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Abstract

Tacit knowledge – ideas that cannot readily be meaningfully and completely communicated
– has long been considered a precursor to scientific and technological advances. Using words
and phrases found in the universe of USPTO patents 1940-2020, we propose a new method of
measuring tacit knowledge and its progressive codification. We uncover a discontinuity in the
production of highly tacit technologies. Before 1980, highly- and less-tacit inventions are evenly
distributed among inventors, organizations, scientific domains and subnational regions. After
1980, inventors of highly tacit patents become relatively rare, and increasingly concentrated in
domains and locations. The economic payoffs to tacit knowledge also change, as it starts un-
equally rewarding high-income workers. This suggests a role for tacit knowledge in contributing
to the rise in income inequality since 1980.
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1 Introduction

Over the last two centuries, humanity has experienced dramatic improvements in living standards

and economic growth, fueled in large part by the widespread application of new scientific and

technological knowledge to human activity (Mokyr, 1992; Landes, 2003; Maddison, 2007). A key

element in this process is how sparks of human ingenuity, initially accessible only to a select few ‘in

the know,’ become available to be used by a wider community. This transition – from emergent,

unstable ideas to widely-understood principles – can be characterized as a shift between tacit and

increasingly codified knowledge.

Tacit knowledge refers to ideas that cannot readily be communicated in a manner that is

“meaningful and complete” (Teece, 1998). Not all tacit knowledge is new, but new technologies

tend to be rich in tacit ideas, because their meaning has not yet been widely agreed upon, and

they lack standardized codes that facilitate communication. In the words of the 20th century

chemist and philosopher Michael Polanyi, individuals with new tacit ideas “know more than they

can tell” (Polanyi, 1966). Note that knowledge in science and technology is tacit not when a

particular individual cannot transmit it, but rather when communities have not yet established

widely accepted codes that describe it. Though such tacit knowledge can be shared, dissemination

proceeds only through intensive interpersonal interaction – a requirement that strongly limits its

diffusion. As a result scientific and technological fields are marked by a strong push to codify

tacit knowledge.1 Progressive codification allows a wider community of users to apply, extend and

recombine new ideas, which in turn drives scientific, technological and economic advances (Romer,

1990; Solow, 1956; Mokyr, 2009).

Despite longstanding scientific interest and societal importance, our understanding of tacit

knowledge and its codification remains mostly conceptual and anecdotal (Polanyi, 1966; Teece,

1998; Saviotti, 1998; Lam, 2000). In this article we propose a new measure of tacit knowledge,

focusing on ideas linked to scientific and technological progress. Taking a ‘Science of Science’

approach (Fortunato et al., 2018), we use the texts of patent documents to identify technical words

and concepts that exhibit rapid growth in appearances across many patents. We call such instances

of rapid proliferation, ‘rushes of codification.’ These rushes are palimpsests of ideas that were highly

tacit only moments before they are described in a patent application. Their proliferation across

the patent system signals growing centrality in domains of scientific knowledge.

There are many reasons to be interested in the transition from tacit to increasingly codified

knowledge. Rapidly codifying knowledge is thought to play a vital role in shaping the wider

process of technological change (Nelson and Winter, 2002; Saxenian, 1996). Inventions rooted in

rapidly codifying knowledge indicate the rate and direction of productivity changes , as well as

1This is to be contrasted against some other domains of human activity, such as art or music, where the push to
codify tacit knowledge is less strong and less central.
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how organizations and workers reap pecuniary rewards from innovation (Autor, 2014). Tracking

the emergence of tacit knowledge and its codification also sheds light on current debates about

science and technology, including whether and why new, disruptive ideas are getting harder to

find (Park et al., 2023; Bloom et al., 2020); if innovation is increasingly less subject to competition

(Aghion et al., 2005); and the extent to which recent waves of technological change are exacerbating

inequality between people and places (Frank et al., 2019; Balland et al., 2020; Kemeny et al., 2022).

In order to build our measure of tacit knowledge, we analyze detailed textual descriptions of

every patent document granted by the U.S. Patent and Trademark Office (USPTO) for the century

spanning 1920 to 2020. We track the emergence of technical words and phrases as they enter the

lexicon, and isolate the subset exhibiting rushes of codification. We then identify individual patents

in which these concepts are concentrated. We link patent-level information to a new dataset that, for

nearly all patents over our study period, documents the names of inventors and their organizations

(See SOM, Section A for details). This enables us to explore who produces highly tacit knowledge,

the organizations in which they belong, the cities in which they reside, and domains of knowledge to

which they contribute. We also explore the connections between tacit patenting and local income

distributions.

2 Using patent documents to identify tacit knowledge

To illustrate the transition from tacit to increasingly codified knowledge, consider Alexander Gra-

ham Bell’s invention of the telephone. In the 1870s, Bell aimed to create a viable multiple telegraph,

an electrical device in which the same wire is used to transmit multiple text messages between two

points. Bell’s novel solution was called the induction telephone. This device rested on ideas that

arose out of his speech-therapy work with children, but also incorporated concepts from a system

of tuning forks developed by the German scientist Hermann von Helmholtz, as well as discoveries

Bell made around the conversion of sound waves into fluctuating current (Gorman and Carlson,

1990; Bell, 1876). While his invention leveraged preexisting and new ideas, his selection of which

pieces of knowledge to use and how to recombine them were unique and embodied – a function of

his particular mind and lived experiences. Prior to patenting, these notions existed chiefly in Bell’s

mind – they were tacitly held. The few people who knew that this kind of assemblage might be

possible, like his assistant Thomas Watson, had to learn about it through direct interactions with

Bell.

Through the text and diagrams included in his initial patents (Bell, 1877, 1878), new concepts

were traced with sufficient detail and clarity as to allow others to reproduce Bell’s device. Patents

thus placed these concepts in the public domain, enabling a flurry of inventive activity building

on Bell’s idea – better telephones, and other complementary innovations in the emergent areas

needed to build a viable telephone industry. We can think of this flurry as formerly tacit knowledge

being rapidly codified. By contrast, a century and a half later, we should expect there to be only
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a relatively modest amount of translation from tacit to codified knowledge around Bell’s ideas, as

the work of codification in that area was largely achieved long ago.

Generalizing from this example, the granting of a patent not only marks the provision of a new

intellectual property right, it also signals a moment at which highly tacit technological concepts

begin a journey of codification. This journey may never fully end, and over time may proceed at

varying speeds. We measure aspects of this transition by exploiting detailed textual descriptions

of around 9.2 million utility patent documents – each such patent granted by the U.S. Patent and

Trademark Office (USPTO) between 1920 and 2020. We track new technical words and phrases as

they enter the lexicon, taking their initial appearance and subsequent mentions in patent documents

to cast light on the movement from tacit to codified knowledge.

2.1 Operationalizing tacitness

The patent system is a rich repository of codifying technological knowledge. In order to be granted

a patent, inventors must transparently demonstrate the novelty and non-obviousness of the in-

vention. Patents are costly to obtain, and hence should be limited to technological ideas with

potential economic effects. Patent documents also contain a range of information about inventors

and assignees2, including their geographical location.3 Using addresses and organizational infor-

mation, we can consider the evolution of tacit knowledge not just in time but also in space, across

organizations, and between technological domains.

We start by organizing knowledge contained in the patent system into a formal hierarchical

structure. In this structure, a concept represents the smallest unit of technological knowledge,

indicating a single idea that can be undergoing codification to a greater or lesser degree. At its

most micro level, a single word can represent a concept. An invention is then a collection of

concepts, linked together in such a way that creates a unique or novel device, method, composition

or process. An invention can then be categorized through shared common principles or features

into one or more technological domains.

We represent the human knowledge found in patent documents as a network. Each node of

the network represents a concept with at least some degree of codification, and each edge is a

relationship between concepts. At a given moment in time, the sum of these components represents

2Information about inventors’ and assignees’ names after 1975 can be obtained already in a structured form at
https://patentsview.org/download/data-download-tables. Prior to 1975 we extracted inventors’ and assignees’ names
from digital documents by the ‘Annual report of the Commissioner of Patents’ and the ‘Index of patents issued from
the United States Patent Office’ both available at the Smithsonian Libraries (https://library.si.edu) and from digital
versions of the original patents provided by the USPTO at https://bulkdata.uspto.gov. See SOM Section A for more
details about the data extraction process from these digital documents.

3Information about inventors’ and assignees’ geographical locations after 1975 can be obtained already in a
structured form at https://patentsview.org/download/data-download-tables. For the Period prior 1975 we rely on
(Petralia et al., 2016b,a).
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the state of codified collective technological knowledge contained in patents. A new invention can

be defined as a series of edges between nodes, some of them new, which integrates the invention with

the existing state of codified technological knowledge. This integration or addition redefines the

existing state of technological knowledge by adding new meanings or relationships (strengthening

ties or edges) between concepts (nodes).

Figure 1: Semantic network of USPTO Patent #201,488: A.G. Bell’s Speaking Telephone

Note: This graph provides two different network interpretations of Alexander Graham Bell’s seminal tele-
phone patent in 1878. Panel (A) displays a network representation in which words in the patent are connected
to each other by the order in which they were written in the process of codifying the idea. Panel (B) considers
that all words in the patent document are related to each other to some extent (we do not draw lines here,
otherwise they would overtake the graph). The blue dot represents the word ‘telephone’.

A primary challenge we face is to determine how words are related in a document to produce

meaning, context, and ultimately, codification. To illustrate such a structure on a micro-scale, con-

sider Figure 1, which offers a network representation of Alexander Graham Bell’s initial telephone

patent, with a node for each technical word.4 The figure displays two of many potentially valid

modes of semantic meaning-making around the central idea of the ‘telephone’ (in each panel, this

word appears in blue). In Panel (A), words are connected to each other by the order in which they

were written. In this view, terms that come later in a sentence are used to explain and provide

context to those found earlier. Panel (B) starts from a different premise: we make no prior seman-

tic assumptions, and thus consider all words in the document to be equally interrelated. Hence,

4 https://patentimages.storage.googleapis.com/d1/80/dd/d765ce0184fcf3/US201488.pdf
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each node is connected to each of the others (though we do not draw these lines, as they would

overwhelm the figure). One could also motivate Panel (B) by assuming that we cannot identify

which specific words are the main recipients of the context being provided in a given document’s

codification process, so we may as well consider all possibilities.

How can we determine which kind of semantic structure is at work in Bell’s patent? More

generally, how can we determine how meaning is generated not just in a single patent document,

but for millions of them? We propose a heuristic solution, based on the frequency with which

individual technical words and word pairs (bigrams) appear across patent documents. A word that

does not appear frequently in patent texts ought not to be well-integrated into, or relevant for,

the larger body of collective knowledge. By contrast, if a word experiences rapid growth in the

number of times it appears across patent texts, this frequent re-use suggests that it is becoming a

convenient shorthand, calling up agreed-upon meanings in the technological field at hand. A rapid

burst of mentions is thus a trace element of a process where such meanings are being established,

confirmed, and diffused. At more mature phases of this process, users share an efficient way of

referring to meanings, facilitating more precise and wider communication. This in turn enables

closer integration into collective scientific knowledge, without the need for intensive interpersonal

contact among a small group of initiates.

The heuristic we propose is consistent with different theories of semantic meaning-making. For

instance, in Panel (A) of Figure 1 network centrality could effectively identify concepts that are

receiving meaning (Vega-Oliveros et al., 2019); thus, the word ‘telephone’ is central in this net-

work. However, note that a measure of network centrality of words such as the degree centrality

will have a one-to-one correspondence with the frequency with which words appear. This is be-

cause there is only one directional link for every concept in the document. The same argument

can be made regarding the relationship between the frequency with which concepts appear and

the degree distribution of the network described in panel (B), provided that links are weighted

accordingly. Therefore our heuristic fits well across many possible meaning-making relationships

between concepts, making frequency counts a reasonable starting point.

To operationalize these ideas, we generate a dictionary of technical concepts that describes the

contents of all patents granted between 1920 and 2020. We start by identifying each unique word

and bigram that appears across all patents. After a series of text cleaning routines, detailed in

SOM Section B, the resulting dictionary contains 210,491 distinct concepts.

To measure the timing and extent with which a concept has experienced a rush of codification

we consider two observable features of the distribution of words and bigrams. First, assuming that

concepts exhibiting a rapid increase in mentions across the universe of patent texts are likely to be

undergoing a process of codification, we define K as the knowledge codified around each concept

w up to year t as:

6



Kw,t =

t∑
i=1920

∑
d

Ow,d,i

where Ow,t represents the number of occurrences of concept w across patent documents d, from

1920 up to year t. We then identify concepts that experience rapid growth in K based on the

relative speed at which they accumulate knowledge around them, measured as ∆Q(Kw,t), where

Q(.) represents the quantile each concept occupies in the distribution of mentions until year t and

∆ represents its growth. Though all concepts are continuously transformed through the addition

of new and reshaped relationships, some experience this transformation more rapidly.

For intuition, consider Figure 2, which, across the corpus of patent texts, tracks how selected

concepts move through the quantile distribution of mentions Q(Kw,t). The concept ‘telegraphy’

ranks high in the distribution, signalling its overall importance; however, over the study period,

it is highly stable or declining in importance. We interpret this to mean that, though many new

inventions are appearing that are reliant on this concept, telegraphy is not experiencing a rush of

codification. Instead, by the time the study period begins, this concept is already highly codified.

Meanwhile, Figure 2 reveals rushes of codification for ‘transistor,’ ‘capacitor,’ and ‘internet’, each at

different periods of time. Each concept rises rapidly through the distribution of mentions in patent

texts in a particular period, and then subsequently stabilizes. More recently, ‘smart contract’,

a term specific to blockchain technologies, grows rapidly in the distribution of mentions. These

patterns confirm the usefulnees of this approach in detecting the progressive codification of key

terms in periods of intensive technological development.

Secondly, we define the breadth of mentions, B, as:

Bw,t =
∑
d

max(I[Ow,d,t > 0])

where the indicator function I[.] takes a value equal to one whenever a certain concept was used

in a document. Therefore, Bw,t captures the quantity of documents in which concept w appears

in a given year (t). As before, we measure relative document occurrences using the quantile each

concept occupies in a given year. In practical terms, this measure helps us distinguish redundant

from non-redundant codification, since certain patents repeatedly mention particular concepts.

Using these two measures, we can identify concepts undergoing rushes of codification as those

that are at or above certain percentile threshold in the distribution of Q(∆Kw,t) and Q(Bw,t) across

all concepts in a given year. As an example, in 2020, the term ‘smart contract’ lies at the 99th

percentile in terms of of Q(∆Kw,t), and at the 87th percentile in terms of Q(Bw,t). In this article

we fix this threshold to the top 25%, although in the SOM Section D.3 we show that our results

are not materially sensitive to changes to it.

The next step in the analysis is to aggregate from the level of an individual concept to that
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Figure 2: The codification of concepts over time

Note: This graph shows the evolution over time of different words in the entire distribution of technological concepts.
We show the percentile occupied by each word in each year, based on the value of Q(Kw,t).

of an invention (patent) that can be identified as more or less tacit. To achieve this, we identify

each concept in each patent that is undergoing a rush of codification, and take the median value of

Q(∆Kw,t) and Bw,t across all of these concepts.5 A patent with concepts undergoing rapid rushes

of codification will be ranked higher than another whose ‘rushes’ are more anemic. Meanwhile,

patents containing no concepts undergoing such rushes will be considered the least tacit.

Figure 3 shows an example of how we calculate the relative ranking of an individual patent. It

describes the contents of patent #10,524,402, the first to be granted in 2020. The patent, which

incorporates machine learning techniques into agricultural machinery, contains several concepts that

are highly tacit in that year, like ‘unsupervised’ or ‘bayes’. Taking the median value of Q(Kw,t)

and Bw,t across all of these concepts yields a score for patent #10,524,402 of 0.85.

To simplify the analysis to follow, we dichotomize the distribution of patents in each year,

assigning those with rankings above the median to the class of ‘highly tacit’ patents, with those

below deemed ‘less tacit.’ Splitting the distribution in half in this way is a deliberately conservative

gesture – it is of course impossible to pinpoint with certainty a threshold beyond which patents

5We limit our attention only to concepts undergoing rushes of codification based on the idea that a patent
containing highly tacit knowledge can have only a few tacit words surrounded by a larger number of words that are
already relatively codified. Practically, in Bell’s initial patent, the tacit concept of the ‘telephone’ must be defined in
terms of ideas that are already relatively well-understood, or codified. Taking the median value across all words in a
patent could produce a mis-classification error, whereby patents like Bell’s would in its day be incorrectly identified
as being relatively well-codified.
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Figure 3: Evaluating the tacitness of USPTO Patent #10,524,402

Note: This figure displays all tacit words found in patent #10,524,402. The horizontal axis shows the relative position
of the words in terms of the amount of different contexts (documents) they were mentioned. The vertical axis shows
the relative speed at which concepts were codified in 2020.

are or are not highly tacit, but with some confidence we can distinguish more- from less-tacit. In

the SOM Section D.4 we show that results do not change significantly when a different threshold

is considered.

For descriptive purposes, consider Table ??. For the year 2020, it lists the ten most and

least highly tacit technological domains, ranked according to the proportion of their patents which

we describe as ‘highly tacit.’ To group patents into domains, we use class definitions from the

Cooperative Patent Classification (CPC) system. In Table ??, the most highly tacit patent classes

lie mostly within the Computer & Communications category, in line with recent contributions

around ‘disruptive’ innovation (Bloom et al., 2021), which identify the recent emergence of data

science, artificial intelligence, and blockchain technologies. At the bottom of this ranking we see

technologies that can be considered at a mature stage of development, including ‘Rolling of Metal’

and railway-related technologies. This descriptive evidence suggests a broad consistency between

intuition and the results produced using our measure.6 Further, class size appears to have little

6The appearance of technologies like ‘HARVESTING; MOWING’ in the top of 2020 is not a mistake, actually we
are identifying concepts undergoing rushes of codification that are nonetheless found in longstanding domains. The
example shown in Figure 3 falls into this category.
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Table 1: Most and least highly tacit technologies, 2020

CPC Share Total Class
Code Highly Patents Name

Tacit

G06N 0.424 1, 878 COMPUTING ARRANGEMENTS BASED ON SPECIFIC COMPUTATIONAL MODELS
G01W 0.343 67 METEOROLOGY
G05D 0.322 1, 527 SYSTEMS FOR CONTROLLING OR REGULATING NON-ELECTRIC VARIABLES
H04L 0.307 21, 307 TRANSMISSION OF DIGITAL INFORMATION, E.G. TELEGRAPHIC COMMUNICATION
A01D 0.304 418 HARVESTING; MOWING
G06Q 0.301 7, 993 DATA PROCESSING SYSTEMS OR METHODS...
G10L 0.300 1, 905 SPEECH ANALYSIS OR SYNTHESIS; SPEECH RECOGNITION; SPEECH OR VOICE PROCESSING..
G06F 0.291 36, 067 ELECTRIC DIGITAL DATA PROCESSING
B60D 0.290 107 VEHICLE CONNECTIONS
G06T 0.286 6, 090 IMAGE DATA PROCESSING OR GENERATION, IN GENERAL
... ... ... ...
A61P 0.010 193 SPECIFIC THERAPEUTIC ACTIVITY OF CHEMICAL COMPOUNDS OR MEDICINAL PREPARATIONS
G03G 0.012 1, 904 ELECTROGRAPHY; ELECTROPHOTOGRAPHY; MAGNETOGRAPHY
A23C 0.012 81 DAIRY PRODUCTS, E.G. MILK, BUTTER OR CHEESE; MILK OR CHEESE SUBSTITUTES; MAKING THEREOF
D21F 0.019 52 PAPER-MAKING MACHINES; METHODS OF PRODUCING PAPER THEREON
A01H 0.024 1, 047 NEW PLANTS OR ; NON-TRANSGENIC; PROCESSES FOR OBTAINING THEM...
C07J 0.027 74 STEROIDS
B21B 0.027 73 ROLLING OF METAL
D01F 0.032 94 CHEMICAL FEATURES IN THE MANUFACTURE OF ARTIFICIAL FILAMENTS, THREADS, FIBRES...
C07K 0.032 2, 350 PEPTIDES
B61F 0.034 59 RAIL VEHICLE SUSPENSIONS
C07D 0.035 2, 878 HETEROCYCLIC COMPOUNDS

Note: This table lists Cooperative Patent Classification (CPC) classes, divided into the ten ranked as the most highly tacit (top half of the table)
and least highly tacit (bottom half of the table. This ranking is achieved on the basis of the share of USPTO patents in each class in 2020 that is
deemed to be highly tacit – above the median level of tacitness in a given year. See main text for definitions of tacitness at the level of individual

concepts, as well as patents. Class names are abbreviated for fit.

relationship to tacitness, with larger and smaller categories featuring equally across the most- and

least-tacit. An analogous table for 1930 in SOM Section B.5 reveals patterns for that period

that concord with a vast historical literature documenting this period (David, 1990; Lipsey et al.,

2005; Bresnahan and Trajtenberg, 1995; Field, 2011; Moser and Nicholas, 2004), with highly tacit

technologies emerging from electrical & electronic, chemical, and combustion engine technologies,

and mature mechanical and textile technologies appearing as least tacit.

3 The Changing Face of Tacit Knowledge Production

We now explore whether and how the distribution of tacit knowledge in the United States has

changed over the 80-year study period. We consider its distribution across four dimensions: indi-

vidual inventors; inventing organizations; technological domains; and subnational locations. Build-

ing on a long tradition of studies examining the links between technology and economic inequality,

(Katz and Murphy, 1992; Autor et al., 2008a; Goldin and Katz, 2009) we then exploring the asso-

ciation between highly tacit patents and the distribution of income.

Figure 4 reveals changes in how patents containing highly tacit technological knowledge –

patents with tacitness values that place them in the top half of all patents granted in a given

year – are distributed relative to less highly tacit patents – those in the bottom half of the distri-

bution.

Panel (A) explores this distribution among inventors. For a given year, the y-axis of this chart

captures the ratio of the number of individuals producing relatively non-tacit inventions to the

number producing highly tacit inventions. We consider an inventor to be a producer of highly tacit
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Figure 4: Tacitness in people, organizations, technological domains, and American cities, 1940–2020

Note: Panels (A) and (B) track the annual ratio of the number of inventors producing less- to more-highly tacit
USPTO patents, with the median tacitness rank dividing patents in a given year into two equal-sized groups. Panels
(C) and (D) capture changes in the annual ratio between the coefficients of variation for more- and less-highly tacit
patents. Higher values of this ratio indicate greater concentration in either Cooperative Patent Classification (CPC)
classes (domains of technological knowledge) or 1990-vintage Commuting Zones (regions) for more highly tacit patents
as compared with less tacit patents.

patents in year t if they are listed on at least one patent with a tacitness score above the median; in

each year, categories of inventors are thereby mutually exclusive. Given that, by construction, half

the patents in each year are placed into either more- or less-tacit categories, the naive expectation is

that approximately half the inventors will fall into either group. This appears to be approximately

true over the first forty years of the study period: the ratio of more- to less-tacit inventors hovers

just below one (around 53% of inventors produce at least one highly tacit patent over the 1940

to 1980 period). Then, starting in the second half of the 1970s, the ratio suddenly begins to rise,

signalling a growing relative scarcity of inventors in the patent system capable of producing highly

tacit technological knowledge. Hence, despite having tacit patents in each year pegged at half of the

total new patents granted, we observe a progressive reorientation of the inventive workforce in which

tacit patents are the output of a narrowing share of inventors. From the late 1970s onward, as a

subset of all inventors, those capable of producing tacit knowledge are becoming increasingly scarce.

Note that this does not mean that absolutely fewer inventors are producing tacit knowledge. Indeed,
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the study period tracks a major expansion of patenting, driven by a growing global community of

inventors. But it points to increasing concentration in which individuals produce tacit technological

knowledge, such that, by 2020, individuals are almost twice as likely to produce a less-tacit than

more-tacit invention.

Panel (B) of Figure 4 considers a similar ratio, this time tracking the distribution of tacit patents

across organizations. Patterns in this figure closely mirror those shown in Panel (A). We observe a

pattern of stability and approximate equality over the initial 40 years of the study period; in each

year between 1940 and 1980, organizations producing highly tacit patents made up between 55 and

60 percent of all organizations that were granted patents in a given year. Then, around 1980, the

share of organizations producing tacit patents starts to fall, and continues to fall thereafter. Thus,

in the first half of the study period, a randomly selected patenting organization was slightly more

likely to have produced a highly tacit patent; by 2020 they are more than twice as likely to be

producing less-tacit patents.

Figure 4 Panel (C) considers the concentration of tacit technologies across domains of scientific

and technological knowledge, as captured in the Cooperative Patent Classification (CPC) system.

The y-axis of the Panel (C) captures the ratio of the coefficient of variation for highly tacit over

less tacit patents across patent classes. Higher values of each coefficient of variation point to

greater domain concentration. A ratio between them equal to one would indicate that more and

less tacit patents are equally distributed across the different domains of scientific and technological

knowledge, whereas a value above one means that highly tacit patents are more concentrated in

a narrower range of classes. Interpreting Figure 4 Panel (C), between 1940 and 1980, more and

less tacit patents were both relatively widely distributed across technological domains, with tacit

patents only slightly more concentrated. From 1980, this pattern changes dramatically. Highly

tacit patents began concentrating in a limited subset of classes, indicating a greater narrowing in

the kinds of technologies from which tacit inventions are emerging.7 Though there is some year-

on-year noise, this narrowing trend continues throughout the post-1980 period, such that by 2020,

highly tacit inventions are almost twice as concentrated as less tacit patents.

Panel (D) of Figure 4 tracks the subnational geographical distribution of more- and less-tacit

patents within the United States. Specifically, as in Panel (C), we use the ratio of the coefficients

of variation for more- to less-tacit patents, with higher values of this ratio indicating greater rela-

tive subnational spatial concentration for highly tacit patents. Our spatial units are 1990-vintage

Commuting Zones, which use commuting flow to divide the land mass of the lower 48 states into

more than 700 local labor markets (Tolbert and Sizer, 1996). Panel (D) reveals changes in how

more- and less-tacit patents are distributed across the country. Between 1940 and 1980, a ratio

near one indicates that both highly tacit and less tacit patented inventions emerged from a wide

7As seen in the SOM Section C, Panel (C), in absolute terms this pattern is general and secular across inventions,
though it is considerably stronger among more tacit patents.
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range of cities and regions. Then, after 1980, there is a clear upward trend in the ratio, indicating

that highly tacit patents have come from a narrower range of places than in previous period.

We have now observed rising concentration after 1980 of the inventors, firms, technological

domains and subnational locations from which tacit knowledge emanates. This provides a bridge

to considering their possible economic effects. One such effect is inequality, since the emergence

of new, major technologies is widely thought to reshape the distribution of income (Katz and

Murphy, 1992; Autor et al., 2008a; Goldin and Katz, 2009). For instance, computers and other

new technologies that began transforming the world of work sharply raised demand for workers

performing particular kinds of nonroutine cognitive tasks (Autor et al., 2003). This demand grew

at a rate that outstripped schools’ capacities to produce new supplies of these workers (Goldin

and Katz, 2009; Acemoglu and Restrepo, 2018). Excess demand raised wages for these workers,

exacerbating interpersonal income inequality(Goldin et al., 2020), while the concentration of these

highly-rewarded workers in certain regions has increased gaps in average incomes between cities

and regions (Diamond, 2016). Over and above these well understood distributional effects, new

and highly tacit technologies might be an additional source of income inequality for at least two

reasons. First, when knowledge is tacit, education systems struggle to produce an increasing supply

of knowledgeable workers, as there will be neither textbooks nor teachers for what has not yet been

sufficiently codified. Second, technologies undergoing rushes of codification are likely to lie at the

leading edge of ‘general’ shifts in the direction of technological knowledge. Individuals able to apply

relevant (recently) tacit knowledge to these technologies ought to be able enjoy high relative wages,

in the face of expanding demand for their scarce and hard-to-transmit know-how.

Patterns of U.S. interpersonal and interregional wage inequality are pictured in Figure 5, Panel

(A), and are consistent with existing empirical work (Autor et al., 2008b; Gaubert et al., 2021;

Kemeny and Storper, 2020). Using public microdata from a series of decadal and annual U.S.

Census Bureau population surveys(Ruggles et al., 2022), this panel traces changes in the level of

wage inequality between individuals in commuting zones, specifically the ratio of hours-adjusted

annual income for an individual at the local 90th percentile to that of an individual at the 10th

percentile. Inequality on this basis declined between around 1940 and 1970, briefly stabilized, and

after 1980, grew for the next 40 years. Meanwhile, inter-regional inequality – the ratio of the income

level of a place whose average wages lie at the 90th percentile of the distribution of locations to that

of the 10th – follows a broadly similar pattern, declining over the 1940-1980 period, and reversing

course thereafter. In short, after a “great levelling” in the middle of the 20th century (Lindert and

Williamson, 2017), prosperity in the US, as measured by income, has been increasingly unequally

distributed among individuals and households, and much of it concentrated in selected places.

Figure 5, Panel (B) captures the spatial dynamics of tacit technology production explored in

Figure 4, this time presented in absolute terms. Panel (B) shows tacit technologies are spreading

out over the geography of the United States between 1940 and 1980, at which point they reverse

13



Figure 5: Income Inequality and Spatial Patterns in Tacit Knowledge Production in the U.S.

Note: The solid line in Panel (A) presents patterns of inequality between individuals within local labor markets (1990-
vintage Commuting Zones, or CZs) in the United States, measured in terms of individual annual hours-adjusted wage
and salary income. For observed decades between 1940 and 2020, the line captures the ratio between an wages at
the 90th and 10th percentiles of the local wage distribution. The dashed line captures income inequality between
commuting zones, measured as the ratio of the income of a place with average income at the 90th percentile of the
distribution of locations to that of the 10th. Underlying data are public microdata from a series of decadal and
annual population surveys drawn from IPUMS (Ruggles et al., 2022). Panel (B) uses several conventional measures
of inequality – Gini, Theil and Coefficient of Variation (CV) – to capture changes in absolute levels of the spatial
concentration of highly tacit patents (those with tacitness scores above the median value). Spatial units are 1990-
vintage Commuting Zones.

course, and become increasingly spatially concentrated, thus closely tracking the patterns of income

inequality in Figure 5 Panel (A),

To investigate possible links between tacit patenting and income gaps between people and places

we explore how local wage distributions change in response to the addition of more- and less-tacit

patents. Given the sharp dividing line around 1980, we consider these relationships separately for

1940 to 1980, and then over the 1980-2020 period.8

The left panel of Figure 6 shows that, over the period 1940 to 1980, commuting zones that added

more tacit patents experienced faster wage growth across all deciles of the local wage distribution.

The one possible exception is for individuals at the 90th percentile of the distribution, for whom

the 95% confidence interval crosses the zero line. Broadly though, in this earlier period, the

economic rewards to highly-tacit patenting were widely spread across the wage distribution, in

approximately equal measure. The same is true for less-highly tacit patents, though the average

observed relationship is somewhat more modest for lower-income workers. Thus, over this early

period, inventive localities – whether inventions were more or less tacit – enjoyed growth in average

8Detailed full-period results are in the SOM, Section D.1
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Figure 6: Regression estimates of the relationship between local highly tacit patents and incomes
at deciles of the local income distribution

Note: Point estimates and 95 percent confidence intervals are generated through a series of two-way fixed effects
regression models, in which the dependent variable is local wages for a worker at a given quantile of the income
distribution in a given commuting zone, estimated from Census population survey microdata, drawn from IPUMS
(Ruggles et al., 2022). The key predictors are the number of tacit and non-tacit patents granted to inventors or
assignees in that commuting zone in a given year. These variables are log transformed. Additional control variables
include the log of local population size; the share of local workers between 16 and 65 who are foreign-born and who
have not completed at least 4 years of college; the share of local workers who have completed at least 4 years of
college; and a measure of local vulnerability to import competition and offshoring, estimated based on industry data,
following the approach laid out in (Autor et al., 2013). Each regression includes fixed effects for year and commuting
zone, with standard errors clustered by commuting zone.

wages, with such growth broadly shared among workers at all levels of income.

After 1980, as seen in the right panel of Figure 6, the patterns look different. Between 1980

and 2020, the addition of highly tacit patents offered no gains to workers at lower points in the

local income distribution. Meanwhile, above the lowest quartile, the gains rise progressively with

incomes. High-income workers are richly rewarded by the addition of new tacit patents. These

results do not confirm that it is precisely those workers on the frontlines of new tacit knowledge

who gain from new more-highly tacit technologies, though this is plausibly in part the case. But

it does show that, after 1980, there are increasingly unequal gains from the production of new,

highly tacit technological knowledge, disproportionately rewarding already high-income workers.

This pattern is not at all evident prior to 1980. In addition, after 1980, the distribution of rewards

to highly-tacit technologies is distinctly different from that of less-tacit technologies. Patenting of

less tacit technologies is linked to larger rewards for local lower-income workers, whereas workers

at and above the 80th percentile of the income distribution may receive no wage benefits from the

local invention of less-tacit patents. Thus, whereas more- and less-tacit technologies seemed to
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have similar effects on wages for all parts of the labor force over the 1940-1980 period, after 1980

the positive association of patenting with wages is only in evidence for highly tacit technologies.

4 Discussion

Tacitness and its progressive codification have long been central to the study of science and technol-

ogy (Saviotti, 1998; Howells, 1996), and to the study of knowledge more generally (Polanyi, 1966).

This paper is the first to develop a method of approximating this dynamic in a systematic, large-

scale way. By observing rushes of codification in patenting, we offer a glimpse into the moments at

which highly tacit new technologies emerge into the scientific lexicon, their ideas becoming woven

into collective knowledge through codification.

We linked measures of tacitness to new data on patenting inventors and organizations, shedding

light on the system of production of tacit knowledge over time. Between 1940 and 1980, highly-

and less-tacit inventions are roughly equally well distributed among inventors, firms and other

organizations, as well as over technological domains and geographical regions. Then, from 1980

onward, inventors of highly tacit patents become increasingly rare, and compared to less-tacit new

technologies, they are increasingly concentrated in a small number of technological domains and

geographical locations.

The economic rewards to inventiveness also change after 1980. Before this time, when local

workers and firms produced either more- or less-tacit inventions, economic benefits were widely

shared. After 1980, while all types of new ideas continue to generate economic benefits for the region

where they are generated, tacit knowledge generation spurs wage growth for high-wage workers,

where less tacit innovations reward the middle of the distribution. Given that tacit technology

generation is increasingly geographically concentrated since 1980, this makes tacit knowledge a

likely contributor to increasing inequality between people and places.

Our discovery that the system for producing tacit knowledge changed between the 1940-80 pe-

riod and the subsequent decades is consistent with hypothesized patterns of technological change

over much of the past century. The electro-mechanical industrial revolution of the late 19th and

early 20th century continued to generate new ideas and new applications over the 1940-1980 pe-

riod, through an expansion of manufacturing activity that embodied these maturing technologies.

The information technology revolution was embryonic in this period, but not yet technologically

consolidated enough to have widespread, large scale transformative effects on the economy. By the

late 1970s, however, the programmable integrated circuit made information technology the basis of

a full-fledged industrial revolution that has unfolded over the past few decades, perhaps analogous

to the early phase of the electro-mechanical revolution from about 1880 to 1930. Parallel processes

were at work in biomedical research and other domains. Currently, a number of technologies that

were incipient until quite recently, such as artificial intelligence and gene editing, may be on the

cusp of having revolutionary large-scale effects. We will then be able to observe the scaled-up pro-
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duction systems for the tacit knowledge and rushes of codification that are fueling such advances.

Our research opens up avenues for investigating these possible effects. They include the future of

tacitness itself, which may be altered if AI can substitute for human inventiveness, an open question

at this time. They also include the organizations, people, domains, and locations from which tacit

knowledge is emerging and the emerging economic reward from it. These are four critical areas of

investigation – and there may be many others – to pursue by extending the work reported here.
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Supplementary Material

A Creating a new dataset of inventor and assignee names from

historical patents documents

Although the full text of each patent document is made freely available by the United States Patent

and Trademark Office (USPTO), they are not always available in a research-ready format. Struc-

tured datasets have been developed over the past years to bridge this gap, most prominently the

National Bureau of Economic Research (NBER) Patent Citation Data File (Hall et al., 2001). This

database contains detailed information on almost 3 million U.S. patents granted between January

1963 and December 1999, including all citations made to these patents between 1975 and 1999 (over

16 million). Another widely used database containing information of US patents is the Patent Net-

work Dataverse, which provides longitude and latitude coordinates of inventor addresses for patents

granted by the USPTO from 1975 to 2010(Li et al., 2014). In a similar fashion, for patents filed

to the European Patent Office (EPO) or to the World Intellectual Property Organization (WIPO)

between 1978 and 2011, the REGPAT dataset of the Organisation for Economic Co-operation and

Development (OECD) provides inventor locations (Maraut et al., 2008). Meanwhile, the USPTO

now provides full records of all patents granted since 1975 – the year when the USPTO began to

record patents electronically.

Since the main objective of this paper is to study the long term evolution of tacit knowledge, we

developed a new dataset that describes inventor and assignee names for all granted patent docu-

ments prior to 1975, and that complements the preexisting HistPat dataset (Petralia et al., 2016a),

a well-structured, comprehensive, and geo-referenced dataset of historical patents in the United

States covering the years 1836 to 1975. HistPat contains county-level geographical information for

nearly all patents granted over this period.

We make use of optically recognized patent documents made available by Reed Tech and Google9

in addition to two sets of digital documents provided by the Smithsonian Library10: the ‘Annual

report of the Commissioner of Patents’; and the ‘Index of patents issued from the United States

Patent Office’. We proceed in two steps. First, using full patent descriptions, we follow the

same general methodological procedure described for HistPat (Petralia et al., 2016b), calibrating

the model to retrieve names of the inventors and assignees instead of geographical information.

Second, we scrape names of inventors and assignees from the optically recognized, better structured

documents provided by the Smithsonian Library and described above.

9https://bulkdata.uspto.gov
10https://library.si.edu
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We combine this information into a new database containing 6,680,152 entries, providing in-

formation on the name of the assignee or inventor for 94.23% of all patents granted from 1836 to

1975. We also provide information about the city of the inventor/organization (as it appears in

the text), in addition to U.S. state , or country if foreign. This geographical information com-

plements already existing databases(Petralia et al., 2016a). We also include the year the patent

was granted. Lastly, we provide a flag variable that identifies whether the exact name of the in-

ventor or the assignee was found in more than one original source, as described before. For the

period of interest in this particular study (1920-1975), we find information about an inventor or

an assignee for 96.23% of all patents granted in that period. The database is publicly available at:

https://doi.org/10.7910/DVN/FQWKGF.

B Defining and measuring tacitness

B.1 What is tacit technological knowledge?

Perhaps the best-known description of tacit knowledge comes from chemist and philosopher Michael

Polanyi (Polanyi, 1966), who declared that knowledge is tacit when we “know more than we can

tell.” We share with Polanyi the idea that tacitness indicates an inability for a human agent to

meaningfully and completely share their knowledge with others. Polanyi was expansive, considering

the intrinsic, individualized embodiment of all types of human experience. Our investigation of

tacitness focuses more narrowly on scientific and technological fields of knowledge.

Considering tacit knowledge in the realms of science and technology demands modification of

Polanyi’s view of individual subjectivity. In scientific and technological fields, the goal is codification

– a societal process that transforms once-tacit knowledge into a form that can be widely understood

and communicated. From this vantage point, technological knowledge is tacit not when a particular

individual cannot transmit it, but rather when society has not yet established widely accepted codes

that describe the knowledge. What distinguishes knowledge in this state is that it can only be shared

when agents have direct interpersonal contact. Different from Polanyi’s conceptualization then,

technological knowledge can remain tacit even if certain individuals have the ability to tell. The

characteristic of tacitness is that the telling is likely to be complex, costly and non-routine, as in a

long hallway conversation among researchers. Note that in that conversation, the participants may

indeed extensively deploy codes, but the codes alone cannot tell the complete story; anecdotally, the

interaction might proceed in a hallway, cafe or lab, but not over email. One important consequence

is that those unable to directly interact with the holders of tacit knowledge and engage in this

complex and costly process are excluded from knowing.

We can think of codification as the obverse of tacitness. Notice the distinction here between tacit

and merely ‘complex.’ Even if billions of individuals cannot explain the complex knowledge behind

gravitational mechanics, there exist agreed-upon linguistic and mathematical representations of it.
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The availability of these codes permits suitably educated individuals to impersonally understand the

laws of gravity, making it available to anyone who masters the codes, which can be learned through

educational programs that are widely available. The deeper principle here is that technological

knowledge is tacit when it is embodied in individuals, but not yet codified in such a manner as to

permit impersonal transmission.

To illustrate the emergence of tacit knowledge and its eventual codification, consider Alexander

Graham Bell’s invention of the telephone. Bell aimed to create a viable multiple telegraph, an

electrical device in which the same wire is used to transmit multiple text messages between two

points. He did not initially set out to build a ‘telephone’ – a term not in wide use at the time.

Yet, by combining a system of tuning forks developed by the German scientist Hermann von

Helmholtz, with devices that grew out of Bell’s speech-therapy work with deaf children, and in

addition with discoveries he made converting sound waves into fluctuating current, Bell produced

something new: his induction ‘telephone’ (Gorman and Carlson, 1990; Bell, 1876). While it made

use of some preexisting technical ideas, his selection of which pieces of prior knowledge to use, and

how to recombine them were unique and embodied – a function of his particular mind and lived

experiences. Prior to its patenting, much of the invention was tacitly held, existing chiefly in Bell’s

mind. The only people who knew that this kind of assemblage might be possible – like his assistant

Thomas Watson – had to get it directly from Bell. Indeed, it is telling that Thomas Edison, chasing

the same prize at the same time, took a very different technical path, rooted in his own experiences

and heuristics (Gorman and Carlson, 1990).

Until he patented it, Bell’s particular assemblage of new and existing concepts was not yet part

of collective scientific knowledge. Through the text and diagrams included in his initial patents

(Bell, 1877, 1878), new concepts, such as those involved in rendering sound as fluctuating current,

were traced with sufficient detail and clarity as to allow others to reproduce his device.11 The

codification process around key ideas did not end with Bell’s initial patents. Those patents placed

concepts in the public domain, and this spurred new inventions and patents (and litigation) by

Edison, Elisha Gray and many others. We can imagine this as a rush of codification, in which a

quantity of tacit knowledge around a set of technical concepts is rapidly transformed into a quasi-

public good. Hence, at the scale of a concept at least, it makes sense not to think of knowledge as

11Note that in this process, Bell’s novel, tacit concepts relied in large part on knowledge elements that were already
codified. But their assemblage and new purposes were not codified. Bell’s pathway is not unusual. New inventions
often build on previously codified concepts, assembled in novel ways. Indeed, codification demands some degree of
connection to existing ideas. To see why, imagine that human beings stumble upon a device created by an advanced
alien civilization, whose workings depend entirely on principles unfamiliar to humanity. Such an invention will be
incomprehensible, precisely because we would lack an ability to link its constituent ideas to principles with which we
are already familiar. At the opposite extreme, consider a technology made possible only by concepts that have been
previously codified, and that are used in expected ways. We would not consider this to be a (new) invention; at the
present moment, it is redundant to the existing stock of collective knowledge. In short: for an invention to be new
and comprehensible, it must be both connected in some way to codified knowledge, but not entirely so.
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consisting of two static states – either tacit or codified – but rather as a threshold to be crossed

upon initial formal or codified description of an idea, with subsequent unbounded space for further

translation of tacit to codified knowledge, in the way that inventors today continue to repurpose

and extend ideas codified in Bell’s initial patents.

To begin generalizing from this example, we deploy four terms that describe the evolution of

tacit technological knowledge, listed below from micro to macro:

• Concept: the smallest unit of technological knowledge, representing a single idea that can

in principle be either tacit or codified to a greater or lesser degree. At its most micro level,

a single word can represent a concept. In what follows, therefore, we use the terms ‘concept’

and ‘word’ interchangeably.

• Invention: a collection of concepts, linked together in such a way that creates a unique or

novel device, method, composition or process. An invention, which commonly includes a mix

of new and existing concepts, provides a new context in which new and existing concepts

interact. An invention could in principle be a novel recombination of a set of entirely pre-

existing concepts.

• Technological Domain: a set of inventions that are interrelated through underlying shared

common principles or features.

• Collective Knowledge: the cumulative sum of codified technological knowledge available

to humanity at a given moment in time.

B.2 Tacit technological knowledge from a network perspective

We model these four elements and their interaction using network analysis. Consider the available

edifice of human collective knowledge as a network, in which each node represents a concept. An

edge in this network links two nodes and represents a relationship between the concepts. A single

invention will involve a series of edges between nodes, some of them new. On this basis, let the

available collective knowledge (Ω) be:

Ωt = (Wt, Et)

where Wt = {w1, . . . , wNt} is the set of available concepts at time t, and Et = {(wi, wj)} the

set of connections between concepts. In our network representation of the available collective

knowledge, Wt and Et collectively characterize the entire history of codified technological knowledge

and interrelationships between concepts up to time t.

Of course, this network is not static. When a new invention is codified, it disturbs the network

by adding elements to Wt or Et, such that:
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Ωt+1 = f{Ωt, It}

where It = (wt, et) corresponds to an analogous network representation of the structure of concepts

that is used in the process of codifying the new invention. The evolution of this process is also

governed by f , which maps the transition between states of the network. Since the embedding

of concepts underpinning the new invention adds new concepts and/or new relationships between

concepts, it implies a transformation in the state of collective knowledge. Bell’s invention of the

telephone introduced novel, formerly tacit concepts that, at the time of patenting, were not yet

part of the edifice of codified collective knowledge. Meanwhile, this invention also created new

associations with already existing concepts. In both cases, by codifying new, formerly tacit knowl-

edge, the invention of the telephone disturbs the preexisting network representation of collective

knowledge.12

B.3 Patents as a paper trail of tacitness and codification

Our discussion thus far has suggested that patents, or at least Bell’s seminal patents, signal the

codification of once-tacit technological knowledge. Consider that, by definition, a tacit concept

cannot be directly observed. At scale at least, we might only hope to observe tacit knowledge

with codes of one kind or another, and yet, the lack of such codes is precisely what distinguishes

tacitness. However, just as with Bell’s initial patents, the moment a new concept emerges from

the minds of a small number of individuals into wider collective knowledge, it signals that tacit

knowledge linked to that concept has begun to be codified. The moment in which a patent is

granted is thus not merely the provision of an intellectual property right, it also marks a moment

of transformation in which a certain bundle of concepts shifts from tacit to codified technological

knowledge. Note, however, that a new patent does not imply complete codification of the concept

at hand, nor its use. Indeed, a patent does not necessarily resolve all the ways the concept can be

turned into products and services, nor all the processes necessary to make devices and products

with the concept.

Patents are not the only kind of document enabling the sharing of freshly-created codes.

Nonetheless, given our focus on technological forms of knowledge and their economic effects, patent

texts are a sensible place to look to capture codification in motion. In order to be granted a patent,

inventors must transparently demonstrate the novelty and non-obviousness of the invention. Recent

patents are thus trace elements of newly codified concepts and relationships; by implication, until

the patent application is made, some concepts described in the application were held tacitly by a

limited community of those in the know.

12In this regard, there is some similarity between our approach and conceptions of scientific knowledge as dynamic
network in Shi et al.(Shi et al., 2015).
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The patent system offers advantages in identifying the dynamic between tacit and codified tech-

nological knowledge. In patent documents, we find individual technical words and bigrams (pairs

of consecutively-appearing words), which we take to represent concepts. Each patent document

itemizes a particular invention, whose novelty has been expertly vetted. Meanwhile, patent offices

like the USPTO expend great energy to organize patents thematically into classes; we use these

classes as proxies for technological domains. Finally, we can consider the sum of all relationships

between concepts in patents to provide a broad summary picture of the state of collective applied

technological knowledge at a given point in time.

B.4 Representing meaning-making and codification in patents

A given concept can, in principle, contain an unbounded amount of codifiable, but as-yet tacit

knowledge. To return to our initial example, Bell’s patents started a process of codification around

a set of concepts that enable the transformation, sending, and receiving of sound waves. This

process did not end with Bell, but rather continues to this day, with new patents offering new

applications, as well as novel combinations with other ideas. It follows that we want to be able to

identify the moment that a particular concept is undergoing codification.

To respond to these challenges, we first need to think about how we know what a document is

saying. For an individual patent document, consider how key concepts are contextualized in the

text, where language confers meaning. Using the words found in Alexander Graham Bell’s 1878

telephone patent, we define several possible approaches to this task in Figure SM.1. Each of them

visualizes a particular way that words are linked to one another to confer meaning (the blue dot

represents the word ‘telephone’). Panel (A) is a network in which words in the patent are connected

to each other by the order in which they were written. In this view, terms that come later in a

sentence are used to explain and provide context to those found earlier. Panel (B) of Figure SM.1

starts from a different premise: that, lacking clear priors indicating the form of some universal

semantics, all words in the document are interrelated. Each node is thereby connected to the other

– though we do not show these lines, as they would overwhelm the figure. One could also motivate

Panel (B) by assuming that we cannot identify which specific words are the main recipients of the

context being provided in a given document’s codification process, so we may as well consider all

possibilities. Of course the assumptions underlying these representations are just two among many.

In the case of Bell’s initial patent document, we could imagine that almost all links should point

toward the word telephone, on the basis that the concepts mobilized in the patent aim chiefly at

describing the new invention. In addition, one might argue that paragraphs in a text consist of

links between words (Cancho and Solé, 2001).

Notice that, even for an individual document, there is a potentially huge range of different ways

that words may give meaning to concepts. Our research significantly magnifies this complexity, as

we aim to capture codification not for a single patent document or concept, but for millions.
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Figure SM.1: Semantic Network of Patent #201,488: A.G. Bell’s Speaking Telephone

Notes: This graph provides two different network interpretations of Alexander Graham Bell’s seminal tele-
phone patent in 1878. Panel (A) displays a network representation in which words in the patent are connected
to each other by the order in which they were written in the process of codifying the idea. Panel (B) considers
that all words in the patent document are related to each other to some extent (we do not draw lines here,
otherwise they would overtake the graph). The blue dot represents the word ‘telephone’.

Our method for meeting this challenge is to use the frequency with which individual technical

words and bigrams are used across patent documents. Consider a word that appears very infre-

quently across patent texts. With some confidence, we can conclude that the concept for which

this word is a code is not well-integrated into the larger body of collective knowledge. It is a

concept whose meaning is not highly codified. Now consider a technical word that is mentioned

frequently across many patent documents. Such a concept ought to be relatively well-integrated

into the edifice of collective knowledge. Moreover, when the number of appearances of such a word

rise considerably over a relatively short period of time, the underlying concept is, in that period,

experiencing a ‘rush of codification.’ This burst of mentions in patent texts signals that a concept’s

meaning is being rapidly stabilized, thus integrating it into the body of knowledge that can be

communicated via impersonal channels.

Note that the heuristic we are proposing can be consistent with different theories of semantic

meaning-making. Consider panel (A) of Figure SM.1, in this example one may argue that measures

of network centrality may be a good indicator to identify concepts that are receiving meaning(Vega-

Oliveros et al., 2019). After all, the word ‘telephone’ (blue dot) appears to be very central in this

network. Note that a measure of network centrality of words such as the degree centrality will

correspond one to one with the frequency with which words appear. This is because there is only
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one directional link for every concept in the document. The same argument can be made regarding

the relationship between the frequency of appearance of concepts and the degree distribution of

the network described in panel (B), provided that links are weighted accordingly. Therefore we

consider that our heuristic may fit well across many possible meaning-making relationships between

concepts, making frequency counts a reasonable basis from which to start measuring the codification

of concepts.

B.5 Operationalization

Our primary source of information on collective technological knowledge comes from the detailed

textual descriptions of every patent document granted by the USPTO since 1920. Despite the

fact that inventions occur in many countries outside the U.S., because of its large market, patents

granted in the U.S. represent an effective global gauge of invention.13 In support of this idea,

note that in 2020, more than half of USPTO patent applications were granted to non-Americans

(United States Patent and Trademark Office, 2020). Usefully, the USPTO provides a taxonomy

that allows to identify the technological domain of inventions, known as technological ‘classes.’14

Patent examiners assign each new patent to at least one class, according to the type of invention

to which it claims rights. There are currently more than 600 different technological classes in use

in the Cooperative Patent Classification (CPC) scheme. Whenever a new class is created, or an

existing one redefined, all available patents are reclassified to maintain temporal consistency.

Patent documents are also useful because they contain detailed geographical information. We

assign individual patents to locations using address information for inventors. For the 1920 to 1975

period, we rely on the HistPat dataset, which provides validated county-level information identifying

the location of the inventor(s) and/or assignee(s) for 99.3% of all patents granted between 1836

and 1975 (Petralia et al., 2016b).15 For the period from 1975 to 2020, we rely on similar data made

available by the USPTO.16

A first step in creating our network of inter-related concepts is to identify a ‘dictionary’ that

contains all technical words or phrases. We start from the collection of all individual words and

bigrams in Wiktionary, an open-source and collaborative online dictionary that identifies words

in all languages using definitions and descriptions in English.17 Seeking to isolate technological

concepts, we then search for the appearance of these words and bigrams in the universe of USPTO

13All patent documents granted since 1920 can be accessed at: https://bulkdata.uspto.gov
14http://www.uspto.gov/learning-and-resources/electronic-bulk-data-products
15The latest version of HistPat can be downloaded at https://dataverse.harvard.edu/dataverse/HistPat. (Petralia

et al., 2016b) contains a detailed documentation of the machine learning methodology used to create it and a set of
tests to discard the existence of potential biases using manually collected data.

16Data is available at: https://www.patentsview.org/download/
17All their data is available to dowload at: https://dumps.wikimedia.org/enwiktionary/latest/.
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patents granted between 1920 and 2020. We undertake several refinements to improve the usefulness

of the dictionary. First, following common practice in textual analysis, we filter out ‘stopwords’ that

add little substantive information, such as ‘the’, ‘furthermore’, or ‘likewise.’ We also remove words

that appear either extremely infrequently (less than once per month), or too often (in more than

50% of all published patents in a given year). Further, because pre-1975 patents were digitized from

paper documents using optical scanning techniques, in this earlier period we apply an additional

cleaning routine to terms. To avoid including words that may look novel but that arise merely

due to scanning errors, for the pre-1975 period we keep only words that also appear after 1975.

Examples of these deleted words include ‘examinei’, which we presume is actually examiner, and

‘terminai,’ which should be terminal. Additionally, we excluded drug names and names of chemical

compounds from our dictionary. We do so to avoid including words that may appear new and

tacit, but that in fact represent merely new commercial names of existing drugs, or recombinations

of already existing chemical recipes. Such relabelling is common practice in drug and chemical

activities (Mathews, 2012; Palombi, 2009). To identify these terms, we rely on the PubChem

repository, which provides information on chemical substances and their biological activities(Kim

et al., 2015). Nevertheless, our results do not depend on excluding or including this set of words

(see Section D.7) . After all of these cleaning routines, we obtained a final dictionary that covers

the universe of USPTO patents between 1920 and 2020, containing 210,491 distinct technical words

and bigrams.

To measure a concept’s tacitness – or more precisely, the timing and extent with which it has

experienced a burst of translation from tacit into codified knowledge – we consider two observable

features of the distribution of words and bigrams in patent texts.

First, we consider that concepts that exhibit a rapid increase in the number of mentions across

the universe of patent texts are likely to be undergoing a process of codification. We define K as

the knowledge codified around each concept w up to year t as:

Kw,t =
t∑

i=1920

∑
d

Ow,d,i

where Ow,t represents the number of occurrences of word (or bigram) w across patent documents

d, from year 1920 up to year t. We then identify concepts that experience rapid growth in K based

on the relative speed at which they accumulate knowledge around them, measured as ∆Q(Kw,t),

where Q(.) represents the quantile each concept occupies in the distribution of mentions until year

t and ∆ represents its growth. Though all concepts are continuously transformed through the

addition of new and reshaped relationships, some experience this transformation more rapidly.

For intuition on K, consider Figure SM.2, which illustrates how selected words evolve over the

the study period, in terms of their movement along Q(Kw,t), plotted on the y-axis. This graph

demonstrates that particular concepts follow distinctive pathways over time, in terms of the relative
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frequency with which they appear in patent documents. For instance, we can see that mentions of

the word ‘transistor’ grow rapidly between 1920 and the first half of the 1930s, to later stabilize

at a certain position in the distribution. Around 1970, while still commonly mentioned in patent

documents, the term ’transistor’ wasn’t codified at a faster pace than the rest. Our interpretation

of these patterns is that the concept we know today as ‘transistor’ underwent a process of rapid

codification and re-definition in the 1920s and 1930s, as the term is being rapidly connected to many

other new and existing concepts. Viewed another way, this is a period in which tacit knowledge

linked to transistors is being rapidly generated but also rapidly transformed into codes. By 1940,

transistors had become widely and well understood, even if they remain important in the larger

process of technological change. In different periods, a similar time path is evident for concepts like

‘capacitor’, ‘internet’ and ‘smart contract’ (a concept frequently used in blockchain technologies),

with the latter showing a much higher rate of codification than the rest. By contrast, by 1920 the

word ‘telegraphy’ indicates an already a well-developed and stable meaning, which perhaps is not

very different than the one we attribute it today.

Figure SM.2: The Codification of Concepts Over time

Notes: This graph shows the evolution over time of different words in the entire distribution of technological concepts.
We show the percentile occupied by each word in each year, based on the value of Kw,t

A second observable feature of interest is the breadth with which concepts appear across patent

texts. Our aim in measuring the breadth of mentions, B, is to distinguish redundant from non-

redundant forms of codification, as certain patents – especially in pharmaceutical domains – re-

peatedly mention individual concepts, which suggest rushes of codification in terms of ∆Q(Kw,t)

that reflect only this narrow repetition. For example, in 2006 the word ‘dalbavancin’ was mentioned

1190 times, which represents the 0.56 percentile in mentions in that year, and an annual growth of

75%, and yet the many mentions of this word appear in only two patent documents. To account
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for this kind of issue, we define the breadth of mentions, B, as:

Bw,t =
∑
d

max(I[Ow,d,t > 0])

where the indicator function I[.] takes a value equal to one whenever a certain concept was used

in a document. Therefore, Bw,t captures the quantity of documents in which concept w appeared

in year t. As above, we measure relative document occurrences using the quantile Q each concept

occupies in a given year. ‘Dalbavancin’ would have a very low value of Q(Bw,t), reflecting the scant

different contexts in which it appears.

Bringing these two measures together, we identify highly tacit (i.e. rapidly codifying) technical

concepts in a moment in time as those whose words exhibit two features. First, highly tacit concepts

are those that experience relatively rapid growth in the frequency distribution of all technical words

and bigrams in patents. We define ‘rapid growth’ as at or above the 75th percentile in terms of

growth in the frequency distribution of mentions (Q(Kw,t)). Second, these appearances must be

distributed across a relatively high number of patent documents, again defined using a threshold

of at or above the 75th percentile. To take an example, in 2020, the word ‘smart contracts’ was

at the 0.999 percentile of the rate of codification, and at the 0.865 percentile in the number of the

number of patent documents where it was found. Hence we would define ‘smart contracts’ as a

tacit concept in 2020.

Based on this procedure, Tables SM.1 & SM.2 describe the ten most highly tacit concepts for

the years 1930 and 2020. For some contrast, we also list the ten most highly codified concepts,

defined as those occupying the lowest ranks of ∆Q(K). In line with expectations, note that in Table

SM.1, we can observe that highly tacit concepts are linked with electrical & electronic technologies,

in line with the emergence of these new technologies (David, 1990). In Table SM.2, the most highly

tacit concepts are vocabulary related to technologies featuring data mining, blockchain, and data

science.

Table SM.1: Highly Codified and Tacit Concepts in 1930

Highly Codified Highly Tacit

1 shrub television
2 studios scanning
3 potassium sulfate dispersions
4 cruising polyhydric
5 grand total rescue
6 clausen photoelectric
7 strops ethylene glycol
8 escape wheel scan
9 hurd short wave
10 appertain time delay

Note: Highly codified concepts shown in this table are those with the highest rate of codification, provided that
Q(Bw,t) > 0.75.
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Table SM.2: Highly Codified and Tacit Concepts in 2020

Highly Codified Highly Tacit

1 quadrant plate coreset
2 polyallomer munyon
3 grov kubernetes
4 grommeted distributed ledgers
5 amonium ethereum
6 aylor smart contracts
7 methanols autoencoder
8 soda fountain numerologies
9 clothespins immutably
10 tenite entrepreneurship

Note: Highly codified concepts shown in this table are those with the highest rate of codification, provided that
Q(Bw,t) > 0.75.

Having identified more and less tacit concepts, we use them to create a distribution of patents

in each year on the basis of their tacitness. For each patent we follow some simple procedures. We

start by identifying the set of tacit concepts that appear in a patent (those at the top 25% in both

measures). We then calculate the median of all values for those tacit concepts in a patent; we take

the median of all pooled values because we cannot say, in principle, whether it is more important

to have a greater rate of codification or to appear across a large number of documents. In practice,

this means that a patent in which the median tacit concept is both experiencing a high relative

increase in mentions, and these mentions appear across many patent documents will be ranked as

more highly tacit than a patent in which the median concept is neither experiencing rapid growth

in mentions nor appearing widely will be ranked as less tacit. Patents with no tacit words will be

ranked least tacit. We limit our attention only to tacit concepts based on the idea that a patent

containing highly tacit knowledge can have only a few tacit words surrounded by a larger number

of words that are already relatively codified. Practically, in Bell’s initial patent, the tacit concept

of the ‘telephone’ must be defined in terms of ideas that are already relatively well-understood,

or codified. Taking the median value across all words in a patent, tacit or not, produces a mis-

classification error, whereby patents like Bell’s would in its day be incorrectly identified as being

relatively well-codified.

Figure SM.3 shows an example of how we calculate the relative ranking of patent #10,524,402

– the very first patent granted in the first week of 2020. This patent incorporates machine learn-

ing techniques into agricultural machinery. The figure reveals a patent that contains tacit terms

at various percentiles in the pace of codification and appearances across documents, with terms

like ‘unsupervised’ as being rapidly codified in multiple contexts. In this example, the patent

#10,524,402 receives a value of 0.85.

For the purposes of description, Tables SM.3 & SM.4 scale up further – to the level of techno-

logical domains (patent classes). We employ simple rules to determine tacitness ranking for patent
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Figure SM.3: An example to illustrate how we measure the level of tacitness in a patent

Notes: This figure displays all tacit words found in patent #10,524,402. The horizontal axis shows the relative
position of the words in terms of the amount of different contexts (documents) they were mentioned. The vertical

axis shows the relative speed at which concepts were codified in 2020.

classes. In a given year, we deem individual patents highly tacit if they lie above the median level

of tacitness across all patents.18 Then we simply rank classes based on the percentage of their

constituent patents are deemed highly tacit. Table SM.3 ?? shows that, in 1930, the top ten most

tacit technological domains lie with the broad categories of electrical & electronic, chemical, and

combustion engine technologies, in line with extensive documentation describing the emergence of

these technologies(David, 1990; Lipsey et al., 2005; Bresnahan and Trajtenberg, 1995; Field, 2011;

Moser and Nicholas, 2004). Meanwhile, the least tacit ten patent classes are largely mechanical in

nature, including mature technologies whose potential for improvement is likely exhausted, such as

“sewing” or “garment” related technologies.

Table SM.4, ranks tacit technological domains for the year 2020. The most highly tacit tech-

nologies in this last year of the study period lie mostly within the computer & communications

category, in line with recent contributions around ‘disruptive’ innovation (Bloom et al., 2021), which

identify the recent emergence of data science, artificial intelligence, and blockchain technologies.

As in 1930, the least tacit technological classes appear to capture mature technologies, including

“Rolling of Metal” and railway-related technologies. This descriptive evidence suggests a broad

consistency between intuition and the results produced using our measure of tacitness. Further,

class size doesn’t seem to influence this ranking, as there are technological domains with many

18We get an almost identical ranking if we were to use the top 10% or top 25% as a cutoff for determining which
patents are ‘tacit’
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Table SM.3: Most and least highly tacit technologies, 1930

CPC Share Total Class Name
Code Highly Tacit Patents

H03F 0.761 71 AMPLIFIERS
C08K 0.724 76 INORGANIC OR NON-MACROMOLECULAR ORGANIC SUBSTANCES AS COMPOUNDING INGREDIENTS
H04R 0.722 316 LOUDSPEAKERS, MICROPHONES, OR LIKE ACOUSTIC ELECTROMECHANICAL TRANSDUCERS
C10G 0.710 321 RECOVERY OF HYDROCARBON OILS FROM OIL-SHALE, OIL-SAND, OR GASES; REFINING MIXTURES
H04B 0.703 175 TRANSMISSION
F25B 0.663 184 REFRIGERATION, HEAT PUMP & COMBINED HEATING AND REFRIGERATION SYSTEMS
G06C 0.663 89 DIGITAL COMPUTERS W/MECHANICAL COMPUTATION
H02J 0.649 94 CIRCUIT ARRANGEMENTS FOR SUPPLYING, STORING OR DISTRIBUTING ELECTRIC POWER
H02H 0.638 94 EMERGENCY PROTECTIVE CIRCUIT ARRANGEMENTS
H04L 0.627 118 TELEGRAPHIC COMMUNICATION
... ... ... ...
A47H 0.086 70 FURNISHINGS FOR WINDOWS OR DOORS
A41F 0.122 98 GARMENT FASTENINGS; SUSPENDERS
A61F 0.130 115 FILTERS IMPLANTABLE INTO BLOOD VESSELS; PROSTHESES
D01H 0.133 98 SPINNING OR TWISTING
A41D 0.136 147 OUTERWEAR; PROTECTIVE GARMENTS; ACCESSORIES
A45C 0.143 126 PURSES; LUGGAGE; HAND CARRIED BAGS
A61G 0.145 55 TRANSPORT, PERSONAL CONVEYANCES FOR DISABLED PERSONS
B43L 0.150 60 ARTICLES FOR WRITING OR DRAWING UPON
B25D 0.151 93 PERCUSSIVE TOOLS
A01B 0.153 275 SOIL WORKING IN AGRICULTURE OR FORESTRY; AGRICULTURAL MACHINES OR IMPLEMENTS
A44C 0.158 101 PERSONAL ADORNMENTS, E.G. JEWELLERY; COINS

patents as well as few patents on each sides of the spectrum. Also, note that the appearance of

technologies like ‘HARVESTING; MOWING’ in the top of 2020 is not a mistake; it identifies very

new technologies arising in old established domains. The example discussed in Figure SM.3 is in

this category as well.

Table SM.4: Most and least highly tacit technologies, 2020

CPC Share Total Class Name
Code Highly Tacit Patents

G06N 0.424 1, 878 COMPUTING ARRANGEMENTS BASED ON SPECIFIC COMPUTATIONAL MODELS
G01W 0.343 67 METEOROLOGY
G05D 0.322 1, 527 SYSTEMS FOR CONTROLLING OR REGULATING NON-ELECTRIC VARIABLES
H04L 0.307 21, 307 TRANSMISSION OF DIGITAL INFORMATION, E.G. TELEGRAPHIC COMMUNICATION
A01D 0.304 418 HARVESTING; MOWING
G06Q 0.301 7, 993 DATA PROCESSING SYSTEMS OR METHODS...
G10L 0.300 1, 905 SPEECH ANALYSIS OR SYNTHESIS; SPEECH RECOGNITION; SPEECH OR VOICE PROCESSING..
G06F 0.291 36, 067 ELECTRIC DIGITAL DATA PROCESSING
B60D 0.290 107 VEHICLE CONNECTIONS
G06T 0.286 6, 090 IMAGE DATA PROCESSING OR GENERATION, IN GENERAL
... ... ... ...
A61P 0.010 193 SPECIFIC THERAPEUTIC ACTIVITY OF CHEMICAL COMPOUNDS OR MEDICINAL PREPARATIONS
G03G 0.012 1, 904 ELECTROGRAPHY; ELECTROPHOTOGRAPHY; MAGNETOGRAPHY
A23C 0.012 81 DAIRY PRODUCTS, E.G. MILK, BUTTER OR CHEESE; MILK OR CHEESE SUBSTITUTES; MAKING THEREOF
D21F 0.019 52 PAPER-MAKING MACHINES; METHODS OF PRODUCING PAPER THEREON
A01H 0.024 1, 047 NEW PLANTS OR ; NON-TRANSGENIC; PROCESSES FOR OBTAINING THEM...
C07J 0.027 74 STEROIDS
B21B 0.027 73 ROLLING OF METAL
D01F 0.032 94 CHEMICAL FEATURES IN THE MANUFACTURE OF ARTIFICIAL FILAMENTS, THREADS, FIBRES...
C07K 0.032 2, 350 PEPTIDES
B61F 0.034 59 RAIL VEHICLE SUSPENSIONS
C07D 0.035 2, 878 HETEROCYCLIC COMPOUNDS

C Concentration of tacit technological knowledge in people, or-

ganizations, domains and regions

Knowledge is produced by human actors, who do so in a variety of settings: organizations, tech-

nological domains, and geographical regions, among others. In the main paper, we explore the
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changing distribution of highly tacit patents relative to less tacit patents in these different or-

ganizational, geographical and human units. In this section of the SOM, we explore the same

information in greater detail, this time disaggregating to observe absolute levels separately for

more and less tacit patents. This provides a somewhat different perspective from that obtained

from Figure 4.

An historical shift around 1980 in several dimensions of the knowledge production settings is

evident. In Panel (A) of this figure, we observe an upward trend in terms of concentration among

inventors and assignees across both more- and less-tacit patents, though one that is considerably

more pronounced among highly tacit patents. Considering organizations in Panel (B), concentration

in less tacit patents remains roughly constant across the entire study period, whereas, after 1980,

highly tacit patents become increasingly concentrated in absolute terms.

We observe steady levels of concentration in technological domains in Panel (C) until around

1980; thereafter both more- and less-tacit patents arise increasingly out of a more restricted set of

patent classes, and this tendency is around twice as strong among highly tacit patents.

Finally, between 1940 and 1980 in Panel (D), we observe a spreading out of the locations from

which emerge both highly- and less-tacit patents. Thereafter, both start to become more spatially

concentrated, but highly tacit patents are becoming considerably more concentrated.
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Figure SM.4: Tacit inventions in people, organizations, technological domains, and American re-
gions, 1940–2020

Note: Panels (A) and (B) track the number of inventors producing less and highly tacit USPTO patents, with the

median tacitness rank dividing patents in a given year into two equal-sized groups. Panels (C) and (D) capture

changes in the coefficients of variation for more- and less-highly tacit patents. Higher values of the CV indicate

greater concentration in either Cooperative Patent Classification (CPC) classes (domains of technological knowledge)

or 1990-vintage Commuting Zones (regions) for more highly tacit patents as compared with less tacit patents.

D Estimates of the relationship between tacit technological knowl-

edge and the income distribution

It is widely agreed and documented that the advent of new technologies can affect the distribution

of income in a society, insofar as it affects the relative demand for factors of production (labor,

different types of labor, capital), as well as returns to ownership and property rights.

The standard framework in economics considers that the income distribution in an economy can

change as the result of a race between new technologies, which alters the demand for workers, and

the education system, which determines the supply of those workers (Autor et al., 2003; Goldin

and Katz, 2009; Acemoglu and Restrepo, 2018). This standard framework is said to explain a
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considerable share of recent growth in income inequality between people (Goldin et al., 2020), as

well as providing insights into the growing average income inequality between regional economies

(Kemeny et al., 2022).

If highly tacit knowledge lies at the leading edge of technological changes, then holders of

this knowledge may be very highly remunerated in relation to holders of knowledge that is more

codified and more widely accessible. The nature of tacit knowledge adds some new dimensions to

the standard framework of race between education and technology. First, education systems might

be especially hindered in generating workers with the right tacit knowledge, since it is hard to

educate for that which one cannot codify. Also, for some of the same reasons, firms seeking workers

to apply the right tacit knowledge may find recruitment challenging, as activities involved in this

work have not yet been fully defined into tasks, jobs and occupations. To take an example, at the

dawn of the information technology revolution, degree programs in computer science were largely

nonexistent, and the occupation ‘computer programmer’ was at best ill-defined. Leading firms

sought workers using generalized aptitude tests delivered to degree holders across all disciplines,

and even non-graduates (Berlin, 2005). Given these obstacles to increasing the effective supply of

workers, as demand for the application of a technology rises, one should expect rising wages for

workers that are perceived, or guessed, to have the right tacit abilities or knowledge.

To investigate possible links between tacit patenting and income gaps between people and places,

we estimate how local wage distributions change in response to the addition of local patents that

vary in terms of being more- or less-tacit. In light of the sharp divide observed in the distribution

of tacit patents across people, domains, organizations and places before and after 1980, we consider

the possibility that the relationships to economic effects may be specific to each 40-year period.

Our baseline estimating equation is as follows:

yc,t = βTacitPatentsc,t + γOtherPatentsc,t + θX ′it + φc + νt + µc,t (1)

where y is income for location c in time t - either the average level for that location, or income at a

specific percentile of the local income distribution. The key parameter to be estimated is β, which

captures the association between highly tacit patents and the outcome. Meanwhile, we control

for potential confounding from less tacit patents. The vector X ′ captures additional features of

localities that prior work on income inequality suggest may shape the income distribution, and

may be correlated with our key regressor. Specifically, in X ′ we include measures of population,

to capture changes in local economies of scale (Combes et al., 2012). As a proxy for skilled worker

supply, we measure the share of the local employment based consisting of workers who have obtained

at least 4 years of college (Autor et al., 2008b). To capture potential effects from low-skilled

immigration, we measure the share of workers born outside of the United States who have obtained

less than four years of college (Card, 2009). Finally, using data from Autor and Dorn (Autor et al.,

2013) we include a measure capturing the extent to which the local economy’s industrial structure
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makes it vulnerable to offshoring to low-wage countries. Meanwhile, φ is a city-specific fixed effect

that absorbs bias arising due to between-place differences in relatively stationary but unobserved

characteristics of local economies, and ν captures the effects of unobserved time-specific shocks

that exert uniform impacts across all locations, such as as business cycles. Finally, µ represents the

standard disturbance term.

Both our dependent variable and control variables (with the exception of the offshorability

measure) are built from public use extracts of population censuses, harmonized and made available

to the public via IPUMS (Ruggles et al., 2021). These data are drawn from the largest available

public use sample of the Decennial or American Community Survey in each available year. In

practice this means a full count for 1940, five percent samples for 1960, 1980, 1990 and 2000, a three

percent sample covering 2009-2011 (which for convenience we call 2010), and one-percent samples

for 1970 and 2020. Adapting the probabilistic method described by Dorn (Dorn, 2009), we assign

fractions of individuals in the Census to 1990-vintage commuting zones based on the proportion

of each County Group, State Economic Area, or Public-Use Microdata Area that belongs in each

commuting zone.

D.1 Main regression estimates

Table SM.5 summarizes our primary results, upon which Figure 6 in the main text is based.

Results are estimated per Equation 1, using commuting zones’ annual wage and salary income

as the dependent variable and with a dummy variable coded 1 for patents granted after 1980,

interacted with each kind of patent. Since in early years of our study period we can only track

granting and not application dates, we use a five-year window forward from time t, such that we

count any new patent granted in location c between years t and t+ 5. Put simply, patent approval

is not instantaneous; patents granted in t+ 5 are likely to involve knowledge that is codifying well

before the actual granting date, with attendant effects on work and its rewards. In Section D.6 we

relax this assumption.

The regressand in Model (1) is a commuting zone’s average wage and salary income, representing

both how a worker with the local average income may be affected by tacit patenting, and at the

same time capturing potential between-place inequality effects. This model shows that the average

worker in the local wage distribution experiences wage growth in response to the addition of a

highly tacit patent whose inventor(s) is located in that area. While this is true for tacit patents

granted before and after 1980, the estimate of the relationship after 1980 is roughly twice the

size of the obtained for the earlier period. The scale of returns to tacit patenting appear to be

highly period specific. Meanwhile, less tacit patents also exert upward pressure on the average

worker’s wage, with coefficients that are similar across the two periods, and also, against a 95%

confidence interval, statistically indistinguishable from pre-1980 tacit patents. Another reading of

Model (1) is that, in the pre-1980 period, less- and more-tacit patents display a similar relationship
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Table SM.5: Estimating the relationship between highly tacit patents and the income distribution
in U.S. commuting zones

Annual wage and salary income
(Mean) (90th pct) (10th pct)

(1) (2) (3)

Before 1980
Highly tacit patents 0.475∗∗∗ 0.292 0.334∗∗∗

(0.104) (0.183) (0.043)
Less tacit patents 0.389∗∗∗ 0.253 0.183∗∗∗

(0.100) (0.192) (0.040)
After 1980
Highly Tacit Patents 0.838∗∗∗ 1.958∗∗∗ 0.024

(0.130) (0.283) (0.046)
Less Tacit Patents 0.384∗∗∗ −0.149 0.447∗∗∗

(0.126) (0.245) (0.053)

Population 0.524∗∗ 3.071∗∗∗ −0.768∗∗∗

(0.258) (0.508) (0.088)
Share of Non-College Foreign Born 11.472∗∗∗ 33.054∗∗∗ 6.793∗∗∗

(2.188) (4.361) (0.839)
College Share 38.616∗∗∗ 57.491∗∗∗ 3.502∗∗∗

(2.420) (5.561) (0.684)
Offshorability −1.108∗ 1.667 1.207∗∗∗

(0.662) (1.287) (0.251)

Period 1940-2020 1940-2020 1940-2020
Year & CZ FE Yes Yes Yes
Observations 6,523 6,523 6,523
Adjusted R2 0.953 0.941 0.885

Notes: ∗p<0.1; ∗∗p<0.05; ∗∗∗p<0.01. Unit of observation is 1990-vintage Commuting Zones. Annual wages are in thousands,

inflation-adjusted to 2019 levels. All measures of patents and population are log-transformed counts. Errors are always

clustered at CZ according to (Cameron et al., 2012).

to wages: innovation confers benefits for the average-wage worker and these benefits are unrelated

to a patent’s tacitness. After 1980, tacit patents yield distinctly larger rewards.

Models (2) and (3) investigate the idea that the effects of tacit patenting may differ for workers

occupying different parts of the income distribution. One intuition is that highly-paid workers will

include those workers most likely to be developing key tacit technologies, as well as those these

inventions may complement, raising their productivity. In fact our results suggest a more nuanced

picture. Considering workers at the 90th percentile of the local income distribution prior to 1980,

the granting of new patents – whether more- or less-tacit – is not linked to wage growth. After

1980, tacit patenting is positively associated with wages; the coefficient on this estimate is large,

suggesting a significant return to tacit patenting for these workers. By contrast, after 1980, less

tacit patents are unrelated to the wages of workers at the 90th percentile.

Model (3) shifts attention to low-paid workers, specifically those at the 10th percentile of the

income distribution. For this subset of the workforce, tacit patents granted before 1980 exhibit

a positive association with wages, whereas after 1980, no such association is detected. For less

tacit patents, we observe a positive relationship across the two periods. However, wage increases
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in response to less tacit patents for these low wage workers are considerably larger after 1980 than

before.

Table SM.6 expands on these results, considering each individual decile of the local income

distribution – in line with Figure 6. Across the income distribution, the addition of new local highly

tacit patents is relatively consistently linked with increases in wages. However, the relationship is

varies by period. Prior to 1980, new tacit patents are associated with higher wages for most workers,

except for those at the 90th percentile, with coefficients highest for workers between the 20th and

70th percentiles. After 1980, the returns to tacit patenting rise with incomes, with no effects below

the 20th percentile, and very large rewards for workers at or above the 80th. Less-tacit patents

offer more consistent effects; larger after 1980 across the distribution, and in both periods weak or

nonexistent for high wage workers.
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D.2 Alternative regression estimates: Hours-adjusted annual wages

In Table SM.7, we re-run the analyses that underlie Table SM.5, this time using measures of

annual wages that have been adjusted for usual hours worked, as reported in the Decennial and

ACS. Although magnitudes vary after accounting for differences in the number of usual work hours,

the broad pattern is strongly consistent with the main results: we observe a strongly periodized

result. For the average worker, wages grow in association with added tacit local patents in a

manner that is larger than for less tacit patents after 1980; prior to 1980, both more- and less-tacit

patents are linked to similar-sized wage increases. As in the case of annual wages, the relationship

depends on where in the wage distribution we look, with high-income workers enjoying large benefits

from tacit patenting after 1980, and little to no benefits from patents of any kind prior to 1980.

Meanwhile, low-income workers benefit from less tacit patents in both periods, while highly tacit

patents positively affect the wages of those in the lower ranks of the distribution only in the 1940-80

period.
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Table SM.7: Replication of baseline results (Table SM.5) using hours-adjusted annual wage and
salary income

Hours-adjusted annual wage and salary income

(Mean) (90 pct) (10 pct)

(1) (2) (3)

Before 1980

Highly tacit patents 0.258∗∗∗ 0.115 0.238∗∗∗

(0.047) (0.100) (0.028)

Less tacit patents 0.210∗∗∗ 0.170∗ 0.140∗∗∗

(0.046) (0.103) (0.027)

After 1980

Highly tacit patents 0.318∗∗∗ 0.775∗∗∗ 0.016

(0.054) (0.127) (0.026)

Less tacit patents 0.186∗∗∗ −0.055 0.219∗∗∗

(0.054) (0.113) (0.030)

Population 0.325∗∗∗ 1.904∗∗∗ −0.398∗∗∗

(0.114) (0.243) (0.061)

Share of Non-College Foreign Born 5.723∗∗∗ 18.102∗∗∗ 2.480∗∗∗

(0.930) (1.914) (0.556)

College Share 17.813∗∗∗ 29.835∗∗∗ 3.707∗∗∗

(0.973) (2.459) (0.455)

Offshorability −0.552∗ −1.666∗∗ −0.007

(0.305) (0.752) (0.170)

Period 1940-2020 1940-2020 1940-2020

Year & CZ FE Yes Yes Yes

Observations 6,523 6,523 6,523

Adjusted R2 0.955 0.928 0.913

Notes: ∗p<0.1; ∗∗p<0.05; ∗∗∗p<0.01. Unit of observation is 1990-vintage Commuting Zones. Hours-adjusted annual wages

are in thousands, inflation adjusted to 2019. Errors are always clustered at CZ according to (Cameron et al., 2012). All

measures of patents are log-transformed counts, based on the year a patent was granted, as well as the subsequent five years.

D.3 Alternative regression estimates: Varying patent cutoffs of ∆Q(Kw,t) and

Q(Bw,t)

In this robustness check, we consider how a more stringent threshold for ∆Q(Kw,t) and Q(Bw,t)

– respectively the amount of knowledge codified around a concept, and breadth of mentions of a

concept – may affect the shape of the association between tacit patents and wages. This implies a

narrowing of the range of concepts that we consider to be tacit, hence alters which patents count

as being highly tacit. In the main results, we consider concepts that are at or above the 75th

percentile in both ∆Q(Kw,t) and Q(Bw,t); here we raise that threshold to at or above the 90th

percentile.
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Table SM.8: Replication of Baseline Results (Table SM.5) with an Alternative Threshold for Kw,t

and Bw,t (90%)

Annual wage and salary income

(Mean) (90 pct) (10 pct)

(1) (2) (3)

Before 1980

Highly tacit patents 0.055 −0.437∗∗ 0.345∗∗∗

(0.104) (0.184) (0.039)

Less tacit patents 0.762∗∗∗ 0.870∗∗∗ 0.215∗∗∗

(0.107) (0.196) (0.043)

After 1980

Highly tacit patents 0.618∗∗∗ 1.796∗∗∗ −0.064∗

(0.119) (0.257) (0.036)

Less tacit patents 0.608∗∗∗ 0.154 0.515∗∗∗

(0.112) (0.212) (0.042)

Population 0.572∗∗ 3.170∗∗∗ −0.797∗∗∗

(0.257) (0.507) (0.088)

Share of Non-College Foreign Born 11.053∗∗∗ 31.303∗∗∗ 7.009∗∗∗

(2.171) (4.233) (0.827)

College Share 37.617∗∗∗ 53.735∗∗∗ 3.914∗∗∗

(2.369) (5.320) (0.672)

Offshorability −1.055 1.766 1.214∗∗∗

(0.663) (1.279) (0.251)

Period 1940-2020 1940-2020 1940-2020

Year & CZ FE Yes Yes Yes

Observations 6,523 6,523 6,523

Adjusted R2 0.953 0.941 0.886

Notes: ∗p<0.1; ∗∗p<0.05; ∗∗∗p<0.01. Unit of observation is 1990-vintage Commuting Zones. Annual wages are in thousands,

inflation-adjusted to 2019 levels. All measures of patents and population are log-transformed counts. Errors are always

clustered at CZ according to (Cameron et al., 2012).

This greater stringency produces results that are broadly similar to the baseline in Table SM.5,

but with somewhat larger effect sizes. Tacit patents are no longer significantly linked to wages for

the average worker prior to 1980, whereas after 1980, coefficients are almost twice as large.

D.4 Alternative regression estimates: using a more restrictive definition of

highly tacit patents

In this section we vary the threshold for defining a patent as highly tacit. Our main results proceed

from the rule that a patent is deemed highly tacit in a given year if it has a tacitness score that is

above the median. Here we raise this threshold to the 75th percentile, and then the 90th percentile.

For the former, this means that only a quarter of patents in a given year will be deemed highly

tacit, whereas for the latter, only 10 percent. These represent a significant increase in the threshold
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for what we identify as a highly tacit patent. It also makes the group of ‘less tacit’ patents more

internally heterogeneous, combining patents that may involve no tacit concepts whatsoever and

those that include considerably more than a typical amount of tacit ideas.

Table SM.9: Replication of Baseline Results (Table SM.5): restricting tacit patents to those at or
above the top 75th percentile of tacitness.

Annual wage and salary income

(Mean) (90 pct) (10 pct)

(1) (2) (3)

Before 1980

Highly tacit patents 0.440∗∗∗ 0.166 0.321∗∗∗

(0.100) (0.183) (0.041)

Less tacit patents 0.458∗∗∗ 0.375∗∗ 0.208∗∗∗

(0.096) (0.185) (0.039)

After 1980

Highly tacit patents 0.869∗∗∗ 1.932∗∗∗ −0.003

(0.132) (0.296) (0.044)

Less tacit patents 0.426∗∗∗ 0.019 0.461∗∗∗

(0.120) (0.231) (0.049)

Population 0.550∗∗ 3.170∗∗∗ −0.767∗∗∗

(0.258) (0.508) (0.088)

Share of Non-College Foreign Born 11.181∗∗∗ 32.454∗∗∗ 6.836∗∗∗

(2.183) (4.334) (0.835)

College Share 38.406∗∗∗ 56.896∗∗∗ 3.680∗∗∗

(2.395) (5.502) (0.676)

Offshorability −1.144∗ 1.660 1.208∗∗∗

(0.661) (1.289) (0.252)

Period 1940-2020 1940-2020 1940-2020

Year & CZ FE Yes Yes Yes

Observations 6,523 6,523 6,523

Adjusted R2 0.953 0.941 0.885

∗p<0.1; ∗∗p<0.05; ∗∗∗p<0.01

Notes: ∗p<0.1; ∗∗p<0.05; ∗∗∗p<0.01. Unit of observation is 1990-vintage Commuting Zones. Annual wages are in thousands,

inflation-adjusted to 2019 levels. All measures of patents and population are log-transformed counts. Errors are always

clustered at CZ according to (Cameron et al., 2012).

Nonetheless, in Table SM.9 and Table SM.10, results remain closely related to the baseline,

indicating that our choice of cutoff is not fundamentally driving the overall relationships observed.

The clear pre/post 1980 distinction remains evident, with outsize and inequality-inducing rewards

to tacit patents after 1980, alongside more ‘balanced’ and even progressive returns to inventive

activity prior to 1980. The fact that, with these more restrictive definitions of tacit patents, the

estimated coefficients for tacit patenting rise (especially after 1980), can be taken to support the

measurement approach we take in this study.
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Table SM.10: Replication of Baseline Results (Table SM.5) Restricting tacit patents to those with
tacitness scores at or above the top 90th percentile of tacitness.

Annual wage and salary income

(Mean) (90 pct) (10 pct)

(1) (2) (3)

Before 1980

Highly tacit patents 0.374∗∗∗ −0.036 0.351∗∗∗

(0.105) (0.192) (0.040)

Less tacit patents 0.559∗∗∗ 0.571∗∗∗ 0.224∗∗∗

(0.094) (0.180) (0.039)

After 1980

Highly tacit patents 0.967∗∗∗ 2.247∗∗∗ 0.011

(0.135) (0.309) (0.042)

Less tacit patents 0.452∗∗∗ 0.047 0.445∗∗∗

(0.112) (0.219) (0.045)

Population 0.600∗∗ 3.283∗∗∗ −0.774∗∗∗

(0.256) (0.499) (0.088)

Share of Non-College Foreign Born 10.977∗∗∗ 31.695∗∗∗ 6.887∗∗∗

(2.166) (4.214) (0.828)

College Share 38.112∗∗∗ 55.520∗∗∗ 3.841∗∗∗

(2.376) (5.427) (0.668)

Offshorability −1.107∗ 1.606 1.242∗∗∗

(0.658) (1.268) (0.251)

Period 1940-2020 1940-2020 1940-2020

Year & CZ FE Yes Yes Yes

Observations 6,523 6,523 6,523

Adjusted R2 0.954 0.941 0.885

Notes: ∗p<0.1; ∗∗p<0.05; ∗∗∗p<0.01. Unit of observation is 1990-vintage Commuting Zones. Annual wages are in thousands,

inflation-adjusted to 2019 levels. All measures of patents and population are log-transformed counts. Errors are always

clustered at CZ according to (Cameron et al., 2012).

D.5 Alternative regression estimates: Using non-U.S. vocabulary

A further issue we take up is the risk that there is a correlation between specific subnational

regional economies and particular kinds of technical vocabulary. If a particular location has its

own lexicon around a set of technologies, and these technologies take off, then our determination of

tacit concepts may be a product of this cultural specificity, rather than emerging more‘purely’ from

universal or aspatial scientific and technological developments. To ensure that our determination

of tacit concepts is fully exogenous from the subnational geography of inventions, we develop an

alternative dictionary of technological words and bigrams that is restricted to patent texts in which

all inventors and assignees are located outside of the United States. From these approximately 40%

of USPTO patents over the study period, we build a unique dictionary, thereafter following the

same steps described in detail in SOM Section B. The result is an alternative set of highly- and
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less-tacit patents that we can be certain is not driven by any such location-specific lexicons.

Table SM.11: Replication of Baseline Results (Table SM.5) with only vocabulary Created Outside
the US

Annual wage and salary income

(Mean) (90 pct) (10 pct)

(1) (2) (3)

Before 1980

Highly tacit patents 0.492∗∗∗ 0.395∗∗ 0.341∗∗∗

(0.095) (0.164) (0.042)

Less tacit patents 0.376∗∗∗ 0.168 0.166∗∗∗

(0.100) (0.190) (0.041)

After 1980

Highly tacit patents 0.888∗∗∗ 2.049∗∗∗ 0.039

(0.137) (0.308) (0.048)

Less tacit patents 0.344∗∗∗ −0.205 0.423∗∗∗

(0.128) (0.263) (0.051)

Population 0.505∗ 3.006∗∗∗ −0.753∗∗∗

(0.260) (0.512) (0.088)

Share of Non-College Foreign Born 11.457∗∗∗ 33.001∗∗∗ 6.808∗∗∗

(2.174) (4.313) (0.842)

College Share 38.603∗∗∗ 57.341∗∗∗ 3.538∗∗∗

(2.411) (5.543) (0.685)

Offshorability −1.127∗ 1.610 1.198∗∗∗

(0.666) (1.297) (0.251)

Period 1940-2020 1940-2020 1940-2020

Year & CZ FE Yes Yes Yes

Observations 6,523 6,523 6,523

Adjusted R2 0.953 0.941 0.885

Notes: ∗p<0.1; ∗∗p<0.05; ∗∗∗p<0.01. Unit of observation is 1990-vintage Commuting Zones. Annual wages are in thousands,

inflation-adjusted to 2019 levels. All measures of patents and population are log-transformed counts. Errors are always

clustered at CZ according to (Cameron et al., 2012).

Table SM.11 describes replication of our baseline results, substituting these alternative tacitness

measures. Results are closely comparable to the baseline estimates shown in Table SM.5. As a

consequence, we can be confident that any correlation between the emergence of words and their

geography is not driving the results described in the paper.
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D.6 Alternative regression estimates: Using Backward Looking Measures of

Patenting

Table SM.12: Replication of Baseline Results (Table SM.5) Using Backward Looking Measures of
Patenting

Annual wage and salary income

(Mean) (90 pct) (10 pct)

(1) (2) (3)

Before 1980

Highly tacit patents 0.312∗∗∗ 0.139 0.139∗∗∗

(0.112) (0.201) (0.045)

Less tacit patents 0.256∗∗ −0.006 0.279∗∗∗

(0.109) (0.203) (0.045)

After 1980

Highly tacit patents 0.706∗∗∗ 1.437∗∗∗ 0.072

(0.134) (0.280) (0.050)

Less tacit patents 0.172 −0.131 0.302∗∗∗

(0.128) (0.233) (0.050)

Population 0.816∗∗∗ 3.461∗∗∗ −0.675∗∗∗

(0.260) (0.515) (0.088)

Share of Non-College Foreign Born 12.062∗∗∗ 34.192∗∗∗ 6.890∗∗∗

(2.235) (4.468) (0.852)

College Share 40.308∗∗∗ 60.320∗∗∗ 3.813∗∗∗

(2.424) (5.641) (0.694)

Offshorability −0.737 2.336∗ 1.273∗∗∗

(0.686) (1.326) (0.260)

Period 1940-2020 1940-2020 1940-2020

Year & CZ FE Yes Yes Yes

Observations 6,523 6,523 6,523

Adjusted R2 0.952 0.940 0.883

Notes: ∗p<0.1; ∗∗p<0.05; ∗∗∗p<0.01. Unit of observation is 1990-vintage Commuting Zones. Annual wages are in thousands,

inflation-adjusted to 2019 levels. All measures of patents and population are log-transformed counts. Errors are always

clustered at CZ according to (Cameron et al., 2012).
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D.7 Alternative regression estimates: including Commercial Drug Names

Table SM.13: Replication of Baseline Results (Table SM.5) including Drug Names

Annual Wage Annual Wage Annual Wage

(Mean) (90 pct) (10 pct)

(1) (2) (3)

Before 1980

Number of Tacit Patents (in logs) 0.410∗∗∗ 0.137 0.316∗∗∗

(0.103) (0.186) (0.042)

Number of Other Patents (in logs) 0.471∗∗∗ 0.450∗∗ 0.200∗∗∗

(0.102) (0.194) (0.041)

Before 1980

Number of Tacit Patents (in logs) 0.827∗∗∗ 1.945∗∗∗ 0.012

(0.129) (0.284) (0.047)

Number of Other Patents (in logs) 0.399∗∗∗ −0.104 0.447∗∗∗

(0.123) (0.240) (0.051)

Population (in logs) 0.537∗∗ 3.101∗∗∗ −0.765∗∗∗

(0.258) (0.508) (0.088)

Share of Non-College Foreign Born 11.383∗∗∗ 32.783∗∗∗ 6.821∗∗∗

(2.179) (4.338) (0.837)

College Share 38.339∗∗∗ 57.007∗∗∗ 3.449∗∗∗

(2.417) (5.542) (0.685)

Offshorability −1.125∗ 1.666 1.202∗∗∗

(0.663) (1.292) (0.251)

Period 1940-2020 1940-2020 1940-2020

Year & CZ FE Yes Yes Yes

Observations 6,523 6,523 6,523

Adjusted R2 0.953 0.941 0.885

∗p<0.1; ∗∗p<0.05; ∗∗∗p<0.01

Notes: ∗p<0.1; ∗∗p<0.05; ∗∗∗p<0.01. Unit of observation is 1990-vintage Commuting Zones. Annual wages are in thousands,

inflation-adjusted to 2019 levels. All measures of patents and population are log-transformed counts. Errors are always

clustered at CZ according to (Cameron et al., 2012).
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