond.

In this paper, we show how one can both assess and mitigate fire 
sales risk under partial information. We consider a matrix 𝑋, where 
each element 𝑋𝑛𝑘 represents the amount of asset 𝑘 that bank 𝑛 holds 
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(in EUR). We are interested in situations in which these individual po-
sitions are not observable but the corresponding column and row sums 
of 𝑋 representing the total market capitalisation of asset 𝑘 and the total 
assets of bank 𝑛 are observable. To conduct stress testing under par-
tial information, we use matrix reconstruction methods by (Upper and 
Worms, 2004; Anand et al., 2015; Cimini et al., 2015; Gandy and Ve-
raart, 2017, 2019) to reconstruct the asset holding matrix 𝑋 from the 
observed row and column sums.

Our paper makes two main contributions: First, it conducts a horse 
race between different network reconstruction methods and compares 
their performance in quantifying fire sales risk in financial stress tests 
under partial information. Second, we show that there are clear benefits 
of using suitable network reconstruction techniques not just for quanti-
fying fire sales risk but also for mitigating it. In particular, we show that 
policy interventions based on suitable network reconstruction methods 
can significantly outperform ad hoc policy interventions that do not ac-
count for the interconnectedness of financial institutions. We identify 
which network reconstruction methods are best suited to use for policy 
interventions to mitigate fire sales risk. To the best of our knowledge, 
our analysis is the first that considers the mitigation of fire sales risk 
under partial information.
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We consider the modelling framework and risk measures developed 
by Greenwood et al. (2015) to assess fire sales risk. Their key assump-
tion is that banks aim to maintain their target leverage, i.e., the ratio 
of debt to equity.1 Empirical evidence for this behaviour has been pro-
vided by Adrian and Shin (2010). We conduct a stress testing exercise 
using empirical data from the European Banking Authority (EBA) that 
they used in their 2011 and 2016 EBA stress tests. The EBA has collected 
full information on the asset holdings of the banks that participated in 
these stress tests. This allows us to compare results under partial infor-
mation to results under full information.

We find that all matrix reconstruction methods considered are able 
to reproduce the general trend, namely, that fire sales risk was lower 
in 2016 than in 2011. We show how the performance of the different 
network reconstruction methods applied to quantifying fire sales risk 
depends on the stress scenarios. Overall, we find that reconstruction 
methods attempting to approximate the distribution of the underlying 
network such as Cimini et al. (2015); Gandy and Veraart (2017, 2019)
are better suited to assess fire sales risk from partial information than 
optimisation-based network reconstruction methods such as the ones by 
Upper and Worms (2004); Anand et al. (2015).

Next, we consider several policy interventions to reduce fire sales 
risk. In particular, we are interested in evaluating whether it is pos-
sible to conduct policy interventions at an early stage of a fire sales 
cascade to mitigate losses. At such an early stage, it is unlikely that full 
information on the underlying asset holdings is available. We therefore 
again conduct two types of analyses: First, we assume that full infor-
mation on the underlying asset holding network is available and use 
this full information to decide on policy interventions. Second, we base 
all policy intervention decisions on asset holding networks that were 
reconstructed from partial information and we compare the outcome 
of the system to the outcome under full information. We compare ad 
hoc strategies that do not use network reconstruction to strategies that 
use network reconstruction to decide on policy interventions. We find 
that there are clear benefits of using network reconstruction over ad 
hoc methods. In particular, we find that the Bayesian approach to net-
work reconstruction by Gandy and Veraart (2017, 2019) is particularly 
successful when used for policy interventions to mitigate fire sales risk.

Another contribution of our analysis is to show theoretically how 
the fire sales risk measures introduced by Greenwood et al. (2015) de-
pend on the individual entries of the asset holdings matrix and how 
much they only depend on the aggregate information, i.e., the row and 
column sums of the asset holding matrix. We provide theoretical results 
that show that for some stress scenarios only very limited information 
on the underlying asset holdings matrix is required to either assess the 
related fire sales risk or to make a meaningful intervention to mitigate 
these risks. In particular, we show that determining the initial spread of 
losses via connected portfolios requires far less information than deter-
mining who is eventually negatively affected by fire sales. This explains 
why policies aimed at mitigating the initial round of fire-sales losses 
can still be successfully applied under partial information.

The structure of the paper is as follows. In Section 2, we describe 
the modelling framework by Greenwood et al. (2015) for quantifying 
fire sales. In Section 3, we provide theoretical results on how the fire 
sales measure depended on the asset holding matrices. Furthermore, we 
provide some background on the network reconstruction methods used. 

1 To see the effect of leverage targeting, consider a bank with a stylised bal-
ance sheet whose asset side consists of securities and whose liabilities side 
consists of debt and equity. So, if market stress leads to a decrease in the value 
of securities, i.e., the assets, then on the liabilities side of the balance sheet the 
value of the equity decreases, and hence the leverage increases. To move back 
to the target leverage a bank can now sell assets to pay off some of its debt. 
Hence, a decrease in asset values can trigger (fire) sales. If large quantities of 
assets are liquidated, this creates a price impact, i.e., their prices decrease. This 
forces other institutions to re-evaluate their portfolios, which might lead to fur-
2

ther rounds of deleveraging and price impacts.
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In addition, we describe the stress testing data by the European Bank-
ing Authority (EBA) that we use in our empirical analysis. We compare 
the performance of different matrix reconstruction methods in replicat-
ing fire sales measures by Greenwood et al. (2015) for the EBA data. 
In Section 4, we present our results on the performance of policy inter-
ventions based on both full and partial information. Finally, Section 5
concludes.

1.1. Related literature

Our analysis is based on the framework for quantifying fire sales risk 
by Greenwood et al. (2015). In contrast to Greenwood et al. (2015) who 
assume full knowledge of the asset holdings, we assume that only par-
tial information of the asset holdings is available. Hence, we conduct a 
two-step analysis. In the first step, we reconstruct the network of asset 
holdings from partial information. In a second step, we apply the mea-
sures by Greenwood et al. (2015) to the reconstructed networks and 
compare the results to those obtained under full information.

We will consider a range of reconstruction methods to obtain an 
estimate of the asset holding matrix based on partial information. The 
goal of all these methods is to reconstruct the individual entries of the 
matrix from given row and column sums. We will consider the network 
reconstruction methods proposed by Upper and Worms (2004), Anand 
et al. (2015), Cimini et al. (2015), and Gandy and Veraart (2017, 2019)
in our analysis and compare their performance. We provide more details 
on them in Appendix A.

Several papers have compared the performance of different ma-
trix reconstruction methods. Gandy and Veraart (2019) have compared 
the Bayesian method by Gandy and Veraart (2017) (and some exten-
sions) to the approaches by Cimini et al. (2015) and Upper and Worms 
(2004) using network data of Credit Default Swaps exposures where 
the reference entity was a UK institution. They found that the Bayesian 
method outperformed alternative reconstruction methods using a wide 
range of matrix comparison measures. Anand et al. (2018) compares a 
wide range of methods (not including the Bayesian approach by Gandy 
and Veraart (2017, 2019)) by applying them to data from 25 different 
markets from 13 jurisdictions. They find that it depends on the charac-
teristics of the networks which method works best for its reconstruction. 
Among the probabilistic methods, they found that the method by Ci-
mini et al. (2015) worked best. Lebacher et al. (2019) compare several 
network reconstruction methods including, e.g., entropy, Bayesian and 
gravity (a regularised entropy method with a penalising factor) type 
reconstruction methods using SWIFT data. Their paper finds that the 
performance of the reconstruction methods is dependent on the type 
of network being reconstructed, arriving at a similar conclusion as in 
Anand et al. (2018).

The papers Di Gangi et al. (2018), Squartini et al. (2017) and Ra-
madiah et al. (2020) conduct a similar analysis as we do - in the sense 
that they apply network reconstruction methods for assessing fire sales. 
Di Gangi et al. (2018) focuses on variations of the maximum entropy 
method for the network reconstruction and uses the Greenwood et al. 
(2015) measures to quantify fire sales risk using data from the USA. 
Squartini et al. (2017) apply the model by Cimini et al. (2015) to recon-
struct bipartite networks of asset holdings. They use data on security 
holdings by the European Central Bank and use the fire sales measure 
by Greenwood et al. (2015) to consider a relative systemicness index 
in evaluating the reconstructed matrices. Ramadiah et al. (2020) evalu-
ate a range of reconstruction methods with systemic risk indicators for 
fire sales risk. They use data from bank-firm interactions in Japan and 
analyse the effect of aggregation on the performance of reconstructed 
matrices.

Our paper deviates from the existing literature by first analysing the 
Bayesian reconstruction methods by Gandy and Veraart (2017, 2019)
in the context of fire sales risk and by comparing them to other ap-
proaches. But second and most importantly, we also analyse the effect 

of different policy interventions under both full and partial information.
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Table 1

Balance sheet of bank 𝑛 ∈ at time 𝑡.
Assets Liabilities
assets 𝛼𝑛𝑡 debt 𝑑𝑛𝑡

equity 𝑒𝑛𝑡

So far policy interventions have only been studied under full infor-
mation. Shleifer and Vishny (2010) considers the effect of credit easing 
on fire sales risk in comparison with other policies. Capponi and Larsson 
(2015) builds on the systemic measures from Greenwood et al. (2015)
and Duarte and Eisenbach (2021) propose a liquidation strategy to re-
duce the systemic risk of the network. Greenwood et al. (2015) consider 
a wide selection of policy interventions to mitigate fire sales risk. But 
all these papers have not considered such interventions in only partially 
observed financial networks which is what we do here.

2. Fire sales in financial networks

We now describe the modelling framework for stress testing and 
assessing fire sales risk by Greenwood et al. (2015).

2.1. The financial market

The financial market consists of 𝑁 ∈ ℕ banks and 𝐾 ∈ ℕ assets, the 
set of banks is denoted by  = {1, … , 𝑁} and the set of assets is de-
noted by  = {1, … , 𝐾}. The main model considers two periods with 
time indices 𝑡 = 1, 2.2

We denote by 𝑋 = (𝑋𝑛𝑘)𝑛∈ ,𝑘∈ ∈ [0, ∞)𝑁×𝐾 the asset holdings ma-
trix at time 𝑡 = 1, where 𝑋𝑛𝑘 represents the amount of asset 𝑘 ∈ {1 … , 𝐾}
that bank 𝑛 ∈ {1, … , 𝑁} holds in million EUR. Furthermore, we consider 
the row and column sums of 𝑋 given by

𝛼𝑛1 =
𝐾∑

𝑘=1
𝑋𝑛𝑘 ∀𝑛 ∈ , 𝑐𝑘 =

𝑁∑
𝑛=1

𝑋𝑛𝑘 ∀𝑘 ∈  , (1)

and refer to 𝛼𝑛1 as the total assets of bank 𝑛 at time 𝑡 = 1 and to 𝑐𝑘 as 
the total capitalisation of asset 𝑘. (Strictly speaking, 𝑐𝑘 is the total cap-
italisation of asset 𝑘 among the nodes  , but since we do not consider 
other financial institutions beyond those in  we will not make this 
distinction.)

We also define the matrix of portfolio weights denoted by 𝑀 =
(𝑚𝑛𝑘)𝑛∈ ,𝑘∈ ∈ ℝ𝑁×𝐾 , where 𝑚𝑛𝑘 = 𝑋𝑛𝑘∕𝛼𝑛1 i.e., 𝑚𝑛𝑘 describes the 
weight of asset 𝑘 within the total asset portfolio of bank 𝑛. In partic-
ular, for all 𝑛 ∈ , ∑𝐾

𝑘=1 𝑚𝑛𝑘 = 1.
We consider a stylised balance sheet, see Table 1, in which for each 

bank 𝑛 ∈  its time 𝑡 debt is denoted by 𝑑𝑛𝑡 and its time 𝑡 equity is 
denoted by 𝑒𝑛𝑡. Then, its total assets at time 𝑡 are given by 𝛼𝑛𝑡 = 𝑒𝑛𝑡 + 𝑑𝑛𝑡

and the time 𝑡 leverage of bank 𝑛 is given by

𝑏𝑛𝑡 =
𝑑𝑛𝑡

𝑒𝑛𝑡

=
𝛼𝑛𝑡 − 𝑒𝑛𝑡

𝑒𝑛𝑡

. (2)

2.2. The stress test and fire sale mechanism

As part of a stress testing exercise, Greenwood et al. (2015) assume 
that at time 𝑡 = 1 there is a negative shock to (some of the) assets. We de-
note by 𝐹1 = (𝑓11, … , 𝑓𝐾1)⊤, with 𝑓𝑘1 ≤ 0 for all 𝑘 ∈  , the shock vector 
which is a vector of non-positive net asset returns. The unlevered return 
on the portfolios of the 𝑁 banks, denoted by 𝑅1 = (𝑅11, … , 𝑅𝑁1)⊤ ∈ℝ𝑁 , 

2 An extension to more than two periods has been discussed in Greenwood 
et al. (2015) as well, but we will not consider these extensions here. Multi-
ple rounds of deleveraging have also been considered in Cont and Schaanning 
(2017) and Huang et al. (2013). To account for higher order effects, fire sales 
have also been modelled directly as fixed point problems, see e.g., Cifuentes et 
3

al. (2005) and Amini et al. (2016).
Journal of Banking and Finance 155 (2023) 106989

is then given by 𝑅1 = 𝑀𝐹1. In particular, 𝑅𝑛1 =
∑𝐾

𝑘=1 𝑚𝑛𝑘𝑓𝑘1 for all 
𝑛 ∈ .

Greenwood et al. (2015) assume that, in response to such a negative 
shock, banks will sell assets to return to their target (original) leverage 
𝑏𝑛1.

3

Furthermore, they assume that banks sell assets proportionally to 
their existing holdings determined by the matrix of portfolio weights 
𝑀 .4 In addition, they assume that the sale of assets will have a linear 
price impact, modelled by 𝐾 parameters 𝑙1, … , 𝑙𝐾 ∈ [0, ∞). In particu-
lar, the parameter −𝑙𝑘 ≤ 0 models the negative shock to asset 𝑘 ∈  per 
million EUR of asset 𝑘 sold.5 In particular, the fire sale in one specific 
asset does not affect prices in any other assets. This price impact rep-
resents a second shock to the market which could in principle lead to 
further deleveraging, but we do not consider later rounds of deleverag-
ing in this paper.

2.3. Measuring fire sales risk

We now define the measures for quantifying fire sales risk proposed 
by Greenwood et al. (2015) using slightly different notation in some 
places.

The aggregate vulnerability, denoted by  , is the total banks’ 
equity lost due to deleveraging following an initial shock 𝐹1 divided 
by the total equity in the system before the shock. Mathematically it is 
defined as

 =
𝑁∑

𝑛=1
(𝑛), (3)

where (𝑛) ∈ [0, ∞) denotes the systemicness of bank 𝑛 ∈ . Hence, 
the systemicness of a bank quantifies the effect that an individual bank 
𝑛 ∈ has on the aggregate vulnerability.

For each bank 𝑛 ∈ , the systemicness (𝑛) ∈ [0, ∞) measures 
the contributed relative equity loss from an individual bank 𝑛 (relative 
to the total equity of banks in the network). The systemicness of a bank 
𝑛 ∈ is defined as

(𝑛) = 𝛾𝑛1
𝛼𝑛1∑𝑁

𝜈=1 𝑒𝜈1
𝑏𝑛1(−𝑅𝑛1), (4)

𝛾𝑛1 =
𝐾∑

𝑘=1

(
𝑁∑

𝑝=1
𝛼𝑝1𝑚𝑝𝑘

)
𝑙𝑘𝑚𝑛𝑘 =

𝐾∑
𝑘=1

𝑐𝑘𝑙𝑘𝑚𝑛𝑘. (5)

From this representation, one can see that systemicness is a product 
of four factors which all have an economic interpretation. In particular, 
as discussed in Greenwood et al. (2015), the systemicness of a bank is 
larger if: 𝛾𝑛1, referred to as “connectedness” in Greenwood et al. (2015), 
is larger meaning that it is more connected in the sense that it holds 
assets with a large market capitalisation 𝑐𝑘, or whose sale has a large 
price impact 𝑙𝑘; the size measured by 𝛼𝑛1∑𝑁

𝜈=1 𝑒𝜈1
is larger since banks with 

larger total assets will liquidate more assets in a fire sale; the leverage 
𝑏𝑛1 is larger since the leverage amplifies the volume of assets sold in 
order to maintain the target leverage; (−𝑅𝑛1) is larger, i.e., it is hit by a 
larger shock.

3 For a bank directly affected by the shock it holds that 𝛼𝑛1𝑅𝑛1 < 0. Hence, its 
leverage increases from 𝑏𝑛1 = 𝑑𝑛1∕𝑒𝑛1 to 𝑑𝑛1∕(𝑒𝑛1 +𝛼𝑛1𝑅𝑛1). It therefore sells 𝑦𝑛1 =
−𝛼𝑛1𝑏𝑛1𝑅𝑛1 > 0 assets, if it has enough assets still available, i.e., if −𝛼𝑛1𝑏𝑛1𝑅𝑛1 <

𝛼𝑛1(1 + 𝑅𝑛1). It then pays back parts of its debt leading to a new leverage of 
(𝑑𝑛1 − 𝑦𝑛1)∕(𝑒𝑛1 + 𝛼𝑛1𝑅𝑛1) = 𝑏𝑛1 , which is indeed the original (target) leverage. 
(Since a bank can never sell more assets than it has, to be precise one would 
need to set 𝑦𝑛1 =

(
min{−𝛼𝑛1𝑏𝑛1𝑅𝑛1, 𝛼𝑛1(1 +𝑅𝑛1)}

)+
. In our case studies, this cap 

was never reached, therefore we ignore it in the following to keep the notation 
simpler.

4 This means, that bank 𝑛 sells −𝑚𝑛𝑘𝑦𝑛1 ≥ 0 of asset 𝑘 (in million EUR). In our 
empirical analysis, all nodes had enough assets left to sell according to this rule.

5 The total amount of asset 𝑘 sold is 𝜙𝑘1 = − ∑𝑁

𝑛=1 𝑚𝑛𝑘𝛼𝑛1𝑏𝑛1𝑅𝑛1 and the result-

ing time 2 shock to asset 𝑘 is then 𝑓2𝑘 = −𝑙𝑘𝜙𝑘1 .
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The direct vulnerability of bank 𝑛 ∈ , denoted by (𝑛) ∈ [0, ∞), 
is the fraction of its equity lost directly due to the initial shock 𝐹1. It is 
given by

(𝑛) =
𝛼𝑛1(−𝑅𝑛1)

𝑒𝑛1
. (6)

The indirect vulnerability for a bank 𝑛 ∈ , denoted by (𝑛) ∈
[0, ∞), measures the fraction of its equity that is lost due to the delever-
aging of the banks. It is defined as follows

(𝑛) =
𝛼𝑛1
𝑒𝑛1

𝐾∑
𝑘=1

[
𝑙𝑘𝑚𝑛𝑘

(
(−1)

𝑁∑
𝑗=1

𝑚𝑗𝑘𝛼𝑗1𝑏𝑗1𝑅𝑗1

)]
. (7)

The intuition behind the formula (7) is as follows. The first factor 
𝛼𝑛1∕𝑒𝑛1 measures the effect of the leverage of a bank. Higher leverage 
will result in higher indirect vulnerability. The second term of interest is 
𝑙𝑘𝑚𝑛𝑘 and as shown in Greenwood et al. (2015) it can be interpreted as 
an illiquidity-weighted exposure measure to asset 𝑘. Finally, the total 
volume of asset 𝑘 sold is − ∑𝑁

𝑗=1 𝑚𝑗𝑘𝛼𝑗1𝑏𝑗1𝑅𝑗1 ≥ 0. Hence, nodes that 
hold a large amount of illiquid assets that are sold in large quantities 
have a high indirect vulnerability.

Although the systemicness and the indirect vulnerability share com-
mon factors, a bank 𝑛 may have a high (𝑛) and a low (𝑛) or vice 
versa, as noted in Greenwood et al. (2015).

2.4. Observability and choice of model parameters

The financial market is characterised by a matrix of asset holdings 
𝑋 and the equity of the institutions 𝑒𝑛1, 𝑛 ∈ . The equities 𝑒𝑛1 are in 
principle observable from balance sheet data. The asset holding matrix 
is not necessarily fully observable.

Definition 2.1 (Full and partial information). We refer to a stress test 
as being under full information if the asset holding matrix 𝑋 is fully 
observed, i.e., if for all 𝑛 ∈  , 𝑘 ∈  , the individual entries 𝑋𝑛𝑘 are 
known.
We refer to a stress test as being under partial information if only the row 
and column sums of the asset holding matrix 𝑋 given in (1) are known, 
but for all 𝑛 ∈ , 𝑘 ∈  , the individual entries 𝑋𝑛𝑘 are unknown.
In both situations, we assume that the equity 𝑒𝑛1 is known for all 𝑛 ∈ .

In practice, detailed information on individual asset holdings 𝑋𝑛𝑘 is 
often not available, in particular when one considers financial institu-
tions operating in different jurisdictions. The row and column sums of 
the asset holding matrix are more widely available (from balance sheet 
and market data).

To conduct the stress testing exercise we will need to specify the 
shocks 𝑓𝑘1, 𝑘 ∈ 𝐾 and the price impact parameters 𝑙𝑘, 𝑘 ∈  . We will 
consider different choices for the shocks 𝑓𝑘, 𝑘 ∈  .

Definition 2.2 (𝐾̃-asset shock and all asset shock). We refer to a situ-
ation in which only 0 < 𝐾̃ ≤ 𝐾 assets are shocked as a 𝐾̃-asset shock. 
We denote the indices of shocked assets by 𝐾̃ ⊆  . Then, |𝐾̃ | = 𝐾̃ . 
Furthermore, 𝑓𝑖 < 0 for all 𝑖 ∈ 𝐾̃ and 𝑓𝑖 = 0 for all 𝑖 ∈  ⧵ 𝐾̃ .

If all assets are shocked equally, i.e., 𝑓1 = … = 𝑓𝐾 = 𝑓 < 0, we will 
refer to such a shock as an all asset shock.

Note that according to our definition, every all asset shock is a 𝐾-
asset shock, but not every 𝐾-asset shock is an all asset shock since an 
all asset shock has the additional feature that all assets are shocked 
equally.

We will distinguish between two different parametric choices for the 
price impact parameters 𝑙𝑘.

Definition 2.3 (Constant and capitalisation-dependent price impact). We 
will refer to a price impact given by 𝑙1 =… = 𝑙𝐾 = 𝑙 ∈ [0, ∞), as a con-
4

stant price impact.
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We will refer to a price impact given by 𝑙𝑘 = 𝜌

𝑐𝑘
∀𝑘 ∈  , where 

𝜌 > 0 and 𝑐𝑘 > 0 is the capitalisation of asset 𝑘 defined in (1), as the 
capitalisation-dependent price impact. If, 𝑐𝑘 = 0, we set 𝑙𝑘 = 0.

A constant price impact was assumed in the empirical analysis in 
Greenwood et al. (2015). Since it has been argued that a constant price 
impact can overestimate the losses for liquid assets and underestimate 
the losses for illiquid assets (Cont and Schaanning, 2017, p. 19), we 
additionally consider a capitalisation-dependent price impact which as-
sumes that the sale of assets with larger market capitalisation leads to 
a smaller price impact. This implicitly assumes that assets with a larger 
market capitalisation are more liquid and therefore cause a smaller 
price impact when sold.6 One could adjust the definition of a capitali-
sation dependent price impact if one wanted to allow for the existence 
of external investors in the model.7

3. Assessing fire sales risk under full and partial information

Next, we conduct stress testing to analyse fire sales risk under both 
full and partial information.

3.1. Dependence of fire sales risks on the asset holding matrix

We start by presenting our theoretical results on the dependence of 
the systemicness, the aggregate vulnerability, and the direct vulnerabil-
ity on the asset holding matrix 𝑋. We assume that the row and column 
sums of 𝑋, given in (1), are known and we determine how much these 
three risk measures ( , (𝑛) and (𝑛)) depend on the individual 
entries of 𝑋 (beyond the information contained in the row and col-
umn sums). We show that there are several situations in which some of 
these risk measures do not depend on the individual entries of the asset 
holdings matrix 𝑋 at all but only on its row and column sums.

Proposition 3.1. Let 𝑋 ∈ [0, ∞)𝑁×𝐾 be an asset holdings matrix. Suppose 
that its row and column sums 𝛼𝑛1, 𝑛 ∈ and 𝑐𝑘, 𝑘 ∈  , defined in (1), are 
known.

1. for each 𝑛 ∈ , the systemicness (𝑛) can depend on the individual 
entries of 𝑋 only via 𝛾𝑛1 and 𝑅𝑛1;

2. the aggregate vulnerability  can depend on the individual entries of 
𝑋 only via 𝛾𝑛1 and 𝑅𝑛1, where 𝑛 ∈ ;

3. the direct vulnerability 1(𝑛) of an institution 𝑛 can depend on the 
individual entries of 𝑋 only via 𝑅𝑛1;

4. For a constant price impact, 𝛾𝑛1 can depend on the individual entries of 
𝑋 only via its 𝑛th row; for a capitalisation dependent price impact, 𝛾𝑛1
does not depend on 𝑋.

5. 𝑅𝑛1 can depend on the individual entries of 𝑋 only via its 𝑛th row; 
furthermore,

(a) for an all asset shock, 𝑅𝑛1 and hence (𝑛) do not depend on the 
individual entries of 𝑋.

6 In our empirical analysis we will set 𝜌 = − log(0.1). This parametric as-
sumption is inspired by models such as Cifuentes et al. (2005), which use an 
exponential function to describe the inverse demand function that maps the 
quantities being sold to a price. In our case, we do not consider the quantities 
being sold, but the total market capitalisation and therefore our definition is 
slightly different from the classical characterisation in terms of an inverse de-
mand function. One could also consider other inverse demand functions in this 
setting, see e.g., Bichuch and Feinstein (2022).

7 These external investors would hold (some of) the assets but would not 
engage in the leverage targeting/fire sales mechanisms. The total market cap-
italisation of an asset 𝑘 would then consist of 𝑐𝑘 + 𝑐

(𝑒)
𝑘

, where 𝑐𝑘 is the market 
capitalisation of asset 𝑘 among the nodes in  and 𝑐(𝑒)

𝑘
is the market capitalisa-

tion of asset 𝑘 held by external investors. Then a capitalisation-dependent price 
impact could be defined as 𝑙𝑒

𝑘
= 𝜌

𝑐𝑘+𝑐
(𝑒)
𝑘

for a fixed 𝜌 > 0. We will not consider this 

generalisation in the following.
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(b) for a 𝐾̃-asset shock, 𝑅𝑛1 and hence (𝑛) only depend on the 
columns with indices in 𝐾̃ within the 𝑛th row, but not on the full 
𝑛th row of 𝑋.

Corollary 3.2. In addition to the assumptions of Proposition 3.1, let the 
price impact be capitalisation-dependent and let 𝑛 ∈ . Then,

1. for an all asset shock, the systemicness (𝑛), the direct vulnerabil-

ity (𝑛) and the aggregate vulnerability  do not depend on the 
individual entries of 𝑋.

2. for a 𝐾̃-asset shock, both the systemicness (𝑛) and the direct vul-

nerability (𝑛) only depend on the columns with indices in 𝐾̃ of the 
𝑛th row, but not on the full 𝑛th row of 𝑋. Furthermore, the aggregate 
vulnerability  only depends on 𝑋 via its columns with indices in 𝐾̃ .

The proofs of Proposition 3.1 and Corollary 3.2 are in Appendix B. 
Note that the indirect vulnerability often depends on the individual en-
tries of 𝑋. In the following, we will focus our analysis on situations in 
which the risk measures do indeed depend on (parts of) the underlying 
matrix 𝑋 and assess the effect of using different matrix reconstruction 
methods to estimate the individual entries of the matrix 𝑋.

Remark 3.3 (Notation). To make it clear which matrix is used to 
compute the corresponding risk measures, we will sometimes write 
𝑋 (𝑛), 𝑋 , 𝑋 (𝑛), 𝑋 (𝑛) to show explicitly that these risk mea-
sures are computed based on the matrix 𝑋. In our analysis we will later 
allow the matrix 𝑋 to be random, i.e., each element of 𝑋 is a random 
variable, in which case then the corresponding systemic risk measures 
also become random variables.
We will also later use the notation 𝛾𝑛1 = 𝛾𝑛1(𝑋) and 𝑅𝑛1 = 𝑅𝑛1(𝑋), where 
𝑛 ∈ , to indicate that both 𝛾𝑛1 and 𝑅𝑛1 can depend on 𝑋.

We have seen that the asset holding matrix 𝑋 enters the different 
risk measures only via 𝑅𝑛1 and 𝛾𝑛1, where 𝑛 ∈  . It plays a different 
role in these two quantities.

In 𝑅𝑛1, the asset holding matrix directly influences the magnitude 
of the original shock. In particular, the loss of bank 𝑛’s equity after the 
initial shock is given by

𝛼𝑛1𝑅𝑛1 = 𝛼𝑛1

𝐾∑
𝑘=1

𝑚𝑛𝑘𝑓𝑘1 = 𝛼𝑛1

𝐾∑
𝑘=1

𝑋𝑛𝑘

𝛼𝑛1
𝑓𝑘1 =

𝐾∑
𝑘=1

𝑋𝑛𝑘𝑓𝑘1 ≤ 0. (8)

For an all asset shock, equation (8) simplifies further to 𝛼𝑛1𝑅𝑛1 =
𝑓
∑𝐾

𝑘=1 𝑋𝑛𝑘 = 𝑓𝛼𝑛1. Hence, for an all asset shock, one only needs to know 
the row sum 𝛼𝑛1 rather than the individual entries of 𝑋 to determine 
the magnitude of the shock.

In 𝛾𝑛1, the asset holding matrix enters through the rule of how as-
sets are sold following a stress. Greenwood et al. (2015) assume that 
stressed banks sell assets according to the proportion of their original 
portfolio positions, i.e., if bank 𝑛 sells a total of 𝑦𝑛1 assets (in EUR), it 
sells 𝑚𝑛𝑘𝑦𝑛1 =

𝑋𝑛𝑘

𝛼𝑛1
𝑦𝑛1 of asset 𝑘 (in EUR).

One can generalise the selling rule by assuming that banks no longer 
sell according to the matrix 𝑚 but according to a matrix 𝜇 ∈ [0, 1]𝑁×𝐾 , 
where ∑𝐾

𝑘=1 𝜇𝑛𝑘 = 1 for all 𝑛 ∈ .8 Then, for a general selling rule char-
acterised by the matrix 𝜇 we use

8 The general selling rule does not exclude short-selling. If one wanted to 
exclude short-selling for the general selling rule one would need to require that 
𝜇𝑛𝑘𝑦𝑛1 ≤ 𝑋𝑛𝑘(1 +𝑓𝑘1), where the left-hand side is the total amount of asset 𝑘 sold 
by bank 𝑛, and the right-hand side is the amount of asset 𝑘 that bank 𝑛 has after 
the shock. This implies the following additional condition on 𝜇, namely

𝜇𝑛𝑘 ≤
𝑋𝑛𝑘(1 + 𝑓𝑘1)

𝑦𝑛1
∀𝑘 ∈  , (9)
5

for all 𝑛 ∈ with 𝑦𝑛1 > 0. (We set 𝜇𝑛𝑘 = 0 for all 𝑛 ∈ with 𝑦𝑛1 = 0 and ∀𝑘 ∈  .)
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𝛾
(𝜇)
𝑛1 =

𝐾∑
𝑘=1

𝑐𝑘𝑙𝑘𝜇𝑛𝑘,

rather than 𝛾𝑛1 =
∑𝐾

𝑘=1 𝑐𝑘𝑙𝑘
𝑋𝑛𝑘

𝛼𝑛1
in the formulae for the different fire sale 

risk measures. Such a formulation allows us to capture situations in 
which the actual selling rule that banks use under stress is unknown, 
which would often be the case in practice.

We can then compute bounds on the influence of the selling rule by 
considering for each 𝑛 ∈

max
𝜇∈[0,1]𝑁×𝐾

𝛾
(𝜇)
𝑛1

subject to
𝐾∑

𝑘=1
𝜇𝑛𝑘 = 1,

(10)

or the corresponding minimisation problem. These linear optimisation 
problems can be solved analytically. The maximum of the objective 
function is max𝑘∈{𝑐𝑘𝑙𝑘} which is attained by setting 𝜇𝑛𝑘 = 1 at the in-
dex 𝑘 where the maximum max𝑘∈{𝑐𝑘𝑙𝑘} is attained and 𝜇𝑛𝑘 = 0 for all 
remaining indices 𝑘. In particular, the optimal solution does not depend 
on 𝑛. The corresponding result in which max is replaced by min holds 
for the minimum. The optimal strategy corresponding to the maximisa-
tion problem selects the asset with the highest capitalisation-weighted 
price impact.9

These results hold for general price impact parameters 𝑙1, … , 𝑙𝐾 . For 
a capitalisation-dependent price impact, however, the connectedness 
simplifies to

𝛾
(𝜇)
𝑛1 =

𝐾∑
𝑘=1

𝑐𝑘𝑙𝑘𝜇𝑛𝑘 =
𝐾∑

𝑘=1
𝑐𝑘

𝜌

𝑐𝑘

𝜇𝑛𝑘 = 𝜌

and hence it does not depend on the selling rule 𝜇.
Furthermore, we find that if 𝛾 (𝜇)

𝑛1 = 𝛾̃ for all 𝑛 ∈ , i.e., if all banks 𝑛
have the same connectedness, then the network effect arising from 𝛾 (𝜇)

𝑛1
only becomes a scaling factor in the aggregate vulnerability, in particu-
lar,

 =
𝑁∑

𝑛=1
𝛾𝑛1

𝛼𝑛1∑𝑁

𝜈=1 𝑒𝜈1
𝑏𝑛1(−𝑅𝑛1) =

−𝛾̃∑𝑁

𝜈=1 𝑒𝜈1

𝑁∑
𝑛=1

𝑏𝑛1

𝐾∑
𝑘=1

𝑋𝑛𝑘𝑓𝑘1. (11)

This situation arises, as discussed for a capitalisation-dependent 
price impact. It also arises for all selling strategies 𝜇 that are not bank 
specific, i.e., for which 𝜇𝑛𝑘 = 𝜇̃𝑘 for all 𝑛 ∈ and for 𝜇1, … , 𝜇𝐾 ∈ [0, 1]
with ∑𝐾

𝑘=1 𝜇̃𝑘 = 1.10

These considerations show that in order to have a more involved 
interaction between the two network effects 𝛾 (𝜇)

𝑛1 and 𝑅𝑛1, one needs to 
consider shocks that are not an all asset shock, selling strategies that 
vary between banks (as e.g., the strategy considered in Greenwood et 
al. (2015)) and a price impact that is not capitalisation-dependent.

In the following, we will therefore focus on the selling strategy 
assumed by Greenwood et al. (2015), where 𝜇 = 𝑚 and we will not 
consider other strategies any further. To analyse the different effects of 
𝑅𝑛1 and 𝛾𝑛1, we will include an all asset shock in our analysis, to isolate 
the effect of 𝛾𝑛1 for fixed (meaning that they do not depend on the in-
dividual entries of the asset holding matrix) 𝑅𝑛1. Similarly, we will also 
include a capitalisation-dependent price impact to isolate the effect of 
𝑅𝑛1 for fixed 𝛾𝑛1. Furthermore, we will consider shocks that affect only 

9 The solution to the optimisation problem (10) and the corresponding min-
imisation problem are useful as upper and lower bounds on the potential in-
fluence of the selling rule. It is possible, that banks do not hold the amount of 
assets that needs to be sold according to these optimal strategies. To exclude 
short-selling one would need to include the additional condition (9) in the op-
timisation problems.
10 An example of such a selling strategy would be to sell according to equal 

proportions 𝜇𝑛𝑘 = 1∕𝐾 for all 𝑛 ∈ and for all 𝑘 ∈  .
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some assets and use a constant-price impact to study the interaction 
between 𝛾𝑛1 and 𝑅𝑛1.

3.2. Reconstructing matrices

We consider five existing methods for reconstructing the asset hold-
ing matrix 𝑋 from the given row and column sums. We briefly sum-
marise them below. More details can be found in Appendix A.

We consider two optimisation-based methods: the Entropy method 
by Upper and Worms (2004) and the minimum density method by 
Anand et al. (2015) (MinDen). The optimisation-based matrix recon-
struction methods consist of a suitably chosen objective function that 
is optimised over the set of matrices that satisfies the given constraints 
on the row and column sums. The result of the reconstruction problem 
is one matrix that satisfies the constraints. Other possible characteris-
tics of this matrix depend on the chosen objective function. For the 
Entropy method, the resulting matrix is usually complete, i.e., all en-
tries are non-zero as long as all the row and column sums are non-zero. 
This means that the banks then have a fully diversified portfolio since 
they hold positions in each asset. For the MinDen method, the result-
ing matrix is usually very sparse, i.e., most of the entries are equal to 
zero. This means that the banks have more diverse positions.11 For the 
Entropy method, the matrix that solves the corresponding optimisation 
problem is available analytically. Therefore, it is possible to charac-
terise all fire sales measures, i.e., the direct and indirect vulnerability, 
the systemicness, and the aggregate vulnerability, derived from the re-
constructed matrix using the Entropy method analytically. We provide 
the corresponding formulae in Proposition A.1.

We also consider three probabilistic methods: the statistical physics 
method by Cimini et al. (2015) (StatPhys) (and extended to bipar-
tite networks by Squartini et al. (2017)) and the Bayesian approach 
by Gandy and Veraart (2017), where we assume two different priors 
within the Bayesian framework, an Erdős-Rényi-type prior (BayeER) 
and an empirical fitness type prior (BayeEF) as in Gandy and Veraart 
(2019). All probabilistic models assume that the matrix of asset hold-
ings is random, i.e., all its elements are random variables. They provide 
methodologies to generate samples from the distribution of this random 
asset holding matrix. Therefore, the result of a network reconstruction 
method using any of the probabilistic methods is a sample of matrices 
and not just one matrix. All three probabilistic models are calibrated to 
match the (true) density of the network. For all three probabilistic meth-
ods, our analysis uses a sample size of 10,000.12 The StatPhys method 
is related to the Entropy method and it is possible to compute the ex-
pectation of the fire sale measures applied to the random matrix that 
is used in the StatPhys method analytically. We provided the details in 
Appendix A.2.1.

We will now illustrate how the choice of the reconstruction methods 
affects the risk measures to assess fire sales risk. First, we consider a toy 
example.

Example 3.4 (Toy example: assessing fire sale losses on reconstructed ma-

trices). We consider the asset holdings matrix 𝑋 ∈ [0, ∞)3×3 reported in 
Table 2, and two reconstructions of 𝑋 from its row and column sums 
using the Entropy method and the MinDen method, respectively. Ac-
cording to the true matrix 𝑋 each institution holds two assets and each 
asset is held by two institutions. The Entropy method distributes the 

11 For further discussion and results on the relationship between fire sales risk 
and diversification versus diversity in asset portfolios we refer to Capponi and 
Weber (2021) and Detering et al. (2022).
12 For the Bayesian approach (in which the distribution of interest is approx-
imated using a Gibbs sampler) we choose thinning and burn-in parameters as 
10% of the total number of samples as in Gandy and Veraart (2017). We use 
the R-package systemicrisk available at https://CRAN .R -project .org /package =
6

systemicrisk that implements the methods by Gandy and Veraart (2017, 2019).
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weights evenly across the different cells of the matrix resulting in a 
complete network, meaning all institutions hold all assets, whereas the 
MinDen method finds the sparsest possible solution in which each insti-
tution only holds one asset and this asset is not held by anyone else.

The total assets are 𝛼𝑛1 = 4 for all 𝑛 ∈ {1, 2, 3}. We assume that all 
three banks have the same equity, namely 𝑒𝑛1 = 1 which results in a 
leverage of 𝑏𝑛1 = 3 for all 𝑛 ∈ {1, 2, 3}. We consider a constant price 
impact of 𝑙𝑘 = 10−2 for all assets 𝑘 ∈ {1, 2, 3}. We consider a 1-asset shock 
given by 𝐹1 = (−0.15, 0, 0)⊤ which only affects the first asset directly.

We report the  , (𝑛), (𝑛) and (𝑛) for the true and the two 
reconstructed matrices for all three institutions 𝑛 ∈ {1, 2, 3} in Table 2. 
We find that under this 1-asset shock, the systemicness, the direct and 
the indirect vulnerability can change significantly with respect to the 
network that is used as input.

In particular, we find that the Entropy method underestimates the 
systemicness, the direct vulnerability, and the indirect vulnerability of 
banks 1 and 2 (which have the highest systemicness and direct and 
indirect vulnerability in this example), and overestimates the systemic-
ness, the direct and indirect vulnerability of bank 3 (which is the lowest 
among all banks in this example).

The MinDen method only attributes a positive systemicness, and 
direct and indirect vulnerability to bank 1 (and significantly overes-
timates the true values), and otherwise provides estimates of zero for 
all three measures for banks 2 and 3.

For the aggregate vulnerability, however, we see that it is correctly 
estimated by both the Entropy and the MinDen method in this example.

3.3. Data

In our empirical analysis, we consider data13 collected by the Eu-
ropean Banking Authority (EBA)14 for their stress tests of EU banks 
in 2011 and 2016. The data consists of balance sheets of some of the 
largest banks in the EU. The data include 𝑁 = 90 banks in 2011 and 
𝑁 = 51 banks in 2016 covering the EU countries (which includes the 
UK in these years).

We aggregate the asset classes such that all asset classes are con-
sistent across both years. There are 𝐾 = 36 asset classes which include 
corporate, retail, 30 EEA sovereign loans, US, Japan, Latin America, 
and other sovereign loans (an aggregated class of remaining sovereign 
loans). Hence the asset holding matrix is a 90 × 36 matrix in 2011 and 
a 51 × 36 matrix in 2016. All other assets which are not recorded in 
both years are not included in the asset holdings matrix.15 We assume 
that all assets are marketable and can be liquidated, i.e., we apply the 
framework by Greenwood et al. (2015) directly to the full asset hold-
ing matrix as in the empirical case study provided in Greenwood et al. 
(2015).16

Table 3 provides some descriptive statistics for the EBA data used 
in our empirical analysis. We see that the network densities (defined 
as 1

𝑁𝐾

∑𝑁

𝑛=1
∑𝐾

𝑘=1 𝕀{𝑋year
𝑛𝑘

>0}, where 𝑋year represents either the observed 

13 The data are publicly available from https://eba .europa .eu /risk -analysis -
and -data /eu -wide -stress -testing /2011 and https://eba .europa .eu /risk -analysis -
and -data /eu -wide -stress -testing /2016.
14 The EBA is an independent EU authority whose objective is to maintain 
financial stability in the EU. It has been established to develop consistent pru-
dential regulation and supervision of the EU’s banking sector. Together with 
the European Systemic Risk Board (ESRB), the EBA conducts stress testing of 
the EU banking sector to assess its resilience to adverse shocks.
15 This is done for consistency purposes so that we can apply the same initial 
shock to both datasets.
16 In practice, only a part of a bank’s assets can be liquidated, see e.g., Cont 
and Schaanning (2017) for discussion and more details on this. It would be pos-
sible to restrict the modelling framework so that only a subset of the available 
assets are marketable. Related work that considers both marketable and non-
marketable assets includes Braouezec and Wagalath (2019), Feinstein (2020), 

Banerjee and Feinstein (2021).

https://CRAN.R-project.org/package=systemicrisk
https://CRAN.R-project.org/package=systemicrisk
https://eba.europa.eu/risk-analysis-and-data/eu-wide-stress-testing/2011
https://eba.europa.eu/risk-analysis-and-data/eu-wide-stress-testing/2011
https://eba.europa.eu/risk-analysis-and-data/eu-wide-stress-testing/2016
https://eba.europa.eu/risk-analysis-and-data/eu-wide-stress-testing/2016
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Table 2

The three matrices on the left in the first row represent the true asset holding matrix 
𝑋 and the two reconstructed matrices using the Entropy and MinDen methods, re-
spectively. The table on the right in the first row shows the systemicness (𝑛) and 
 , and the tables in the second row show the direct vulnerability  (𝑛) and the 
indirect vulnerability (𝑛) for each bank 𝑛 corresponding to the shock 𝐹1, specified 
in Example 3.4, and applied to the true and the two reconstructed matrices.

True 𝑋 Entropy MinDen⎛⎜⎜⎜⎝
2 2 0

2 0 2

0 2 2

⎞⎟⎟⎟⎠
⎛⎜⎜⎜⎝

4
3

4
3

4
3

4
3

4
3

4
3

4
3

4
3

4
3

⎞⎟⎟⎟⎠
⎛⎜⎜⎜⎝
4 0 0

0 4 0

0 0 4

⎞⎟⎟⎟⎠

True 𝑋 Entropy MinDen

(1) 1.2% 0.8% 2.4%
(2) 1.2% 0.8% 0.0%
(3) 0.0% 0.8% 0.0%
 2.4% 2.4% 2.4%

True 𝑋 Entropy MinDen True 𝑋 Entropy MinDen

(1) 30.0% 20.0% 60.0% (1) 2.7% 2.4% 7.2%
(2) 30.0% 20.0% 0.0% (2) 2.7% 2.4% 0.0%
(3) 0.0% 20.0% 0.0% (3) 1.8% 2.4% 0.0%

Table 3

Summary statistics for the EBA data.

Year Number 
of banks

Network 
density

Leverage Total assets (EUR)

Min Mean Max Min Mean Max
- - - - - (bn) (tn) (tn)

2011 90 0.44 3.56 33.60 540.68 0.33 0.19 1.21
2016 51 0.48 7.48 19.68 43.15 2.93 0.28 1.39
assets holding matrix in 2011 or in 2016) are almost the same in both 
years (0.44 in 2011 and 0.48 in 2016). With almost half of the entries 
being positive in the asset holding matrix, we expect that there is indeed 
scope for serious contagion effects if fire sales are triggered.

The leverage values that we report in this table correspond to 𝑏𝑛1 =
𝑑𝑛1∕𝑒𝑛1, where the equity 𝑒𝑛1 was set to be equal to the common equity 
Tier 1 capital reported for each bank 𝑛 ∈ and the debt 𝑑𝑛1 was set to 
be equal to 𝛼𝑛1 − 𝑒𝑛1. We see that leverages were generally significantly 
higher in 2011 than in 2016. In the empirical analysis we will cap the 
leverage at 30 as in Greenwood et al. (2015), this means that we set
𝑏𝑛1 = min{30, observed leverage of bank 𝑛 at time 1} to avoid having to 
deal with a small number of banks which have very high leverages (such 
as, e.g., maximum leverage of 540.68 in 2011).

Table 3 also shows the range of banks’ total assets 𝛼𝑛1, 𝑛 ∈ , with 
the lowest total assets at 329 million EUR in 2011, compared with the 
largest bank at 1.39tn EUR in 2016. The assets which form the largest 
total capitalisation in both networks are corporate and retail, com-
prising 82% of the total assets in 2011 and 80% in 2016. The highest 
sovereign loans in 2011 are German (2.89%), other sovereign (1.98%), 
and Italian (1.93%) compared with French (2.68%), German (2.64%), and 
US (2.13%) sovereign assets in 2016. Asset classes with a large capitali-
sation which are held by a large number of banks are German, French, 
Spanish, UK, and Italian sovereign assets.

We provide heatmaps and further discussions on the structure of 
the empirically observed asset holding matrix and the performance of 
its reconstruction using different methods for the 2016 EBA data in 
Appendix C.1.

3.4. Empirical results

Next, we consider the fire sales risk measures for the EBA data for 
three different stress scenarios and compare the results obtained by us-
ing the fully observed matrix of asset holdings to the results derived 
based on reconstructed asset holding matrices.

The three stress scenarios are as follows:

GIIPS shock: This is a 5-asset shock. We consider a 5% shock to the 
sovereign loans of Greece, Italy, Ireland, Portugal and Spain (GI-
IPS), which were countries highly impacted by the 2008 financial 
crisis. This shock has also been considered in Greenwood et al. 
7

(2015). Mathematically, this corresponds to setting 𝑓𝑘 = −0.05 for 
each index 𝑘 ∈  that corresponds to a GIIPS asset and setting 
𝑓𝑘 = 0 for all remaining 𝑘 ∈  in the initial shock vector.

Bad Brexit shock: This is a 1-asset shock. We consider an economic 
shock of 10% to UK sovereign loans as a possible scenario for 
negative consequences arising from Brexit. Mathematically this is 
captured by setting 𝑓𝑘 = −0.1 for the index 𝑘 ∈  that corresponds 
to the UK asset class and setting 𝑓𝑘 = 0 for all remaining |𝐾| − 1
assets.

All asset shock: We consider a 0.1% shock to all assets. This corre-
sponds to setting 𝑓𝑘 = −0.001 for all 𝑘 ∈  in the initial shock 
vector. This type of shock is widespread and affects all assets in 
the same way.

For the optimisation-based reconstruction methods, i.e., for MinDen 
and Entropy, we can apply the different fire sales measures directly to 
the reconstructed matrix returned by these methods since we only eval-
uate one matrix. As mentioned before, for the Entropy method we have 
analytical expressions for all fire sale measures, see Proposition A.1. 
Since, there are three bank specific measures, namely the systemicness 
(𝑛), the direct vulnerability (𝑛), and the indirect vulnerability 
(𝑛), we consider the average of these measures across all institu-
tions. For example, instead of 𝑁 measures for the direct vulnerability 
of the individual institutions, we report the average direct vulnerability 
over all institutions given by 1

𝑁

∑𝑁

𝑛=1(𝑛). Table 4 reports the results 
and 11 then corresponds to the average direct vulnerability across 
the 𝑁 banks in 2011 and 16 represents the average direct vulnera-
bility in 2016. The same notation is used for the indirect vulnerability. 
Since the aggregate vulnerability is a measure for the whole system we 
can report it directly. Note that the aggregate vulnerability is equal to 
𝑁 times the average systemicness and therefore we do not report the 
average systemicness.17

17 We also considered other measures for bank specific quantities. We investi-
gated the 𝐿1-error between the fire sales measures of reconstructed matrices 
and the true matrix, e.g., for systemicness we consider ∑𝑁

𝑛=1 |True(𝑛) −
𝑋 (𝑛)| for the Entropy and the MinDen method, and for the sampling 
methods, we average the 𝐿1-error across all samples, i.e., we consider 
1
𝑑

∑𝑑

𝜈=1
∑𝑁

𝑛=1 |True(𝑛) −𝑋(𝜈) (𝑛)|. For the three different bank-specific fire 
sale measures we find a larger deviation for systemicness and indirect vulner-

ability compared to the direct vulnerability. Generally, the MinDen reconstruc-
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For the probabilistic reconstruction measures, i.e., for StatPhys, 
BayeER, and BayeEF, we obtain a sample of networks denoted by 
𝑋(1), … , 𝑋(𝑑), i.e., the sample size is 𝑑 = 10, 000. For each reconstructed 
network 𝑋(𝜈), we compute the direct vulnerability of each bank and 
consider the mean direct vulnerability of all banks for this given net-
work 𝑋(𝜈). We then average this mean direct vulnerability over the full 
sample. More precisely, in the two rows corresponding to 11, we 
show the following two numbers (sample mean of the average direct 
vulnerability and corresponding standard deviation in italic):

𝜇̄𝐷𝑉
𝑑

= 𝜇𝑑

(
1
𝑁

𝑁∑
𝑛=1

11𝑋(𝜈) (𝑛)

)
= 1

𝑑

𝑑∑
𝜈=1

(
1
𝑁

𝑁∑
𝑛=1

11𝑋(𝜈) (𝑛)

)
,

𝜎𝑑

(
1
𝑁

𝑁∑
𝑛=1

11𝑋(𝜈) (𝑛)

)
=

√√√√√ 1
𝑑 − 1

𝑑∑
𝜈=1

(
1
𝑁

𝑁∑
𝑛=1

11𝑋(𝜈) (𝑛) − 𝜇̄𝐷𝑉
𝑑

)2

for the probabilistic methods using the 2011 data. The same methodol-
ogy is applied to the reporting of indirect vulnerability. The aggregate 
vulnerability in the table corresponds to the average aggregate vulner-
ability computed over the 𝑑 elements of the sample, i.e.,

𝜇̄𝐴𝑉
𝑑

= 𝜇𝑑

(
11𝑋(𝜈)

)
= 1

𝑑

𝑑∑
𝜈=1

11𝑋(𝜈)
,

𝜎𝑑

(
11𝑋(𝜈)

)
=

√√√√ 1
𝑑 − 1

𝑑∑
𝜈=1

(
11𝑋(𝜈) − 𝜇̄𝐴𝑉

𝑑

)2
,

where again the second quantity is the corresponding standard devia-
tion.

For the StatPhys method, we have derived analytical expressions for 
the expected fire sale measures in Appendix A.2.1. In the following, 
we report the Monte Carlo estimates such as 𝜇̄𝐴𝑉

𝑑
of these expectations 

which are very close to the analytical results.
Table 4 reports the averaged fire sale risk measures. Values high-

lighted in bold indicate the best-performing reconstruction method per 
row and per price impact. The direct vulnerabilities are reported only 
for the capitalisation-dependent price impact since they coincide with 
those for the constant price impact, see (6). For the all asset shock, sev-
eral risk measures do not depend on the individual entries of 𝑋 (see 
Corollary 3.2) which we indicate by writing true in the corresponding 
entry in the table to highlight, that this value is identical to the value 
in the column True.

We first consider the fire sales measures based on the fully observed 
matrix (the columns named True in Table 4). We observe that all but 
one fire sales measure corresponding to the 2011 data are consistently 
higher than the corresponding measures for the 2016 data. This means 
that overall the fire sales risk has decreased from 2011 to 2016. This ob-
servation holds true under both constant and capitalisation-dependent 
price impact. The only exception, where we observe an increase from 
2011 to 2016, is the aggregate vulnerability under a constant price im-
pact for the Bad Brexit shock. A high contributing factor for the general 
tendency for the fire sales risk measures to decrease from 2011 to 2016 
is the difference between the leverages and the target leverages (which 
is observed leverage capped at 30) which both decrease substantially 
from 2011 to 2016. In 2011, several banks held low levels of equity 
compared with 2016 which resulted in high leverages in 2011. The av-
erage leverage of banks also decreased from 2011 to 2016, because of 
the banks included in each dataset. The higher leverage in 2011 was 
largely driven by a small number of banks, which were not all part of 
the 2016 data. For example, Greek banks were not part of the 2016 

tion method results in the largest 𝐿1 error due to the sparsity of the recon-
structed matrix and the concentration of asset losses from a few banks. Entropy 
and StatPhys have the greatest similarity, and the performance of the Bayesian 
approach depends on the measures considered. Overall, the results are similar 
8

to those reported in Table 4.
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data but included a bank with the second-highest leverage. Therefore, 
the change in capital requirements and the types of banks included in 
the EBA stress tests contributed to a decreased leverage.

Furthermore, we consider the effect of the two different choices for 
the price impact on the fire-sales measures under complete information. 
First, note that the direct vulnerability (𝑛) does not depend on the 
price impact, i.e., it does not depend on the parameters 𝑙1, … , 𝑙𝐾 , and 
hence the direct vulnerabilities corresponding to different price impacts 
coincide. In contrast, the other fire-sales measures do depend on the 
price impact. In the 2011 data, we find that the constant price impact 
results in higher risks associated with fire sales than the capitalisation-
dependent price impact, but for the 2016 data this is not necessarily the 
case. Overall, the key features of the stress tests remain consistent for 
both choices of price impact, namely that risks from fire sales in 2016 
were smaller than in 2011.

Next, we consider the fire sales measures obtained by using five 
different matrix reconstruction methods. The entry shown in bold rep-
resents the best-performing method for this particular row indicating 
the fire sales measure and a given price impact. Overall, we see there 
is no clear winner in the sense that one of the methods would consis-
tently outperform all other methods across all fire sales measures and 
for different types of shocks and price impacts.

So, we will look more specifically at the different fire sales mea-
sures. To get an overview, we compare the performance of three model 
classes: the MinDen, Entropy & StatPhys, BayeER & BayeEF. We provide 
more details in Appendix A.2.1 on how the Entropy and the StatPhys are 
indeed related. It is no coincidence that the estimates derived from us-
ing the Entropy or the StatPhys methods are very similar. We start with 
the aggregate vulnerability since this is the only measure that provides 
a holistic view of the whole network. We find that the Entropy, Stat-
Phys, BayeER, and BayeEF methods provide estimates for the aggregate 
vulnerability that is often rather close to the true value. Indeed, out of 
the 10 cases (corresponding to 4 cases for the capitalisation-dependent 
price impact and 6 cases for the constant price impact) for which we 
compute an aggregate vulnerability the Entropy & StatPhys method is 
the best-performing method in 5 cases and the BayeER & BayeEF are 
the best-performing methods in the remaining 5 cases. The MinDen per-
forms best in only one scenario for estimating aggregate vulnerability. 
In most cases, it overestimates or underestimates the aggregate vulner-
ability.

For the bank specific measures that we have just averaged over all 
banks in the network, i.e., direct and indirect vulnerability we find the 
following. For the indirect vulnerability, we have 12 different cases (3 
stress scenarios × 2 price impacts × 2 years). The MinDen performed 
based in 3 cases, the Entropy & StatPhys method performed best in 
5 cases and the BayeER & BayeEF performed best in 4 cases. For the 
direct vulnerability, we observed 4 cases (2 stress scenarios × 2 years; 
note that the price impact does not affect the direct vulnerability). The 
MinDen performed best in 3 cases and BayeER & BayeEF performed best 
in 1 case.18

Hence, to summarise, the best method for estimating the direct vul-
nerability across all types of shocks considered here is the MinDen, for 
the indirect vulnerability the performance of the three classes of meth-
ods are very similar, and for estimating the aggregate vulnerability the 
best methods are the Entropy & StatPhys method and the BayeER & 
BayeEF.

When distinguished by the type of shock, we find that the Entropy, 
StatPhys, BayeER, and BayeEF methods tend to be the preferred meth-
ods for the GIIPS shock (which affects 5 columns of the asset holding 
matrix), whereas the MinDen method seems to be the preferred method 
for the Bad Brexit shock which only affects one column of the asset 

18 The fact that the direct vulnerabilities for the Entropy and the StatPhys 
methods coincide in expectation, is not a coincidence, but it follows from the 

theoretical results derived in Appendix A.2.1.
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Table 4

The table presents average fire sales risk measures (averaged over the banks and additionally averaged over the samples) for the 2011 and 2016 EBA data for three 
different shock scenarios for the true and reconstructed matrices. All numbers are given in percent.

Capitalisation-dependent Price Impact Constant Price Impact
(𝑙𝑘 = 𝜌∕𝑐𝑘 ∀𝑘) (𝑙𝑘 = 5 × 10−13 ∀𝑘 )

T
rue

M
inD

en

E
ntropy

StatPhys

B
ayeE

R

B
ayeE

F

T
rue

M
inD

en

E
ntropy

StatPhys

B
ayeE

R

B
ayeE

F

GIIPS (%)

11 15.58 3.23 7.81 7.81 20.21 17.68 same results as for capitalisation-dependent price impact
- - - (0.53) (3.06) (3.07)

11 460.79 296.96 416.80 417.58 612.49 544.98 506.76 304.77 523.63 523.68 274.71 325.00
- - - (10.67) (38.58) (30.92) - - - (13.36) (16.91) (18.00)

11 291.70 238.77 288.49 288.96 292.38 294.24 357.49 178.63 362.43 362.43 275.36 293.40
- - - (6.15) (5.26) (5.12) - - - (7.41) (11.41) (10.23)

16 5.64 5.33 4.42 4.42 8.24 7.57 same results as for capitalisation-dependent price impact
- - - (0.18) (0.78) (0.82)

16 187.19 254.15 214.86 215.22 240.26 228.39 151.35 51.69 221.46 221.47 139.97 153.33

- - - (5.87) (10.34) (8.73) - - - (5.90) (7.91) (7.99)
16 189.29 244.47 220.83 221.20 209.70 210.34 174.81 52.08 227.62 227.63 179.05 186.32

- - - (5.79) (5.08) (5.05) - - - (5.75) (9.37) (8.69)

Bad Brexit (%)

11 1.47 0.85 3.01 3.01 8.39 6.46 same results as for capitalisation-dependent price impact
- - - (0.47) (2.55) (2.43)

11 120.19 140.82 160.85 161.21 240.11 207.43 155.05 183.76 202.08 202.17 103.70 126.37

- - - (7.25) (23.28) (17.30) - - - (9.13) (8.82) (9.63)

11 90.23 144.07 111.34 111.55 112.09 113.62 109.02 135.01 139.87 139.92 104.02 114.58
- - - (4.74) (4.03) (3.87) - - - (5.92) (8.02) (7.40)

16 1.59 1.92 2.87 2.87 5.50 4.82 same results as for capitalisation-dependent price impact
- - - (0.21) (0.90) (0.90)

16 130.07 126.60 139.24 139.53 156.38 147.43 136.35 105.51 143.53 143.59 90.33 99.77
- - - (5.92) (10.07) (08.30) - - - (6.08) (7.25) (7.46)

16 149.58 152.24 143.11 143.41 135.77 136.34 159.82 106.67 147.51 147.58 115.61 121.39
- - - (6.00) (5.24) (5.31) - - - (6.14) (9.27) (8.87)

All Asset (%)

11 3.46 true true 3.46 true true same results as for capitalisation-dependent price impact
- - - (0.05) - -

11 185.51 185.95 184.72 185.07 185.60 185.89 228.63 255.63 232.07 232.38 153.11 172.48
- - - (3.24) (0.68) (0.60) - - - (4.32) (7.81) (7.99)

11 127.86 true true 128.07 true true 160.87 161.00 160.63 160.82 160.24 159.99
- - - (1.32) - - - - - (1.68) (0.30) (0.30)

16 2.07 true true 2.07 true true same results as for capitalisation-dependent price impact
- - - (0.02) - -

16 100.62 99.58 100.47 100.64 99.33 99.66 92.06 103.63 103.56 103.66 82.60 87.37

- - - (1.45) (0.23) (0.20) - - - (1.54) (1.45) (1.69)
16 103.26 true true 103.43 true true 106.59 105.72 106.43 106.55 107.69 107.59

- - - (1.28) - - - - - (1.34) (0.25) (0.25)

Bold - 6 2 2 3 1 - 0 3 4 2 3
holding matrix. For the All Asset shock, we know from Corollary 3.2
that under a capitalisation-dependent price impact (𝑛),  , (𝑛)
do not depend on the individual entries of 𝑋. Hence, if one was inter-
ested in such a situation, there is no need to reconstruct the network. 
If we ignore this result and compute the corresponding risk measures 
from the reconstructed networks, then we indeed recover the true val-
ues exactly (indicated by true in the entry in the table) for all methods 
except for the StatPhys method. The matrices reconstructed using the 
StatPhys method do not individually satisfy the constraints on the row 
and column sums but only in expectation and therefore they do not re-
produce the true value when plugged into the general formula for the 
risk measures that have not been simplified in line with the results of 
Corollary 3.2. To indicate this effect, we have reported the values com-
puted from the matrices returned by the StatPhys method in the table. 
As discussed this is no contradiction to Corollary 3.2.

Finally, we investigate what the best and worst aggregate vulnerabil-
ities are that are consistent with the given row and column sums of the 
asset holding matrix. Hence, we consider an additional (optimisation-
based) network reconstruction method that maximises (or minimises) 
9

the aggregate vulnerability over all (non-negative) matrices that satisfy 
the row and column constraints. We provide more details on this in 
Appendix C.2. Table 5 shows the results.

We find that in general there is quite a large difference between the 
minimum and the maximum aggregate vulnerabilities. Furthermore, the 
true aggregate vulnerability, i.e., the aggregate vulnerability derived 
from the true network, is quite centred between the minimum and the 
maximum aggregate vulnerability. Given this wide range of possible 
aggregate vulnerabilities, the aggregate vulnerabilities obtained from 
the different reconstruction methods are remarkably close to the true 
aggregate vulnerabilities.

Furthermore, we find that the difference between the minimum and 
maximum aggregate vulnerabilities is generally larger for a constant 
price impact compared to a capitalisation-dependent price impact. This 
is in line with our theoretical results (Proposition 3.1 and Corollary 3.2). 
Also in line with these theoretical results, is the fact that the GIIPS shock 
scenario in which 5 assets are shocked, has a larger difference between 
the minimum and maximum aggregate vulnerability than the Bad Brexit 
shock in which only one asset is shocked.

As discussed before, for an all asset shock and a capitalisation-
dependent price impact, the aggregate vulnerability only depends on 

the asset holding matrix via its row and column sums and therefore 
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Table 5

True aggregate vulnerability and minimum and maximum of aggregate vul-
nerabilities derived from asset holding matrices that satisfy the given row and 
column sums. Two different price impacts and three shock scenarios are con-
sidered.

Capitalisation-dependent Constant
(𝑙𝑘 = 𝜌∕𝑐𝑘 ∀𝑘) (𝑙𝑘 = 5 × 10−13 ∀𝑘 )

GIIPS (%)

True Min Max True Min Max
11 291.70 172.18 373.30 357.49 6.26 494.91
16 189.29 131.88 294.12 174.81 4.95 311.53

Bad Brexit (%)

True Min Max True Min Max
11 90.23 49.16 144.07 109.02 1.00 216.65
16 149.58 60.08 195.02 159.82 1.59 220.78

All Asset (%)

True Min Max True Min Max
11 127.86 true true 160.87 150.19 171.73
16 103.26 true true 106.59 99.93 113.69

the minimum and maximum aggregate vulnerabilities coincide with the 
true aggregate vulnerability. For an all asset shock with constant price 
impact, the individual entries of the asset holding matrix do matter, but 
we find the range of aggregate vulnerabilities to be rather small.

3.5. Sensitivity analysis and robustness checks

We have seen so far that the sampling-based reconstruction meth-
ods (StatPhys, BayeER and BayeEF) provide superior results for several 
measures of fire sale risk. One might think that this result is purely 
driven by the fact that these sampling-based methods can be (and in 
Table 4 have been) calibrated to the true density of the network which 
was not the case for the MinDen and the Entropy method. In the fol-
lowing, we show that this result remains robust even if the underlying 
assumption on the network density is changed.

Fig. 1 shows how the aggregate vulnerability computed using the 
StatPhys, BayeER and BayeEF network reconstruction methods depends 
on the choice of the target density of the network. It shows the ag-
gregate vulnerabilities as a function of the network density for three 
sampling-based reconstruction methods (StatPhys (top), BayeER (mid-
dle), BayeEF (bottom)). The aggregate vulnerabilities are computed as 
the mean over a sample of 10,000 reconstructed networks. Addition-
ally, we show the range (labelled “Range”) of the aggregate vulner-
abilities from this sample and the minimum and maximum (labelled 
“Optim Range”) of aggregate vulnerabilities obtained by minimising or 
maximising the aggregate vulnerability over all asset holding matrices 
consistent with the row and column sums. The horizontal line (labelled 
“True”) shows the aggregate vulnerability computed based on the true 
network, and the dashed horizontal line (labelled “Recon”) shows the 
reconstructed aggregate vulnerability using the true density for the re-
construction.

We find that even if the networks are reconstructed using a target 
density that does not coincide with the true density of the network, the 
aggregate vulnerabilities remain close to the true aggregate vulnerabil-
ities.

We find that the range of the aggregate vulnerabilities computed 
using the StatPhys method exceeds the range of aggregate vulnerabil-
ities derived by solving the optimisation problem that maximises or 
minimises the aggregate vulnerability for small densities. This is not a 
mistake, but a consequence of the StatPhys method not satisfying the 
row and column constraints exactly, but only in expectation.

We provide more empirical results (for a constant price impact) 
and further discussions on the sensitivity of the results with respect 
to additional information (such as the density of the network) in Ap-
pendix C.3.1. We also discuss there how additional information can be 
10

included in the MinDen and Entropy method.
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Furthermore, we conduct a robustness check with respect to the 
main inputs into the network reconstruction: the row and column sums 
of the asset holding matrix. To do this we add a noise term to the 
row and column sums and reconstruct the networks based on the per-
turbed row and column sums. We find that the reconstructed direct, 
indirect, and aggregate vulnerabilities remain reasonably close to the 
true quantities in most cases even for noisy observation. The MinDen 
method seems to be the most sensitive with respect to the parameter in-
puts compared to the other reconstruction methods. Hence, the Entropy 
method and the sampling-based methods seem to be more robust in our 
case studies and one might therefore use those rather than the MinDen 
method if there is uncertainty about the input parameters. We report the 
detailed empirical results in Appendix C.3.2 (see specifically Table C.7).

Finally, we analyse the sensitivity of our results with respect to the 
selling rule 𝜇 for a constant price impact.19 As discussed before, for a 
capitalisation-dependent price impact the selling rule does not matter. 
We solve the maximisation problem (10) and the corresponding minimi-
sation problem that determines upper and lower bounds on 𝛾𝑛1. Fig. 2
reports the results for the 2011 and 2016 data. It shows boxplots (and 
violin plots, i.e., the corresponding densities) of 𝛾11, … , 𝛾𝑁1 correspond-
ing to the proportional selling rule by Greenwood et al. (2015) together 
with the upper and lower bound from the optimisation problem and 
the constant 𝛾Entropy = 𝛾𝑛1(𝑋Entropy) (see Proposition A.1)) derived from 
using the Entropy reconstruction method. We see that the 𝛾𝑛1, 𝑛 ∈ 

that correspond to the proportional selling rule by Greenwood et al. 
(2015) are rather similar for most of the banks and overall rather close 
to the upper bound. Only for 2016, we find a small number of banks 
whose parameters 𝛾𝑛1 are close to the lower bound. We also find that 
the estimate 𝛾Entropy = 𝛾𝑛1(𝑋Entropy), 𝑛 ∈  that is obtained from us-
ing the Entropy reconstruction method (indicated by the dotted line in 
Fig. 2) is close to the median of the true 𝛾𝑛1, 𝑛 ∈ . Furthermore, we 
show in Appendix A.2.1 that the expected connectivity using the Stat-
Phys method coincides with the connectivity derived using the Entropy 
method, formally 𝛾Entropy = 𝔼[𝛾𝑛1(𝑋StatPhys)] for all 𝑛 ∈ .

4. Assessing the effect of policy interventions under full and 
partial information

We now investigate how fire sales risk can be mitigated through 
policy interventions. In contrast to Greenwood et al. (2015), we inves-
tigate how well fire sales risk can be mitigated if a policymaker decides 
on an intervention without the full knowledge of the asset holding net-
work. We focus on two types of interventions: leverage caps and capital 
injections.

4.1. Leverage caps

Greenwood et al. (2015) have analysed a range of policy interven-
tions to mitigate the effects of fire sales. In particular, for a GIIPS shock, 
they consider the effect of debt renationalisation, an introduction of 
Eurobonds, ring-fencing risky assets, merging exposed banks with un-
exposed ones and leverage caps. They find that “capping leverage is the 
only policy that delivers a sizeable reduction in  [aggregate vulner-
ability]”, (Greenwood et al., 2015, p. 481). We will therefore focus on 
a leverage cap first.

The leverage cap policy in Greenwood et al. (2015) can be defined 
as follows.

Definition 4.1 (Policy intervention: leverage cap). For each bank 𝑛 ∈

with leverage 𝑑𝑛1∕𝑒𝑛1, the leverage cap policy sets the target leverage 
to 𝑏𝑛1 = min

{
𝐵,

𝑑𝑛1
𝑒𝑛1

}
for a constant 𝐵 > 0. It is assumed that all banks 

19 In the fire sale literature, a wide range of liquidation strategies has been 
considered. Some are exogenous and some are the result of an optimisation 
problem, see e.g., Caballero and Simsek (2013), Feinstein (2017), Braouezec 

and Wagalath (2019), Banerjee and Feinstein (2021).
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Fig. 1. Aggregate vulnerabilities as a function of the network density for three sampling-based reconstruction methods (StatPhys (top), BayeER (middle), BayeEF 
(bottom)). The results are for the 2011 data and a capitalisation-dependent price impact.
𝑛 ∈ for which 𝑑𝑛1∕𝑒𝑛1 > 𝐵, are able to raise equity to reach the new 
lower leverage of 𝐵 without changing the size of their balance sheet.

In our empirical analysis, we set the leverage cap to be 𝐵 = 15. Recall 
that all banks in the sample had leverage of at most 30 (after an initial 
cap had been applied).

A reduction in target leverage automatically reduces the need to 
fire-sell assets as shown in Greenwood et al. (2015) and hence such a 
11

strategy reduces the aggregate vulnerability.
The potential problem with such a strategy is that banks might need 
to raise a significant amount of equity to satisfy a leverage cap that 
significantly reduces fire sales risk, “The cost of the policy is large [...], 
and the action is drastic” (Greenwood et al., 2015, p. 481).

To illustrate the cost of this strategy, we present Fig. 3. For each 
bank 𝑛, it shows the change in the (𝑛) between a target lever-
age at 30 and at 15, relative to the raised equity for each individual 
bank. In this example, we consider the capitalisation-dependent price 

impact (𝜌 = − log(0.1)) and an all asset shock (𝑓𝑘 = 𝑓 = −0.001, ∀𝑘 ∈ ), 
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Fig. 2. The box and violin plots of (𝛾𝑛1)𝑛∈ are based on the full information and a constant price impact. There are three horizontal lines: The solid line is at 
max

𝜇∈[0,1]𝑁×𝐾 ,
∑𝐾

𝑘=1 𝜇𝑛𝑘=1
𝛾
(𝜇)
𝑛1 (which is the same for all 𝑛), the dashed line is at min

𝜇∈[0,1]𝑁×𝐾 ,
∑𝐾

𝑘=1 𝜇𝑛𝑘=1
𝛾
(𝜇)
𝑛1 (which again is the same for all 𝑛), and the dotted line is at 

𝛾Entropy = 𝛾𝑛1(𝑋Entropy).

Fig. 3. The scatter plots represent the changes in the  between capping target leverage at 30 and at 15, relative to the total amount of equity raised for 2011 
(left) and 2016 (right). The displayed points are for banks whose target leverage is higher than the leverage cap of 15.
see Section 3.4. We observe a linear relationship between the change in 
(𝑛) values and the equity raised. For both plots (i.e., for both years 
2011 and 2016), there is a cluster of banks where a smaller increase 
in equity results in small decreases in the contributed equity loss. The 
effect of a leverage cap only becomes distinctive between banks when 
larger equity values are considered, in this case past 10bn EUR. We also 
see that in 2011, a larger amount of equity needs to be raised by some 
banks to reach the same target leverage compared to 2016.

Overall, we find that banks would need to raise 357.2 billion EUR 
in 2011 and 233.85 billion EUR in 2016 to satisfy a leverage cap of 15.

Remark 4.2 (Leverage cap under partial information). The leverage cap 
policy does not depend on the asset holding matrix 𝑋. Therefore, im-
plementing a leverage cap is equally successful with or without full 
information on the asset holding matrix.

4.2. Capital injections

Since reducing fire sales externalities via leverage caps is expen-
sive, Greenwood et al. (2015) considered optimal equity injection as an 
12

alternative and the most cost-effective way to reduce aggregate vulner-
ability. The assumption is that a regulator has a fixed amount of cash 
𝐼 > 0 that can be distributed among the 𝑁 banks. We first define a cap-
ital injection policy.

Definition 4.3 (Policy intervention: capital injection). Let 0 < 𝐼 ≤
∑𝑁

𝑛=1 𝑑𝑛1
be the total amount of cash that a regulator is willing to invest in banks’ 
equity at time 1. Then, a capital injection policy is characterised by a 
vector 𝑖 = (𝑖1, … , 𝑖𝑛)⊤, where 0 ≤ 𝑖𝑛 ≤ 𝑑𝑛1 ∀𝑛 ∈ and ∑𝑁

𝑛=1 𝑖𝑛 = 𝐼 . Each 
bank 𝑛 uses its capital injection 𝑖𝑛 to repay parts of its debt, leading to 
a new leverage after the capital injection of

𝑏∗
𝑛1 =

𝑑𝑛1 − 𝑖𝑛

𝑒𝑛1 + 𝑖𝑛
. (12)

We assume that capital injections would occur in time period 𝑡 = 1. 
One could extend the analysis to multiple rounds of deleveraging and 
multiple rounds of capital injections.

Now, the goal is to find an optimal capital injection policy, i.e., an 
optimal choice of 𝑖 = (𝑖1, … , 𝑖𝑁 )⊤. Greenwood et al. (2015) considered 
the objective to minimise the systemicness of each bank under a GIIPS 
shock subject to some budget constraints. We consider the aggregate 

vulnerability as the objective function, which is just the sum of the sys-
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temicness of each bank. This allows us to consider the key system-wide 
measure developed in Greenwood et al. (2015) not just for measuring 
fire sale risk but also for mitigating it. We define an optimal capital 
injection as follows.

Definition 4.4 (Policy intervention: optimal capital injection). Let 0 < 𝐼 ≤∑𝑁

𝑛=1 𝑑𝑛1. Let  ∶ [0, 𝑑11] ×… × [0, 𝑑𝑁1] → [0, ∞) be given by

(𝑖;𝑋) =
𝑁∑

𝑛=1
𝛾𝑛1(𝑋)(−𝑅𝑛1(𝑋))

𝛼𝑛1∑𝑁

𝜈=1 𝑒𝜈1

𝑑𝑛1 − 𝑖𝑛

𝑒𝑛1 + 𝑖𝑛
,

where 𝑋 denotes the asset holding matrix. Consider the optimisation 
problem

min
𝑖=(𝑖11 ,…,𝑖𝑁1)⊤

(𝑖;𝑋),

subject to

0 ≤ 𝑖𝑛 ≤ 𝑑𝑛1 ∀𝑛 ∈ ,

𝑁∑
𝑛=1

𝑖𝑛 = 𝐼.

(13)

We refer to a solution 𝑖Opt(𝑋) = (𝑖Opt
1 (𝑋), … , 𝑖Opt

𝑁
(𝑋))⊤ of (13) as an opti-

mal capital injection policy.

Greenwood et al. (2015) find that the optimal capital injections are 
strongly positively correlated with systemicness, i.e., the optimal 𝑖Opt

𝑛

are positively correlated with (𝑛). We therefore also consider a sim-
plified capital injection strategy, in which the injected capital is chosen 
to be proportional to the systemicness.

Definition 4.5 (Policy intervention: proportional capital injection). Let 
𝑋 be an asset holding matrix. We refer to a capital injection 𝑖Prop =
(𝑖Prop
1 (𝑋), … , 𝑖Prop

𝑁
(𝑋))⊤, where

𝑖
Prop
𝑛 (𝑋) = 𝐼

(𝑛)(𝑋)
(𝑋)

(14)

for all 𝑛 ∈ as a proportional capital injection policy.

As a benchmark strategy for capital injections, we consider a “naive” 
strategy, that allocates capital relative to the total asset holdings of 
banks. This strategy is independent of the network topology.

Definition 4.6 (Policy intervention: naive capital injection). We refer to a 
capital injection 𝑖Naive = (𝑖Naive

1 , … , 𝑖Naive
𝑁

)⊤, where

𝑖Naive
𝑛

= 𝐼
𝛼𝑛1∑𝑁

𝜈=1 𝛼𝜈1
(15)

for all 𝑛 ∈ as a naive capital injection policy.

Remark 4.7 (Choice of total capital 𝐼). For our empirical analysis, we 
assume that the total allocation of capital 𝐼 is set to 10% of the total 
equity of the banks, i.e., 𝐼 = 0.1 ∑𝑁

𝑛=1 𝑒𝑛1. This means that in 2011 we 
have 𝐼 = 70.55 billion EUR and in 2016 𝐼 = 68.21 billion EUR.

Finally, to be able to compare capital injections to leverage caps, 
we consider a capital injection strategy that injects capital such that all 
institutions have leverage of at most 𝐵̃ > 0. We define it formally as 
follows.

Definition 4.8 (Policy intervention: leverage cap capital injection). We re-
fer to the capital injection 𝑖lev = (𝑖lev

1 , … , 𝑖lev
𝑁

)⊤, where

𝑖lev
𝑛

=max
{

𝛼𝑛1

1 + 𝐵̃
− 𝑒𝑛1,0

}
(16)
13

as the leverage cap capital injection policy with leverage cap 𝐵̃ > 0.
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Indeed, for an 𝑛 ∈ it holds that

𝑖lev
𝑛

=
𝛼𝑛1

1 + 𝐵̃
− 𝑒𝑛1 > 0⇔

𝛼𝑛1

1 + 𝐵̃
> 𝑒𝑛1 ⇔ 𝑏𝑛1 =

𝛼𝑛1 − 𝑒𝑛1
𝑒𝑛1

> 𝐵̃.

Hence, the leverage cap capital injection policy injects capital in exactly 
those institutions that exceed the leverage cap 𝐵̃. Furthermore, for all 
𝑛 ∈ with 𝑏𝑛1 > 𝐵̃, it follows directly from the definition of 𝑖lev

𝑛
that 

𝑑𝑛1−𝑖lev
𝑛

𝑒𝑛1+𝑖lev
𝑛

= 𝐵̃, i.e., those institutions that previously exceeded the leverage 
cap get a capital injection to reach the leverage of 𝐵̃.

Remark 4.9 (Choice of leverage cap 𝐵̃ in leverage cap capital injection). 
In our empirical analysis, we determine the leverage cap 𝐵̃, by solving

𝑁∑
𝑛=1

𝑖lev
𝑛

=
𝑁∑

𝑛=1
max

{
𝛼𝑛1

1 + 𝐵̃
− 𝑒𝑛1,0

}
= 𝐼

for 𝐵̃ for a given total capital of 𝐼 that is chosen as in Remark 4.7. 
Then, the total amount of capital used in the leverage cap capital injec-
tion strategies coincides with the total capital used in the other capital 
injection strategies. This allows us to compare these strategies directly.

We find that injecting a total amount of 𝐼 = 70.55 billion EUR in 
2011 corresponds to a leverage cap of 𝐵̃ = 26.77 for the leverage cap 
capital injection method in 2011; injecting a total amount of 𝐼 = 68.21
billion EUR in 2016 corresponds to a leverage cap of 21.68 in 2016.

Remark 4.10 (Capital injection under partial information). By construc-
tion, the naive capital injection policy and the leverage cap capital 
injection strategy do not depend on the individual entries of the asset 
holding matrix 𝑋. The optimal capital injection policy and the pro-
portional capital injection policy, however, will usually depend on the 
individual entries of the asset holding matrix 𝑋.

4.3. Empirical results on policy interventions

We will now analyse how well leverage caps and the different capital 
injection strategies work in the 2011 and 2016 data, under both full 
and partial information. To do so, we compute the relative reduction in 
aggregate vulnerability between the network without intervention and 
the network with intervention. We analyse these policies for a GIIPS 
shock of 5% that we have already considered in the previous section.

4.3.1. Empirical results - leverage cap

First, we consider the intervention of capping the leverage. As al-
ready discussed, the leverage cap intervention is independent of the 
underlying network. Hence, the relative reduction in aggregate vulner-
ability between the network without a leverage cap and the network 
with a leverage cap relative to the network without a leverage cap is 
given by

ΔLeverage cap =  −Leverage cap



under both full and partial information. Here, Leverage cap refers to 
the aggregate vulnerability that is obtained by setting the target lever-
age to 𝑏𝑛1 = min{𝐵, 𝑑𝑛1

𝑒𝑛1
}, where we consider two choices of 𝐵: 𝐵 = 15

and 𝐵 = 𝐵̃, where 𝐵̃ = 26.77 in 2011 and 𝐵̃ = 21.68 in 2016. The choices 
of 𝐵̃ correspond to the leverage caps derived in Remark 4.9, i.e., the 
amount of equity that needs to be raised to achieve this cap, corresponds 
to the total amount of capital used in the capital injection strategies. In 
this sense, the costs of the leverage cap strategy with the target lever-
age of 𝑏𝑛1 = min{𝐵̃, 𝑑𝑛1

𝑒𝑛1
} coincides with the cost of the capital injection 

policies.
Table 6 reports the results. When capping the leverage at 15, we see 

that the leverage cap in 2011 yields a much larger relative reduction in 
aggregate vulnerability compared to 2016. This is not surprising, since 

the leverages and the target leverages were generally higher in 2011 
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Table 6

Relative decrease (in percent) in aggregate vulnerability for the EBA 2011 and 2016 data for different policies (capital injections and leverage caps) and for two 
different price impacts (capitalisation-dependent and constant). Values in bold indicate which network reconstruction method performed best when used for a given 
capital injection strategy. Values in a box represent the best capital injection method in a given year and for a given price impact. Entries labelled “−” indicate that 
these values coincide with the value reported in the column labelled True.

Capitalisation-Dependent Price Impact Constant Price Impact
(−log(0.1)∕𝑐𝑘 ∀𝑘) (5 × 10−13 ∀𝑘)
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GIIPS (%)

2011 Naive capital injection 7.29 - - - - - 7.43 - - - - -
- Proportional capital injection 16.11 3.52 7.47 7.28 8.99 9.88 15.94 3.66 7.64 7.82 8.55 8.31
- Proportional capital injection (Average) - - - 7.47 9.48 9.32 - - - 7.63 8.77 8.71
- Optimal capital injection 19.81 2.95 10.56 7.54 8.44 9.95 19.51 3.09 10.52 7.93 9.16 9.56
- Optimal capital injection (Average) - - - 10.31 11.98 11.80 - - - 10.38 11.27 11.44

- Leverage Cap (𝐵̃ = 26.77) 3.53 - - - - - 3.41 - - - - -
- Leverage Cap (𝐵 = 15) 36.51 - - - - - 36.44 - - - - -

2016 Naive capital injection 8.97 - - - - - 9.06 - - - - -
- Proportional capital injection 23.67 3.10 8.33 8.35 10.60 7.98 22.53 3.82 8.47 8.46 10.41 6.85
- Proportional capital injection (Average) - - - 8.34 10.17 10.16 - - - 8.47 9.57 9.50
- Optimal capital injection 27.03 3.42 5.57 8.17 10.47 10.66 25.66 3.96 5.65 8.46 8.53 8.30
- Optimal capital injection (Average) - - - 5.99 9.46 9.56 - - - 6.07 8.69 8.61
- Leverage Cap (𝐵̃ = 21.68) 2.96 - - - - - 2.79 - - - - -
- Leverage Cap (𝐵 = 15) 18.39 - - - - - 19.07 - - - - -
than in 2016 and therefore capping the leverage at 15 (from 30) has a 
much larger effect in 2011 than in 2016.

Capping the leverage at 𝐵̃, which in both years is significantly larger 
than 15, yields smaller relative decreases in aggregate vulnerability 
than capping at 15, which was to be expected. Of course, less equity 
needs to be raised to reach a higher cap at 𝐵̃ than reaching the lower 
cap of 15, but then one does not obtain the same benefit from it.

More interesting is the comparison between capping the leverage 
at 𝐵̃ and the capital injection strategies, since these strategies have 
comparable costs. We find that in both years, even the naive capital 
injection strategy outperforms the leverage cap strategy at a cap of 𝐵̃. 
More sophisticated capital injection strategies do generally outperform 
the leverage cap strategy at a cap of 𝐵̃ by a larger amount (even if they 
are used with a network reconstruction method rather than under full 
information).

4.3.2. Empirical results - capital injection

Second, we consider intervention via capital injection. We set the 
total capital 𝐼 that is injected in the network to be equal to 10% of the 
total equity in the given network. We consider different capital injection 
strategies 𝑖 and compute the relative reduction in aggregate vulner-
ability in the true financial network corresponding to such a capital 
injection strategy. In particular, for a given capital injection strategy 𝑖
the corresponding relative reduction in aggregate vulnerability is given 
by

Δ Injection(𝑖) =
(0;𝑋true) −(𝑖;𝑋true)

(0;𝑋true)
, (17)

where 0 is the 𝑁 -dimensional zero vector, and therefore (0; 𝑋true)
represents the aggregate vulnerability in the fully observed financial 
network with zero capital injection.

Again, Table 6 shows the results. We first look at the results under 
full information, i.e., the columns labelled True, meaning that the strat-
egy 𝑖 = 𝑖(𝑋true) is computed based on the fully observed asset holding 
matrix 𝑋. They show the relative reduction in aggregate vulnerability 
when the capital injection 𝑖 was computed from the fully observed as-
set holding matrix 𝑋true. The optimal capital injection policy performs 
best throughout which it should do. What is interesting, is that the pro-
14

portional capital injection strategy still performs only slightly worse 
than the optimal injection strategy. This implies that injecting capital 
proportional to the systemicness of the nodes seems to be a good ap-
proximation to the optimal strategy derived from solving (13). This is 
further confirmed by Fig. 4 which shows a scatter plot of the optimal 
capital injection strategy under full information plotted against the pro-
portional capital injection policy under full information. We see that 
these two strategies are indeed very similar.

The naive capital injection strategy performs worst throughout with 
a relative reduction of aggregate vulnerability of around 7% in 2011 
and 9% in 2016, respectively, which is significantly lower than e.g., 
the 19% and 25-27% reductions achieved by using the optimal capital 
injection policy. Hence, we see that there is a clear benefit of using an 
optimal strategy (or an approximation of the optimal strategy) in the 
case of full information.

Next, we consider the potential benefits of the different capital in-
jection strategies if the vector 𝑖 representing the capital injections is 
determined under partial information by using matrix reconstruction. 
Any type of capital injection improves aggregate vulnerability. There-
fore, even under partial information, capital injections will still reduce 
the overall aggregate vulnerability. It is not clear, however, how much 
reduction in aggregate vulnerability can be achieved and this is what 
we investigate here.

Since the naive capital injection policy is independent of the net-
work, the relative reduction in aggregate vulnerability under full and 
partial information is the same. Hence, we only consider the optimal 
and the proportional capital injection strategy under partial informa-
tion.

For the optimisation-based matrix reconstruction methods MinDen 
and Entropy, determining the capital injections based on partial infor-
mation means that we compute 𝑖Opt(𝑋̂), 𝑖Prop(𝑋̂), where 𝑋̂ is the recon-
structed matrix that is either derived using the MinDen or the Entropy 
method. Both optimisation-based reconstruction methods only return 
one matrix, therefore the corresponding strategies are well defined.20

Then, we consider the relative reduction in aggregate vulnerabilities 
Δ Injection(𝑖Opt(𝑋̂)) and Δ Injection(𝑖Prop(𝑋̂)) as given in (17).

20 Since the reconstructed matrix obtained from the Entropy method is avail-
able in closed form, we can also express 𝑖Prop(𝑋Entropy) analytically. In particular, 

we show in Corollary A.3 that
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Fig. 4. The plot of the optimal capital injection strategy against the proportional capital injection strategy under full information for a 5% GIIPS shock and a 
capitalisation-dependent price impact.
Since the sample-based reconstruction methods StatPhys, BayeER, 
and BayeEF return not just one reconstructed network but a sample of 
reconstructed networks, there are different ways how we can compute 
the proportional and optimal capital injection strategy under partial 
information. We will consider two approaches: the first approach will 
just average the strategies derived from the different reconstructed net-
works. The second approach will choose a strategy associated with the 
tail of the distribution of aggregate vulnerabilities.

Consider a sample of asset holding matrices 𝑋(1), … , 𝑋(𝑑) and de-
note by 𝑋true the true asset holding matrix. One possible approach is 
to compute the proportional or optimal injection strategy on every net-
work 𝑋(𝜈) of the sample, i.e., determine 𝑖Prop(𝑋(𝜈)) and 𝑖Opt(𝑋(𝜈)) and 
then consider the sample averages of these strategies given by

𝑖Prop, average = 1
𝑑

𝑑∑
𝜈=1

𝑖Prop(𝑋(𝜈)), 𝑖Opt, average = 1
𝑑

𝑑∑
𝜈=1

𝑖Opt(𝑋(𝜈)).

We will refer to these strategies as proportional capital injection (aver-
age) and optimal capital injection (average) in Table 6.

In addition to these average strategies, we are also interested in the 
tails of the distribution of aggregate vulnerabilities under capital in-
jection. For the proportional capital injection strategy we determine 
the injection strategy that corresponds to the 95% percentile of the 
empirical distribution function of the sample of aggregate vulnerabil-
ities under proportional capital injection, i.e., we determine the index 
𝜈̃ ∈ {1, … , 𝑁} such that

(𝑖Prop(𝑋(𝜈̃));𝑋(𝜈̃)) = inf

{
𝑥 ∈ℝ ∣ 1

𝑑

𝑑∑
𝜈=1

𝕀{(𝑖Prop(𝑋(𝜈));𝑋(𝜈))≤𝑥} ≥ 0.95

}
and we denote this index by 𝜈(0.95).21 Hence, this corresponds to one of 
the highest aggregate vulnerabilities observed in the sample in which 
proportional capital injection was used. We then compute the relative 
reduction in aggregate vulnerability that corresponds to the strategy 
𝑖Prop(𝑋(𝜈(0.95) ) and report this in Table 6 (in the row Proportional capital 
injection).

For the optimal capital injection policy we consider the optimisation 
problem which aims to find the capital injection strategy that minimises 
the 0.95-Percentile of the empirical cumulative distribution function of 

𝑖Prop
𝑛

(𝑋Entropy) = 𝐼
𝑋Entropy (𝑛)
𝑋Entropy

= 𝐼
𝛼𝑛1𝑏𝑛1∑𝑁

𝜈=1 𝛼𝜈1𝑏𝜈1

.

21 If there is more than one index 𝜈̃ satisfying the equation we select one 
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suitable index randomly.
aggregate vulnerabilities derived from the 𝑑 sample networks with 
ital injection. Formally, we consider

min
𝑖

inf

{
𝑥 ∈ℝ ∣ 1

𝑑

𝑑∑
𝜈=1

𝕀{(𝑖;𝑋(𝜈))≤𝑥} ≥ 0.95

}
,

ject to

0 ≤ 𝑖𝑛 ≤ 𝑑𝑛1 ∀𝑛 ∈ ,

𝑁∑
𝑛=1

𝑖𝑛 = 𝐼.

(18)

We then consider the strategy that is a solution to (18) and report the 
esponding relative reduction in aggregate vulnerability in Table 6.
When considering the performance of the proportional and optimal 
ital injection policies under partial information in Table 6 we see 
 the reduction in relative aggregate vulnerability is significantly 
er under partial information than under full information for all types 
econstruction methods. Furthermore, we see that under partial in-
ation, sometimes the proportional capital injection policy performs 

er than the optimal capital injection strategy. For example, for the 
6 data and a constant price impact, the proportional capital injec-
 strategy based on the Entropy method gives a relative reduction of 
aggregate vulnerability of 8.47%, compared to a relative reduction 
.65% achieved by the optimal capital injection strategy. The reason 
this is that the optimal capital injection is optimal for the recon-
cted asset holding matrix 𝑋Entropy and not necessarily optimal for 
true matrix 𝑋true. When evaluating the performance of the different 
tegies, however, we use the true matrix 𝑋true to compute the rela-
 reduction of aggregate vulnerability (17). Under full information, 
optimal capital injection strategy cannot perform worse than the 

portional capital injection strategy. Still, we overall find that in our 
 test cases (2 years and 2 price impacts), the best-performing capital 
ction strategy (indicated by a box in Table 6) is an optimal capital 
ction strategy in three cases22 and a proportional capital injection 
tegy in only one case.23

Among the different reconstruction methods, the MinDen method 
orms worst in both years and for both choices of price impact. Cap-
injection strategies that rely on the MinDen method only reduce the 
tive aggregate vulnerability by around 3%. This level of reduction 
erefore much lower than the reduction of around 7-9% that can be 

for both price impacts in 2011 and for the capitalisation-dependent price 
act in 2016.
23 for a constant price impact in 2016.
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achieved with the naive capital injection strategy that does not even 
attempt to reconstruct the underlying network.

The other network reconstruction methods, i.e., Entropy, StatPhys, 
BayeER, and BayeEF perform generally better when used to decide on 
capital injections. Out of these four methods, the Bayesian methods 
seem to perform best overall. For the four test cases (2 years and 2 
price impacts), the best capital injection strategy (indicated by a box in 
Table 6) is always one that uses a Bayesian network reconstruction. For 
the 2011 data, the best capital injection strategy is the optimal capital 
injection (average) using the BayeER method under the capitalisation-
dependent price impact and the BayeEF method under the constant 
price impact. They reduce the aggregate vulnerability by 11.98% and 
11.44% respectively, which is better than the naive strategy which 
achieves a relative reduction between 7.24 - 7.43%.
For the 2016 data, the optimal capital injection method using the Bay-
eER method is best under the capitalisation-dependent price impact 
assumption (10.66% relative reduction in aggregate vulnerability com-
pared to 8.97% achieved by the naive capital injection strategy). For 
the constant price impact assumption, the proportional capital injection 
strategy using the BayeER method performs best (achieving a relative 
reduction in aggregate vulnerability of 10.41% compared to 9.06% 
achieved by the naive strategy).

When fixing the type of capital injection strategy (proportional cap-
ital injection, proportional capital injection (average), optimal capital 
injection, optimal capital injection (average)), and then checking which 
network reconstruction method performs best in a given year and for 
a given price impact, then we find that out of the 16 cases, the Bay-
eER performs best in 10 cases, BayeEF performs best in 4 cases and 
the Entropy method performs best in 2 cases. The StatPhys is never the 
best-performing method in our examples but still performs reasonably 
well.

Overall the best-performing capital injection methods using network 
reconstruction methods reduce the relative aggregate vulnerability in 
the range between 10 - 11% and are therefore better than the naive 
capital injection strategy which achieves a reduction between 7 - 9%. 
In particular, in each of the two years and for both types of price impact 
we see that all capital injection strategies that use the BayeER network 
reconstruction always outperform the naive capital injection strategy 
and the BayeER is the only network reconstruction method considered 
here for which this is the case.

Hence, we see that using suitable network reconstruction methods 
to decide on risk mitigation mechanisms in financial networks is indeed 
beneficial and can achieve better outcomes than using naive interven-
tion strategies.

5. Conclusion

We have investigated how well fire sales risk can be measured and 
mitigated under partial information. We used the fire sales measures 
(systemicness, aggregate vulnerability, direct vulnerability and indirect 
vulnerability) developed by Greenwood et al. (2015) and analysed their 
dependence on the asset holdings matrix. We then investigated how 
well these four different measures quantifying risk associated with fire 
sales can be estimated when the individual entries of the underlying 
asset holdings matrix are not observable but its row and column sums 
are. We considered two empirical asset holding matrices, available in 
the data published by the EBA for their 2011 and 2016 stress tests, 
and assumed that they were not fully observable. We estimated the 
asset holding matrix using five different network reconstruction meth-
ods available in the literature and found that in general these fire sales 
measures could be estimated reasonably accurately for a range of shock 
scenarios.

We then analysed how well risk from fire sales can be mitigated if 
policy interventions are based on partial information and network re-
construction techniques are used to decide on policies. We considered 
16

two policies that were highly effective in the analysis under full infor-
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mation in Greenwood et al. (2015), namely leverage caps and capital 
injections.

Leverage caps are generally independent of the underlying network 
and therefore do not require network reconstruction techniques to im-
plement them. In 2011 leverage caps lead to better outcomes than 
capital injections, but in 2016 when banks’ leverages were generally 
lower, intervention via capital injections leads to better outcomes than 
leverage caps. Therefore, in the more recent data, capital injections ap-
pear more beneficial.

Capital injections can be done using ad hoc methods that do not rely 
on the asset holding matrix or can be done in a more targeted approach 
that would account for characteristics of the asset holding matrix. We 
considered a naive capital injection strategy in which capital is injected 
in proportion to the size of a bank (measured in terms of the total as-
sets on its balance sheet); no information on the individual entries of 
the asset holding matrix is needed for this approach. We compare this 
to capital injection strategies that inject capital in proportion to the sys-
temicness of an institution or in an optimal way (with the objective of 
reducing the aggregate vulnerability) and these methods then rely on 
the (reconstructed) asset holding matrix.

We find that it is possible to achieve a significant relative reduc-
tion in aggregate vulnerability even under partial information. While 
the naive capital injection strategy, which does not require network 
reconstruction, achieves relative reductions in aggregate vulnerability 
in the range of 7 - 9% in our study, the best-performing capital injec-
tion strategies that rely on network reconstruction methods achieved 
a relative reduction of aggregate vulnerability between 10 - 11%. We 
found that the Bayesian method (Gandy and Veraart, 2017, 2019) for 
network reconstruction was the best overall method when used for de-
ciding on capital injections. In particular, we found that any capital 
injection strategy that we considered that was based on the Bayesian 
network reconstruction method with an Erdős-Rényi-type prior, always 
outperformed the naive capital injection strategy.

Hence, we see that network reconstruction techniques are not just 
useful for measuring risk, but also for managing it. As we have already 
discussed, the intervention strategies considered here can never do any 
harm (in the sense that using them cannot increase the aggregate vul-
nerability of the network). So it was clear that even using them in a 
non-optimal way can bring potential benefits. What is interesting, how-
ever, is to see how much better some of them perform in comparison 
to naive strategies that do not attempt to reconstruct the underlying 
network.
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Appendix A. Background information on matrix reconstruction 
methods

The matrix reconstruction methods considered can be classified into 
optimisation-based reconstruction methods, i.e., they determine a ma-
trix that is consistent with given row and column sums by solving a 
deterministic optimisation problem, and sampling-based reconstruction 
methods, which assume that the matrix of interest is random and they 
develop tools to generate a sample from the distribution of the matrix.

A.1. Optimisation-based reconstruction methods

We consider two matrix reconstruction methods, the Entropy 
method and the MinDen method. Both solve suitable optimisation prob-
lems to identify a matrix that is consistent with given row and column 
sums.

A.1.1. Entropy method

The method that we refer to as the Entropy method in this paper, 
is also known under several other names, such as iterative proportional 
fitting procedure, or RAS algorithm, to name a few and has been used 
in several fields, e.g., in mathematics, economics, computer science etc. 
To the best of our knowledge it has first been applied to financial net-
works by Upper and Worms (2004) who used the method to reconstruct 
a network of interbank liabilities from row and column sums. It has 
also been considered in the context of reconstructing networks of asset 
holding matrices in Di Gangi et al. (2018). The Entropy method is an 
optimisation-based method that minimises the Kullback-Leibler (KL) di-
vergence between a matrix 𝑋 and a target matrix 𝑋Entropy. Applied to 
our setting it consists of solving the following optimisation problem

min
𝑋

𝑁∑
𝑛=1

𝐾∑
𝑘=1

𝑋𝑛𝑘 log

(
𝑋𝑛𝑘

𝑋
Entropy
𝑛𝑘

)
,

subject to: 𝛼𝑛1 =
𝐾∑

𝑘=1
𝑋𝑛𝑘 ∀𝑛 ∈ {1,… ,𝑁},

𝑐𝑘 =
𝑁∑

𝑛=1
𝑋𝑛𝑘 ∀𝑘 ∈ {1,… ,𝐾},

𝑋𝑛𝑘 ≥ 0 ∀𝑛 ∈ {1,… ,𝑁},∀𝑘 ∈ {1,… ,𝐾},

(A.1)

where the initial matrix is defined as

𝑋
Entropy
𝑛𝑘

=
𝛼𝑛1𝑐𝑘

𝐴
∀𝑛 ∈ {1,… ,𝑁},∀𝑘 ∈ {1,… ,𝐾}, (A.2)

where 𝐴 =∑𝑁

𝑛=1 𝛼𝑛1 =
∑𝐾

𝑘=1 𝑐𝑘.
One can easily check that 𝑋Entropy solves this optimisation problem. 

The reason why this reconstruction problem simplifies so significantly 
in our situation is that since we consider an asset holdings matrix we 
only need to require the non-negativity of the matrix and that it satis-
fies the given row and column sums. We are not in a situation in which 
the diagonal entries of the matrix that solves the optimisation problem 
are required to be zero. This additional constraint occurs, for example, 
in Upper and Worms (2004), in which the network represents inter-
bank lending. Since a bank does not borrow from itself the additional 
constraint, that the entries on the diagonal are zero, is necessary there.

As one can see from the definition of 𝑋Entropy, the reconstructed 
matrix usually contains only non-zero entries (an entry 𝑋Entropy

𝑛𝑘
in the 

matrix can only be zero if the corresponding row 𝛼𝑛1 or column 𝑐𝑘 ag-
gregate is zero).

It has been discussed in Di Gangi et al. (2018) how the specific form 
of 𝑋Entropy here can be interpreted as reflecting investors’ preference in 
line with the capital asset pricing model (CAPM) (Sharpe, 1964).

Since the Entropy method provides a closed-form expression for the 
reconstructed asset holding matrix, all fire sale measures by Greenwood 
et al. (2015) applied to this reconstructed matrix can be expressed in 
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closed form. Therefore, one immediately obtains the following results.
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Proposition A.1. Suppose the asset holding matrix is estimated using 
𝑋Entropy given in (A.2). Let 𝑛 ∈ and 𝑘 ∈  . Then,

1. the elements of the portfolio weights matrix are given by 𝑚𝑛𝑘(𝑋Entropy) =
𝑋

Entropy

𝑛𝑘

𝛼𝑛1
= 𝑐𝑘

𝐴
;

2. the unlevered return is 𝑅Entropy = 𝑅𝑛1(𝑋Entropy) =
∑𝐾

𝑘=1 𝑐𝑘𝑓𝑘1
𝐴

;

3. the connectivity is 𝛾Entropy = 𝛾𝑛1(𝑋Entropy) = ∑𝐾

𝑘=1 𝑐𝑘𝑙𝑘
𝑋

Entropy

𝑛𝑘

𝛼𝑛1
=∑𝐾

𝑘=1 𝑐2
𝑘
𝑙𝑘

𝐴
;

4. the direct vulnerability is 𝑋Entropy (𝑛) = − 𝛼𝑛1
𝑒𝑛1

𝑅Entropy;

5. the systemicness is 𝑋Entropy (𝑛) = −𝛾Entropy𝑅Entropy∑𝑁
𝜈=1 𝑒𝜈1

𝛼𝑛1𝑏𝑛1;

6. the aggregate vulnerability is 𝑋Entropy =
∑𝑁

𝑛=1 𝑋Entropy (𝑛) =
−𝛾Entropy𝑅Entropy∑𝑁

𝜈=1 𝑒𝜈1

∑𝑁

𝑛=1 𝛼𝑛1𝑏𝑛1;

7. the indirect vulnerability is 𝑋Entropy (𝑛) = −𝛾Entropy𝑅Entropy
∑𝑁

𝜈=1 𝛼𝜈1𝑏𝜈1
𝐴

×
𝛼𝑛1
𝑒𝑛1

.

Proof of Proposition A.1. 1. The statement follows directly from 

the definition of 𝑋Entropy, since 𝑚𝑛𝑘(𝑋Entropy) = 𝑋
Entropy
𝑛𝑘

𝛼𝑛1
= 𝛼𝑛1𝑐𝑘

𝛼𝑛1𝐴
= 𝑐𝑘

𝐴
.

2.-7. The statements follow directly from part 1. and the definitions of 
the risk measures. □

Hence, we find that for the Entropy reconstruction method, the two 
quantities that depend on the network 𝑅𝑛1(𝑋Entropy) and 𝛾𝑛1(𝑋Entropy)
do not depend on 𝑛, which means they are not specific to a given insti-
tution. For an all asset shock 𝑓𝑘1 = 𝑓 for all 𝑘 ∈  , 𝑅Entropy = 𝑓 in line 
with Proposition 3.1.

Remark A.2 (Comparison of systemicness and indirect vulnerability us-

ing the Entropy method). These results show that under the Entropy 
method, the systemicness is a product of an institution-specific factor 
𝛼𝑛1𝑏𝑛1 (representing total assets times leverage) and a common factor 
−𝛾Entropy𝑅Entropy∑𝑁

𝜈=1 𝑒𝜈1
. The indirect vulnerability also consists of an institution-

specific factor 𝛼𝑛1
𝑒𝑛1

(representing total asset holdings divided by equity) 

and a common factor −𝛾Entropy𝑅Entropy
∑𝑁

𝜈=1 𝛼𝜈1𝑏𝜈1
𝐴

. Hence, we see that 
institutions with high total asset holdings times leverage will have a 
high systemicness, i.e., will play a major role in causing fire sale losses, 
whereas institutions with large total asset holdings divided by their eq-
uity will have a large indirect vulnerability, i.e., they will be susceptible 
to fire sale losses. So leverage influences systemicness, whereas equity 
influences indirect vulnerability.

Proposition A.1 also allows us to provide an analytical expression 
for the proportional capital injection strategy.

Corollary A.3. Suppose the asset holding matrix is estimated using 𝑋Entropy

given in (A.2). Let 𝑛 ∈ and 𝑘 ∈  . Then, the proportional capital injection 
defined in Definition 4.5, reduces to

𝑖
Prop
𝑛 (𝑋Entropy) = 𝐼

𝑋Entropy (𝑛)
𝑋Entropy

= 𝐼
𝛼𝑛1𝑏𝑛1∑𝑁

𝜈=1 𝛼𝜈1𝑏𝜈1
.

This means that capital is injected relative to a measure in which 
the total assets is weighted by leverage. Therefore, 𝑖Prop

𝑛 (𝑋Entropy) differs 
from the naive capital injection strategy 𝑖Naive

𝑛
= 𝐼

𝛼𝑛1∑𝑁
𝜈=1 𝛼𝜈1

in which only 
the total asset holdings are considered.

A.1.2. Minimum density method

The minimum density method for network reconstruction was intro-

duced in Anand et al. (2015) in the context of a matrix representing 
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interbank lending. We apply it here to a matrix with a different eco-
nomic interpretation, namely asset holdings between different banks. It 
solves an optimisation problem with the objective to find a matrix with 
the minimum number of edges that is consistent with given row and 
column sums. The resulting network is therefore usually very sparse. 
Formally, the optimisation problem in our setting is as follows.

min
𝑋

𝑁∑
𝑛=1

𝐾∑
𝑘=1

𝕀{𝑋𝑛𝑘>0},

subject to: 𝛼𝑛1 =
𝐾∑

𝑘=1
𝑋𝑛𝑘 ∀𝑛 ∈ {1,… ,𝑁},

𝑐𝑘 =
𝑁∑

𝑛=1
𝑋𝑛𝑘 ∀𝑘 ∈ {1,… ,𝐾},

𝑋𝑛𝑘 ≥ 0 ∀𝑛 ∈ {1,… ,𝑁},∀𝑘 ∈ {1,… ,𝐾}.

Anand et al. (2015) provide an algorithm to solve this optimisa-
tion problem and also consider generalisations that result in less sparse 
matrices. We will mainly consider one matrix in our analysis that rep-
resents the sparsest solution. As part of our sensitivity analysis we also 
consider the generalisation by Anand et al. (2015) that constructs less 
sparse matrices.

A.2. Sampling-based reconstruction methods

We also consider two matrix reconstruction methods that assume 
that the matrix itself is random and provide methodologies to sample 
from the appropriate distribution.

A.2.1. Statistical physics method

The method that we refer to as the Statistical Physics method, due to 
its modelling ideas coming from this area, was developed by Cimini et 
al. (2015). It was originally proposed to reconstruct a network of inter-
bank lending. It has then been applied to the case of bipartite networks 
of asset holding networks by Squartini et al. (2017) which is what we do 
here. Applied to our setting, it is characterised by an 𝑁 ×𝐾-dimensional 
random matrix 𝑋StatPhys, whose individual entries 𝑋𝑛𝑘, 𝑛 ∈ , 𝑘 ∈  are 
independent random variables from the following discrete distributions.

ℙ
(

𝑋
StatPhys
𝑛𝑘

=
𝛼𝑛1𝑐𝑘

𝑝𝑛𝑘𝐴

)
= 𝑝𝑛𝑘,

ℙ(𝑋StatPhys
𝑛𝑘

= 0) = 1 − 𝑝𝑛𝑘,

where again 𝐴 =∑𝑁

𝜈=1 𝛼𝜈1. Furthermore, 𝑝𝑛𝑘 =
𝜙𝛼𝑛1𝑐𝑘

1+𝜙𝛼𝑛1𝑐𝑘
∀𝑛 ∈ , ∀𝑘 ∈  , 

and 𝛼𝑛1 > 0 ∀𝑛 ∈ , 𝑐𝑘 > 0 ∀𝑘 ∈  , are the given row and column sums, 
respectively and 𝜙 > 0 is a parameter that can be used to calibrate the 
model.24 One can check that 𝑝𝑛𝑘 ∈ [0, 1] ∀𝑛 ∈ , ∀𝑘 ∈  . Hence, we see 
that each entry in the random matrix can only take two possible values 
- zero or another non-negative value.

It follows directly from the definition that

𝔼

[
𝑁∑

𝑛=1
𝑋

StatPhys
𝑛𝑘

]
= 𝑐𝑘, ∀𝑘 ∈  and 𝔼

[
𝐾∑

𝑘=1
𝑋

StatPhys
𝑛𝑘

]
= 𝛼𝑛1, ∀𝑛 ∈ .

This means, that the random matrix 𝑋StatPhys satisfies the row and col-
umn sums in expectation. If one generates a sample of matrices from 
this probability distribution, then the individual matrices in the sample 
will usually not satisfy the row and column sums.

To calibrate the model to a given target density 𝛿target ∈ (0, 1) of a 
network one can use the fact that the expected density of 𝑋StatPhys is 
given by

𝑓 (𝜃) = 1
𝑁𝐾

𝔼

[
𝑁∑

𝑛=1

𝐾∑
𝑘=1

𝕀
{𝑋StatPhys

𝑛𝑘
>0}

]
= 1

𝑁𝐾

𝑁∑
𝑛=1

𝐾∑
𝑘=1

𝑝𝑛𝑘

and
dec
if 𝛼
row
targ
the 
valu

rela

Phy

𝔼[𝑚

and
met

by

𝔼[𝑅

𝔼[𝛾

for 

Stat
trop

𝔼[

sure
with
amp

𝔼[

whe

𝔼[𝛾𝑛

Sinc

and
grea
Ent

A.2

take
erat
vati
entr
thro

con
cho

grap
edg
18

24 This has also already been discussed in Gandy and Veraart (2019).
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= 1
𝑁𝐾

𝑁∑
𝑛=1

𝐾∑
𝑘=1

𝜙𝛼𝑛1𝑐𝑘

1 + 𝜙𝛼𝑛1𝑐𝑘

 solve 𝑓 (𝜃) = 𝛿target for 𝜃. Note that 𝑓 is a continuous and non-
reasing function satisfying 𝑓 (0) = 0. Furthermore, lim𝜃→∞ 𝑓 (𝜃) = 1
𝑛1𝑐𝑘 > 0 for all 𝑛 ∈  and for all 𝑘 ∈  . Hence, we see that if all 
 and column sums are non-zero, the model can be calibrated to any 
et density 𝛿target ∈ (0, 1). If some row or column sums are zero, then 
underlying network cannot have a density of 1 or a similarly large 
e and this is indeed reflected by the function 𝑓 .

Some fire sales measures evaluated using the StatPhys method are 
ted to those evaluated under the Entropy method.
For example, the expected portfolio weights matrix using the Stat-
s method satisfies

𝑛𝑘(𝑋StatPhys)] = 1
𝛼𝑛1

𝔼[𝑋StatPhys
𝑛𝑘

] = 1
𝛼𝑛1

𝛼𝑛1𝑐𝑘

𝑝𝑛𝑘𝐴
𝑝𝑛𝑘 =

𝑐𝑘

𝐴

= 𝑚𝑛𝑘(𝑋Entropy) ∀𝑛 ∈ ,∀𝑘 ∈ 

 hence coincide with the portfolio weights using the Entropy 
hod.
This implies that the quantities that depend on the network are given 

𝑛1(𝑋StatPhys)] =
𝐾∑

𝑘=1
𝔼[𝑚𝑛𝑘(𝑋StatPhys)]𝑓𝑘1 = 𝑅𝑛1(𝑋Entropy) = 𝑅Entropy,

𝑛1(𝑋StatPhys)] =
𝐾∑

𝑘=1
𝑐𝑘𝑙𝑘𝔼[𝑚𝑛𝑘(𝑋StatPhys)] = 𝛾𝑛1(𝑋Entropy) = 𝛾Entropy,

all 𝑛 ∈ .
It follows directly that the expected direct vulnerability using the 
Phys method coincides with the direct vulnerability using the En-
y method, formally

𝑋StatPhys (𝑛)] = −
𝛼𝑛1
𝑒𝑛1

𝔼[𝑅𝑛1(𝑋StatPhys)] = −
𝛼𝑛1
𝑒𝑛1

𝑅Entropy =𝑋Entropy (𝑛).

For the other fire sale measure, however, the expectation of the mea-
 applied to the random matrix 𝑋StatPhys does not generally coincide 
 the measure applied to the deterministic matrix 𝑋Entropy. For ex-
le, for the systemicness, it follows from direct calculations that

𝑋StatPhys (𝑛)] =
−𝛼𝑛1𝑏𝑛1∑𝑁

𝜈=1 𝑒𝜈1
𝔼[𝛾𝑛1(𝑋StatPhys)𝑅𝑛1(𝑋StatPhys)],

re

1(𝑋StatPhys)𝑅𝑛1(𝑋StatPhys)] = 𝛾Entropy𝑅Entropy + 1
𝛼𝑛1

∑𝐾

𝑘=1 𝑐2
𝑘
𝑙𝑘𝑓𝑘1

𝜙𝐴2 .

e, 1
𝛼𝑛1

∑𝐾
𝑘=1 𝑐2

𝑘
𝑙𝑘𝑓𝑘1

𝜙𝐴2 ≤ 0, this implies that the expected systemicness 
 the expected aggregate vulnerability under the StatPhys method is 
ter or equal than the corresponding quantities derived using the 

ropy method. This is indeed what we find in Table 4.

.2. Bayesian methods

The reconstruction method developed in Gandy and Veraart (2017)
s a Bayesian perspective. Gandy and Veraart (2017) specify a gen-
ive model for the network matrix and then condition on the obser-
ons, i.e., the row and column sums (and possibly additional known 
ies of the matrix). Hence, the network reconstruction is achieved 
ugh the posterior distribution in the Bayesian setting.

For the generative model several a-priori distributions have been 
sidered in Gandy and Veraart (2017, 2019). We consider two special 
ices developed in these papers.
The model assumes a generalisation of the Erdős-Rényi random 
h model, see Erdős and Rényi (1959), by assuming that directed 

es from 𝑛 to 𝑘 are generated using independent Bernoulli trials with 

success probability 𝑝𝑛𝑘 and weights from an exponential distribution are 
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assigned to existing edges. Formally, the a-priori model assumes that for 
all 𝑛 ∈ and for all 𝑘 ∈ 

𝑃 (𝑋𝑛𝑘 > 0) = 𝑝𝑛𝑘,

𝑋𝑛𝑘 ∣ 𝑋𝑛𝑘 > 0 ∼ Exp(𝜆𝑛𝑘),

where 𝑝 = (𝑝𝑛𝑘) ∈ [0, 1]𝑁×𝐾 , 𝜆 = (𝜆𝑛𝑘) ∈ [0, ∞)𝑁×𝐾 .
We are then interested in the distribution of the random matrix 𝑋

conditional on the given row and column sums. Since this distribution is 
not available in closed form, Gandy and Veraart (2017) have developed 
an MCMC sampler to generate samples from this distribution.

In the following, we will assume that all parameters of the expo-
nential distributions governing the weights are identical, i.e., 𝜆𝑛𝑘 = 𝜆̃ ∈
[0, ∞) for all 𝑛 ∈ , 𝑘 ∈  .

We will now consider two different choices for 𝑝 = (𝑝𝑛𝑘). First, we 
assume that all a-priori link existence probabilities are identical, i.e., 
we set 𝑝𝑛𝑘 = 𝑝̃ ∈ [0, 1] for all 𝑛 ∈ , 𝑘 ∈  . We will refer to the Bayesian 
model with this a-priori assumption as the BayeER model (where ER 
stands for Erdős-Rényi). As discussed in Gandy and Veraart (2019), this 
model can be calibrated to a given network density by choosing appro-
priate values for 𝑝̃ and 𝜆̃ and this is what we do in this paper.

Second, we assume that the a-priori link existence probabilities have 
the same structure as in the StatPhys model. In particular, they are given 
by 𝑝𝑛𝑘 = 𝜙𝛼𝑛1𝑐𝑘

1+𝜙𝛼𝑛1𝑐𝑘
for all 𝑛 ∈ , 𝑘 ∈  . Here again 𝛼𝑛1 and 𝑐𝑘 represent 

the row and column sums and 𝜙 > 0 is a constant used to calibrate the 
model. We refer to this Bayesian model as the BayeEF model (where 
EF stands for Empirical Fitness). This is (as the StatPhys model) a fit-
ness model for the underlying network. Fitness network models assume 
that the link existence probability between a pair of nodes is a function 
of characteristics of the nodes, so-called fitnesses. In our setting, the 
row and column sums can be interpreted as fitnesses and the link ex-
istence probabilities are indeed functions of the row and column sums. 
Note, however, that the 𝑝𝑛𝑘 in the BayeEF model are a-priori link exis-
tence probabilities. They do usually not correspond to the posterior link 
existence probabilities. The StatPhys and the BayeEF are fundamentally 
different models despite having some similarities in the choice of model 
inputs. As shown in Gandy and Veraart (2019) also the BayeEF can be 
calibrated to a given network density and this is what we will do for 
this second type of Bayesian model as well. The calibration is described 
in detail in Gandy and Veraart (2019).

Appendix B. Proofs

Proof of Proposition 3.1. 1.-3. From the definition of the systemic-
ness of bank 𝑛 ∈  in (4), it is clear that (𝑛) = 𝛾𝑛1

𝛼𝑛1∑𝑁
𝜈=1 𝑒𝜈1

×

𝑏𝑛1(−𝑅𝑛1) depends on the network matrix 𝑋 only via the two fac-
tors 𝛾𝑛1 and 𝑅𝑛1, since all other factors appearing in the formula 
are aggregate information that is available from the balance sheets 
of the banks.
This implies that also the aggregate vulnerability, as the sum of 
all individual systemicnesses, depends on the network matrix 𝑋
only via 𝛾𝑛1 and 𝑅𝑛1, where 𝑛 ∈ . We also see directly from the 
definition, that the direct vulnerability of a bank 𝑛 ∈ depends on 
the network matrix 𝑋 only via the factor 𝑅𝑛1.

4. To see that 𝛾𝑛1 depends on the individual entries of 𝑋 only via its 
𝑛th row, we rewrite 𝛾𝑛1 given in (5) as follows

𝛾𝑛1 =
𝐾∑

𝑘=1

(
𝑁∑

𝑝=1
𝛼𝑝1𝑚𝑝𝑘

)
𝑙𝑘𝑚𝑛𝑘 =

𝐾∑
𝑘=1

(
𝑁∑

𝑝=1
𝛼𝑝1

𝑋𝑝𝑘

𝛼𝑝1

)
𝑙𝑘

𝑋𝑛𝑘

𝛼𝑛1
=

𝐾∑
𝑘=1

𝑐𝑘𝑙𝑘
𝑋𝑛𝑘

𝛼𝑛1
.

(B.1)

Hence, we see that 𝛾𝑛1 only depends on 𝑋𝑛1, … , 𝑋𝑛𝐾 . To make the 
dependence of 𝛾𝑛1 on 𝑋 explicit, we will sometimes write 𝛾𝑛1(𝑋).
First, if one assumes a constant price impact, then formula (B.1)
19

reduces to
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𝛾𝑛1 =
𝑙

𝛼𝑛1

𝐾∑
𝑘=1

𝑐𝑘𝑋𝑛𝑘. (B.2)

Indeed, 𝛾𝑛1 depends on the individual entries in the 𝑛th row of the 
matrix 𝑋 since it is proportional to a capitalisation-weighted aggre-
gate of the positions of node 𝑛 in the 𝐾 assets. If additionally their 
market capitalisation was identical, i.e., if 𝑐1 = … 𝑐𝐾 = 𝑐 (which 
would be unlikely in practice), then (B.2) would simplify even fur-
ther to 𝛾𝑛1 =

𝑙

𝛼𝑛1
𝑐
∑𝐾

𝑘=1 𝑋𝑛𝑘 = 𝑙𝑐, which then no longer depends on 
the individual entries of 𝑋.
Second, if one assumes a capitalisation-dependent price impact, 
then 𝑐𝑘𝑙𝑘 = 𝜌 for all 𝑘 ∈  and hence 𝛾𝑛1 =

𝜌

𝛼𝑛1

∑𝐾

𝑘=1 𝑋𝑛𝑘 = 𝜌 ∀𝑛 ∈
 , which does not depend on 𝑋.

5. We find that

𝑅𝑛1 =
𝐾∑

𝑘=1
𝑚𝑛𝑘𝑓𝑘 =

𝐾∑
𝑘=1

𝑋𝑛𝑘

𝛼𝑛1
𝑓𝑘 =

1
𝛼𝑛1

𝐾∑
𝑘=1

𝑋𝑛𝑘𝑓𝑘, (B.3)

which again only depends on the matrix 𝑋 via its 𝑛th row. To 
make the dependence of 𝑅𝑛1 on 𝑋 explicit, we will sometimes write 
𝑅𝑛1(𝑋).
First, if we consider an all asset shock with 𝑓1 =… 𝑓𝐾 = 𝑓 , expres-
sion (B.3) simplifies to 𝑅𝑛1 =

𝑓

𝛼𝑛1

∑𝐾

𝑘=1 𝑋𝑛𝑘 = 𝑓 and hence does not 
depend on the matrix 𝑋.
Second, we consider a shock that only affects 𝐾̃ < 𝐾 assets with 
indices in 𝐾̃ . Then,

𝑅𝑛1 =
𝐾∑

𝑘=1
𝑚𝑛𝑘𝑓𝑘 =

𝐾∑
𝑘=1

𝑋𝑛𝑘

𝛼𝑛1
𝑓𝑘 =

1
𝛼𝑛1

𝐾∑
𝑘=1

𝑋𝑛𝑘𝑓𝑘 =
1

𝛼𝑛1

∑
𝑘∈𝐾̃

𝑋𝑛𝑘𝑓𝑘.

Hence, 𝑅𝑛1 only depends on the columns with indices in 𝐾̃ within 
the 𝑛th row, but not the full 𝑛th row of 𝑋.
Since (𝑛) depends on 𝑋 only via 𝑅𝑛1 the results for (𝑛) follow 
directly from the results on 𝑅𝑛1. □

Proof of Corollary 3.2. 1. Under an all asset shock and a capitalisa-
tion-dependent price impact, we know from the proof of Proposi-
tion 3.1 that 𝑅𝑛1 = 𝑓 and 𝛾𝑛1 = 𝜌. Hence,

(𝑛) = −𝑓𝜌
𝛼𝑛1∑𝑁

𝜈=1 𝑒𝜈1
𝑏𝑛1,

 =
𝑁∑

𝑛=1
(𝑛) = −𝑓𝜌∑𝑁

𝜈=1 𝑒𝜈1

𝑁∑
𝑛=1

𝛼𝑛1𝑏𝑛1,

(𝑛) =
−𝑓𝛼𝑛1

𝑒𝑛1
,

which do not depend on the individual entries of 𝑋.
2. This statement follows directly from Proposition 3.1 and the ana-

lytical formulae of 𝛾𝑛1 and 𝑅𝑛1 provided in its proof. □

Appendix C. Additional empirical results and sensitivity analysis

C.1. Observed and reconstructed asset holding matrices

To provide some intuition on the empirical asset holding matrix and 
the performance of different reconstruction methods, we illustrate their 
performance when applied to the EBA data from 2016. Fig. C.5 shows a 
heatmap of the true asset holdings matrix 𝑋 (top left) and five heatmaps 
corresponding to reconstructed asset holding matrices that only used 
partial information. For methods that generate a sample of matrices, 
i.e., the StatPhys method and the Bayesian methods we only show one 
realisation of a reconstructed asset holding matrix.

Fig. C.5 shows that the matrix obtained using the Entropy method 
corresponds to a network in which all institutions hold positions in all 
but one asset. This one asset has a market capitalisation of 0 and corre-

sponds to Liechtenstein sovereign loans.



Journal of Banking and Finance 155 (2023) 106989R.K.-K. Pang and L.A.M. Veraart

Fig. C.5. Asset holdings matrix for the true matrix (top left) and five reconstructed networks based on different methods for the EBA 2016 data.
For the reconstructed matrix based on the MinDen method, the as-
set holdings appear scattered where the largest assets holdings are in 
corporate, retail, German, US, and other sovereign assets. The MinDen 
matrix does assign zero weights to some of the largest positions ob-
served in the true network i.e., several UK banks hold large positions in 
retail assets in 2016, but the corresponding entries in the reconstructed 
matrix based on the MinDen methods are zero.

The sample matrix generated by the StatPhys method shows that 
according to this reconstruction, all banks invest in the two asset classes 
20

corporate and retail (the lower two rows). The weights are consistent 
with the corresponding two rows in the matrix obtained from using the 
Entropy method. According to the reconstruction based on the Entropy 
method and this one sample from the StatPhys method, the bank with 
label UK1 has the largest holdings in the two asset classes corporate 
and retail. In contrast, to the Entropy method, the reconstructed matrix 
based on the StatPhys method is much sparser - it has been calibrated 
to match the density of the true network. When looking at the samples 
generated by the Bayesian method we observe that the overall density 
of the network matches the density of the true network, as was the 

case for the StatPhys method, since these methods are flexible enough 
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Fig. C.6. Examples of asset holdings matrices that maximise or minimise the aggregate vulnerability while respecting the non-negativity and marginal sums of the 
true matrix. We use the 2011 EBA data for the GIIPS and Bad Brexit scenarios. The aggregate vulnerability are as follows a) 172%, b) 373%, c) 49%, and d) 144%.
that they can easily be calibrated to a given density. Throughout our 
empirical analysis, we calibrate the StatPhys and the Bayesian methods 
to the true density of the network unless stated otherwise. The density 
remains almost the same in both years (0.44 in 2011 and 0.48 in 2016), 
so our sampling-based methods are calibrated such that almost half the 
entries of the asset holding matrices are filled.

Furthermore, we see that the reconstructed samples from the 
Bayesian methods assign weights that are very different from weights 
obtained by the Entropy or the StatPhys method. In particular, we do 
observe several high weights and also some zero weights within the 
lower two rows that represent the holdings in corporate and retail as-
sets. This is not surprising given the greater flexibility of the Bayesian 
method when it comes to modelling the weight and not just the exis-
tence of edges compared to the StatPhys method.

C.2. Computing the maximum and minimum aggregate vulnerability for 
given row and column sums

In our partial information setting, we assume that only the row and 
column sums of the asset holding matrix are given. Throughout the pa-
per, we study various network reconstruction methods that reconstruct 
21

the asset holding matrix from this partial information. These recon-
structed networks can then be plugged into any measure of fire sale 
risk of interest, such as the aggregate vulnerability, the systemicness, 
the direct and the indirect vulnerability.

For a fixed measure of fire sale risk, however, one can also try to 
find an asset holding matrix that maximises (or minimise) this measure 
over all matrices that satisfy the given constraints on the row and col-

umn sums. This is what we do next for the aggregate vulnerability. This 
optimisation approach will be useful as a benchmark.

We consider the following optimisation problem for finding the max-

imum aggregate vulnerability:

max
𝑋

 (𝑋) ,

subject to: 𝛼𝑛1 =
𝐾∑

𝑘=1
𝑋𝑛𝑘 ∀𝑛 ∈ {1,… ,𝑁},

𝑐𝑘 =
𝑁∑

𝑛=1
𝑋𝑛𝑘 ∀𝑘 ∈ {1,… ,𝐾},

(C.1)
𝑋𝑛𝑘 ≥ 0 ∀𝑛 ∈ {1,… ,𝑁}, ∀𝑘 ∈ {1,… ,𝐾}.
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Fig. C.7. Aggregate vulnerabilities as a function of the number of known columns in the target matrix of the Entropy method (top), and aggregate vulnerabilities as 
a function of the network density for the MinDen method (bottom). This is for the 2011 data and a capitalisation-dependent price impact.
The corresponding optimisation problem that determines the minimum 
aggregate vulnerability can be defined in exactly the same way by min-
imising the aggregate vulnerability rather than maximising it.

Fig. C.6 shows examples of asset holding matrices that correspond to 
the minimum or maximum aggregate vulnerability for different shocks. 
We find that the matrices are generally very sparse. We observe large 
positions in corporate and retail assets, which correspond to 80% of 
the total value of asset holdings across all banks. It is striking to see 
how similar the two matrices are that correspond to the minimum and 
the maximum aggregate vulnerability for a given stress scenario. This 
shows the large influence of a small number of positions on aggregate 
vulnerability. It is possible that there are other matrices with different 
levels of sparsity that result in similarly small or large aggregate vul-
nerabilities.

C.3. Additional sensitivity analysis

C.3.1. Network reconstruction for different densities

In the following, we provide further details on the sensitivity of 
different network reconstruction methods with respect to the assumed 
density of the network.

In Section 3.5 we have already discussed how the aggregate vul-
nerability computed using the StatPhys, BayeER, and BayeEF network 
reconstruction methods depends on the choice of the target density of 
the network for the 2011 data and a capitalisation-dependent price im-
pact, see Fig. 1. In particular, we find that the aggregate vulnerability 
can be estimated reasonably precisely even if the true density of the net-
22

work is not available. Further analysis of these sensitivities for constant 
price impact and for the data from 2016 confirm these conclusions. We 
do not report the details here.

Next, we analyse how additional information can be included in the 
Entropy and MinDen methods.

For the Entropy method, we cannot just assume a target density 
but we will need to provide a suitable target matrix 𝑋̃ instead. We 
do this by replacing some columns in the target matrix with the true 
asset holding matrix. In particular, first, we assume that the first col-
umn of the target matrix consists of the true asset holdings and the 
remaining entries correspond to those in the Entropy method matrix 
i.e., 𝑋̃𝑛1 = 𝑋𝑛1 ∀𝑛 ∈  and 𝑋̃𝑛𝑘 = 𝑋

Entropy
𝑛𝑘

, 𝑘 ∈ [2, … , 𝐾]. The col-
umn sums remain the same but the row sums are no longer consistent 
with the partial information. We, therefore, re-balance the matrix such 
that marginal sums are equal to the true matrix. We repeat this process 
for each column sequentially until the target matrix consists only of the 
true entries. We do this column by column.

Our results in Fig. C.7 show that the aggregate vulnerabilities are 
similar under the additional information for the Entropy method. For 
several points, incorporating additional information can result in a 
worse performance of the aggregate vulnerability. Although more infor-
mation is known about the true matrix, the proportional scaling from 
the re-balancing method alters other entries. This leads to changes in 
other assets with high influence, for example, changes in position in UK 
assets within the Bad Brexit scenario. Only when the information about 
the shocked asset is included, we observe that the estimated aggregate 
vulnerability becomes closer to the true one.

For the MinDen method, it is possible to consider a generalisation, 

see Anand et al. (2015) for details, that can be calibrated to a target 
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Table C.7

The table presents average fire sale risk measures (averaged over the banks and additionally averaged over the reconstructed 
samples) for the 2011 EBA data for two different shock scenarios for the true matrix and for reconstructed matrices that were 
reconstructed from noisy observations of the row and column sums.

Capitalisation-dependent price impact
(𝑙𝑘 = 𝜌∕𝑐𝑘 ∀𝑘)

Matrix True MinDen Entropy StatPhy BayeER BayeEF

𝜎 0 100 1000 100 1000 100 1000 100 1000 100 1000
GIIPS (%)

11 15.58 32.74 2.60 7.81 7.80 7.80 7.81 20.20 20.17 17.69 17.53

- - - - - (0.54) (0.53) (3.09) (3.05) (3.01) (3.01)

11 460.79 1075.10 293.85 416.77 416.17 417.42 416.99 611.87 610.83 544.72 542.05
- - - - - (10.66) (10.71) (38.63) (38.49) (30.36) (30.46)

11 291.70 289.01 316.26 288.21 287.85 288.98 288.42 292.41 291.48 294.22 293.44
- - - - - (6.02) (6.15) (5.27) (5.28) (5.01) (5.03)

Bad Brexit (%)

11 1.47 0.85 4.03 3.01 3.01 3.02 3.01 8.37 8.36 6.47 8.36
- - - - - (0.47) (0.46) (02.50) (2.54) (2.43) (2.39)

11 120.19 175.99 225.61 160.90 160.71 161.18 160.91 239.96 239.41 207.53 206.42
- - - - - (7.31) (7.37) (22.66) (22.96) (17.30) (17.04)

11 90.23 144.05 119.90 111.27 111.16 111.59 111.30 112.14 111.91 113.67 113.47
- - - - - (4.77) (4.83) (3.95) (4.04) (3.90) (3.92)

Constant price impact
(𝑙𝑘 = 5 × 10−13 ∀𝑘)
GIIPS (%)

11 Same results as for capitalisation-dependent price impact

11 506.76 312.90 321.79 523.55 522.83 523.48 522.85 275.16 274.39 325.14 325.60
- - - - - (13.51) (13.50) (16.68) (16.81) (17.83) (17.85)

11 357.49 226.56 204.36 362.05 361.62 362.43 361.73 275.50 274.60 293.51 293.20
- - - - - (7.24) (7.41) (11.35) (11.42) (10.11) (10.21)

Bad Brexit (%)

11 Same results as for capitalisation-dependent price impact

11 155.05 251.16 119.47 202.13 201.90 202.13 201.76 103.91 103.81 126.40 126.83

- - - - - (9.24) (9.30) (8.87) (8.98) (9.53) (9.59)

11 109.02 165.48 67.01 139.78 139.65 139.94 139.59 104.08 103.99 114.60 114.72
- - - - - (5.95) (6.03) (8.09) (8.19) (7.38) (7.39)

Bold - 1 0 3 4 2 2 2 2 2 2
density. We find that the aggregate vulnerabilities, computed from the 
MinDen method that have been calibrated to different densities, can 
vary and different densities can lead to similar aggregate vulnerabilities.

We have also conducted the same sensitivity checks for a constant 
price impact and also for the 2016 data and come to the same conclu-
sions, therefore we do not report them here.

C.3.2. Network reconstruction for noisy observations

Finally, we investigate how sensitive our results are, if the row and 
column sums of the asset holding matrix are not observed directly but 
with noise. To do so we add a noise term to the row and column sums of 
the true asset holding matrix, i.e., we consider the new row and column 
sums

𝛼noise
𝑛1 = 𝛼𝑛1 + 𝜖(𝛼)

𝑛
, ∀𝑛 ∈ ,

𝑐noise
𝑘

= 𝑐𝑘 + 𝜖
(𝑐)
𝑘

, ∀𝑘 ∈  ,

where 𝜖(𝛼)1 , … , 𝜖(𝛼)
𝑁

and 𝜖(𝑐)1 , … , 𝜖(𝑐)
𝐾

are i.i.d. normally distributed random 
variables with mean 0 and variance 𝜎2. We chose a realisation of the 
noise in which all new row and column sums are non-negative. We 
consider two different choices of the parameter 𝜎 ∈ {100, 1000} (million 
EUR). Finally, we normalise row and column sums of the data with 
noise such that the new row sums 𝛼̃noise

𝑛1 and column sums 𝑐noise
𝑘

with 
noise satisfy

𝑁∑
𝛼̃noise

𝑛1 =
𝐾∑

𝑐noise
𝑘

=
𝑁∑ 𝐾∑

𝑋𝑛𝑘.
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𝑛=1 𝑘=1 𝑛=1 𝑘=1
For the network reconstruction with noise, we use the normalised 
row and column sums with noise as the available partial information.

Table C.7 reports the results. Overall, we observe only a small or 
no deviation from the results without noise for all reconstruction meth-
ods except the MinDen method. The results of the MinDen method are 
sensitive to noisy observation. The mean equity losses for reconstructed 
matrices under 1 bn standard deviation of the noise are further away 
than for 100mn but with a similar standard deviation for the sampling 
methods. This shows that our results are robust under noise and across 
different fire-sales measures. Overall we find that the addition of noise 
does not lead to any different conclusion in terms of the relative rank-
ing of the different network reconstruction methods, see Table 4 for 
comparison.
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