CEUR-WS.org/Vol-3442/paper-12.pdf

Model-Agnostic Auditing: A Lost Cause?
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Abstract

Tools for interpretable machine learning (IML) or explainable artificial intelligence (xAl) can be used to
audit algorithms for fairness or other desiderata. In a black-box setting without access to the algorithm’s
internal structure an auditor may be limited to methods that are model-agnostic. These methods
have severe limitations with important consequences for outcomes such as fairness. Among model-
agnostic IML methods, visualizations such as the partial dependence plot (PDP) or individual conditional
expectation (ICE) plots are popular and useful for displaying qualitative relationships. Although we focus
on fairness auditing with PDP/ICE plots, the consequences we highlight generalize to other auditing or
IML/xAI applications. This paper questions the validity of auditing in high-stakes settings with contested
values or conflicting interests if the audit methods are model-agnostic.
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1. Introduction

Algorithm auditing is a rapidly growing field with little consensus about what makes an audit
trustworthy [1]. Understanding the limitations of auditing methods is necessary to judge
whether a particular audit is rigorous. To study these methods, we simulate the role of an
external auditor who can only interact with the model by providing input data and recording
the predicted outcome. This case is relevant to regulatory, oversight, or other competitive
settings when an auditor can only use auditing methods that are model-agnostic [2, 3, 4]. We
focus on the partial dependence plot (PDP) [5, 4], a popular tool for visualizing relationships
between black-box input and output, and its close variants individual conditional expectation
(ICE) [6] plots and conditional PDP. We demonstrate their limitations for fairness auditing
through examples.

2. Theoretical Limitations of Black-Box Auditing for Fairness

Data Dependence. Model-agnostic explanations like PDPs depend on the joint distribution
of data used to compute them. If part of the motivation of an audit is to understand the world
by explaining the black-box, then unrepresentative data could lead to inaccurate conclusions
about the world. Likewise, if an auditor is uninformed about the data selection process and
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uses data from a biased sample to produce a PDP or other model explanation their audit may
fail to detect unfairness in the pipeline. If the audit does use data from the same distribution as
the training data, this leaves open questions of whether discrimination occurs if the model is
deployed under conditions of distribution shift [7].

Unfairness via Mediators and Proxies. Model-agnostic explanations like PDPs will only
show relationships with variables that are explicit inputs to an algorithm by definition. If a
black-box does not take a sensitive attribute as an input it can still perform proxy discrimination
(8], but a PDP may not uncover this. Additionally, due to the way PDPs average over other
predictors they may hide indirect discrimination through mediating variables.

Interaction. PDPs are most effective at showing model dependence on each predictor if the
model is additive, but can hide dependence if there are interactions [9]. This strong dependence
on model structure complicates the interpretation of PDPs, especially in an auditing setting
where we do not know the assumptions of the model fitting algorithm. ICE plots can help
somewhat with this issue [4].

Attrition and Causality. In some real world examples, multiple sensitive attributes can
interact resulting in intersectional discrimination [10, 11, 12, 13, 14]. One example of this is
age related attrition, which has been studied related to unfairness to black defendants in the
COMPAS case [15]. Attrition is also a relevant in health applications, where age and health
interact with a number of socioeconomic factors [16]. In examples like these, attrition can
violate the backdoor criterion, a requirement for causal interpretations of PDP [17]. Hence, the
relationship uncovered by a model-agnostic explanation be a non-causal association that is not
relevant to the purpose of the audit. Finally, causality raises issues about the interpretation
of social categories as causal variables [18, 19] but can also help reveal differences between
predictive algorithms and interventional policies [20]. [21]

3. Hiring Simulation

Algorithmic recruitment systems are emerging in the EU market [22, 23] and in many other
places in the world [24], with the aims of accelerating hiring processing, and reducing errors and
costs. These algorithms could exclude people from the job market with little human involvement
or checking procedures, and so come with extensive risks for discrimination and unfairness
[25, 26]. Our main simulation uses a synthetic causal model to generate data, consistent with
the model Mg in Figure 1, with age and gender as variables that affect experience, which
in turn affects chances of a job interview. The application rate decreases according to an
interaction between age and gender, so that one gender group’s application rate is 23% and
the other group is 63%, for an overall application rate of 42% from an initial population of
n = 2000 job seekers. Hence, the training data for the black-box models is not representative
of the overall population. Experience increases with age but with different slopes depending on
gender, potentially reflecting effects of unfairness at previous time points. Finally, interview
probability increases positively with experience, and positively with age for one gender group



but negatively with age for the other gender group, again potentially reflecting unfairness
(direct discrimination in this case) in the training data.

Through a series of experiments, we generate conditional PDPs with predictive models that
assume different relationships between the variables and outcome:

1. Model f g includes only experience as a predictor.
2. Model f;, includes experience, age, and gender as predictors with interaction effects
(correctly specified).

Figure 1 shows both the limitation of model-agnostic explanations when the model does
not adequately capture the data generating process (population vs training data) and the
importance of analyzing fairness intersectionally rather than one attribute at a time (conditional
vs unconditional PDPs).
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Figure 1: Left panel: Causal model M. In this example age and gender can influence whether a person
applies for a job, their employment experience, and also directly influence whether they are screened for
being interviewed. Previous experience influences interview chances. It is necessary to apply in order to
be interviewed, so the application variable is indicated in a box as a selection variable in the training
data. Right panel: Solid lines are PDPs for JA”E, black for a model fit on the training data and gray fit on
population data. Dashed lines are conditional PDPs for fint using the training data.

4. Conclusion

We used fairness as an example objective for black-box audits and PDPs and related plots as
example model-agnostic explanation methods. We show with examples several important ways
these can fail to detect unfairness. Visual explanation methods may be convincing because
“seeing is believing,” so they have potential to be particularly deceptive if they are interpreted



without understanding their limitations. Our broader message calls into question the use of
any model-agnostic explanation methods in the black-box audit setting. To make any valid
conclusions from the explanations output by these tools, we must think beyond the input-output
interface and consider causal structure in the real world, the sources of data used to train the
model and generate the explanation, and choices of variables used to elaborate any univariate
explanations. Important future work would look at extending the analysis present here to
other model-agnostic explanation methods such as SHAP [27] and LIME [28]. We hope this
encourages critical engagement and use in fairness contexts where explanations can obscure
rather than reveal unfair discrimination if not used correctly.
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