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MULTIPLE CHANGE POINT DETECTION UNDER SERIAL
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HAERAN CHOa AND PIOTR FRYZLEWICZb

aSchool of Mathematics, University of Bristol, Bristol, UK
bDepartment of Statistics, London School of Economics, London, UK

We propose a methodology for detecting multiple change points in the mean of an otherwise stationary, autocorrelated, linear
time series. It combines solution path generation based on the wild contrast maximisation principle, and an information
criterion-based model selection strategy termed gappy Schwarz algorithm. The former is well-suited to separating shifts in
the mean from fluctuations due to serial correlations, while the latter simultaneously estimates the dependence structure and
the number of change points without performing the difficult task of estimating the level of the noise as quantified e.g. by the
long-run variance. We provide modular investigation into their theoretical properties and show that the combined methodol-
ogy, named WCM.gSa, achieves consistency in estimating both the total number and the locations of the change points. The
good performance of WCM.gSa is demonstrated via extensive simulation studies, and we further illustrate its usefulness by
applying the methodology to London air quality data.
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1. INTRODUCTION

This article proposes a new methodology for detecting possibly multiple change points in the piecewise constant
mean of an otherwise stationary, linear time series. This is a well-known difficult problem in multiple change point
analysis, whose challenge stems from the fact that change points can mask as natural fluctuations in a serially
dependent process and vice versa. We briefly review the existing literature on multiple change point detection in
the presence of serial dependence and situate our new proposed methodology in this context; see also Aue and
Horváth (2013) for a review.

One line of research extends the applicability of the test statistics developed for independent data, such as
the CUSUM (Csörgő and Horváth, 1997) and moving sum (MOSUM, Hušková and Slabý, 2001) statistics, to
time series setting. Their performance depends on the estimated level of noise quantified e.g. by the long-run
variance (LRV), and the estimators of the latter in the presence of multiple change points have been proposed
(Tecuapetla-Gómez and Munk, 2017; Eichinger and Kirch, 2018; Dette et al., 2020). The estimation of the LRV,
even when the mean changes are not present, has long been noted as a difficult problem (Robbins et al., 2011); the
popularly adopted kernel estimator of LRV tends to incur downward bias (den Haan and Levin, 1997; Chan and
Yau, 2017), and can even take negative values when the LRV is small (Hušková and Kirch, 2010). It becomes even
more challenging in the presence of (possibly) multiple change points, and the estimators may be sensitive to the
choice of tuning parameters which are often related to the frequency of change points. Self-normalisation of test
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statistics avoids direct estimation of this nuisance parameter (Shao and Zhang, 2010; Pešta and Wendler, 2020)
but theoretical investigation into its validity is often limited to change point testing, i.e. when there is at most a
single change point, with the exception of Wu and Zhou (2020) and Zhao et al. (2022), both of which adopt local
window-based procedures. Consistency of the methods utilising penalised least squares estimation (Lavielle and
Moulines, 2000) or Schwarz criterion (Cho and Kirch, 2022) constructed without further parametric assumptions,
has been established under general conditions permitting serial dependence and heavy-tails. Their consistency
relies on the choice of the penalty, which in turn depends on the noise level.

The second line of research utilises particular linear or nonlinear time series models such as the autoregressive
(AR) model, and estimates the serial dependence and change point structures simultaneously. AR(1)-type depen-
dence has often been adopted to describe the serial correlations in this context: Chakar et al. (2017) and Romano
et al. (2022) propose to minimise the penalised cost function for detection of multiple change points in the mean of
AR(1) processes via dynamic programming, and Fang and Siegmund (2020) study a pseudo-sequential approach to
change point detection in the level or slope of the data. Lu et al. (2010) investigate the problem of climate time series
modelling by allowing for multiple mean shifts and periodic AR noise. Fryzlewicz (2020b) proposes to circumvent
the need for accurate estimation of AR parameters through the use of a multi-resolution sup-norm (rather than the
ordinary least squares) in fitting the postulated AR model, but this is only possible because the goal of the method
is purely inferential and therefore different from ours. We also mention that (Davis et al., 2006, 2008; Bardet
et al., 2012; Cho and Fryzlewicz, 2012; Chan et al., 2014; Yau and Zhao, 2016; Korkas and Fryzlewicz, 2017),
among others, study multiple change point detection under piecewise stationary, univariate time series models,
and (Cho et al., 2022; Cho and Korkas, 2022; Safikhani and Shojaie, 2022) under high-dimensional time series
models.

We now describe our proposed methodology against this literature background and summarise its novelty and
main contributions of this article.

(i) The first step of the proposed methodology constructs a sequence of candidate change point models by
adopting the Wild Contrast Maximisation (WCM) principle: it iteratively locates the next most likely change
point in the data between the previously proposed change point estimators, as the one maximising a given
contrast (in our case, the absolute CUSUM statistic) in the data sections over a collection of intervals of vary-
ing lengths and locations. It produces a complete solution path to the change point detection problem as a
decreasing sequence of max-CUSUMs corresponding to the successively proposed change point candidates.
The WCM principle has successfully been applied to the problem of multiple change point detection in the
presence of i.i.d. noise (Fryzlewicz, 2014, 2020a). We show that it is particularly useful under serial depen-
dence by generating a large gap between the max-CUSUMs attributed to change points and those attributed
to the fluctuations due to serial correlations. This motivates a new, ‘gappy’ model sequence generation pro-
cedure which, by considering only some of the candidate models along the solution path that correspond
to large drops in the decreasing sequence of max-CUSUMs as serious contenders, systematically selects a
small subset of model candidates. We justify this gappy model sequence generation theoretically and further
demonstrate numerically how it substantially facilitates the subsequent model selection step.

(ii) The second step performs model selection on the sequence of candidate change point models generated in
the first step. To this end, we propose a backward elimination strategy termed gappy Schwarz algorithm
(gSa), a new application of Schwarz criterion (Schwarz, 1978) constructed under a parametric, AR model
assumption on the noise. Information criteria have been widely adopted for model selection in change point
problems (Yao, 1988; Kühn, 2001). However, through its application on the gappy model sequence, our pro-
posal differs from the conventional use of an information criterion in the change point literature which involve
its global (Davis et al., 2006; Killick et al., 2012; Romano et al., 2022) or local (Chan et al., 2014; Fry-
zlewicz, 2014) minimisation. Rather than setting out to minimise Schwarz criterion, the Schwarz algorithm
starts from the largest model in consideration and iteratively compares a pair of consecutive models by eval-
uating the reduction of the cost due to newly introduced change point estimators, offset by the increase of
model complexity as measured by Schwarz criterion. This has the advantage over the direct minimisation of
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MULTIPLE CHANGE POINT DETECTION UNDER SERIAL DEPENDENCE 3

the information criterion on a solution path as it avoids the substantial technical challenges linked to dealing
with under-specified models in the presence of serial dependence.

The two ingredients, WCM-based gappy model sequence generation and model selection via Schwarz
algorithm, make up the WCM.gSa methodology. Throughout the article, we highlight the important roles played
by these two components and argue that WCM.gSa offers state-of-the-art performance in the problem of multiple
change point detection under serially dependent noise. WCM.gSa is modular in the sense that each ingredient can
be combined with alternative model selection or model sequence generation procedures respectively. We provide
separate theoretical analyses of the two steps so that they can readily be fed into the analysis of such modifica-
tions, as well as showing that the combined methodology, WCM.gSa, achieves consistency in estimating the total
number and the locations of multiple change points.

The article is organised as follows. In Sections 2 and 3, we introduce the two ingredients of WCM.gSa individ-
ually, and show its consistency in multiple change point detection in the presence of serial dependence. Section 4
summarises our numerical results and applies WCM.gSa to London air quality datasets. The Data S1 contains com-
prehensive simulation studies, an additional data application to central England temperature data, and the proofs
of the theoretical results. The R software implementing WCM.gSa is available from the R package breakfast
(Anastasiou et al., 2020), and the data supporting the findings of this study are openly available at https://github.
com/haeran-cho/wcm.gsa.

2. CANDIDATE MODEL SEQUENCE GENERATION VIA WCM PRINCIPLE

2.1. WCM Principle and Solution Path Generation

We consider the canonical change point model

Xt = ft + Zt = f0 +
q∑

j=1

f ′j ⋅ I(t ≥ 𝜃j + 1) + Zt, t = 1, … , n. (1)

Under model (1), the set Θ ∶= {𝜃1, … , 𝜃q} with 𝜃j = 𝜃j,n, contains q change points (with 𝜃0 = 0 and 𝜃q+1 = n) at
which the mean of Xt undergoes changes of size f ′j . We assume that the number of change points q does not vary
with the sample size n, and we allow serial dependence in the sequence of errors {Zt}n

t=1 with E(Zt) = 0.
A large number of multiple change point detection methodologies have been proposed for a variant of model (1)

in which the errors {Zt}n
t=1 are independent. In particular, a popular class of multi-scale methods aim to isolate

change points for their detection by drawing a large number of sub-samples of the data living on sub-intervals of
[1, n]. When a sufficient number of sub-samples are drawn, there exists at least one interval which is well-suited
for the detection and localisation of each 𝜃j, j = 1, … q, whose location can be estimated as the maximiser
of the series of CUSUM statistics computed on this interval. Methods in this category include the Wild Binary
Segmentation (WBS, Fryzlewicz, 2014), the Seeded Binary Segmentation (Kovács et al., 2023) and the WBS2
(Fryzlewicz, 2020a). All of the above are based on the WCM principle, i.e. the recursive maximisation of the
contrast between the means of the data to the left and right of each putative change point as measured by the
CUSUM statistic, over a large number of intervals, and their theoretical properties have been established assum-
ing i.i.d. (sub-)Gaussianity on {Zt}n

t=1. We propose the term Wild Contrast Maximisation rather than, say, ‘wild
CUSUM maximisation’ since, in other change point detection problems, the WCM principle can be applied with
statistics other than CUSUM, e.g. generalised likelihood ratio tests.

In the remainder of this article, we focus on WBS2, whose key feature is that for any given 0 ≤ s < e ≤ n, we
identify the sub-interval {s◦ + 1, … , e◦} ⊂ {s + 1, … , e} and its inner point k◦ ∈ {s◦ + 1, … , e◦ − 1}, which
obtains a local split of the data that yields the maximum CUSUM statistic. More specifically, let s,e denote a
subset of s,e ∶= {(𝓁, r) ∈ Z2 ∶ s ≤ 𝓁 < r ≤ e and r − 𝓁 > 1}, selected either randomly or deterministically,
with |s,e| = min(Rn, |s,e|) for some given Rn ≤ n(n − 1)∕2. Then, we identify (s◦, e◦) ∈ s,e that achieves the
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4 H. CHO and P. FRYZLEWICZ

maximum absolute CUSUM statistic, as

(s◦, k◦, e◦) = arg max
(𝓁,k,r)∶ 𝓁<k<r
(𝓁,r)∈s,e

||𝓁,k,r|| , where

𝓁,k,r =
√
(k − 𝓁)(r − k)

r − 𝓁

(
1

k − 𝓁

k∑

t=𝓁+1

Xt −
1

r − k

r∑

t=k+1

Xt

)
. (2)

Starting with (s, e) = (0, n), recursively repeating the above operation over the segments defined by the
thus-identified k◦, i.e. {s+1, … , k◦} and {k◦+1, … , e}, generates a complete solution path that attaches an order
of importance to {1, … , n − 1} as change point candidates; see Algorithm 1 in Appendix A for the pseudo code
of the WBS2 algorithm, and for how to to selects,e froms,e via deterministic sampling. Later in Section 3, we
further assume that {Zt}t∈Z follows an AR model. Under such a model, we may replace the CUSUM statistic with
the likelihood ratio test statistic but this tends to numerical instabilities since (i) the number of parameters to be
estimated is greater for the likelihood ratio test statistic, while our interest lies in detecting mean shifts only, and
(ii) the generation of the solution path involves computation of contrast statistics on short segments.

We denote by 0 the output generated by the WBS2: each element of 0 contains the triplet of the beginning
and the end of the interval and the break that returns the maximum contrast (measured as in (2)) at a particular
iteration, and the corresponding max-CUSUM statistic. The order of the sorted max-CUSUMs (in decreasing
order) provides a natural ordering of the candidate change points, which gives rise to the following solution path
 ∶=

{(
s(m), k(m), e(m),(m)

)
∶ m = 1, … ,P

}
, where

(m) ∶= |s(m) ,k(m),e(m)
| satisfying (1) ≥ (2) ≥ … ≥ (P) > 0; (3)

if (m) = 0 for some m ≤ |0|, then (s(m), k(m), e(m)) is not associated with any change point and thus such entries
are excluded from the solution path  .

The WCM principle provides a good basis for model selection, i.e. selecting the correct number of change
points. This is due to the iterative identification of the local split with the maximum contrast, which helps separate
the large max-CUSUMs attributed to mean shifts, from those which are not. In the next section, we propose how
to utilise the property of the solution path  generated according to the WCM principle.

2.2. Gappy Candidate Model Sequence Generation

The solution path  consists of a sequence of candidate change point models 1 ⊂ 2 ⊂ … with l ∶=
{k(1), … , k(l)}, which estimate the total number and locations of the mean shifts in ft. In this section, we propose
a ‘gappy’ candidate model sequence generation step which selects a subset of the above model sequence by dis-
carding candidate models that are not likely to be the final model. More specifically, by the construction of WBS2,
which iteratively identifies the local split of the data with the most contrast (max-CUSUM), we expect to observe a
large gap between the CUSUM statistics (m) computed over those intervals (s(m), e(m)) that contain change points
well within their interior, and the remaining CUSUMs. Therefore, for the purpose of model selection, we can
exploit this large gap in (m), 1 ≤ m ≤ P, or equivalently, in (m) ∶= log((m)); we later show that under some
assumptions on the size of changes and the level of noise, the large log-CUSUMs (m) attributed to change points
scale as log(n) while the rest scale as log log(n).

For the identification of the large gap in (1) ≥ · · · ≥ (P), the simplest approach is to look for the largest
difference (m) − (m+1). However, this largest gap may not necessarily correspond to the difference between the
max-CUSUMs attributed to mean shifts and spurious ones attributed to fluctuations in the errors, but simply be due
to the heterogeneity in the change points (i.e. some changes being more pronounced and therefore easier to detect
than others). Figure 1 illustrates this phenomenon where, due to the presence of mean shifts of heterogeneous
magnitudes, gaps as large as that between(q) and(q+1) are observed between(m) and(m+1) for m < q, although
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MULTIPLE CHANGE POINT DETECTION UNDER SERIAL DEPENDENCE 5

k(m) and k(m+1) for both detect true change points. Therefore, we identify the M largest gaps from(m) −(m+1), 1 ≤
m ≤ P − 1, and denote the corresponding indices by g1 < · · · < gM such that

(gl) − (gl+1) > (m) − (m+1) for all m ≠ gl, 1 ≤ l ≤ M.

This returns a sequence of nested models

∅ = Θ̂0 ⊂ Θ̂1 ⊂ · · · ⊂ Θ̂M ⊂ {0, … , n − 1} with Θ̂l ⧵ Θ̂l−1 ≠ ∅ ∀ l = 1, … ,M, (4)

with Θ̂l = Θ̂l−1 ∪ {k(gl−1+1), … , k(gl)}. Theorem 2.1 below shows that the model sequence in (4) contains one
which consistently detects all q change points with high probability, as is the case in the toy example given in
Figure 1. Typically, this gappy model sequence is much sparser than the sequence of all possible models from
the solution path and therefore, intuitively, makes our model selection task easier than if we worked with the
entire solution path of all nested models. We confirm this point numerically in the simulation studies reported in
Appendix D.

Figure 1. Top: a realisation from (M11) in Appendix D and the piecewise constant mean with q = 10 change points. Vertical

lines denote the change point estimators contained in the candidate model Θ̂4 which correctly estimates Θ. Bottom: (m),
m = 1, … , 22 (those associated with k(m) corresponding to the q change points are denoted by circles, the remainder by

crosses), along with the sequence of nested models Θ̂l, l = 1, … , 5

J. Time Ser. Anal. (2023) © 2023 The Authors. wileyonlinelibrary.com/journal/jtsa
DOI: 10.1111/jtsa.12722 Journal of Time Series Analysis published by John Wiley & Sons Ltd.
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6 H. CHO and P. FRYZLEWICZ

2.3. Theoretical Properties

Here, we establish the theoretical properties of the sequence of nested change point models obtained from combin-
ing WBS2 with the gappy model sequence generation outlined in Sections 2.1 and 2.2. The following assumptions
are respectively, on the distribution of {Zt}n

t=1 and the size of changes under H1 ∶ q ≥ 1.

Assumption 2.1. Let {Zt}n
t=1 be a sequence of random variables satisfying E(Zt) = 0 and Var(Zt) = 𝜎

2
Z with

𝜎Z ∈ (0,∞). Also, let P(n)→ 1 with 𝜁n satisfying
√

log(n) = O(𝜁n) and 𝜁n = O(log𝜅(n)) for some 𝜅 ∈ [1∕2,∞),
where

n =

{
max

0≤s<e≤n
(e − s)−1∕2

|||||

e∑

t=s+1

Zt

|||||
≤ 𝜁n

}
.

Remark 2.1. Assumption 2.1 permits {Zt}n
t=1 to have heavier tails than sub-Gaussian such as sub-exponential

or sub-Weibull (Vladimirova et al., 2020). Appendix G shows that linear time series with short-range depen-
dence and sub-exponential innovations satisfy the assumption, using the Nagaev-type inequality derived in Zhang
and Wu (2017). Similar arguments can be made with the concentration inequalities shown in Doukhan and Neu-
mann (2007) for weakly dependent time series fulfilling E(|Zt|k) ≤ (k!)𝜈Ck for all k ≥ 1 and some 𝜈 ≥ 0 and C > 0,
or in Merlevède et al. (2011) for geometrically strong mixing sequences with sub-exponential tails. Alternatively,
under the invariance principle, if there exists (possibly after enlarging the probability space) a standard Wiener
process W(⋅) such that

∑𝓁
t=1Zt−W(𝓁) = O(log𝜅

′ (𝓁)) a.s. with 𝜅′ ≥ 1, then Assumption 2.1 holds with 𝜁n ≍ log𝜅(n)
for any 𝜅 > 𝜅

′, where we denote by an ≍ bn to indicate that an = O(bn) and bn = O(an). Such invariance prin-
ciples have been derived for dependent data under weak dependence such as mixing (Kuelbs and Philipp, 1980)
and functional dependence measure (Berkes et al., 2014) conditions. The increase in 𝜁n due to strong serial cor-
relations or heavier tail behaviour, results in a stronger condition on the size of changes for their detection (see
Assumptions 2.2 below), as well as possible worsening of the accuracy in change point location estimation (see
Theorem 2.1 (i)).

Assumption 2.2. Let 𝛿j = min(𝜃j − 𝜃j−1, 𝜃j+1 − 𝜃j) and recall that f ′j = f
𝜃j+1 − f

𝜃j
for j = 1, … , q. Then,

max1≤j≤q |f ′j | = O(1). Also, there exists some c1 ∈ (0, 1) such that min1≤j≤q 𝛿j ≥ c1n, and for some 𝜑 > 0, we have
𝜁

2
n∕(min1≤j≤q (f ′j )

2
𝛿j) = O(n−𝜑).

Under Assumption 2.2, we assume that there are finitely many change points with the spacing between the
change points increasing linearly in n. A similar condition can be found in the literature addressing the problems
of change point detection in the presence of serial correlations, see e.g. in Zhao et al. (2022). The upper bound
on |f ′j | is a technical assumption made to distinguish the problem of detecting change points from that of outlier
detection, see Cho and Kirch (2021) for further discussions.

Theorem 2.1. Let Assumptions 2.1 and 2.2 hold. Suppose that Rn, the number of intervals at each iteration of
WBS2, satisfies

Rn ≥
9
8

⎛
⎜
⎜⎝

n
min
1≤j≤q

𝛿j

⎞
⎟
⎟⎠

2

+ 1. (5)

Then, on n, the following statements hold for n large enough and some c2 ∈ (0,∞).

(i) Let Θ̂[q] = {𝜃j, 1 ≤ j ≤ q ∶ 𝜃1 < · · · < 𝜃q} denote the set of q change point location estimators
corresponding to the q largest max-CUSUMs (m), 1 ≤ m ≤ q, obtained as in (3). Then, max1≤j≤q (f ′j )

2

|𝜃j − 𝜃j| ≤ c2𝜁
2
n .

wileyonlinelibrary.com/journal/jtsa © 2023 The Authors. J. Time Ser. Anal. (2023)
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MULTIPLE CHANGE POINT DETECTION UNDER SERIAL DEPENDENCE 7

(ii) The sorted log-CUSUMs (m) satisfy (m) = 𝛾m log(n)(1 + o(1)) for m = 1, … , q, while (m) ≤
𝜅m log log(n)(1 + o(1)) for m ≥ q + 1, where {𝛾m}

q
m=1 and {𝜅m}m≥q+1 are non-increasing sequences with

0 < 𝛾m ≤ 1∕2.

Theorem 2.1 (i) establishes that for the solution path  obtained according to the WCM principle, the entries
corresponding to the q largest max-CUSUMs contain the estimators of all q change points 𝜃j and further, the

localisation rate attained by 𝜃j is minimax optimal up to a logarithmic factor 𝜁 2
n (see e.g. Verzelen et al. (2020)).

Statement (ii) shows that the q largest log-CUSUMs are of order log(n) and are thus distinguished from the rest
of the log-CUSUMs bounded as O(log log(n)). In summary, Theorem 2.1 establishes that the sequence of nested
change point models (4) contains the consistent model Θ̂[q] as a candidate model provided that M is sufficiently
large. We emphasise that Theorem 2.1 is not (yet) a full consistency result for our complete change point estimation
procedure – this will be the objective of Section 3. Theorem 2.1 merely indicates that the solution path we obtain
contains the correctly estimated model, hence it is in principle possible to extract it with the right model selection
tool. Section 3 proposes such a tool.

3. MODEL SELECTION WITH GSA

Here, we discuss how to consistently estimate the number and the locations of change points by choosing an
appropriate change point model from the sequence of nested candidate models (4). We propose a new backward
elimination-type procedure, referred to as ‘gappy Schwarz algorithm’ (gSa), which makes use of the Schwarz
criterion constructed under a parametric assumption imposing an AR structure on {Zt}n

t=1. The novelty of gSa is
in the new way in which it applies Schwarz criterion, rather than in the formulation of the information criterion
itself. We show the usefulness of gSa when change point model selection is performed simultaneously with the
estimation of the serial dependence.

3.1. Schwarz Criterion in the Presence of AR Errors

We assume that {Zt}t∈Z in (1) is a stationary AR process of order p, i.e.

Zt =
p∑

i=1

aiZt−i + 𝜀t such that Xt = (1 − a(B))ft +
p∑

i=1

aiXt−i + 𝜀t, (6)

where a(B) =
∑p

i=1 aiB
i is defined with the backshift operator B. The innovations {𝜀t}n

t=1 satisfy E(𝜀t) = 0 and
Var(𝜀t) = 𝜎2

𝜀
∈ (0,∞), and are assumed to have no serial correlations; further assumptions on {𝜀t}n

t=1 are made in
Assumption 3.1. We denote by 𝜇◦j ∶= (1 −

∑p
i=1 ai)f𝜃j+1 the effective mean level over each interval 𝜃j + p + 1 ≤

t ≤ 𝜃j+1, for j = 0, … , q, and by dj = 𝜇
◦
j − 𝜇

◦
j−1 the effective size of the mean shift correspondingly. Also recall

that 𝛿j = min(𝜃j − 𝜃j−1, 𝜃j+1 − 𝜃j).
In the model selection procedure, we do not assume that the AR order p is known, and its data-driven choice is

incorporated into the model selection methodology as described later. For now, suppose that it is set to be some
integer r ≥ 0, and that a change point model is given by a set of candidate change point estimators  = {kj, 1 ≤
j ≤ m ∶ k1 < · · · < km} ⊂ {1, … , n}. Then, Schwarz criterion (Schwarz, 1978) is defined as

SC
(
{Xt}n

t=1,, r
)
= n

2
log

(
𝜎

2
n

(
{Xt}n

t=1,, r
))
+ (|| + r)𝜉n, (7)

where 𝜎2
n ({Xt}n

t=1,, r) denotes a measure of goodness-of-fit (its precise definition is given below), and a penalty
is imposed on the model complexity determined by both the AR order and the number of change points; the
requirement on the penalty parameter 𝜉n in relation to the distribution of {𝜀t}t∈Z is discussed in Assumption 3.4
below.

J. Time Ser. Anal. (2023) © 2023 The Authors. wileyonlinelibrary.com/journal/jtsa
DOI: 10.1111/jtsa.12722 Journal of Time Series Analysis published by John Wiley & Sons Ltd.
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8 H. CHO and P. FRYZLEWICZ

We adopt the residual sum of squares as 𝜎2
n ({Xt}n

t=1,, r), i.e.

𝜎
2
n ({Xt}n

t=1,, r) =
1
n
||Y − X𝜷||2, where Y = (X1, … ,Xn)⊤ and

X = X(, r) =

[
L(r)
⏟⏟⏟

n×r

R()
⏟⏟⏟

n×(m+1)

]
=

⎡
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢⎣

X0 · · · X1−r 1 0 0 · · · 0

⋮

Xk1−1 · · · Xk1−r 1 0 0 · · · 0

Xk1
· · · Xk1−r+1 0 1 0 · · · 0

⋮ ⋮

Xn−1 · · · Xn−r 0 0 0 · · · 1

⎤
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥⎦

. (8)

For notational convenience, we assume that X0, … ,X−r+1 are available and their means remain constant such that
E(Xt) = E(X1) for t ≤ 0; in practice, we can simply omit the first pmax observations when constructing Y and X
above, where pmax denotes a prespecified upper bound on the AR order. The matrix X is divided into the AR part
contained in L(r) and the deterministic part in R() for modelling mean shifts. We propose to obtain the estimator
of regression parameters denoted by 𝜷 = 𝜷(, r) = (�̂�(r)⊤, �̂�()⊤)⊤ via least squares estimation, where �̂�(r) ∈ Rr

denotes the estimator of the AR parameters and �̂�() ∈ R||+1 that of the segment-specific levels.
We select the typically unknown AR order p as follows: AR models of varying orders r ∈ {0, … , pmax}, are

fitted to the data from which we estimate p by

p̂ = p̂() = arg min
r∈{0,… ,pmax}

SC
(
{Xt}n

t=1,, r
)
. (9)

In our theoretical analysis, we fully address that the estimator p̂() is used rather than the true AR order p.

3.2. gSa: Sequential Model Selection

To demonstrate the main idea, we first address the simpler problem of determining between a given change point
model  and the null model without any change points, and then describe the full procedure for model selection
from a sequence of candidate models.

Suppose that the number and locations of mean shifts are consistently estimated by (a subset of)  in the
sense made clear in Assumption 3.2 below, which includes the case of no change point (q = 0) with the trivial
subset ∅ ⊂ . Then, the estimator 𝜷(, p̂) = (�̂�(p̂)⊤, �̂�()⊤)⊤ can be shown to estimate the AR parameters
sufficiently well with p̂ = p̂() returned by (9), and the criterion SC({Xt}n

t=1,, p̂) gives a suitable indicator of
the goodness-of-fit of the change point model  offset by the increased model complexity. On the other hand, if
any change point is ignored in fitting an AR model, the resultant AR parameter estimators over-compensate for
the under-specification of mean shifts. In our numerical experiments (reported in Appendix D.3), this often leads
to SC({Xt}n

t=1, ∅, p̂(∅)) having a smaller value than SC({Xt}n
t=1,, p̂) such that their direct comparison returns the

null model even though there are multiple change points present and detected by.
Instead, we propose to compare SC({Xt}n

t=1,, p̂) against

SC0

(
{Xt}n

t=1, �̂�(p̂)
)
∶= n

2
log

⎛
⎜
⎜
⎜⎝

‖‖‖(I −𝚷1)
(
Y − L(p̂)�̂�(p̂)

)‖‖‖
2

n

⎞
⎟
⎟
⎟⎠

+ p̂ 𝜉n,

where I −𝚷1 denotes the projection matrix removing the sample mean from the right-multiplied vector. By hav-
ing the plug-in estimator �̂�(p̂) from 𝜷(, p̂) in its definition, SC0 avoids the above-mentioned difficulty arising

wileyonlinelibrary.com/journal/jtsa © 2023 The Authors. J. Time Ser. Anal. (2023)
Journal of Time Series Analysis published by John Wiley & Sons Ltd. DOI: 10.1111/jtsa.12722
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MULTIPLE CHANGE POINT DETECTION UNDER SERIAL DEPENDENCE 9

when evaluating Schwarz criterion at a change point model that under-specifies the number of change points. We
conclude that the data is better described by the change point model if

SC0

(
{Xt}n

t=1, �̂�(p̂)
)
> SC({Xt}n

t=1,, p̂), (10)

and if the converse holds, we prefer the null model over the change point model.
This Schwarz criterion-based model selection strategy is extended to be applicable with a sequence of nested

change point models ∅ = Θ̂0 ⊂ Θ̂1 ⊂ · · · ⊂ Θ̂M as in (4) even when M > 1. Referred to as the gappy Schwarz
algorithm (gSa) in the remainder of the article, the proposed methodology performs a backward search along the
sequence from the largest model Θ̂l with l = M, sequentially evaluating whether the reduction in the goodness-of-fit
(i.e. increase in the residual sum of squares) by moving from Θ̂l to Θ̂l−1, is sufficiently offset by the decrease in
model complexity. More specifically, let s, e ∈ Θ̂l−1 ∪{0, n} denote two candidates satisfying {s+ 1, … , e− 1}∩
Θ̂l−1 = ∅, and suppose that = {s+ 1, … , e− 1} ∩ (Θ̂l ⧵ Θ̂l−1) is not empty (by definition, {s, e} ⊂ Θ̂l ∪ {0, n}).
In other words, contains candidate estimators detected within the local environment {s + 1, … , e − 1}, which
appear in Θ̂l but do not appear in the smaller models Θ̂l′ , l′ ≤ l − 1. Then, we compare SC({Xt}e

t=s+1,, p̂s∶e)
against SC0({Xt}e

t=s+1, �̂�s∶e(p̂s∶e)) as in (10), with the least squares estimator of the AR parameters �̂�s∶e(p̂s∶e) and
its dimension p̂s∶e obtained locally by minimising SC({Xt}e

t=s+1,, r) over r (see (9)). If SC({Xt}e
t=s+1,, p̂s∶e) <

SC0({Xt}e
t=s+1, �̂�s∶e(p̂s∶e)), the change point estimators in  are deemed as not being spurious; if this is the case

for all estimators in Θ̂l ⧵ Θ̂l−1, we return Θ̂l as the final model.
In our theoretical analysis, when q ≥ 1, we assume that there exists some 1 ≤ l∗ ≤ M such that

Θ̂l∗ correctly detects all change points and nothing else (see Assumption 3.2 below), which is guaranteed by
the gappy candidate model sequence generation method described in Section 2. Then with high probability,
we have SC({Xt}e

t=s+1,, p̂s∶e) < SC0({Xt}e
t=s+1, �̂�s∶e(p̂s∶e)) simultaneously in all local regions {s + 1, … , e}

overlapping with Θ̂l∗ ⧵ Θ̂l∗−1. On the other hand, when l > l∗, we expect to have SC({Xt}e
t=s+1,, p̂s∶e) ≥

SC0({Xt}e
t=s+1, �̂�s∶e(p̂s∶e)) in all such regions as they contain spurious estimators. Therefore, sequentially exam-

ining the nested change point models from the largest model Θ̂M , gSa returns Θ̂l∗ as the final model with high
probability. In its implementation, in the unlikely event of disagreement across the regions containing Θ̂l ⧵ Θ̂l−1,
we take a conservative approach and conclude that Θ̂l contains spurious estimators, and update l → l− 1 to repeat
the same procedure until some Θ̂l, l ≥ 1, is selected as the final model, or the null model Θ̂0 = ∅ is reached. The
full algorithmic description of gSa is provided in Appendix A.2.

In summary, gSa does not directly minimise Schwarz criterion but starting from the largest model, searches
for the first largest model Θ̂l in which all candidate estimators in Θ̂l ⧵ Θ̂l−1 are deemed important as described
above. By adopting SC0 for model comparison, it avoids evaluating Schwarz criterion at a candidate model that
under-estimates the number of change points (which may lead to loss of power). We show that gSa achieves model
selection consistency in the next section.

3.3. Theoretical Properties

For the theoretical analysis of gSa, we make a set of assumptions and remark on their relationship to those made
in Section 2.3. Assumption 3.1 is imposed on the stochastic part of model (6).

Assumption 3.1.

(i) The characteristic polynomial a(z) = 1 −
∑p

i=1aiz
i has all of its roots outside the unit circle |z| = 1.

(ii) {𝜀t}t∈Z is an ergodic and stationary martingale difference sequence with respect to an increasing sequence
of 𝜎-fields t, such that 𝜀t and Xt are t-measurable and E(𝜀t|t−1) = 0.

(iii) There exists some Δ > 0 such that supt E(|𝜀t|2+Δ|t−1) < ∞ a.s.

J. Time Ser. Anal. (2023) © 2023 The Authors. wileyonlinelibrary.com/journal/jtsa
DOI: 10.1111/jtsa.12722 Journal of Time Series Analysis published by John Wiley & Sons Ltd.
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10 H. CHO and P. FRYZLEWICZ

(iv) Let P(n) → 1 with 𝜔n satisfying
√

log(n) = O(𝜔n) and 𝜔2
n = O(min1≤j≤q 𝛿j), where 𝛿j = min(𝜃j − 𝜃j−1,

𝜃j+1 − 𝜃j) and

n =

{
max

0≤s<e≤n
(e − s)−1∕2|||

e∑

t=s+1

𝜀t
||| ≤ 𝜔n

}
.

Assumption 3.1 (i)–(iii) are taken from (Lai and Wei, 1982a, b, 1983), where the strong consistency in stochas-
tic regression problems is established. In particular, Condition (i) implies that {Zt}n

t=1 is a short-memory linear
process. The term 𝜔n in Condition (iv) gives a lower bound on the penalty parameter 𝜉n of Schwarz criterion, see
Assumption 3.4. Theorem 1.2A of De la Peña (1999) derives a Bernstein-type inequality for a martingale differ-
ence sequence satisfying E(|𝜀t|k) ≤ (k!∕2)ck

𝜀
E(𝜀2

t ) for all k ≥ 3 and some c
𝜀
∈ (0,∞), from which we readily

obtain 𝜔n ≍ log(n). Under a more stringent condition that {𝜀t}t∈Z is a sequence of i.i.d. sub-Gaussian random
variables, it suffices to set 𝜔n ≍

√
log(n) (e.g. see proposition 2.1 (a) of Cho and Kirch (2022)); Appendix G

considers i.i.d. sub-exponential {𝜀t}t∈Z for which 𝜔n ≍ log(n).

Remark 3.1. (Links between Assumptions 2.1, 2.2 and 3.1). Assumption 2.1 does not impose any parametric
condition on the dependence structure of {Zt}n

t=1. For linear, short memory processes (implied by Assump-
tion 3.1 (i)), Peligrad and Utev (2006) show that the invariance principle for the linear process is inherited from
that of the innovations. Then, as discussed in Remark 2.1, a logarithmic bound 𝜔n ≍ log𝜅(n) follows from∑𝓁

t=1𝜀t − W(𝓁) = O(log𝜅
′ (n)) for some 𝜅′ ∈ [1, 𝜅), which in turn leads to 𝜁n ≍ 𝜔n. In view of Assumptions 2.1

and 2.2, the condition that 𝜔2
n = O(min1≤j≤q 𝛿j) is a mild one.

We impose the following assumption on the sequence of nested candidate models Θ̂0 ⊂ · · · ⊂ Θ̂M , where
Θ̂l = {𝜃l,j, 1 ≤ j ≤ q̂l ∶ 𝜃l,1 < · · · < 𝜃l,q̂l

} for l ≥ 1. Recall that dj denotes the effective size of change defined
below (6).

Assumption 3.2. We assume that P(n) → 1 wheren denotes the following event: for a given penalty 𝜉n, we
have 𝜉n(min0≤j≤q̂M

(𝜃M,j+1 − 𝜃M,j))−1 = o(1) and q̂M = |Θ̂M| is fixed for all n. Additionally, there exists some 𝜌n ≥ 1
satisfying (min1≤j≤q d2

j 𝛿j)−1
𝜌n → 0, such that under H1 ∶ q ≥ 1, there exists l∗ ∈ {1, … ,M} with

q̂l∗ = q and max
1≤j≤q

d2
j
|||𝜃l∗,j − 𝜃j

||| ≤ 𝜌n. (11)

By Theorem 2.1, we have the condition (11) satisfied by the gappy model sequence generated as in (4) with
𝜌n ≍ 𝜁

2
n , where 𝜁n is defined in Assumption 2.1. We state this result as an assumption so that if gSa were to be

applied with an alternative solution path algorithm other than WBS2, its statistical guarantee is still applicable if
the latter satisfied Assumption 3.2. Since the serial dependence structure is learned from the data by fitting an AR
model to each segment, the requirement on the minimum spacing of the largest model Θ̂M is a natural one and it
can be hard-wired into the solution path generation step.

Assumption 3.3 is on the size of changes determined by the effective magnitude of the mean shift dj under (6)
and the distance between the change points 𝛿j, and Assumption 3.4 on the choice of the penalty parameter 𝜉n. In
particular, the choice of 𝜉n connects the detectability of change points with the level of noise remaining in the data
after accounting for the AR dependence structure.

Assumption 3.3. max1≤j≤q |dj| = O(1) and Dn ∶= min1≤j≤q d2
j 𝛿j →∞ as n → ∞.

Assumption 3.4. 𝜉n satisfies D−1
n 𝜉n = o(1) and 𝜉−1

n max(𝜔2
n, 𝜌n) = o(1).

By Assumption 3.1 (i), the effective mean shift size dj is of the same order as f ′j = f
𝜃j+1 − f

𝜃j
since

dj = (1 −
∑p

i=1ai)f ′j . Therefore, Assumption 3.3 on the detection lower bound formulated with dj, together with
Assumption 3.4, is closely related to Assumption 2.2 formulated with f ′j . In fact, we can select 𝜉n such that

wileyonlinelibrary.com/journal/jtsa © 2023 The Authors. J. Time Ser. Anal. (2023)
Journal of Time Series Analysis published by John Wiley & Sons Ltd. DOI: 10.1111/jtsa.12722
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MULTIPLE CHANGE POINT DETECTION UNDER SERIAL DEPENDENCE 11

Assumption 3.4 follows immediately from Assumption 2.2, recalling that the rate of localisation attained by the
latter is 𝜌n ≍ 𝜁 2

n and 𝜔n = O(𝜁n).

Theorem 3.1. Let Assumptions 3.1–3.4 hold. Then, on n∩n, gSa returns Θ̂ = {𝜃j, 1 ≤ j ≤ q̂ ∶ 𝜃1 < · · · < 𝜃q̂}
satisfying

q̂ = q and max
1≤j≤q

d2
j
|||𝜃j − 𝜃j

||| ≤ 𝜌n,

for n large enough.

Theorem 3.1 establishes that gSa achieves model selection consistency. Together, Theorems 2.1 and 3.1 lead
to the consistency of WCM.gSa, the methodology combining WCM-based gappy model sequence generation and
Schwarz criterion-based model selection steps. Once the number of change points and their locations are consis-
tently estimated, we can further improve the location estimators in Θ̂; Appendix B discusses a simple refinement
procedure which achieves the minimax optimal localisation rate.

4. NUMERICAL RESULTS

4.1. Simulation Results

Appendix C discusses in detail the choice of the tuning parameters for WCM.gSa. We investigate the perfor-
mance of WCM.gSa on simulated datasets, in comparison with DeCAFS (Romano et al., 2022), DepSMUCE
(Dette et al., 2020) and SNCP (Zhao et al., 2022) (the latter two applied with significance level 𝛼 = 0.05).
Here, we present the results from three representative settings and defer the descriptions of the full simulation
results (from 13 scenarios with varying n, change point and serial dependence structures) and the competing
methodologies to Appendix D, where we include DepSMUCE and SNCP applied with different choices of 𝛼
as well as MACE proposed in Wu and Zhou (2020). There, we also present additional numerical experiments
motivating the use of gappy candidate model sequence generation, and investigating the case of very strong
autocorrelations.

We generate 1000 realisations under each setting where 𝜀t ∼iid  (0, 1). In addition to when ft undergoes
mean shifts as described below, we also consider the case where ft remains constant to evaluate the size control
performance.

(M1) ft undergoes q = 5 change points at (𝜃1, 𝜃2, 𝜃3, 𝜃4, 𝜃5) = (100,300, 500,550, 750) with n = 1000 and(
f0, f

′
1 , f

′
2 , f

′
3 , f

′
4 , f

′
5

)
= (0, 1,−1, 2,−2,−1), and {Zt}t∈Z follows an MA(1) model Zt = 𝜀t + b1𝜀t−1 with

b1 = −0.9.
(M2) ft undergoes q = 5 change points 𝜃j as in (M1) with n = 1000 and

(
f0, f

′
1 , f

′
2 , f

′
3 , f

′
4 , f

′
5

)
= (0, 5,−3, 6,−7,−3),

and {Zt}t∈Z follows an ARMA(2, 6) model: Zt = 0.75Zt−1 − 0.5Zt−2 + 𝜀t + 0.8𝜀t−1 + 0.7𝜀t−2 + 0.6𝜀t−3 +
0.5𝜀t−4 + 0.4𝜀t−5 + 0.3𝜀t−6.

(M3) ft undergoes q = 15 change points at 𝜃j = ⌈nj∕16⌉ with n = 2000, where the level parameters f
𝜃j+1 are

generated uniformly as (−1)j ⋅ f
𝜃j+1 ∼iid  (1, 2) for each realisation. {Zt}t∈Z follows an AR(1) model:

Zt = a1Zt−1 +
√

1 − a2
1𝜀t with a1 = 0.9.

Table I summarises the simulation results; see Table D.1 in Appendix for the full results where the exact defi-
nitions of RMSE and dH can be found. Overall, across the various scenarios, WCM.gSa performs well both when
q = 0 and q ≥ 1. In particular, the proportion of the realisations where WCM.gSa detects spurious estimators in
the absence of any mean shift is close to 0. Controlling for the size, especially in the presence of serial correla-
tions, is a difficult task and as shown below, competing methods fail to do so by a large margin in some scenarios.
When q ≥ 1, WCM.gSa performs well in most scenarios according to a variety of criteria, such as model selec-
tion accuracy measured by |q̂ − q| or the localisation accuracy measured by dH . We highlight the importance of

J. Time Ser. Anal. (2023) © 2023 The Authors. wileyonlinelibrary.com/journal/jtsa
DOI: 10.1111/jtsa.12722 Journal of Time Series Analysis published by John Wiley & Sons Ltd.
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12 H. CHO and P. FRYZLEWICZ

Table I. We report the proportion of returning q̂ ≥ 1 when q = 0 (size) and the summary of estimated change points when
q > 1 according to the distribution of q̂ − q, relative MSE (RMSE) and the Hausdorff distance (dH) over 1000 realisations

q̂ − q

Model Method Size ≥ −3 −2 −1 0 1 2 3 ≤ RMSE dH

(M1) WCM.gSa 0.000 0.000 0.000 0.000 1.000 0.000 0.000 0.000 68.720 1.988
no gap 0.000 0.000 0.000 0.000 1.000 0.000 0.000 0.000 68.720 1.988

DepSMUCE 1.000 0.000 0.000 0.000 0.485 0.167 0.163 0.185 219.196 48.359
DeCAFS 0.064 0.000 0.006 0.029 0.742 0.148 0.053 0.022 304.694 26.274

SNCP 0.000 0.000 0.000 0.000 1.000 0.000 0.000 0.000 35.512 1.06
(M2) WCM.gSa 0.001 0.000 0.000 0.019 0.873 0.092 0.014 0.002 4.907 34.627

no gap 0.020 0.002 0.002 0.012 0.178 0.024 0.037 0.745 11.030 148.765
DepSMUCE 0.031 0.052 0.385 0.429 0.134 0.000 0.000 0.000 18.567 145.406

DeCAFS 0.099 0.006 0.035 0.137 0.773 0.049 0.000 0.000 3.891 61.517
SNCP 0.084 0.117 0.293 0.372 0.215 0.002 0.001 0.000 15.428 166.724

(M3) WCM.gSa 0.000 0.087 0.177 0.233 0.319 0.076 0.041 0.067 3.184 86.139
no gap 0.058 0.000 0.000 0.000 0.000 0.000 0.000 1.000 4.498 92.759

DepSMUCE 0.936 0.767 0.153 0.070 0.010 0.000 0.000 0.000 8.655 139.298
DeCAFS 0.565 0.000 0.004 0.019 0.755 0.203 0.017 0.002 1.065 19.751

SNCP 0.258 0.956 0.034 0.007 0.003 0.000 0.000 0.000 11.698 290.266

Note: Methods that control the size at 0.05, and that achieve the best performance when q > 1 according to different criteria, are highlighted
in bold for each scenario.

the gappy model sequence generation step of Section 2.2: see the results reported under ‘no gap’ which refers to
a procedure that omits this step from WCM.gSa and applies the Schwarz criterion-based model selection proce-
dure directly to the model sequence consisting of consecutive entries from the WBS2-generated solution path. It
suffers from having to perform a large number of model comparison steps and tends to over-estimate the number
of change points in some scenarios.

DepSMUCE occasionally suffers from a calibration issue; in order not to detect spurious change points, it
requires 𝛼 to be set conservatively but for improved detection power, a larger 𝛼 is better. In addition, the estimator
of the LRV proposed therein tends to under-estimate the LRV when it is close to zero as in (M1), or when there
are strong autocorrelations as in (M3), thus incurring a large number of falsely detected change points. Similar
sensitivity to the choice of 𝛼 is observable from SNCP. In addition, it tends to return spurious change point estima-
tors when q = 0 in the presence of strong autocorrelations as in (M3), while under-detecting change points when
q ≥ 1 in some scenarios.

DeCAFS operates under the assumption that {Zt}n
t=1 is an AR(1) process. Therefore, it is applied under model

mis-specification in some scenarios, but still performs reasonably well in not returning false positives. The
exception is (M3) where, in the presence of strong autocorrelations, it returns spurious estimators over 50% of real-
isations even though the model is correctly specified in this scenario. Its detection accuracy suffers under model
mis-specification in some scenarios such as (M1) and (M2) when compared to WCM.gSa, but DeCAFS tends to
attain good MSE.

4.2. Nitrogen Oxides Concentrations in London

NOx is a generic term for the nitrogen oxides that are the most relevant for air pollution, namely nitric oxide
(NO) and nitrogen dioxide (NO2). The main anthropogenic sources of NOx are mobile and stationary combustion
sources, and its acute and chronic health effects have been well-documented (Kampa and Castanas, 2008). We
analyse the daily average concentrations of NO2 and NOx measured (in 𝜇g∕m3) at Marylebone Road in London,
UK, from 1 September 2000 to 30 September 2020; the datasets were retrieved from Defra (https://uk-air.defra.

wileyonlinelibrary.com/journal/jtsa © 2023 The Authors. J. Time Ser. Anal. (2023)
Journal of Time Series Analysis published by John Wiley & Sons Ltd. DOI: 10.1111/jtsa.12722
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Figure 2. First (third) panel: daily average concentrations of NO2 (NOx) after transformation and de-trending, plotted together
with the change points detected by WCM.gSa (vertical lines) and estimated piecewise constant mean (bold lines). Sec-
ond (fourth) panel: autocorrelation function of transformed and de-trended NO2 (NOx) without (left) and with (right) the

time-varying mean adjusted

gov.uk/). The concentration measurements are positive integers and exhibit seasonality and weekly patterns as
well as distinguished behaviour on bank holidays, since road traffic is the principal outdoor source of NOx in a
busy London road. To correct for possible heavy-tailedness of the raw measurements, we take the square root
transform and further remove seasonal and weekly trends and bank holiday effects from the transformed data using
a model trained on the observations from January 2004 to December 2010; for details of the preprocessing steps,
see Appendix E.1. The resulting time series are plotted in Figure 2, where it is also seen that the thus-transformed
data exhibit persistent autocorrelations.

We analyse the transformed time series from NO2 and NOx concentrations for change points in the level, with the
tuning parameters for WCM.gSa chosen as recommended in Appendix C apart from M, the number of candidate
models considered; given the large number of observations (n = 7139), we allow for M = 10 instead of the default

J. Time Ser. Anal. (2023) © 2023 The Authors. wileyonlinelibrary.com/journal/jtsa
DOI: 10.1111/jtsa.12722 Journal of Time Series Analysis published by John Wiley & Sons Ltd.
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14 H. CHO and P. FRYZLEWICZ

Table II. Change points detected from the daily average concentrations of NO2 and NOx measured at Marylebone Road in
London from 1 September 2000 to 30 September 2020.

Method NO2 NOx

WCM.gSa 31 January 2003, 17 March 2007, 15 November 2007, 15 March 2001, 13 May 2018,
26 October 2008, 25 July 2010, 13 October 2018, 22 March 2019, 18 March 2020
30 March 2019, 18 March 2020

DepSMUCE 31 January 2003, 25 July 2010, 15 March 2001, 13 May 2018,
14 October 2018, 18 March 2020 18 March 2020

DeCAFS 5 February 2003, 11 December 2005, 17 December 2005 7 November 2001, 9 November 2001, 8 December 2005
25 April 2007, 5 May 2007, 10 December 2007 11 December 2005, 17 December 2005, 6 December 2008
3 March 2008, 4 March 2008, 8 September 2009 8 December 2008, 13 May 2018, 18 March 2020
20 September 2009, 20 October 2012, 27 October 2012
14 October 2018, 18 March 2020

Note: Any location estimators commonly detected from both NO2 and NOx concentrations (within 10 days from one another) by each method
are highlighted in bold. For DepSMUCE, parameterised by the significance level 𝛼, identical estimators are returned with either of 𝛼 ∈
{0.05, 0.2}.

choice M = 5. The change points detected by WCM.gSa are plotted in Figure 2. For comparison, we also report
the change points estimated by DepSMUCE and DeCAFS, see Table II.

Figure 2 shows that a good deal of autocorrelations remain in the data after removing the estimated mean shifts,
but the persistent autocorrelations are no longer observed. This supports the hypothesis that the (de-trended and
transformed) NO2 and NOx concentrations over the period in consideration, can plausibly be accounted for by
a model with short-range dependence and multiple mean shifts; we refer to Mikosch and Stărică (2004), Berkes
et al. (2006) Yau and Davis (2012) and Norwood and Killick (2018) for discussions on how weakly dependent
time series with mean shifts may appear as a long-range dependent time series. In Appendix E.2, we further
validate the set of change point estimators detected by WCM.gSa from the NO2 time series, by attempting to
remove the bulk of serial dependence from the data and then applying an existing procedure for change point
detection for uncorrelated data.

In February 2003, a programme of traffic management measures was introduced in central London including
the installation of particulate traps on most London buses and other heavy duty diesel vehicles, which convert NO
in the exhaust stream to NO2 and thus bring in the increase of primary NO2 emissions from such vehicles (Air
Quality Expert Group, 2004). This accounts for the prominent increase in the concentration of NO2 detected around
January 2003 by WCM.gSa (also by DepSMUCE and DeCAFS) which, however, is not observed from NOx, since
the latter contains the combined concentrations of NO and NO2. The two series share the common change point
detected at the end of March 2019 (not detected by DepSMUCE or DeCAFS). The Ultra Low Emission Zone in
central London was launched on 8 April 2019, which includes Marylebone Road where the measurements were
taken, and its introduction coincides with the decline in the concentrations of both NO2 and NOx. Another common
change point is detected on 18 March 2020 (also detected by DepSMUCE and DeCAFS) which confirms that
the nation-wide COVID-19 lockdown on 23 March 2020 led to the substantial reduction of NOx levels across the
country (Higham et al., 2021).
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