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Abstract
Detecting change points in data is challenging because of the range of possible types of change and types of 
behaviour of data when there is no change. Statistically efficient methods for detecting a change will depend 
on both of these features, and it can be difficult for a practitioner to develop an appropriate detection method 
for their application of interest. We show how to automatically generate new offline detection methods based 
on training a neural network. Our approach is motivated by many existing tests for the presence of a change 
point being representable by a simple neural network, and thus a neural network trained with sufficient data 
should have performance at least as good as these methods. We present theory that quantifies the error rate 
for such an approach, and how it depends on the amount of training data. Empirical results show that, even 
with limited training data, its performance is competitive with the standard cumulative sum (CUSUM) 
based classifier for detecting a change in mean when the noise is independent and Gaussian, and can 
substantially outperform it in the presence of auto-correlated or heavy-tailed noise. Our method also shows 
strong results in detecting and localizing changes in activity based on accelerometer data.
Keywords: automatic statistician, classification, likelihood-free inference, neural networks, structural breaks, 
supervised learning
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1 Introduction
Detecting change points in data sequences is of interest in many application areas such as bioinfor-
matics (Picard et al., 2005), climatology (Reeves et al., 2007), signal processing (Haynes et al., 2017), 
and neuroscience (Oh et al., 2005). In this work, we are primarily concerned with the problem of 
offline change-point detection, where the entire data is available to the analyst beforehand. Over 
the past few decades, various methodologies have been extensively studied in this area, see Killick 
et al. (2012), Jandhyala et al. (2013), Fryzlewicz (2014, 2023), Wang and Samworth (2018), 
Truong et al. (2020) and references therein. Most research on change-point detection has concen-
trated on detecting and localizing different types of change, e.g. change in mean (Fryzlewicz, 
2014; Killick et al., 2012), variance (Gao et al., 2019; Li et al., 2015), median (Fryzlewicz, 2021), 
or slope (Baranowski et al., 2019; Fearnhead et al., 2019), amongst many others.

Many change-point detection methods are based upon modelling data when there is no 
change and when there is a single change, and then constructing an appropriate test statistic 
to detect the presence of a change (e.g. Fearnhead & Rigaill, 2020; James et al., 1987). The 
form of a good test statistic will vary with our modelling assumptions and the type of change 
we wish to detect. This can lead to difficulties in practice. As we use new models, it is unlikely 
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that there will be a change-point detection method specifically designed for our modelling as-
sumptions. Furthermore, developing an appropriate method under a complex model may be 
challenging, while in some applications an appropriate model for the data may be unclear 
but we may have substantial historical data that shows what patterns of data to expect when 
there is, or is not, a change.

In these scenarios, currently a practitioner would need to choose the existing change detection 
method which seems the most appropriate for the type of data they have and the type of change 
they wish to detect. To obtain reliable performance, they would then need to adapt its implemen-
tation, for example tuning the choice of threshold for detecting a change. Often, this would involve 
applying the method to simulated or historical data.

To address the challenge of automatically developing new change detection methods, this paper 
is motivated by the question: Can we construct new test statistics for detecting a change based only 
on having labelled examples of change points? We show that this is indeed possible by training a 
neural network to classify whether or not a dataset has a change of interest. This turns change- 
point detection in a supervised learning problem.

A key motivation for our approach are results that show many common test statistics for detect-
ing changes, such as the CUSUM test for detecting a change in mean, can be represented by simple 
neural networks. This means that with sufficient training data, the classifier learnt by such a neural 
network will give performance at least as good as classifiers corresponding to these standard tests. 
In scenarios where a standard test, such as CUSUM, is being applied but its modelling assumptions 
do not hold, we can expect the classifier learnt by the neural network to outperform it.

There has been increasing recent interest in whether ideas from machine learning, and methods 
for classification, can be used for change-point detection. Within computer science and engineering, 
these include a number of methods designed for and that show promise on specific applications (e.g. 
Ahmadzadeh, 2018; De Ryck et al., 2021; Gupta et al., 2022; Huang et al., 2023). Within statistics, 
Londschien et al. (2022) and Lee et al. (2023) consider training a classifier as a way to estimate the 
likelihood-ratio statistic for a change. However, these methods train the classifier in an unsupervised 
way on the data being analysed, using the idea that a classifier would more easily distinguish be-
tween two segments of data if they are separated by a change point. Chang et al. (2019) use simu-
lated data to help tune a kernel-based change-detection method. Methods that use historical, 
labelled data have been used to train the tuning parameters of change-point algorithms (e.g. 
Hocking et al., 2015; Liehrmann et al., 2021). Also, neural networks have been employed to con-
struct similarity scores of new observations to learned pre-change distributions for online change- 
point detection (Lee et al., 2023). However, we are unaware of any previous work using historical, 
labelled data to develop offline change-point methods. As such, and for simplicity, we focus on the 
most fundamental aspect, namely the problem of detecting a single change. Detecting and localizing 
multiple changes is considered in Section 6 when analysing activity data. We remark that by viewing 
the change-point detection problem as a classification instead of a testing problem, we aim to control 
the overall mis-classification error rate (MER) instead of handling the Type I and Type II errors sep-
arately. In practice, asymmetric treatment of the two error types can be achieved by suitably re- 
weighting mis-classification in the two directions in the training loss function.

The method we develop has parallels with likelihood-free inference methods (Beaumont, 2019; 
Gourieroux et al., 1993) in that one application of our work is to use the ability to simulate from a 
model so as to circumvent the need to analytically calculate likelihoods. However, the approach we 
take is very different from standard likelihood-free methods which tend to use simulation to estimate 
the likelihood function itself. By comparison, we directly target learning a function of the data that can 
discriminate between instances that do or do not contain a change (though see Gutmann et al., 2018
for likelihood-free methods based on re-casting the likelihood as a classification problem).

For an introduction to the statistical aspects of neural network-based classification, albeit not 
specifically in a change-point context, see Ripley (1994).

We now briefly introduce our notation. For any n ∈ Z+, we define [n] := {1, . . . , n}. We take all 
vectors to be column vectors unless otherwise stated. Let 1n be the all-one vector of length n. Let 
1{ · } represent the indicator function. The vertical symbol | · | represents the absolute value or car-
dinality of · depending on the context. For vector x = (x1, . . . , xn)⊤, we define its p-norm as 
‖x‖p := (

n
i=1 |xi|

p)1/p, p ≥ 1; when p = ∞, define ‖x‖∞ := maxi|xi|. All proofs, as well as add-
itional simulations and real data analyses appear in the online supplementary material.
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2 Neural networks
The initial focus of our work is on the binary classification problem for whether a change point 
exists in a given time series. We will work with multi-layer neural networks with Rectified 
Linear Unit (ReLU) activation functions and binary output. The multi-layer neural network con-
sists of an input layer, hidden layers, and an output layer, and can be represented by a directed 
acyclic graph, see Figure 1. Let L ∈ Z+ represent the number of hidden layers and m = 
(m1, . . . , mL)⊤ the vector of the hidden layer widths, i.e. mi is the number of nodes in the ith 
hidden layer. For a neural network with L hidden layers, we use the convention that m0 = n 
and mL+1 = 1. For any bias vector b = (b1, b2, . . . , br)

⊤ ∈ Rr, define the shifted activation function 
σb : Rr → Rr:

σb((y1, . . . , yr)
⊤) = (σ(y1 − b1), . . . , σ(yr − br))

⊤, 

where σ(x) = max(x, 0) is the ReLU activation function. The neural network can be mathematic-
ally represented by the composite function h : Rn → {0, 1} as

h(x) := σ∗λ WLσbL
WL−1σbL−1

· · ·W1σb1
W0x, (1) 

where σ∗λ (x) = 1{x > λ}, λ > 0 and Wℓ ∈ Rmℓ+1×mℓ for ℓ ∈ {0, . . . , L} represent the weight matrices. 
We define the function class HL,m to be the class of functions h(x) with L hidden layers and width 
vector m.

The output layer in equation (1) employs the shifted heaviside function σ∗λ (x), which is used for 
binary classification as the final activation function. This choice is guided by the fact that we use 
the 0–1 loss, which focuses on the percentage of samples assigned to the correct class, a natural 
performance criterion for binary classification. Besides its wide adoption in machine learning prac-
tice, another advantage of using the 0–1 loss is that it is possible to utilise the theory of the Vapnik– 
Chervonenkis (VC) dimension (see, e.g. Shalev-Shwartz & Ben-David, 2014, Definition 6.5) to 
bound the generalization error of a binary classifier equipped with this loss; indeed, this is the ap-
proach we take in this work. The relevant results regarding the VC dimension of neural network 
classifiers are, e.g. in Bartlett et al. (2019). As in Schmidt-Hieber (2020), we work with the exact 
minimizer of the empirical risk. In both binary or multi-class classification, it is possible to work 
with other losses which make it computationally easier to minimise the corresponding risk, see, 
e.g. Bos and Schmidt-Hieber (2022), who use a version of the cross-entropy loss. However, loss 
functions different from the 0–1 loss make it impossible to use VC-dimension arguments to control 
the generalization error, and more involved arguments, such as those using the covering number 
(Bos & Schmidt-Hieber, 2022) need to be used instead. We do not pursue these generalizations in 
the current work.

Figure 1. A neural network with two hidden layers and width vector m = (4, 4).
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3 CUSUM-based classifier and its generalizations are neural networks
3.1 Change in mean
We initially consider the case of a single change point with an unknown location τ ∈ [n − 1], n ≥ 2, 
in the model

X = μ + ξ,

μ = (μL1{i ≤ τ} + μR1{i > τ})i∈[n] ∈ Rn, 

where μL, μR are the unknown signal values before and after the change point; ξ ∼ Nn(0, In). 
The CUSUM test is widely used to detect mean changes in univariate data. For the observation 

x, the CUSUM transformation C : Rn → Rn−1 is defined as C(x) := (v⊤
1 x, . . . , v⊤

n−1x)⊤, where vi := 

(
���
n−i
in



1⊤
i , −

������
i

(n−i)n


1⊤

n−i)
⊤ for i ∈ [n − 1]. Here, for each i ∈ [n − 1], (v⊤

i x)2 is the log likelihood-ratio 

statistic for testing a change at time i against the null of no change (e.g. Baranowski et al., 2019). 
For a given threshold λ > 0, the classical CUSUM test for a change in the mean of the data is defined 
as

hCUSUM
λ (x) = 1{‖C(x)‖∞ > λ}.

The following lemma shows that hCUSUM
λ (x) can be represented as a neural network.

Lemma 3.1 For any λ > 0, we have hCUSUM
λ (x) ∈ H1,2n−2.

The fact that the widely used CUSUM statistic can be viewed as a simple neural network has 
far-reaching consequences: this means that given enough training data, a neural network architec-
ture that permits the CUSUM-based classifier as its special case cannot do worse than CUSUM in 
classifying change-point vs. no-change-point signals. This serves as the main motivation for our 
work, and a prelude to our next results.

3.2 Beyond the mean change model
We can generalise the simple change in mean model to allow for different types of change or for 
non-independent noise. In this section, we consider change-point models that can be expressed as a 
change in regression problem, where the model for data given a change at τ is of the form

X = Zβ + cτϕ + Γξ, (2) 

where for some p ≥ 1, Z is an n × p matrix of covariates for the model with no change, cτ is an n × 1 
vector of covariates specific to the change at τ, and the parameters β and ϕ are, respectively, a p × 1 
vector and a scalar. The noise is defined in terms of an n × n matrix Γ and an n × 1 vector of in-
dependent standard normal random variables, ξ.

For example, the change in mean problem has p = 1, with Z a column vector of ones, and cτ 
being a vector whose first τ entries are zeros, and the remaining entries are ones. In this formula-
tion, β is the pre-change mean and ϕ is the size of the change. The change in slope problem 
(Fearnhead et al., 2019) has p = 2 with the columns of Z being a vector of ones, and a vector whose 
ith entry is i; and cτ has ith entry that is max{0, i − τ}. In this formulation, β defines the pre-change 
linear mean and ϕ the size of the change in slope. Choosing Γ to be proportional to the identity 
matrix gives a model with independent, identically distributed noise; but other choices would al-
low for auto-correlation.

The following result is a generalization of Lemma 3.1, which shows that the likelihood-ratio test 
for equation (2), viewed as a classifier, can be represented by our neural network.

Lemma 3.2 Consider the change-point model (2) with a possible change at τ ∈ [n − 1]. 
Assume further that Γ is invertible. Then there is an h∗ ∈ H1,2n−2 equivalent 
to the likelihood-ratio test for testing ϕ = 0 against ϕ ≠ 0.
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Importantly, this result shows that for this much wider class of change-point models, we can 
replicate the likelihood-ratio-based classifier for change using a simple neural network.

Other types of changes can be handled by suitably pre-transforming the data. For instance, 
squaring the input data would be helpful in detecting changes in the variance and if the data 
followed an AR(1) structure, then changes in auto-correlation could be handled by including trans-
formations of the original input of the form (xtxt+1)t=1,...,n−1. On the other hand, even if such trans-
formations are not supplied as the input, a neural network of suitable depth is able to approximate 
these transformations and consequently successfully detect the change (Schmidt-Hieber, 2020, 
Lemma A.2). This is illustrated in Figure S3 of the online supplementary material, where we com-
pare the performance of neural network-based classifiers of various depths constructed with and 
without using the transformed data as inputs.

4 Generalization error of neural network change-point classifiers
In Section 3, we showed that CUSUM and generalised CUSUM could be represented by a neural 
network. Therefore, with a large enough amount of training data, a trained neural network clas-
sifier that included CUSUM, or generalised CUSUM, as a special case, would perform no worse 
than it on unseen data. In this section, we provide generalization bounds for a neural network clas-
sifier for the change-in-mean problem, given a finite amount of training data. En route to this main 
result, stated in Theorem 4.3, we provide generalization bounds for the CUSUM-based classifier, 
in which the threshold has been chosen on a finite training dataset.

We write P(n, τ, μL, μR) for the distribution of the multivariate normal random vector 
X ∼ Nn(μ, In), where μ := (μL1{i ≤ τ} + μR1{i > τ})i∈[n]. Define η := τ/n. Lemma 4.1 and 
Corollary 4.1 control the mis-classification error of the CUSUM-based classifier.

Lemma 4.1 Fix ε ∈ (0, 1). Suppose X ∼ P(n, τ, μL, μR) for some τ ∈ Z+ and μL, μR ∈ R. 

(a) If μL = μR, then P{‖C(X)‖∞ >
������������
2 log (n/ε)


} ≤ ε.

(b) If |μL − μR|
���������
η(1 − η)


>

���������������
8 log (n/ε)/n


, then P{‖C(X)‖∞ ≤

������������
2 log (n/ε)


} 

≤ ε.
For any B > 0, define

Θ(B) := (τ, μL, μR) ∈ [n − 1] × R × R : |μL − μR|
���������
τ(n − τ)


/n ∈ {0} ∪ B, ∞

(  
.

Here, |μL − μR|
���������
τ(n − τ)


/n = |μL − μR|

���������
η(1 − η)


can be interpreted as the signal-to-noise ratio 

(SNR) of the mean change problem. Thus, Θ(B) is the parameter space of data distributions where 
there is either no change or a single change point in mean whose SNR is at least B. The following 
corollary controls the mis-classification risk of a CUSUM statistics-based classifier:

Corollary 4.1 Fix B > 0. Let π0 be any prior distribution on Θ(B), then draw (τ, μL, μR) ∼ 
π0 and X ∼ P(n, τ, μL, μR), and define Y = 1{μL ≠ μR}. For λ = B

��
n
√
/2, the 

classifier hCUSUM
λ satisfies

P(hCUSUM
λ (X) ≠ Y) ≤ ne−nB2/8.

Theorem 4.2 below, which is based on Corollary 4.1, Bartlett et al. (2019, Theorem 7) and 
Mohri et al. (2012, Corollary 3.4), shows that the empirical risk minimizer in the neural network 
class H1,2n−2 has good generalization properties over the class of change-point problems parame-
terised by Θ(B). Given training data (X(1), Y(1)), . . . , (X(N), Y(N)) and any h : Rn → {0, 1}, we de-
fine the empirical risk of h as

LN(h) :=
1
N

N

i=1

1{Y(i) ≠ h(X(i))}.

J R Stat Soc Series B: Statistical Methodology, 2024, Vol. 86, No. 2                                                     277
D

ow
nloaded from

 https://academ
ic.oup.com

/jrsssb/article/86/2/273/7517020 by guest on 11 July 2024

http://academic.oup.com/JRSSSB/article-lookup/doi/10.1093/jrsssb/qkae004#supplementary-data


Theorem 4.2 Fix B > 0 and let π0 be any prior distribution on Θ(B). We draw 
(τ, μL, μR) ∼ π0, X ∼ P(n, τ, μL, μR), and set Y = 1{μL ≠ μR}. Suppose that 
the training data D := ((X(1), Y(1)), . . . , (X (N), Y(N))) consist of independent 
copies of (X, Y) and hERM := arg minh∈H1,2n−2

LN(h) is the empirical risk 
minimizer. There exists a universal constant C > 0 such that for any 
δ ∈ (0, 1), equation (3) holds with probability 1 − δ.

P(hERM(X) ≠ Y ∣ D) ≤ ne−nB2/8 + C

��������������������������������
n2 log (n) log (N) + log (1/δ)

N



. (3) 

The theoretical results derived for the neural network-based classifier, here and below, all rely on 
the fact that the training and test data are drawn from the same distribution. However, we observe 
that in practice, even when the training and test sets have different error distributions, neural 
network-based classifiers still provide accurate results on the test set; see our discussion of 
Figure 2 in Section 5 for more details. The mis-classification error in equation (3) is bounded by 
two terms. The first term represents the mis-classification error of CUSUM-based classifier, see 
Corollary 4.1, and the second term depends on the complexity of the neural network class measured 
in its VC dimension. Theorem 4.2 suggests that for training sample size N ≫ n2 log n, a well-trained 
single hidden layer neural network with 2n − 2 hidden nodes would have comparable performance 
to that of the CUSUM-based classifier. However, as we will see in Section 5, in practice, a much 
smaller training sample size N is needed for the neural network to be competitive in the change- 
point detection task. This is because the 2n − 2 hidden layer nodes in the neural network represen-
tation of hCUSUM

λ encode the components of the CUSUM transformation ( ± v⊤
t x : t ∈ [n − 1]), 

which are highly correlated.
By suitably pruning the hidden layer nodes, we can show that a single hidden layer neural net-

work with O( log n) hidden nodes is able to represent a modified version of the CUSUM-based 
classifier with essentially the same mis-classification error. More precisely, let Q := ⌊log2 (n/2)⌋
and write T0 := {2q : 0 ≤ q ≤ Q} ∪ {n − 2q : 0 ≤ q ≤ Q}. We can then define

(a) (b)

(c) (d)

Figure 2. Plot of the test set mis-classification error rate, computed on a test set of size Ntest = 30,000, against 
training sample size N for detecting the existence of a change point on data series of length n = 100. We compare 
the performance of the CUSUM test and neural networks from four function classes: H1,m(1) , H1,m(2) , H5,m(1)15

, and 
H10,m(1)110

, where m(1) = 4⌊log2 (n)⌋ and m(2) = 2n − 2, respectively, under scenarios S1, S1 ′, S2, and S3 described in 
Section 5. (a) Scenario S1 with ρt = 0. (b) Scenario S1 ′with ρt = 0.7. (c) Scenario S2 with ρt ∼ Unif([0, 1]). (d) Scenario 
S3 with Cauchy noise.
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hCUSUM∗
λ∗ (X) = 1l{max

t∈T0

|v⊤
t X| > λ∗}.

By the same argument as in Lemma 3.1, we can show that hCUSUM∗
λ∗ ∈ H1,4⌊log2 (n)⌋ for any λ∗ > 0. 

The following theorem shows that high classification accuracy can be achieved under a weaker 
training sample size condition compared to Theorem 4.2.

Theorem 4.3 Fix B > 0 and let the training data D be generated as in Theorem 4.2. Let 
hERM := arg minh∈HL,m

LN(h) be the empirical risk minimizer for a neural 

network with L ≥ 1 layers and m = (m1, . . . , mL)⊤ hidden layer widths. 
If m1 ≥ 4⌊log2 (n)⌋ and mrmr+1 = O(n log n) for all r ∈ [L − 1], then there 
exists a universal constant C > 0 such that for any δ ∈ (0, 1), equation (4) 
holds with probability 1 − δ.

P(hERM(X) ≠ Y ∣ D) ≤ 2⌊log2 (n)⌋e−nB2/24

+ C

�������������������������������������

L2n log2 (Ln) log (N) + log (1/δ)
N



.

(4) 

Theorem 4.3 generalises the single hidden layer neural network representation in Theorem 4.2
to multiple hidden layers. In practice, multiple hidden layers help to keep the MER low even when 
N is small, see Section 5. Theorems 4.2 and 4.3 are examples of how to derive generalization errors 
of a neural network-based classifier in the change-point detection task. The same workflow can be 
employed in other types of changes, provided that suitable representation results of likelihood- 
based tests in terms of neural networks (e.g. Lemma 3.2) can be obtained. In a general result of 
this type, the generalization error of the neural network will again be bounded by a sum of the er-
ror of the likelihood-based classifier together with a term originating from the VC-dimension 
bound of the complexity of the neural network architecture.

We further remark that for simplicity of discussion, we have focused our attention on data mod-
els where the noise vector ξ = X − EX has independent and identically distributed normal compo-
nents. However, since CUSUM-based tests are available for temporally correlated or sub-Weibull 
data, with suitably adjusted test threshold values, the above theoretical results readily generalise to 
such settings. See Theorems S4 and S6 in the online supplementary material for more details.

5 Numerical study
We now investigate empirically our approach of learning a change-point detection method by train-
ing a neural network. Motivated by the results from the previous section, we will fit a neural net-
work with a single layer and consider how varying the number of hidden layers and the amount 
of training data affects performance. We will compare to a test based on the CUSUM statistic, 
both for scenarios where the noise is independent and Gaussian, and for scenarios where there is 
auto-correlation or heavy-tailed noise. The CUSUM test can be sensitive to the choice of threshold, 
particularly when we do not have independent Gaussian noise, so we tune its threshold based on 
training data.

When training the neural network, we first standardise the data onto [0, 1], i.e. 
x̃i = ((xij − xmin

i )/(xmax
i − xmin

i )) j∈[n], where xmax
i := max jxij, xmin

i := minj xij. This makes the neural 
network procedure invariant to either adding a constant to the data or scaling the data by a con-
stant, which are natural properties to require. We train the neural network by minimizing the 
cross-entropy loss on the training data. We run training for 200 epochs with a batch size of 32 
and a learning rate of 0.001 using the Adam optimizer (Kingma & Ba, 2015). These hyperpara-
meters are chosen based on a training dataset with cross-validation, more details can be found 
in Section 2 of the online supplementary material.

We generate our data as follows. Given a sequence of length n, we draw τ ∼ Unif{2, . . . , n − 2}, 

set μL = 0 and draw μR|τ ∼ Unif([ − 1.5b, − 0.5b] ∪ [0.5b, 1.5b]), where b :=
����������
8n log (20n)

τ(n−τ)



is chosen 
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in line with Lemma 4.1 to ensure a good range of SNRs. We then generate 
x1 = (μL1{t≤τ} + μR1{t>τ} + εt)t∈[n], with the noise (εt)t∈[n] following an AR(1) model with possibly 
time-varying auto-correlation εt|ρt = ξ1 for t = 1 and ρtεt−1 + ξt for t ≥ 2, where (ξt)t∈[n] are inde-
pendent, possibly heavy-tailed noise. The auto-correlations ρt and innovations ξt are from one of 
the four scenarios: 

S1: n = 100, N ∈ {100, 200, . . . , 700}, ρt = 0, and ξt ∼ N(0, 1).
S1′: n = 100, N ∈ {100, 200, . . . , 700}, ρt = 0.7, and ξt ∼ N(0, 1).
S2: n = 100, N ∈ {100, 200, . . . , 1,000}, ρt ∼ Unif([0, 1]), and ξt ∼ N(0, 2).
S3: n = 100, N ∈ {100, 200, . . . , 1,000}, ρt = 0, and ξt ∼ Cauchy(0, 0.3).

The above procedure is then repeated N/2 times to generate independent sequences x1, . . . , xN/2 

with a single change, and the associated labels are (y1, . . . , yN/2)⊤ = 1N/2. We then repeat 
the process another N/2 times with μR = μL to generate sequences without changes 
xN/2+1, . . . , xN with (yN/2+1, . . . , yN)⊤ = 0N/2. The data with and without change (xi, yi)i∈[N] 
are combined and randomly shuffled to form the training data. The test data are generated in a 
similar way, with a sample size Ntest = 30,000 and the slight modification that μR|τ ∼ 
Unif([ − 1.75b, − 0.25b] ∪ [0.25b, 1.75b]) when a change occurs. We note that the test data is 
drawn from the same distribution as the training set, though potentially having changes with 
SNRs outside the range covered by the training set. We have also conducted robustness studies 
to investigate the effect of training the neural networks on scenario S1 and test on S1′, S2, or 
S3. Qualitatively similar results to Figure 2 have been obtained in this mis-specified setting (see 
Figure S2 of the online supplementary material). We compare the performance of the 
CUSUM-based classifier with the threshold cross-validated on the training data with neural net-
works from four function classes: H1,m(1) , H1,m(2) , H5,m(1)15 

and H10,m(1)110
, where m(1) = 

4⌊log2 (n)⌋ and m(2) = 2n − 2, respectively (cf. Theorem 4.3 and Lemma 3.1). Figure 2 shows 
the test MER of the four procedures in the four scenarios S1, S1′, S2, and S3. We observe that 
when data are generated with independent Gaussian noise (Figure 2a), the trained neural networks 
with m(1) and m(2) single hidden layer nodes attain very similar test MER compared to the 
CUSUM-based classifier. This is in line with our Theorem 4.3. More interestingly, when noise 
has either auto-correlation (Figure 2b and c) or heavy-tailed distribution (Figure 2d), trained neur-
al networks with (L, m): (1, m(1)), (1, m(2)), (5, m(1)15), and (10, m(1)110) outperform the 
CUSUM-based classifier, even after we have optimised the threshold choice of the latter. In add-
ition, as shown in Figure S1 in the online supplementary material, when the first two layers of the 
network are set to carry out truncation, which can be seen as a composition of two ReLU opera-
tions, the resulting neural network outperforms the Wilcoxon statistics-based classifier (Dehling 
et al., 2015), which is a standard benchmark for change-point detection in the presence of heavy- 
tailed noise. Furthermore, from Figure 2, we see that increasing L can significantly reduce the aver-
age MER when N ≤ 200. Theoretically, as the number of layers L increases, the neural network is 
better able to approximate the optimal decision boundary, but it becomes increasingly difficult to 
train the weights due to issues such as vanishing gradients (He et al., 2016). A combination of these 
considerations leads us to develop deep neural network architecture with residual connections for 
detecting multiple changes and multiple change types in Section 6.  

6 Detecting multiple changes and multiple change types—case study
From the previous section, we see that single and multiple hidden layer neural networks can re-
present CUSUM or generalised CUSUM tests and may perform better than likelihood-based 
test statistics when the model is mis-specified. This prompted us to seek a general network archi-
tecture that can detect, and even classify, multiple types of change. Motivated by the similarities 
between signal processing and image recognition, we employed a deep convolutional neural net-
work (CNN) (Yamashita et al., 2018) to learn the various features of multiple change types. 
However, stacking more CNN layers cannot guarantee a better network because of vanishing gra-
dients in training (He et al., 2016). Therefore, we adopted the residual block structure (He et al., 
2016) for our neural network architecture. After experimenting with various architectures with 
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different numbers of residual blocks and fully connected layers on synthetic data, we arrived at a 
network architecture with 21 residual blocks followed by a number of fully connected layers. 
Figure S5 of the online supplementary material shows an overview of the architecture of the final 
general-purpose deep neural network for change-point detection. The precise architecture and 
training methodology of this network NN can be found in Section 3 of the online 
supplementary material. Neural architecture search approaches (see Paaß & Giesselbach, 2023, 
Section 2.4.3) offer principled ways of selecting neural architectures. Some of these approaches 
could be made applicable in our setting.

We demonstrate the power of our general purpose change-point detection network in a 
numerical study. We train the network on N = 10,000 instances of data sequences generated 
from a mixture of no change point in mean or variance, change in mean only, change in variance 
only, no-change in a non-zero slope, and change in slope only, and compare its classification per-
formance on a test set of size 2,500 against that of oracle likelihood-based classifiers (where we pre- 
specify whether we are testing for change in mean, variance or slope) and adaptive likelihood-based 
classifiers (where we combine likelihood-based tests using the Bayesian information criterion). 
Details of the data-generating mechanism and classifiers can be found in Section 2 of the online 
supplementary material. The classification accuracy of the three approaches in weak and strong 
SNR settings is reported in Table 1. We see that the neural network-based approach achieves simi-
lar classification accuracy as adaptive likelihood-based method for weak SNR and higher classifi-
cation accuracy than the adaptive likelihood-based method for strong SNR. We would not expect 
the neural network to outperform the oracle likelihood-based classifiers, as it has no knowledge of 
the exact change type of each time series.

We now consider an application to detecting different types of change. The HASC (Human 
Activity Sensing Consortium) project data contain motion sensor measurements during a sequence 
of human activities, including ‘stay’, ‘walk’, ‘jog’, ‘skip’, ‘stair up’, and ‘stair down’. Complex 
changes in sensor signals occur during transition from one activity to the next (see Figure 3). 
We have 28 labels in HASC data, see Figure S6 of the online supplementary material. To agree 
with the dimension of the output, we drop two dense layers ‘Dense(10)’ and ‘Dense(20)’ in 
Figure S5 of the online supplementary material. The resulting network can be effectively applied 
for change-point detection in sensory signals of human activities and can achieve high accuracy in 
change-point classification tasks (Figure S8 of the online supplementary material).

Finally, we remark that our neural network-based change-point detector can be utilised to de-
tect multiple change points. Algorithm 1 outlines a general scheme for turning a change-point clas-
sifier into a location estimator, where we employ an idea similar to that of MOSUM (Eichinger & 
Kirch, 2018) and repeatedly apply a classifier ψ to data from a sliding window of size n. Here, we 
require ψ applied to each data segment X∗[i,i+n) to output both the class label Li = 0 or 1 if no change 
or a change is predicted and the corresponding probability pi of having a change. In our particular 

example, for each data segment X∗[i,i+n) of length n = 700, we define ψ(X∗[i,i+n)) = 0 if NN(X∗[i,i+n)) 

Table 1. Test classification accuracy of oracle likelihood-ratio-based method (LRoracle), adaptive likelihood-ratio 
method (LRadapt), and our residual neural network (NN) classifier for set-ups with weak and strong signal-to-noise 
ratios (SNRs)

Weak SNR Strong SNR

LRoracle LRadapt NN LRoracle LRadapt NN

Class 1 0.9787 0.9457 0.8062 0.9787 0.9341 0.9651

Class 2 0.8443 0.8164 0.8882 1.0000 0.7784 0.9860

Class 3 0.8350 0.8291 0.8585 0.9902 0.9902 0.9705

Class 4 0.9960 0.9453 0.8826 0.9980 0.9372 0.9312

Class 5 0.8729 0.8604 0.8353 0.9958 0.9917 0.9147

Accuracy 0.9056 0.8796 0.8660 0.9924 0.9260 0.9672

Note. Data are generated as a mixture of no change point in mean or variance (Class 1), change in mean only (Class 2), 
change in variance only (Class 3), no-change in a non-zero slope (Class 4), and change in slope only (Class 5). We report 
the true positive rate of each class and the accuracy in the last row.
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predicts a class label in {0, 4, 8, 12, 16, 22} (see Figure S6 in the online supplementary material) 
and 1 otherwise. The thresholding parameter γ ∈ Z+ is chosen to be 1/2. Figure 4 illustrates the 
result of multiple change-point detection in HASC data which provides evidence that the trained 
neural network can detect both the multiple change types and multiple change points.

7 Discussion
Reliable testing for change points and estimating their locations, especially in the presence of mul-
tiple change points, other heterogeneities or untidy data, is typically a difficult problem for the ap-
plied statistician: they need to understand what type of change is sought, be able to characterise it 
mathematically, find a satisfactory stochastic model for the data, formulate the appropriate statis-
tic, and fine-tune its parameters. This makes for a long workflow, with scope for errors at its every 
stage.

In this paper, we showed how a carefully constructed statistical learning framework could auto-
matically take over some of those tasks and perform many of them ‘in one go’ when provided with 
examples of labelled data. This turned the change-point detection problem into a supervised learn-
ing problem, and meant that the task of learning the appropriate test statistic and fine-tuning its 
parameters was left to the ‘machine’ rather than the human user.

The crucial question was that of choosing an appropriate statistical learning framework. The key 
factor behind our choice of neural networks was the discovery that the traditionally used 
likelihood-ratio-based change-point detection statistics could be viewed as simple neural networks, 
which (together with bounds on generalization errors beyond the training set) enabled us to formu-
late and prove the corresponding learning theory. However, there are a plethora of other excellent 
predictive frameworks, such as XGBoost, LightGBM or Random Forests (Breiman, 2001; Chen & 
Guestrin, 2016; Ke et al., 2017) and it would be of interest to establish whether and why they could 
or could not provide a viable alternative to neural nets here. Furthermore, if we view the neural net-
work as emulating the likelihood-ratio test statistic, in that it will create test statistics for each pos-
sible location of a change and then amalgamate these into a single classifier, then we know that test 
statistics for nearby changes will often be similar. This suggests that imposing some smoothness on 
the weights of the neural network may be beneficial.

Figure 3. The sequence of accelerometer data in x, y, and z axes. From left to right, there are four activities: ‘stair 
down’, ‘stay’, ‘stair up’, and ‘walk’, their change points are 990, 1,691, 2,733, respectively marked by black solid 
lines. The grey rectangles represent the group of ‘no-change’ with labels: ‘stair down’, ‘stair up’, and ‘walk’. The red 
rectangles represent the group of ‘one change’ with labels: ‘stair down →stay’, ‘stay →stair up’, and ‘stair 
up →walk’.

Algorithm 1 Algorithm for change-point localization

Input: new data x∗1, . . . , x∗n∗ ∈ Rd, a trained classifier ψ : Rd×n → {0, 1}, γ > 0.

1 Form X∗[i,i+n) := (x∗i , . . . , xi+n−1) and compute Li ← ψ(X∗[i,i+n)) for all i = 1, . . . , n∗ − n + 1;

2 Compute L̅i ← n−1 i
j=i−n+1 Lj for i = n, . . . , n∗ − n + 1;

3 Let {[s1, e1], . . . , [sν̂, eν̂]} be the set of all maximal segments such that L̅i ≥ γ for all i ∈ [sr, er], r ∈ [ν̂];

4 Compute τ̂r ← arg maxi∈[sr ,er]L̅i for all r ∈ [ν̂];

Output: Estimated change-points τ̂1, . . . , τ̂ν̂
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A further challenge is to develop methods that can adapt easily to input data of different sizes, with-
out having to train a different neural network for each input size. For changes in the structure of the 
mean of the data, it may be possible to use ideas from functional data analysis so that we pre-process 
the data, with some form of smoothing or imputation, to produce input data of the correct length.

If historical labelled examples of change points, perhaps provided by subject-matter experts 
(who are not necessarily statisticians) are not available, one question of interest is whether simu-
lation can be used to obtain such labelled examples artificially, based on (say) a single dataset of 
interest. Such simulated examples would need to come in two flavours: one batch ‘likely contain-
ing no change points’ and the other containing some artificially induced ones. How to simulate 
reliably in this way is an important problem, which this paper does not solve. Indeed, we can en-
visage situations in which simulating in this way may be easier than solving the original unsuper-
vised change-point problem involving the single dataset at hand, with the bulk of the difficulty left 
to the ‘machine’ at the learning stage when provided with the simulated data.

For situations where there is no historical data, but there are statistical models, one can obtain 
training data by simulation from the model. In this case, training a neural network to detect a 
change has similarities with likelihood-free inference methods in that it replaces analytic calcula-
tions associated with a model by the ability to simulate from the model. It is of interest whether 
ideas from that area of statistics can be used here.

The main focus of our work was on testing for a single offline change point, and we treated lo-
cation estimation and extensions to multiple-change scenarios only superficially, via the heuristics 
of testing-based estimation in Section 6. Similar extensions can be made to the online setting once 
the neural network is trained, by retaining the final n observations in an online stream in memory 
and applying our change-point classifier sequentially. One question of interest is whether and how 
these heuristics can be made more rigorous: equipped with an offline classifier only, how can we 
translate the theoretical guarantee of this offline classifier to that of the corresponding location es-
timator or online detection procedure? In addition to this approach, how else can a neural net-
work, however complex, be trained to estimate locations or detect change points sequentially? 
In our view, these questions merit further work.
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Denoising diffusions are state-of-the-art generative models exhibiting remarkable empirical performance. They 
work by diffusing the data distribution into a Gaussian distribution and then learning to reverse this noising 
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1 Introduction
Given a set of samples from an unknown distribution pdata(x), generative modelling is the task of 
producing further synthetic samples coming from approximately the same distribution. Over the 
past decade, a variety of techniques have been developed to tackle this problem, including autore-
gressive models (Oord et al., 2016), generative adversarial networks (Goodfellow et al., 2014), vari-
ational autoencoders (Kingma & Welling, 2014), and normalizing flows (Rezende & Mohamed, 
2015). These methods have had significant success in generating perceptually realistic samples 
from complex data distributions, such as text and image data (Brown et al., 2020; Dhariwal & 
Nichol, 2021). A major motivation for the development of generative models is that they can be eas-
ily extended for Bayesian inference. In a typical setting, we make an observation ξ∗ based on under-
lying datapoint x, for example a category label or partial observation of x, and want to sample from 
the posterior distribution pdata(x ∣ ξ∗). We achieve this by learning a conditional generative model 
for x given any observation ξ based on samples from pdata(x, ξ). This approach is particularly useful 
in high-dimensional scenarios where traditional sampling methods, such as Markov chain Monte 
Carlo (MCMC) methods or approximate Bayesian computation (ABC), are typically infeasible.

Recently, denoising diffusion models (Ho et al., 2020; Sohl-Dickstein et al., 2015; Song et al., 
2021) have emerged as effective generative models for high-dimensional data. They work by incre-
mentally adding noise to the data to transform the data distribution into an easy-to-sample reference 
distribution, and then learning to invert the noising process, which is achieved using score matching 
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(Hyvärinen, 2005). Their use for inference has recently seen an explosion of applications, including 
text-to-speech generation (Popov et al., 2021), image inpainting and super-resolution (Saharia et al., 
2022; Song et al., 2021), and protein structure modelling (Trippe et al., 2023).

Most of the current methodology, theory, and applications of denoising diffusion models are for 
diffusion processes on Rd. However, many distributions of interest are defined on different spaces. 
Recently, De Bortoli et al. (2022) and Huang et al. (2022) have extended continuous-time methods 
and the analogy with score matching from Rd to general Riemannian manifolds in order to model 
data with strong geometric prior. Several diffusion methods have also been developed for discrete 
data, such as text, music, or graph structures (Austin et al., 2021; Campbell et al., 2022; 
Hoogeboom et al., 2021; Sun et al., 2023). Here though, the relationships to score matching, as 
well as between these various methods and the Euclidean diffusion case, are less clear. All these 
recent extensions have been somewhat ad hoc, with training objectives needing to be re-derived 
for each new application.

The main contribution of this paper is to provide a unifying framework for such models, which 
we call denoising Markov models, or DMMs. We demonstrate how to construct and train a DMM 
for data in any state space satisfying mild regularity conditions. This yields a principled procedure 
for using these models for unconditional generation and inference on a wider class of spaces than 
previously considered. Additionally this general framework leads to a principled extension of 
score matching to general spaces. Finally, we demonstrate the application of our framework on 
examples in continuous space, discrete space, for Riemmanian manifolds and on the simplex.

2 Background
A denoising diffusion model is a generative model consisting of two stochastic processes. The fixed 
noising process takes a data point x0 drawn from a data distribution q0 := pdata on state space X
and maps it stochastically to some xT ∈ X . The learned generative process takes xT ∈ X drawn 
according to some initial distribution p0 on X and maps it back stochastically to some x0 ∈ X . 
Throughout, we denote the marginals of the noising and generative processes by qt(x) and 
pt(x), respectively, for t ∈ [0, T].

The basic idea is to pick a noising process so that (qt)t≥0 converges to some easy-to-sample-from 
distribution qref, which we then take to be p0. We learn a generative process which approximates 
the time-reversal of the noising process. Then, we can generate approximate samples from q0 by 
sampling xT ∼ p0 and running the dynamics of the reverse process to produce a sample x0 ∼ pT , 
which should be close to q0.

2.1 Continuous-time denoising diffusion models on Rd

The framework for continuous-time diffusion models on Rd was first set out by Song et al. (2021). 
The noising process (Yt)t∈[0,T] evolves according to the stochastic differential equation (SDE)

dYt = b(Yt, t) dt + dBt, Y0 = x0 ∼ pdata, (1) 

for some chosen function b : Rd × [0, T]→ Rd, and standard Brownian motion B. With this set-up, the 
time-reversed process Xt = YT−t can be simulated by initializing X0 = xT ∼ qT and running the SDE

dXt = { − b(Xt, T − t) + ∇x log qT−t(Xt)} dt + dB̂t, (2) 

where qt(xt) denotes the marginals of the forward process and B̂ is another standard Brownian motion 
(Anderson, 1982). We typically choose our forward process to be an Ornstein–Uhlenbeck process, i.e. 
b(x, t) = −x/2, for which qT ≈ qref :=N (0, Id), the standard Gaussian distribution on Rd, for large T.

To simulate the reverse process, we must approximate ∇x log qt(x). We do this by fixing a para-
metric family of functions sθ(x, t), and then choosing the parameters θ to minimize the denoising 
score matching objective

IDSM(θ) =
1
2

∫T0 Eq0,t(x0,xt) ‖∇x log qt|0(xt|x0) − sθ(xt, t)‖2
 

dt, (3) 
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where q0,t(x0, xt) and qt∣0(xt ∣ x0) denote the joint and conditional distributions of the SDE (1). 
The conditional is available in closed-form for the Ornstein–Uhlenbeck process. This is sensible 
since IDSM is minimized when sθ(x, t) = ∇x log qt(x) for almost all x ∈ X and t ∈ [0, T] (Song 
et al., 2021). If our score estimate were exact and p0 = qT, then we would have pt = qT−t for all 
t ∈ [0, T]. In practice, we use a neural network to parameterize sθ(x, t) and use stochastic gradient 
descent to minimize IDSM(θ).

Once we have a score estimate sθ(x, t), we compute approximate samples from the reverse pro-
cess by running the approximate reverse process

dXt = { − b(Xt, T − t) + sθ(Xt, T − t)} dt + dB̂t (4) 

starting in X0 ∼ p0 and setting x0 = XT. In practice, we use suitable numerical integrators to simu-
late the approximate reverse process.

Alternatively, the objective IDSM can be derived from a lower bound on the model 
log-likelihood (also known as an evidence lower bound or ELBO) for qT(x), either using 
Girsanov’s theorem and the chain rule for Kullback–Leibler divergences (Song et al., 2021), or 
by combining the Fokker–Planck equation and Feynman–Kac formula with Girsanov’s theorem 
(Huang et al., 2021).

2.2 Diffusion models for inference
Denoising diffusions can also be used to sample approximately from a posterior pdata(x ∣ ξ∗) when we 
only have access to samples from the joint distribution pdata(x, ξ); see, e.g. Song et al. (2021). We first 
draw a sample (x0, ξ0) ∼ pdata, set Y0 = x0 and let (Yt)t∈[0,T] evolve according to equation (1). If we 
condition on ξ0, then the process Y has marginals qt(xt ∣ ξ0)= ∫ qt∣0(xt ∣ x0)pdata(x0 ∣ ξ0) dx0, where 
qt∣0(xt ∣ x0) is the transition kernel of the forward diffusion in equation (1). So, the time-reversed pro-
cess Xt = YT−t conditioned on ξ0 can be simulated by initializing X0 ∼ qT(· ∣ ξ0) and running the SDE

dXt = { − b(Xt, T − t) + ∇x log qT−t(Xt | ξ0)} dt + dB̂t. (5) 

If we have qT(· ∣ ξ) ≈ qref for all ξ and an approximation sθ(x, ξ, t) to ∇x log qt(x ∣ ξ), we can obtain 
approximate samples from q0(· ∣ ξ∗) = pdata(· ∣ ξ∗) for any given ξ∗ by initializing X0 ∼ p0 := qref, 
simulating the reverse dynamics in equation (5) with ∇x log qT−t(Xt ∣ ξ0) replaced by 
sθ(Xt, ξ∗, T − t), and setting x0 = XT. To learn sθ(x, ξ, t), we minimize

IDSM(θ) =
1
2

∫T0 Eq(x0,xt ,ξ0) ‖∇x log qt∣0(xt ∣ x0) − sθ(xt, ξ0, t)‖2
 

dt, 

where we denote q(x0, xt, ξ0) = pdata(x0, ξ0)qt∣0(xt ∣ x0). This objective is minimized when 
sθ(x, ξ, t) = ∇x log qt(x ∣ ξ) for almost all x ∈ X and t ∈ [0, T] (Song et al., 2021).

2.3 Score matching
The objective IDSM defined in equation (3) can also be interpreted as a score matching objective. 
Score matching was introduced as a method for fitting unnormalized probability distributions de-
fined on Rd by Hyvärinen (2005). It approximates a distribution q0(x) with a distribution of the 
form p(x; θ) = q(x; θ)/Z(θ) by minimizing

J (θ) =
1
2

Eq0(x) ‖∇x log q0(x) − ∇x log q(x; θ)‖2
 

, 

known as an explicit score matching loss. This objective is intractable since it depends on 
∇x log q0(x), but there are methods for rewriting it in an equivalent tractable form, including im-
plicit and denoising score matching (Hyvärinen, 2005; Vincent, 2011). Equation (3), which cor-
responds to denoising score matching, can also be written in explicit, implicit, or sliced score 
matching form (Huang et al., 2021).
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3 A general framework for DMMs
In this section, we set out a general framework for DMMs. First, we explain how to construct a 
DMM on an arbitrary state space with a forward noising process Y and backward generative pro-
cess X. Second, we derive an expression for the model likelihood in terms of an expectation over an 
auxiliary process Z, defined in terms of X and running forward in time. Third, we derive an ELBO 
by using Girsanov’s theorem to relate the expectation over Z to one over Y. Finally, we show how 
this ELBO can be used to get a tractable training objective. Our argument follows a similar struc-
ture to Huang et al. (2021), but we work in terms of generic Markov generators, rather than spe-
cific operators corresponding to diffusions on Rd, and so require generalizations of the stochastic 
process results therein. For simplicity, we present the framework for unconditional generation and 
then explain how to adapt it for inference.

3.1 Notation and set-up
Our data is assumed to be distributed according to pdata on a state space X . We assume only that X
comes with some reference measure ν, with respect to which all probability densities will be de-
fined, and satisfies some regularity conditions given in online supplementary Appendix B.1. 
This includes Rd, discrete spaces and Riemannian manifolds (with or without boundary).

Our DMM consists of a noising process (Yt)t∈[0,T] and a generative process (Xt)t∈[0,T], which are 
Markov processes. We consider Y fixed and learn X to approximate the reverse of Y. Initially, we 
must fix a class of processes to which X and Y belong and within which we will optimize X. The 
particular class and parameterization we choose will necessarily depend on X , but a typical choice 
for X = Rd would be a diffusion (see Example 1), while a typical choice when X is a finite discrete 
space may be a continuous-time Markov chain (CTMC) (see Example 2). Our notation is depicted 
in Figure 1.

As X and Y are not necessarily time-homogeneous, it is helpful to define the extended processes 
X and Y by for example setting Xt = XT for t ≥ T and letting X = (Xt, t)t≥0. Then X, Y are time- 
homogeneous Markov chains on the extended space S := X × [0, ∞).

In general, it is most convenient to define X and Y via the generators of X and Y, which we 
denote by K and L, respectively. Informally, the generator of a Markov process W with state 
space S is an operator A which acts on a subset D(A) of the space of functions f :S → R and sat-
isfies Af = lims→0(Psf − f )/s, where (Ps)s≥0 is the transition semi-group associated to W and 
Psf (x) = E f (Xs) ∣ X0 = x

 
. For a more formal definition, see online supplementary Appendix A.1.

We denote the time marginals of the processes X, Y by pt(x), qt(x), respectively. We make some 
smoothness assumptions on p, in online supplementary Appendix B.2, and assume that K, L sat-
isfy some regularity conditions, in online supplementary Appendix B.3. Our assumptions hold for 
standard models in the literature (Euclidean diffusions, CTMCs and manifold diffusions; see 
online supplementary Appendix F), plus some that are not covered previously, such as degenerate 
diffusions. For infinite-dimensional spaces, the assumptions of online supplementary Appendix B. 
1 may fail and more care is needed.

One consequence of our assumptions is that the operator K decomposes as K = ∂t + K̂, where K̂
operates only on the spatial variables of a function f. We can therefore view K̂ as an operator on 

Figure 1. Diagram of notation.

J R Stat Soc Series B: Statistical Methodology, 2024, Vol. 86, No. 2                                                     289
D

ow
nloaded from

 https://academ
ic.oup.com

/jrsssb/article/86/2/273/7517020 by guest on 11 July 2024

http://academic.oup.com/JRSSSB/article-lookup/doi/10.1093/jrsssb/qkae005#supplementary-data
http://academic.oup.com/JRSSSB/article-lookup/doi/10.1093/jrsssb/qkae005#supplementary-data
http://academic.oup.com/JRSSSB/article-lookup/doi/10.1093/jrsssb/qkae005#supplementary-data
http://academic.oup.com/JRSSSB/article-lookup/doi/10.1093/jrsssb/qkae005#supplementary-data
http://academic.oup.com/JRSSSB/article-lookup/doi/10.1093/jrsssb/qkae005#supplementary-data
http://academic.oup.com/JRSSSB/article-lookup/doi/10.1093/jrsssb/qkae005#supplementary-data
http://academic.oup.com/JRSSSB/article-lookup/doi/10.1093/jrsssb/qkae005#supplementary-data


functions from X , rather than on functions from S, and we denote by K̂∗ the adjoint of K̂ acting on 
functions on X (see online supplementary Appendix A.2).

Example 1 (Euclidean diffusion). If X and Y are diffusions on Rd given by the SDEs dXt = 
μ(Xt, t) dt + dB̂t and dYt = b(Yt, t) dt + dBt, where B and B̂ are Brownian mo-
tions, then the corresponding generators are K = ∂t + μ · ∇ + 1

2 Δ and 

L = ∂t + b · ∇ + 1
2 Δ, where Δ =

d
i=1

∂2

∂x2
i 

denotes the Laplacian. We then have 

K̂∗ = −μ · ∇ − (∇ · μ) + 1
2 Δ using integration by parts.

Example 2 (Discrete-space CTMC). If X and Y are CTMCs, then K = ∂t + A and 
L = ∂t + B, where A and B are the time-dependent generator matrices of X 
and Y. In this case, K̂∗ = AT, the transpose of A.

3.2 An expression for the model likelihood
We now derive an expression for the model likelihood pT(x). First, under our assumptions, a gen-
eralized form of the Fokker–Planck equation, stated precisely in online supplementary Appendix C, 
implies that ∂tp = K̂∗p for ν-almost every x ∈ X . Typically, the adjoint operator K̂∗ resembles the 
generator of another process in the same class as X and Y. We formalize this idea by making the 
following assumption.

Assumption 1 Let v(x, t) = pT−t(x). Then we can write the equation ∂tp = K̂∗p in the form 
Mv + cv = 0 for some function c :S → R, where M is the generator of an-
other auxiliary Feller process Z = (Zt, t)t≥0 on S.

Example 3 (Euclidean diffusion). For Euclidean diffusions, the Fokker–Planck equation 
can be written as ∂tv = μ · ∇v + (∇ · μ)v − 1

2 Δv. Assumption 1 is satisfied with 
c = −(∇ · μ) and M = ∂t − μ · ∇ + 1

2 Δ, noting that M is the generator of the dif-
fusion process Z defined by dZt = −μ(Zt, T − t) dt + dB′t, where B′ is a 
Brownian motion.

Example 4 (Discrete-space CTMC). In the CTMC case, if cx =


y∈X Ayx and 
Dxy = Ayx − cx1x=y, then M = ∂t + D is the generator of a CTMC and 
Assumption 1 is satisfied. Here c has a natural interpretation as a ‘discrete 
divergence’.

In general, we make two smoothness assumptions on c and v, given in online supplementary 
Appendix B.4.

Given the Fokker–Planck equation and Assumption 1, we apply a generalized form of the 
Feynman–Kac Theorem (see online supplementary Appendix C) to Z and v to get the following 
expression for the model likelihood, which generalizes that of Huang et al. (2021):

pT(x) = v(x, 0) = E p0(ZT)exp ∫T0 c(Zs, s) ds
 

∣ Z0 = x
 

. (6) 

This gives an expression in terms of an expectation over the auxiliary process Z. We next make this 
tractable by converting it into an expectation over Y.

3.3 Deriving a tractable lower bound on the model log-likelihood
We would like to train our model by finding a reverse process X which maximizes the likelihood in 
equation (6). Unfortunately this expression is intractable, but we can find a tractable lower bound 
for log pT(x) which can then be used as a surrogate objective.
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By taking logarithms in equation (6) and applying Jensen’s inequality, we get

log pT(x) ≥ EQ log
dP

dQ
+ log p0(YT)+ ∫T0 c(Ys, s) ds ∣ Y0 = x

 

=: E∞, (7) 

where P and Q are the path measures of the processes Z and Y, respectively, and dP
dQ 

denotes the 
Radon–Nikodym derivative.

To write E∞ in a tractable form, we need to evaluate log dP
dQ

, which we do using a generalization 
of Girsanov’s theorem. To apply this result, we require that the generators of the auxiliary process 
and the noising process are related in the following way.

Assumption 2 There is a bounded measurable function β :S → (0, ∞) such that 
β−1Mf = L(β−1f ) − fL(β−1) for all f : S→ R such that f ∈ D(M) and 
β−1f ∈ D(L).

Since M is defined in terms of K, we think of Assumption 2 as forcing a particular parameter-
ization of the generative process in terms of β. In general, not every generative process in the 
same class as L will have such a parameterization. However, the true time-reversal of L can al-
ways be parameterized in this way with β(x, t) = pt(x), so this parameterization is sufficient to 
capture the optimal generative process. In addition, the objective in Theorem 1 below can often 
be interpreted and used for a much broader set of generative processes than those which satisfy 
Assumption 2.

Under Assumption 2, along with a further technical assumption given in online supplementary 
Appendix B.5, we may apply a generalized form of Girsanov’s Theorem (see online supplementary 
Appendix C), and take α = β−1 in Theorem 6 and Dynkin’s formula (see online supplementary 
Appendix A.1) to get

log
dP

dQ
= ∫T0 −L log β(Ys, s) − β(Ys, s)L(β−1)(Ys, s)

 
ds + Q-martingale.

In addition, we get that c = βL(β−1) − v−1βL(β−1v) by combining Assumption 2 with f = v and 
Assumption 1. This allows us to rewrite the ELBO from equation (7) as

E∞ = EQ log p0(YT)− ∫T0
L(β−1v)

β−1v
+ L log β



ds
 





Y0 = x

 

.

The final step required to get a tractable expression for E∞ is to remove the function v from this 
expression. For this, we use the following lemma (see online supplementary Appendix D).

Lemma 1 Let the generator L and the functions β and c be as above. Then, we have 
v−1βL(β−1v) + L log β = β−1L̂∗β + L̂ log β.

Theorem 1 For DMMs as in Sections 3.1–3.3, the log-likelihood is lower bounded by

E∞ = EQ[ log p0(YT) ∣ Y0 = x]− ∫T0 EQ

L̂∗β
β

+ L̂ log β






Y0 = x

 

ds. (8) 

This result extends the corresponding expression for Rd in Huang et al. (2021). We see the 
ELBO consists of a term representing the log-likelihood under the reference distribution and an 
implicit score matching term arising from the change in measure.
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3.4 Finding suitable training objectives
Based on Theorem 1, we fit our generative model by maximizing the expectation of E∞ with 
respect to pdata. This is equivalent to minimizing the objective

I ISM(β)= ∫T0 Eqt(xt)
L̂∗β(xt, t)

β(xt, t)
+ L̂ log β(xt, t)

 

dt, (9) 

which we call the implicit score matching objective, since it can be interpreted as an extension of 
implicit score matching from Rd (see Section 4 below for more intuition).

Since qt and L̂ are determined by the noising process, which is known and assumed easy to sam-
ple from, I ISM(β) and its gradient with respect to β can be estimated in an unbiased fashion. Since β 
parameterizes M via Assumption 2, and thus K through Assumption 1, minimizing I ISM(β) over β 
is equivalent to learning the generative process.

We also have an equivalent denoising score matching objective (see online supplementary 
Appendix E),

IDSM(β)= ∫T0 Eq0,t(x0,xt)
L(q·∣0(· ∣ x0)/β( · , · ))(xt, t)

qt∣0(xt ∣ x0)/β(xt, t)
− L log (q·∣0(· ∣ x0)/β( · , · ))(xt, t)

 

dt. (10) 

Both objectives are minimized when β(x, t) ∝ qt(x), as shown in Proposition 1. IDSM(β) can be in-
terpreted as quantifying the difference between qt∣0(xt ∣ x0) and β(xt, t) via the score matching op-
erator Φ(f ) = f −1Lf − L log f introduced in Section 4 below. These objectives also generalize the 
following previously studied instances of diffusion models. For all derivations and remarks on 
the choice of parameterization, see online supplementary Appendix F.

Example 5 (Euclidean diffusion). In the setting of Example 1, Assumption 2 reduces to 
∇ log β = b + μ, and we have f −1Lf − L log f = 1

2 ‖∇ log f‖2. If we substitute 
sθ(xt, t) = ∇ log β(xt, t), IDSM(β) defined in equation (10) reduces to equation 
(3) and the reverse process is parameterized as in equation (4). We thus re-
cover the results of Song et al. (2021) and Huang et al. (2021).

Example 6 (Discrete-space CTMC). In the setting of Example 2, Assumption 2 reduces to 
Ayx = β(x, t)

β(y, t) Bxy for all x ≠ y. We may rewrite I ISM in terms of A to recover the 
objective of Campbell et al. (2022),

I ISM(A)= ∫T0 Eqt(xt) −Axtxt −


y≠xt

Bxty log Ayxt

 

dt + const.

Example 7 (Riemannian manifolds). If X is a Riemannian manifold and we take 
K = ∂t + μ · ∇ + 1

2 Δ, L = ∂t + b · ∇ + 1
2 Δ, where Δ is the Laplace–Beltrami 

operator associated to X , and perform the reparameterization 
sθ(xt, t) = ∇ log β(xt, t), then we recover the framework for training diffusion 
models on Riemannian manifolds given in De Bortoli et al. (2022) and Huang 
et al. (2022).

3.5 Inference
To use DMMs for inference, we follow a similar procedure to Section 2.2. To noise a sample 
(x0, ξ0) ∼ pdata, we set Y0 = x0 and let Y evolve according to L. To generate x0 conditioned on 
an observation ξ∗, we use a generative process Xξ∗ conditioned on ξ∗. We parameterize Xξ∗ in 
terms of a function β(xt, ξ∗, t) which now takes ξ∗ as an input.

We aim to learn Xξ∗ to approximate the time-reversal of Y conditioned on ξ∗. The following ex-
tension of Theorem 1 (proved in online supplementary Appendix D) gives us a way to do this.
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Theorem 2 With the above set-up, minimizing the objective

IDSM(β)= ∫T0 Eq(x0,xt,ξ0)

L(q·∣0(· ∣ x0)/β( · , ξ0, · ))(xt, t)
qt∣0(xt ∣ x0)/β(xt, ξ0, t)

−L log(q·∣0(· ∣ x0)/β( · , ξ0, · ))(xt, t)
 

dt 

is equivalent to maximizing a lower bound on the expected model 
log-likelihood.

Theorem 2 suggests that we may train conditional DMMs by maximizing the objective IDSM(β) 
(or the equivalent I ISM(β) objective). Since qt∣0(xt ∣ x0) is known, we may do this by calculating an 
empirical estimate for IDSM(β) based on samples (x0, ξ0) drawn from pdata and minimizing over β. 
Then, we generate samples from pdata(x0 ∣ ξ∗) by initializing Xξ∗

0 ∼ p0, simulating the reverse pro-
cess with generator K parameterized by β = β( · , ξ∗, · ), and setting x0 = Xξ∗

T .

4 Score matching on general state spaces
When X and Y are Euclidean diffusions, the objective IDSM(β) in equation (10) becomes the score 
matching objective in equation (3). Similarly, the objective I ISM(β) from equation (9) reduces to 
the implicit score matching objective introduced by Hyvärinen (2005). This suggests we can 
view equations (9) and (10) as generalizations of score matching objectives to arbitrary state 
spaces.

Given state space X on which we have a Markov process generator L and an unknown distri-
bution q0(x) we wish to approximate, the corresponding generalized implicit score matching 
method learns an approximation φ(x) to q0(x) by minimizing

J ISM(φ) = Eq0(x)
L̂∗φ(x)

φ(x)
+ L̂ log φ(x)

 

.

We can show that J ISM is equivalent to the generalized explicit score matching objective

J ESM(φ) = Eq0(x)
L(q0/φ)(x)
(q0(x)/φ(x))

− L log (q0/φ)(x)
 

.

In addition, we define the corresponding generalized denoising score matching method, which 
learns an approximation φτ(xτ) to the noised distribution qτ(xτ), formed by sampling x0 ∼ q0(·) 
and xτ ∼ qτ∣0(· ∣ x0), where qτ∣0 is the transition probability associated to L run for time τ. It 
does this by minimizing the objective

J DSM(φτ) = Eq0,τ(x0,xτ)
L(qτ∣0(· ∣ x0)/φτ(·))(xτ)

qτ∣0(xτ ∣ x0)/φτ(xτ)
− L log (qτ∣0(· ∣ x0)/φτ(·))(xτ)

 

.

JDSM is equivalent to both J ISM and J ESM when used to learn the smoothed distribution qτ(xτ) 
(see online supplementary Appendix E). All three objectives extend the corresponding score 
matching objectives introduced for Rd by Hyvärinen (2005) and Vincent (2011). They also coin-
cide with the extension of score matching for Riemannian manifolds of Mardia et al. (2016).

To illustrate further intuitions behind our objective functions, we define the score matching op-
erator Φ(f ) = f −1Lf − L log f . Note that the time component of Φ cancels, so we can view it as an 
operator on X . With this notation, the generalized explicit score matching objective becomes 
J ESM(φ) = Eq0(x) Φ(q0/φ)(x)

 
. For Euclidean diffusions, Φ(f ) = 1

2 ‖∇ log f‖2 (see Example 5). In 
the general case, we view Φ(f ) as measuring the magnitude of a logarithmic gradient of f. We in-
terpret the objectives J DSM and J ESM as trying to fit φ to q0 by minimizing this logarithmic gra-
dient of the ratio q0/φ.
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Proposition 1 Let Y be a Feller process with semi-group operators (Qt)t≥0, generator L
and associated score matching operator Φ. Then: 

(a) Φ(f ) ≥ 0 for all f in the domain of Φ, with equality if f is constant;
(b) for any probability measures π1, π2 on X and t ≥ 0,

d
dt

KL(π1Qt‖π2Qt) = −Eπ1Qt Φ
d(π1Qt)
d(π2Qt)

  

, 

where KL(π1Qt‖π2Qt) denotes the Kullback–Leibler divergence be-
tween π1Qt and π2Qt.

Proposition 1(a) shows that Φ is always non-negative, so J ESM is minimized if φ(x) ∝ q0(x). Thus, 
minimizing any of our generalized score matching objectives should typically correspond to learning 
an approximation to q0. Note though that if Qt is not ergodic and π1, π2 are different invariant dis-
tributions of Qt then Proposition 1(b) implies that Φ(dπ1/dπ2) = 0 π1-a.e., even though dπ1/dπ2 is not 
constant. This suggests that generalized score matching may fail if the noising process is not ergodic. 
Proposition 1(b) was proved for score matching on Rd by Lyu (2009). It suggests we can interpret 
score matching as finding an approximation φ which minimizes the decrease in KL divergence be-
tween q0 and φ caused by adding an infinitesimal amount of noise to both according to L.

Our generalized score matching methods give a principled way to extend score matching to fit 
unnormalized probability distributions on arbitrary spaces. Other extensions of score matching 
have been explored, including to arbitrary sub-domains of Rd (Yu et al., 2022), ratio matching 
(Hyvärinen, 2007) and marginalization with generalized score matching (Lyu, 2009). However, 
these methods lack the generality of our framework and do not respect the intuition coming 
from Rd that Proposition 1(b) should hold. There are also many other density estimation methods 
that seek to learn ratios of density functions, including noise-contrastive estimation, which also 
approximates score matching under certain conditions (Gutmann & Hirayama, 2011).

5 Relationship to discrete time models
Denoising diffusion models were originally introduced in discrete time by Sohl-Dickstein et al. 
(2015). In this setting, the noising and generative processes are Markov chains x0:T = (xtk

)N
k=0 ob-

served at a sequence of times 0 = t0 < t1 < · · · < tN = T, with fixed forwards transition kernel 
q̃(xtk

∣ xtk−1
) and learned backwards kernel p̃θ(xtk−1

∣ xtk
). To fit discrete time diffusion models, 

Sohl-Dickstein et al. (2015) minimize the following Kullback–Leibler divergence with respect to θ:

KL(q̃(x0:T)‖p̃θ(x0:T)) =
N

k=1

Eq̃(xtk−1
,xtk

) log
q̃(xtk ∣ xtk−1 )
p̃θ(xtk−1 ∣ xtk )

 

+ const. (11) 

Given any DMM with generators K, L and marginals pt, qt as in Section 3, we define its natural 
discretization to be the discrete-time model with q̃(xtk ∣ xtk−1 ) = qtk|tk−1 (xtk |xtk−1 ) and 
p̃θ(xtk−1 ∣ xtk ) = pT−tk−1|T−tk

(xtk−1 |xtk ). Then, the Kullback–Leibler divergence (11) for the natural dis-
cretization can be viewed as a first-order approximation to I ISM for the continuous-time model.

Lemma 2 Suppose X, Y are fixed generative and noising processes with marginals p, q as 
in Section 3, and suppose that they are related as in Assumptions 1 and 2 for 
some sufficiently regular function β. Then for any 0 < s < t < T with γ = t − s,

γ Eqs(xs)
L̂∗β

β
+ L̂ log β

 

= Eqs,t(xs,xt) log
qt∣s(xt ∣ xs)

pT−s∣T−t(xs ∣ xt)

 

+ o(γ).

Applying this lemma on each interval [tk, tk+1], we get the following theorem.

Theorem 3 For any DMM, the objective (11) for its natural discretization is equivalent to 
the natural discretization of I ISM to first order in γ = maxk=0,...,N−1 |tk+1 − tk|.
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This theorem generalizes to arbitrary state spaces a result of Ho et al. (2020), which demon-
strated the equivalence of minimizing (11) and the score matching objective for Euclidean state 
spaces. For the proofs of Lemma 2 and Theorem 3, see online supplementary Appendix H.

Lemma 2 also implies a general equivalence between one-step denoising autoencoders and score 
matching. Vincent (2011) discussed this equivalence for autoencoders using Gaussian noise in Rd, 
but our methods allow us to extend this correspondence to arbitrary state spaces and noising proc-
esses. For more details, see online supplementary Appendix I.

6 Experiments
We now present experiments demonstrating DMMs on several tasks and data spaces, for uncondi-
tional generation and conditional simulation. All details are in online supplementary Appendix J.

6.1 Inference on Rd using diffusion processes
First, we use diffusion processes in Rd to perform approximate Bayesian inference for real-valued 
parameters. We consider pdata(ξ ∣ x) =

N
i=1 pdata(ξi ∣ x), where pdata(ξi ∣ x) is the g-and-k distribu-

tion with parameters x = (A, B, g, k) and d = 4, and we let pdata(x) be uniform on [0, 10]4. The 
g-and-k distribution is a four-parameter distribution in which A, B, g, k control the location, 
scale, skewness, and kurtosis, respectively.

We fix our noising process to be an Ornstein–Uhlenbeck process, and parameterize our reverse 
process as in Example 5, with sθ(x, ξ, t) being given by a fully connected neural network. To train 
the model, we sample (x0, ξ0) ∼ pdata and minimize the denoising score matching objective from 
Section 3.5 via stochastic gradient descent on θ.

To test our model, we first consider the case where there are a true set of underlying parameters 
xtrue = (3, 1, 2, 0.5). We generate an observation ξ0 ∼ pdata(ξ0 ∣ xtrue) with N = 250, sample from 
the approximate posterior using our DMM and plot the result in Figure 2. We compare our meth-
od with the semi-automatic ABC (SA-ABC) (Nunes & Prangle, 2015) and Wasserstein sequential 
Monte Carlo (W-SMC) (Bernton et al., 2019) methodologies, as well as sequential neural poster-
ior, likelihood, and ratio estimation approaches (SNPE, SNLE, and SNRE) (see, e.g. Lueckmann 
et al., 2021). We see in Figure 2 that the DMM achieves more accurate posterior estimation for all 
parameters, except the kurtosis parameter k for which W-SMC is more accurate. Among the other 
neural network-based approaches, SNPE appears most competitive on this task, but is less accur-
ate than the DMM especially for parameters g and k. Additional experimental results comparing 
DMMs to other simulation-based inference methods can be found in Sharrock et al. (2022) and 
Geffner et al. (2023).

Next, we demonstrate that our model can perform inference for a range of observation values ξ∗
simultaneously. We generate a series of 512 parameter values x0 drawn from pdata(x0) and draw an 

Figure 2. Posterior kernel density estimates of samples generated using our DMM, SA-ABC, W-SMC, SNLE, SNPE, 
and SNRE for the g-and-k distribution, with xtrue = (3, 1, 2, 0.5) and N = 250. DMM = denoising Markov model; 
SA-ABC = semi-automatic approximate Bayesian computation; W-SMC = Wasserstein sequential Monte Carlo; 
SNLE = sequential neural likelihood estimation; SNPE = sequential neural posterior estimation; SNRE = sequential 
neural ratio estimation.
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observation ξ0 from pdata(ξ0 ∣ x0) with N = 10, 000 for each x0. Then, we generate eight samples 
x′0 from our approximation to the posterior pdata(x0 ∣ ξ0) for each ξ0. We plot each component of 
the pairs (x0, x′0) in Figure 3. We see our model is able to infer the original parameters across a 
range of parameter values.

6.2 Image inpainting and super-resolution using discrete-space CTMCs
Second, we demonstrate that our framework is applicable for large-scale Bayesian inverse prob-
lems, such as super-resolution and inpainting for images. For these problems, the prior pdata(x) 
is the distribution of images. Most ABC techniques such as SA-ABC and W-SMC are not applic-
able as they require an analytical expression for this prior, whereas DMMs do not rely on such an 
expression.

We consider performing image inpainting for MNIST digit images, where each image x0 has 
28 × 28 pixels with values in {0, . . . , 255}, and the observed incomplete image ξ0 has the middle 
14 × 14 pixels missing. Since our state space X = {0, . . . , 255}28×28 is discrete, we use the set-up of 
Example 2 and let the generator of our noising process factor over pixel dimensions. We use the 
denoising parameterization of the reverse process (see online supplementary Appendix F.2) and 
train by minimizing the form of the objective in Example 6.

To test our model, we plot the reconstructed image samples for a number of digits in Figure 4. 
We observe that the samples we obtain are consistent with conditioning and appear to be realistic, 
but also display diversity in the shape of the strokes. In online supplementary Appendix J.2, we 
also compare our method to a continuous state-space approach.

In addition, we train a conditional discrete-space DMM to perform super-resolution on 
ImageNet images to demonstrate that this method provides perceptually high-quality samples 
even in very high-dimensional scenarios. For details, see online supplementary Appendix J.3.

6.3 Modelling distributions on SO(3) using manifold diffusions
Third, we demonstrate that DMMs can approximate distributions on manifolds using two tasks 
on SO(3). Since SO(3) is a Lie group and so a Riemannian manifold, we use the framework from 
Example 7. As our noising process, we use Brownian motion with generator L = ∂t + 1

2 Δ. We can 
explicitly calculate the transition kernels qt∣0(xt ∣ x0) for this process, allowing us to use the denois-
ing score matching objective. We parameterize this objective in terms of a neural network approxi-
mation sθ(x, t) of the score. This is in contrast to De Bortoli et al. (2022), in which the explicit 
transition kernels are not used for sampling the forward process or in the loss function, both of 
which require further approximations.

First, we check that our DMM can learn simple mixtures of wrapped normal distributions 
pdata(x) = 1

M

M
m=1N

W(x ∣ μm, σ2
m), where NW(x | μm, σ2

m) is the wrapped normal distribution on 
SO(3) with expectation μm and variance σ2

m (De Bortoli et al., 2022). We plot samples from our 
resulting DMM in Figure 5. We see that our model provides a good fit to pdata(x), covering all 

Figure 3. Comparison of posterior samples x′0 from our DMM approximation to pdata(· ∣ ξ0) and the true parameter 
value x0 for a range of x0 in the prior distribution, with N = 10,000. DMM = denoising Markov model.

296                                                                                                                                                Benton et al.
D

ow
nloaded from

 https://academ
ic.oup.com

/jrsssb/article/86/2/273/7517020 by guest on 11 July 2024

http://academic.oup.com/JRSSSB/article-lookup/doi/10.1093/jrsssb/qkae005#supplementary-data
http://academic.oup.com/JRSSSB/article-lookup/doi/10.1093/jrsssb/qkae005#supplementary-data
http://academic.oup.com/JRSSSB/article-lookup/doi/10.1093/jrsssb/qkae005#supplementary-data


modes. In online supplementary Appendix J.5, we provide additional results and show that we can 
also sample from the class conditional density pdata(x ∣ m).

Second, we consider a more realistic pose estimation task on the SYMSOL dataset, which re-
quires predicting the 3D orientation of various symmetric 3D solids based on 2D views 
(Murphy et al., 2021). Due to the rotational symmetries, a key challenge is to predict all possible 
poses when only one possibility is presented in training. We use a conditional DMM where ξ is the 
2D image view. Figure 6 shows two sets of samples from our model conditioned on 2D images of 
two different solids. We see that our model learns to sample from the ground truth accurately and 

Figure 4. Samples from the MNIST inpainting task. The first column in each set plots the ground truth images, and 
the second column has the centre 14 × 14 pixels missing.

Figure 5. Samples from the ground truth and our DMM approximation to the mixture of wrapped normal 
distributions. Each sample is denoted by a point, whose position represents the axis of rotation and whose hue 
represents the angle of rotation. Stars denote the true cluster means. DMM = denoising Markov model.

Figure 6. Samples from the ground truth (plotted as stars, middle) and our pose estimation DMM (right) conditioned 
on 2D views of two shapes (left). The axis of rotation and rotation angle are represented by position and hue, 
respectively. DMM = denoising Markov model.
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infer the full set of rotational symmetries for different views ξ. For further experimental details and 
plots, see online supplementary Appendix J.6.

6.4 Approximation of distributions over measures using Wright–Fisher diffusions
Finally, we present an example of learning to approximate a distribution over measures on a finite 
state space E = {1, . . . , N}. In this case X = P(E), the space of measures on E. This is of particular 
interest in compositional data analysis (Greenacre, 2021). Elements of X can be parameterized by 
tuples of real numbers p = (p1, . . . , pN) ∈ [0, 1]N such that 

N
i=1 pi = 1. We could approximate 

the data distribution using a diffusion model on RN, but such a model would not reflect the fact 
that our distribution should be supported on a submanifold, the simplex. Using the standard set- 
up for manifold diffusions as in Example 7 would not respect the boundary of the simplex. Other 
methods have been presented in the literature, but they rely on either reflected diffusions (Lou & 
Ermon, 2023) or on projections of the simplex (Richemond et al., 2022).

We therefore use Wright–Fisher diffusions, a process used in population genetics to model the 
evolution of allele frequencies, as our class of generative processes. A Wright–Fisher process has 
generator L = ∂t + 1

2

N
i,j=1 pi δij − pj

(  ∂2

∂pi∂pj
+
N

i,j=1 qijpi
∂

∂pj
, where (qij)i,j=1,...,N is some matrix 

such that 
N

j=1 qij = 0 for each i = 1, . . . , N. The process takes values in the space of measures 
on E, and so respects the structure of our data distribution (Ethier & Griffiths, 1993). For specific 
choices of qij, the process converges to a known invariant distribution and we can calculate the 
implicit score matching loss. For details of the theoretical set-up, see online supplementary 
Appendix F.4.

We evaluate the proposed method by modelling pdata(x) = 1
M

M
m=1 Dirichlet(αm), a mixture of 

Dirichlet distributions with parameters αm ∈ RN, for various values of N. Figure 7 shows two vis-
ualizations of samples drawn from our DMM compared to ground truth samples in dimension 
N = 3. Our model is able to accurately approximate pdata(x). For further evaluations and experi-
mental details, see online supplementary Appendix J.7.

7 Discussion
We have provided here a general framework which allows us to extend denoising diffusion models 
to general state spaces. The resulting DMMs can be trained with principled objectives and used for 
inference, generalizing along the way score matching ideas. Their applicability and performance 
have been demonstrated on a range of problems. From a methodological point of view, the pro-
posed framework is general enough to accommodate, for example, general noising processes, 
mixed continuous/discrete processes and some infinite-dimensional settings with finite representa-
tions (though our assumptions on the state space (see online supplementary Appendix B.1) may 
fail to hold in the infinite-dimensional setting so more care is required).

However, we still lack a proper theoretical understanding of these models. Under realistic as-
sumptions on the data distribution, De Bortoli (2023) and Chen et al. (2023) show that diffusion 
models on Rd can in theory learn essentially any distribution given a good enough score approxi-
mation and infinite data. However, finite sample guarantees are currently absent. Moreover, pdata 
is typically an empirical measure as we only have access to a finite set of datapoints, so qt is a mix-
ture of Gaussians for an Ornstein–Uhlenbeck noising diffusion and its score ∇ log qt is thus 

Figure 7. Histograms of samples from our simplex DMM and the ground truth mixture of Dirichlet distributions for 
dimension N = 3, plotted over the whole space as a ternary plot (left) and over the marginals per dimension (right). 
DMM = denoising Markov model.
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available. If we were simulating samples using the exact time reversal of this diffusion, we would 
simply recover the empirical distribution. It is because we are approximating the time-reversal and 
in particular using an approximation of the scores that we are able to obtain novel samples. It is 
not yet clear why the approximation of the score using neural networks appears to provide per-
ceptually realistic samples for many applications.

The effectiveness of such methods for inference, even in scenarios where standard MCMC or 
ABC techniques are not applicable (Geffner et al., 2023; Sharrock et al., 2022), may also be con-
sidered surprising. One perspective on the training process is that it involves the model construct-
ing its own summary statistics that allow it to perform inference effectively on the training 
observations. It is not yet well understood why the summary statistics the model learns appear em-
pirically effective, or what sorts of summary statistics our training procedure biases the model 
towards.

Overall, this contribution shows how the range of existing models relate to each other and may 
help applying DMMs in practice to a large variety of problems. However, our understanding of 
such models is still incomplete and deserves further attention.
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Computational statistics and machine learning (ML) are closely related, and there are many op-
portunities for cross-fertilization of ideas between the two fields. Both can benefit from greater 
interaction, and the two papers being discussed here highlight some ways that this can happen. 

1 Automatic change-point detection in time series via deep learning 
The main focus of this paper is offline detection of a single change-point using labelled training 
data. Interest is in the automatic generation of new offline detection methods using neural networks 
whilst providing statistical guarantees of method performance. Theory is developed for a class of 
multi-layer perceptrons (MLPs) that directly generalize existing cumulative sum-based methods. 

The theory developed in the paper applies to a MLP with ReLU activation, and this basic model 
is amenable to analysis. However, the theory only requires a single layer, and the examples all use 
MLPs of constant layer width, which is rarely seen in practice. Can the authors provide practical 
advice on choosing network depth and layer widths sensibly and safely? In particular, are there 
practical issues relating to the width condition, mrmr+1 =O(n log n)? The theoretical bounds sug-
gest the need for a lot of training data, but empirically it seems that these may be overly conserva-
tive. Do the authors have any insight into this apparent mismatch? Neural networks often work 
better with scaled data, and min–max scaling is used for the examples in the paper, but is this 
safe in the presence of heavy-tailed noise? 

For the application based on activity data, a more sophisticated neural network architecture is 
adopted for which the theoretical results provided do not directly apply. What hope is there of ex-
tending the theory to such models, and in the absence of this, what practical advice can be given? It 
is mentioned in the paper that in the absence of labelled data, but in the presence of a full data gen-
erating process, a simulator can be used to train the network. This is simulation-based inference 
(SBI) (Cranmer et al., 2020), and it is worth establishing the connection with this literature, where 
the use of neural networks has become a standard practice in recent years. 

2 From denoising diffusions to denoising Markov models 
Denoising Markov models (DMMs) are deep generative models for simulating (conditional) sam-
ples from a data distribution. Huge training data sets are required, but these can be replaced by a 
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data generating process in the context of SBI. Typical applications are to very high dimensional 
data such as images, but the methods can also be used for sampling Bayesian posterior distribu-
tions. These models are very expensive both to train and sample (even relative to other deep gen-
erative models), but are considered state-of-the-art for certain problems. 

The paper provides a unifying framework for a broad class of models of the denoising diffusion 
form with fairly arbitrary state spaces. The emphasis is on continuous time, but the connection 
with discrete time formulations is clearly articulated. Conditional simulation is also covered 
and briefly discussed. The approach is to work with continuous time Markov processes on a gen-
eral state space, and to formulate the (de)noising process in terms of the generator of the Markov 
process. The resulting optimization targets are shown to generalize several different special cases 
that have appeared in the literature for particular state spaces. 

Details of how to generate samples are missing from the main paper, but are very important in 
practice. The examples described in the online supplementary material seem to use approximate 
first-order methods based on a regular time grid, but this is probably not optimal. A benefit of for-
mulating the models in continuous time is the possibility of using higher-order methods with adap-
tive time steps. At least one of the examples used a time-rescaling—might adaptive time-stepping 
reduce the need for this, or is that a separate issue? It is sometimes convenient to have a determin-
istic generation mechanism using a probability flow differential equation (Song et al., 2021). Is 
such an approach covered by the general DMM framework presented here? What about 
Schrödinger bridge (Shi et al., 2022) approaches? 

Everything depends on using a ‘good’ neural network architecture for the denoising process, but 
can anything general be said about how to choose the architecture for a given problem? Do we 
understand the kinds of problems for which DMMs work well? Why are not these models 
more widely used for SBI? Given the magnitude of the computational machinery dedicated to 
the problem, the g-and-k example was not especially compelling (see, e.g. Figure 8 in the online 
supplementary material), despite being a fairly standard low-dimensional Bayesian inference 
problem. Could issues be diagnosed in the absence of ground truth, and could the model be tuned 
to improve performance if desired? Are there examples in the literature of DMMs being used for 
problems with a mixed discrete and continuous state space? 

3 Summary 
These two papers illustrate different aspects of the interaction between statistics and ML. From the 
perspective of academic statistics, we are likely to see increasing use of modern ML methods in 
statistical methodology. It is likely to become difficult to draw a clear line between computational 
statistics and ML, but this comes with challenges, since the language and culture of the two com-
munities remain quite distinct. Programming languages also illustrate potential issues: Python is 
the language typically used for ML, with tensor frameworks such as TensorFlow (used for 
Paper 1), JAX (used for Paper 2), and Torch, but most academic statisticians currently use R by 
default. 

The opportunities for sharing ideas between statistics and ML are great and growing. The two 
papers presented here are important contributions in their own right, and also serve to highlight 
the potential benefits of narrowing the gap between the two communities. It therefore gives me 
great pleasure to propose the vote of thanks. 

Conflict of interest: None declared. 

References 
Cranmer K., Brehmer J., & Louppe G. (2020). The frontier of simulation-based inference. PNAS, 117(48), 

30055–30062. https://doi.org/10.1073/pnas.1912789117 
Shi Y., De Bortoli V., Deligiannidis G., & Doucet A. (2022). Conditional simulation using diffusion 

Schrödinger bridges. In J. Cussens and K. Zhang (Eds.), Proceedings of the thirty-eighth conference on 
uncertainty in artificial intelligence: Vol. 180. Proceedings of machine learning research (pp. 1792–1802). 
PMLR.  

Discussion Paper Contribution                                                                                                                 303 
D

ow
nloaded from

 https://academ
ic.oup.com

/jrsssb/article/86/2/273/7517020 by guest on 11 July 2024



Song Y., Sohl-Dickstein J., Kingma D. P., Kumar A., Ermon S., & Poole B. (2021). ‘Score-based generative mod-
eling through stochastic differential equations’, International Conference on Learning Representations.  
https://openreview.net/forum?id=PxTIG12RRHS 

https://doi.org/10.1093/jrsssb/qkad160 
Advance access publication 21 December 2023  

Seconder of the vote of thanks and 
contribution to the Discussion of ‘the 
Discussion Meeting on Probabilistic and 
statistical aspects of machine learning’ 
Christopher Nemeth1 

1Department of Mathematics and Statistics, Lancaster University, Bailrigg, Lancaster, LA1 4YW, UK  

Address for correspondence: Christopher Nemeth, Department of Mathematics and Statistics, Lancaster University, 
Bailrigg, Lancaster, LA1 4YW, UK. Email: c.nemeth@lancaster.ac.uk 

I congratulate the authors of these two papers for their insightful and significant contributions to 
addressing the statistical aspects of machine learning. In this contribution to these discussion pa-
pers, I will make a short comment which covers both papers and then provide some separate 
thoughts on each paper. 

1 Statistical aspects of machine learning 
These two papers are quite different in their focus; however, a common thread between them is the 
use of neural networks, and in particular deep neural networks, to augment part of the modelling 
process. In the case of Li et al. (2022), neural networks are used to convert the changepoint prob-
lem into a supervised learning problem, and in the case of Benton et al. (2022), neural networks are 
used to approximate the intractable score function. 

A better understanding of the statistical properties of neural networks is an ongoing area of re-
search (Anthony et al., 1999; Bartlett et al., 2019), but their application has become widespread 
within the artificial intelligence and machine learning communities. Within the statistics commu-
nity, we can look back 30 years to the discussion paper of Ripley (1994) to see how neural net-
works can be used to solve classification problems. Interestingly, although the Ripley (1994) 
and Li et al. (2022) papers are very different in their focus, they both utilize neural networks to 
solve a classification problem and derive similar theoretical results regarding neural network com-
plexity in terms of Vapnik–Chervonenkis (VC)-dimension bounds. 

2 Paper 1: Automatic changepoint detection in time series via deep 
learning by Li et al. 
The authors comment in the conclusion to their paper that for applied statisticians trying to model a 
changepoint problem: ‘…they need to understand what type of change is sought, be able to charac-
terize it mathematically, find a satisfactory stochastic model for the data, formulate the appropriate 
statistic, and fine-tune its parameters’. However, if instead of trying to model the data-generating 
process, a neural network is used, then does this not lead to the same challenges? What type of neural 
network should be used? How deep should the network be? As an illustration of this point, let us 
consider the example from Section 5 of the paper, with ρ = 0 under Scenario 1. Figure 1 presented  
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here is similar to Figure 2 in Li et al. (2022) where I have changed the activation function from ReLU 
(left) to SeLU (middle) and sigmoid (right). Under these different activation functions, we can see 
that for sufficiently large N, the neural network-based approaches are superior to the CUSUM sta-
tistics, but for small N the average misclassification error rate can be quite different depending on the 
choice of the activation function. What guidelines are available for practitioners to ensure that they 
use the best neural network architecture? Is it easier to choose an appropriate neural network than it 
is to choose a statistical model that directly models the time series data? 

The authors focus their empirical presentation on the statistical improvements of their neural 
network-based approach when compared against the CUSUM statistic. However, there is no pres-
entation of the difference in computational cost between the CUSUM and neural network ap-
proaches. Would it be more reasonable to report the misclassification error rate scaled by 
computational time? This would be interesting to consider because if it takes twice as long, or per-
haps longer, to fit the neural network compared to the CUSUM test, then what percentage of im-
provement should we expect to see from the neural network as a result of the increased 
computational complexity? 

3 Paper 2: From denoising diffusions to denoising Markov models by 
Benton et al. 
The general denoising framework proposed in this paper is an important contribution that allows 
the class of diffusion generative models, which are rapidly growing in popularity, to be applied to 
non-Euclidean spaces. The examples in the paper are directed towards sampling from non- 
standard spaces; however, the first example, which considers an approximate Bayesian inference 
model, is on Rd and provides a nice illustration of how these diffusion models are applied on sim-
pler problems. What is of particular interest in Section 6.1 is that the results presented are not sig-
nificantly better than many existing approximate Bayesian computation algorithms. By some 
standards, this is quite a simple example as there are only four parameters to be learnt, and yet 
the neural network (a multilayer perceptron) used by the authors to approximate the score func-
tion has 1.9 million parameters (see Appendix J.1). It does seem somewhat paradoxical that in or-
der to approximate a four-dimensional distribution it is necessary to estimate 1.9 million 
parameters in a neural network. Furthermore, the observed dataset is of size 250, which leads 
to interesting questions around how feasible it is to learn a large number of parameters from a 
neural network with small datasets. Is it possible to know what type of neural network should 
be used for a particular generative problem, e.g. images, text, etc.? Or how large the network needs 
to be in order to achieve high levels of statistical accuracy? 

In conclusion, these two papers provide stimulating contributions to the field of statistical ma-
chine learning and open up many interesting avenues of future research in these areas, it is a pleas-
ure to second the vote of thanks. 
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Figure 1. Scenario 1: n = 100, N ∈ {100, 200, . . . , 700}, ρ = 0. ReLU (left), SeLU (middle), and Sigmoid (right) 
activation functions.   
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We congratulate Professors Li, Fearnhead, Fryzlewics, and Wang on their fine work that repre-
sents classic test statistics for change-point detection as a neural network-based classifier and 
develops improved offline detection algorithms for historical, labelled data. 

The paper focuses on real-valued observation vectors in a temporal regression model with train-
ing data being either labelled historical data or obtained by simulation from a model. In many 
applications, though, the data consist of both spatial and temporal components. For instance, 
the observations may take the form of a series of point patterns (e.g. mapped tree locations at dif-
ferent census times) or a single observation from a spatio-temporal point pattern (e.g. occurrence 
locations and times of fire incidents). For the latter, detection of changes in intensity in a model- 
based Bayesian test setting was investigated by Altieri et al. (2015). Do the authors believe that an 
adapted neural network approach could be competitive in this context? A complication would be 
that the change-point is due to complex changes in inter-point interaction for which neither a 
known model nor labelled historical data is available. Do the authors see a way forward here? 

Machine learning ideas could benefit spatio-temporal statistical practice more widely. 
Specifically for point pattern analysis, Lu, Van Lieshout et al. (2023) employed random forest im-
portance scores for variable selection, whilst Jalilian and Mateu (2023) trained neural networks on 
simulated data to distinguish spatial structural differences. A similar motivation as that of Li et al. 
is seen in point process intensity estimation. Usually, the intensity function is assumed to be log- 
linear in spatial and temporal covariates. Lu, Guan, et al. (2023) proposed a tree-based model, 
XGBoostPP, which forms the intensity function based on a covariate vector z(s) as 

log λ(s){ } =
K

k=1

fk z(s){ }.
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Here, fk{z(s)} are tree predictors that output the response on the leaf where a covariate value z(s) 
lies in. For model fitting, we customized a penalized weighted Poisson log-likelihood loss function 

K

k=1

Ω(fk) −


x∈X

w(x) log λ(x){ }+ ∫S w(s)λ(s)ds 

where X denotes the point process on S and Ω(fk) is proportional to the L1-norm of leaf responses. 
The tree structures and corresponding leaf responses are optimized iteratively; the weights w are 
calculated based on the estimated inhomogeneous K-function. The classic log-linear intensity 
function can be represented as a reparameterized XGBoostPP; neural networks may offer 
alternatives. 

In the reverse direction, the stable with respect to iterations of tessellations  tessellation (Nagel 
& Weiss, 2005) from spatial statistics can be used for partitioning responses (cf. Ge et al., 2019). 
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Contribution 
I would like first to congratulate both authors on presenting their very stimulating work in the spi-
rit of the conference’s theme of statisticians and machine learners working in alliance. There is no 
doubt in my mind that collaboration will lead to better, more parsimonious, models. My com-
ments relate, mainly, to the second discussant’s points on over-parametrization. 

If a feed-forward neural net (Ripley, 1994) is denoted by N et(x, θ), where x is the input layer and 
ϕ is the defining parameter vector, colleagues, in the University of Limerick, cast the problem in a 
standard non-linear regression mould, thus: 

Yi =N et(xi, θ) + ϵi, 

where ϵi ∼ N(0, σ2) (McInerney & Burke, 2022a). This leads to standard Gaussian loge likelihood, 
ℓ(θ), for inference (here θ represents the collection of all net parameters to be estimated). Standard 
theory leads to θ̂ ∼ N(θ, Σ) where Σ̂ = Io(θ̂)−1, where Io(θ̂) is the observed, positive definite, infor-
mation matrix, whence the uncertainty in θ can be assessed. Some care is required to avoid the 
singularities in Σ̂ caused by over-fitting, e.g. when dealing with redundant nodes. 

Given this probability model and its likelihood function, the model space is searched using the 
Bayesian information criterion. The choice of Bayesian information criterion, rather than the 
conventional out-of-sample performance criterion for model selection, leads to an increased 
probability of recovering the true (more parsimonious) model with comparable, or better, 
out-of-sample performance. A three-stage, backwards, model selection strategy is employed: it 
first reduces the number of hidden nodes (architectural pruning), then inputs (variable selection), 
and ends with a final adjustment (fine-tuning). 

The availability of the variance–covariance matrix opens up opportunities to (a) frame the output 
of the neural net analysis in a more familiar, regression-like, format and (b) test for the existence of 
known or hypothetical structures in the data, for example, as in genetic analysis. There are also other 
modelling opportunities. Analyses carried out to date are promising; in some cases, comparable 
performance is obtained with half of the parameters required by the standard neural net. 

This work is at an early stage and the neural nets studied so far are less complicated than those 
discussed today. However, as the project progresses (McInerney & Burke, 2022b), it aims to cover 
the neural net piste. 

Meanwhile, we must not overlook the unresolved problem of ‘explanation’. 
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I congratulate Li, Fearnhead, Fryzlewicz, and Wang for their interesting contributions to change- 
point detection and deep learning. I wish to comment on the theoretical properties and potential 
extensions. 

In Section 4, authors study the generalization error of neural network change-point classifiers 
based on the multivariate normal random vector X ∼ Nn(μ, In). But the key of theoretical proofs 
is for any 1 ≤ i ≤ n − 1, 

P(|v⊤
i X| > t) ≤ exp (−t2/2) 

Thus, when X is sub-Gaussian, we can get similar results as Lemma 4.1 and Corollary 4.1. When 
X is heavy-tail, P(|v⊤

i X| > t) is larger. It leads to a larger λ and a higher error in Corollary 4.1. 
On the other hand, the independence between X = (X1, . . . , Xn) is not necessary. X can be a 
time series with weak time dependence. Thus, the method proposed by authors works for real 
data. 

Now we go to (4) in Theorem 4.3. Authors bound the generalization error by the sum of two 
parts. The first part is minh∈HL,m P(h(X) ≠ Y) and the second part depends on the complexity of 
the neural network class measured in its Vapnik–Chervonenkis (VC) dimension. Here HL,m 
is the class of functions with L hidden layers and width vector m. When X has time dependence, 
the second part is more complicated to control. But we can follow the idea in Yu (1994) to deal 
with it. 

The above framework of proofs is classical and transparent. However, it seems not perfect on 
studying and understanding neural networks. As we know, both N and L impact on the general-
ization error. But when we study the first term minh∈HL,m

P(h(X) ≠ Y) separately, we can find that it 
does not depend on N. When L becomes larger, minh∈HL,m

P(h(X) ≠ Y) should decrease. In con-
trast, the second term decreases when N increases and L decreases. Following the above thoughts, 
we have some conjectures: 

When N is large enough, the second part for any neural networks is small enough but the first 
part for the neural network with larger L is smaller. Thus, the neural network with larger L out-
performs others. In contrast, when N is small, the second part for the neural network with larger L 
is larger due to its higher VC dimension, and it may underperform. 

Unfortunately, the above conjectures seem wrong. Figure 2 shows that the neural network with 
L = 10 outperforms others when N is small. In contrast, all neural networks perform similarly 
when N is large. Specifically, increasing L significantly reduces the average MER when N ≤ 200 
rather than N ≥ 500. It is hard to understand this phenomenon by the framework in Theorem 
4.3. Thus, seeking some new frameworks on bounding the generalization error is meaningful. It 
may help us understand the impact of L better. 
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I would like to congratulate the authors for this excellent article, which includes both careful the-
oretical developments at the foundations of such denoising models and exciting methodological 
innovations and experiments. Of course, there are still many unanswered questions in relation 
to these denoising Markov models. One of the most tantalizing such questions is touched on by 
the authors in their concluding discussion, namely the nature of the implicit biases which are pre-
sent in this methodology. 

It appears to me that there are (at least) two potential sources of implicit bias in such denoising 
models. First, the use of the evidence lower bound (ELBO) training objective. Although the use of 
the ELBO is introduced as a concession to the fact that the true likelihood pT(x) is intractable, it 
has been shown in some cases that using an ELBO actually has beneficial implicit biases. For ex-
ample, in the context of variational auto-encoders (VAEs), it has been show in certain settings 
that the use of the ELBO actually enables the VAE to disentangle independent signals (Reizinger 
et al., 2022). Although for score matching we can see the minimizer is sθ(x, t) = ∇x log qt(x), I won-
der if this particular formulation of the objective leads to some beneficial implicit biases. Second, it is 
well known in the context of supervised learning that (stochastic) gradient descent often leads to sol-
utions which generalize well (Chizat & Bach, 2020; Soudry et al., 2017)—it is thus natural to ask if a 
similar phenomenon is occurring in the denoising Markov models setting. Thus one wonders if, in 
conjunction with the ELBO, the use of gradient descent in this context is resulting in score estimates 
which ‘generalize’ well, providing novel samples rather than recovering the empirical distribution of 
the training data. And of course, the particular choice of neural network architecture and network 
hyperparameters will no doubt further bias the score estimate towards certain approximations. 

Overall, it would be fascinating to get a handle on which components or combination of com-
ponents of the methodology are the main contributors towards the very impressive empirical per-
formance. I would like to congratulate the authors again for this fantastic contribution to the 
literature and heartily agree that further attention is required! 
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I enjoyed reading this paper which has so many outstanding features; this is where Modern 
Statistics is moving—high-level computing with sound mathematical statistical. My comments 
are as follows. 

The authors use the wrapped normal on SO(3) using the exponential map and I have some 
reservations related to this choice since the most common distribution used on SO(3) is the 
Fisher matrix distribution which has many desirable properties (see, e.g. Mardia & Jupp, 2000) 
whereas there are inherent singularities in this type of wrapping which I will illustrate. Since 
SO(3) can be identified with S3 (after identifying antipodal points), any calculation on SO(3) 
can be reformulated as one on S3 and will consider the unit sphere Sq−1. If g(x) is a pdf in the 
tangent space, x in Rq−1, then the ‘wrapped’ pdf (with the exponential map on the sphere with 
base point at the north pole (0, . . . , 0, 1)) of y = (sinθv, cosθ), where 0 ≤ θ ≤ π and v is a unit vec-
tor in Rq−1, can be shown to have the pdf 

f (y) = (1/sinq−2θ)
∞

k=0

{rq−2
1,k g(r1,kv) + rq−2

2,k g( − r2,kv)} 

with respect to the uniform measure on the sphere, where r1,k = θ + 2πk and r2,k = 2π(k + 1) − θ. 
Except for the term involving r1,0 at θ = 0, all the remaining terms have a singularity at θ = 0 and at 
θ = π. In particular, this wrapped distribution on the sphere cannot be unimodal. This is not a great 
problem if g(·) is highly concentrated near the origin on the tangent plane, but it can be an issue for 
more diffuse distributions (and particularly when used in mixtures, Section J5). I note that the con-
struction is general: given a base point m on the Riemannian manifold and a vector x in the tangent 
space, the exponential map expm(x) yields a point on the manifold and we can go from g(·) to f (·). 

The use of the score matching methodology (SME) methodology is remarkable in our work 
(Mardia et al., 2016),  which you quote on manifolds has been more in the classical statistical set-
ting. On the other hand, the introduction of score matching approximation in Mardia (2018) ex-
plores totally a new direction; how to approximate ‘analytically’ a known distribution f ∗ by 
another simpler distribution f from an exponential family in contrast to your data-driven method. 
A general solution is given in this paper: the score matching approximation (SMA) is motivated by 
the challenging problem of approximating the standard multivariate wrapped normal distribution 
by the multivariate von Mises distribution.  
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My last point is on your examples. Your emphasis on assessing the performance of your meth-
ods is via the ground truths but perhaps in some cases such as for estimation, this may not be suf-
ficient. I have also some queries on your example in Section J5: how did you make the choice of the 
number of components of the mixture M = 16?; it is also not clear how much noise was added for 
the test example via σ2 and its effect; and are the standard errors of your estimates relevant? 
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We congratulate the authors for the interesting and thought provoking paper. Lemma 3.2 shows 
that the generalized likelihood ratio (GLR) test for stability of a linear regression can be viewed as 
a simple feed forward neural network. However, close inspection of the lemma reveals that 
the setup rules out several common change point problems. Consider the piecewise polynomial 
regression: 

yi =

p

j=0

α j i/n − τ/n
( j + ξi if t ≤ τ,

p

j=0

β j i/n − τ/n
( j + ξi if t > τ,

⎧
⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎩

i = 1, . . . , n (1) 

For ξ ’s distributed i.i.d. N (0, 1), the likelihood ratio statistic for a change at location i is 

Ri Y( ) = P1:iY‖ ‖2 + P(i+1):nY




2 − P1:nY‖ ‖2 (2) 

where Ps:eY denotes the projection of elements indexed {s, . . . , e} in the vector Y = (y1, . . . , yn)′

onto the space of (discretised) polynomials of degree p. Since (2) is a linear combination of  
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quadratic forms, hGLR
λ (y) = 1{maxiRi(y)>λ} clearly cannot be represented as a neural network. The 

Wald test for the same problem (e.g. Kim et al., 2022) likewise cannot be represented in this way. 
In Gavioli-Akilagun and Fryzlewicz (2023), we introduce tests based on differences of local sums 

of the data as simple and computationally efficient alternatives to GLR and Wald tests. Interestingly, 
our difference-based tests can be represented as a neural network. Consider the statistic 

Di Y( ) =
p+1

j=0

p + 1
j

 2
 −1/2

p+1

k=0

−1( )p+1−k p + 1
k

 
yi+(k−1)li+1 + · · · + yi+kli��

li


 

where li = max {l ∈ Z ∣ i − l ≥ 0 and i + (p + 1)l ≤ n}. Since D(·) is a linear operator, hDIF
λ (x) = 

1{ maxi |Di(x)|>λ} can be represented as a neural network. Using the techniques in Gavioli-Akilagun 
and Fryzlewicz (2023), one can show that the localization rate of Algorithm 1 for the change point 
in (1) is of the order 

O
B2n

2p∗

2p∗+1

Δ2
p∗

 

where Δj = (αj − βj), p
∗ ∈ arg max j=0,...,p{|Δj|(δ/n)j}, and δ = τ ∧ (n − τ). This is unimprovable up to 

the B2 term. When analysing the behaviour of neural networks on change point problems, it may be 
useful to think in terms of difference-based tests. 
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1 Introduction 
We extend our congratulations to the authors for their innovative contribution. Here, we address 
three key points: change-point labelling, handling imbalanced datasets, and computational 
complexity. 

Change-point labelling in datasets has many flaws and challenges. The primary flaw is the 
subjectivity inherent in the task as it often relies on human judgement. This subjectivity introduces 
biases and inconsistencies. One challenge is the lack of a universally accepted standard for 
change-point labelling unlike other machine learning classification problems. Hence, it is difficult 
to compare results across studies, hindering reproducibility and reliability. A further issue is that 
change-point labelling can be a time-consuming and labour-intensive task, especially for large 
and complex time series datasets. This process often requires domain expertise and can be 
impractical for real-time or high-frequency data analysis. 

Imbalanced class distributions in datasets are another issue. Change-points are often rarer 
than normal instances, but imbalanced datasets can lead to skewed evaluation results, with 
methods prioritizing the majority class and failing to effectively detect true change-points or 
managing an excessive rate of false positives. We wonder whether the authors explored examples 
of imbalanced data, specifically those involving significant changes in approximately half of the 
dataset (N/2). It is important to underscore that addressing the labelling and imbalance chal-
lenges is pivotal for change-point methods that rely on training neural networks. 

The sample size used for training neural networks plays a crucial role in determining 
the model’s performance and generalizability. An excessively large sample size might lead 
to increased computational costs and training time without significant gains in performance 
after a certain point. In the first step of the proposed algorithm, there is the necessity of 
training a neural network using a considerable sample size. A discussion on this topic 
could convince the reader that the proposed method can be extended to an online framework 
(as discussed in Section 7). Apart from accuracy, and especially in high-frequency data, 
online change-point detection methods have to be very computationally efficient in order for 
users to act promptly. The computational complexity in the simple univariate setting is 
also crucial to understand extensions to practically meaningful adaptations of the algorithm 
to multivariate, possibly high-dimensional frameworks. Furthermore, an expansion of the 
method to the multiple change-point framework is discussed through an idea similar to 
that of moving sum (MOSUM; Eichinger & Kirch, 2018). It would be beneficial to the 
reader for the authors to justify this choice; is it due to MOSUM’s low computational 
complexity? 

Conflicts of interest: None declared. 

Reference 
Eichinger, B., & Kirch, C. (2018). A MOSUM procedure for the estimation of multiple random change points. 

Bernoulli, 24(1), 526–564. https://doi.org/10.3150/16-BEJ887 

https://doi.org/10.1093/jrsssb/qkad149 
Advance access publication 29 December 2023   

314                                                                                                                  Discussion Paper Contribution 
D

ow
nloaded from

 https://academ
ic.oup.com

/jrsssb/article/86/2/273/7517020 by guest on 11 July 2024



Dean Bodenham and Niall Adams’s 
contribution to the Discussion of ‘the 
Discussion Meeting on Probabilistic and 
statistical aspects of machine learning’ 
Dean Bodenham and Niall Adams 
Department of Mathematics, Imperial College London, London, UK 
Address for correspondence: Dean Bodenham, Department of Mathematics, Imperial College London, South Kensington 
Campus, London SW7 2AZ, UK. Email: dean.bodenham@imperial.ac.uk 

We congratulate the authors for their thought-provoking paper and innovative approach for de-
tecting changepoints in a supervised manner. 

The results in Table 1 and Figure 2 show that the proposed approach has good performance in 
terms of the misclassification error rate metric, or in other words in determining whether or not a 
sequence contains a changepoint. 

However, since a primary concern in changepoint detection is the accuracy of the localization of the 
changepoint, it would be interesting to see the performance of the proposed approach for offline 
changepoint detection metrics such as the covering metric (Arbelaez et al., 2010), where the locations 
of the detected changepoints are compared with the locations of the true changepoints (van den Burg 
& Williams, 2020). It would also be instructive to see this performance in comparison to established 
offline methods such as the pruned exact linear time method (Killick et al., 2012) or the wild binary 
segmentation method (Fryzlewicz, 2014), rather than the online cumulative sum method. 

Another concern is how the proposed method would handle very long sequences, for example, 
of length more than one million. Besides computational challenges, one might expect most meth-
ods to flag a changepoint in such sequences, while the exact location of the changepoint(s) may be 
more difficult to determine. 

Finally, we suggest that one potential area of application for the proposed method may be in 
cellular biology where cells are tracked and their protein expression levels are recorded. These 
time series are often short in length, potentially N ≤ 20, which can be a challenging scenario 
for traditional, unsupervised changepoint detection methods, although for this application it 
may be possible to obtain labelled examples from experts for the necessary training. 

We look forward to future developments of the proposed approach. 

Conflict of interest: None declared. 
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We congratulate the authors for providing this stimulating work which uses deep neural networks 
for detecting change-points. We shall comment on three aspects of the paper: (i) the standardiza-
tion procedure, (ii) distributional assumptions of the training and testing samples, and (iii) poten-
tially more efficient use of the training samples. 

First, we emphasize that classification procedures based on neural networks will not auto-
matically be invariant to shifting or scaling. To illustrate this point, we consider scenario S1 
with ρt = 0.5 and with no standardization performed on the training or testing sets. Figure 1a 
shows the results where an independent U ∼ U[−2,2] mean-shift is added to each series from 
only the testing set. Without standardization, the proposed method is no longer desirable even 
when we increase the size of the training set, N, to 1,600. Scaling to [0,1], as proposed in the paper, 
will alleviate this issue. Standardization using trimmed mean and trimmed standard deviation es-
timates would be a more robust option. From our experiments, other approaches such as adding a 
random baseline to all training samples would also work. 

Nevertheless, if the distributions of the training and test samples, denoted by Dtrain and D, are in-
deed the same, then performing standardization might lead to worse performance, as is illustrated in 
Figure 1b and 1c. We suspect that it is because of certain distributions change-point can be charac-
terized by statistics that are not invariant to shifting or scaling. These statistics are likely simpler to 
learn than the Cumulative Sum (CUSUM). Although, as demonstrated before, without standardiza-
tion, the resulting classifier might not be transferable to even slightly different settings. 

Besides, the presented theory requires Dtrain = D. We anticipate similar results to hold if Dtrain is 
a finite mixture with one component being D. More broadly speaking, consistency should hold if 
the support of Dtrain contains that of D. In addition, one could use different labels for different 
types of change-points (e.g. change in mean/variance/etc.) in the training set, and apply the existing 
approach to learn a multi-class classifier. 

Finally, we believe that the training samples can be used in a more efficient manner with a minor 
twist. For X1, X2, …, Xn with label Y, its reversed sequence Xn, Xn−1, …, X1 should also have the 
same label. Consequently, we could double the size of N by adding all the reversed sequences into 
the training set. Sizeable improvement with this extra step can be seen, especially when N is small, 
by comparing Figure 1d with Figure 1e. 
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(a)

(b) (c)

(d) (e)

Figure 1. Plot of test set misclassification error rate, computed on a test set of size 150,000, against training sample 
size n for detecting the existence of a change-point on data series of length n = 100 under scenario S1 described in 
Section 5 of the paper, with the exception that ρt = 0.5. We compare the performance of the CUSUM test and 
neural networks from four function classes as specified in Section 5. Here we use batch size of 32 for training with 
no regularization. For standardization, we use the approach suggested in the paper. For the testing set used to 
produce (a), an independent mean-shift of U[−2,2] is added to each series. (a) µL = 0 for the training samples, µL ∼  
U[−2,2] for the testing samples; data not standardized. (b) µL = 0 for both training and testing; data not standardized. 
(c) µL = 0 for both training and testing; data standardized. (d) µL = 0 for both training and testing; data standardized; 
no reversed samples added. (e) µL = 0 for both training and testing; data standardized; reversed samples added.   
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From Denoising Diffusions to Denoising Markov Models—An Excited New Perspective? 
The paper entitled From Denoising Diffusions to Denoising Markov Models explores how 

the denoising diffusion models can be used in twofold aspects: (i) work by diffusing the data dis-
tribution into a Gaussian one, learning, at the same time, to reverse this noising process to obtain 
synthetic data points and (ii) perform approximate posterior simulation when we are in the pres-
ence of a sample operation from the prior and likelihood. Furthermore, the authors propose a uni-
fying framework generalizing this approach to a wide class of spaces and leading to an original 
extension of score matching. We illustrate the resulting models on various applications. 

From the above summary and after having carefully read the paper, it is possible to affirm that it 
explains the concept inside very convincingly, but there is a way to improve it. In particular, it is 
possible to suggest testing this new and fascinating denoising Markov models into a real scenario, 
such as theoretical neurobiology in which some of the concepts, like elaborate model use, are ap-
plied and discussed under their formal mathematical aspects. 
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We would like to thank the authors for their interesting contribution and the clarification brought 
on a particular aspect of diffusion models concerned with the criterion used in the fitting phase of 
the procedure. Another aspect, not discussed extensively, is the choice of the neural network used 
to model the gradients involved in the generative phase. In particular, the implicit prior informa-
tion this induces on the class of distributions considered may seem mysterious and perhaps not 
always controllable? Here, we report results from a toy numerical experiment, which seem to raise 
some questions. 

We consider 28 × 28 images, in which all but four pixels have values distributed according to a 
Beta(10,10), re-scaled between 0 and 0.49. The four remaining pixels have values distributed ac-
cording to a Beta(10,10), re-scaled between 0.51 and 1, and are organised in two distinct config-
urations: square or diamond (Figure 1). Squares are uniformly distributed across the whole image, 
while diamonds are uniformly distributed only in the bottom right quadrant. Four different data-
sets were created, each comprising 82,000 of such images, with varying proportions of squares and 
diamonds (Figure 2), and were each used to train four different U-nets approximating the score 
function following standard practice (Ho et al., 2020; HuggingFace, 2023). 

A generative model which is coherent with this dataset should be expected to generate images 
with squares or diamonds, respecting pixel boundaries for the diamonds, and matching the fre-
quencies of each configuration. 

Remarkably, most sampled images ( 94%) correctly consist of either squares or diamonds. 
Diamonds were not confined to the bottom right quadrant anymore (Figure 2), which could 
stem from the shift-equivariant property of the U-Net’s convolutional layers (Cohen & Welling, 
2016). However, this may not be a desirable feature. 

(a) (b)

Figure 1. Configurations in the training dataset: a) squares and b) diamonds. The grey shading represents the 
bottom right quadrant. Images are binarised using a threshold set at 0.5 for easier visualisation.  
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Figure 2. Frequency of diamonds. The grey bar represents the frequency of diamonds generated inside the bottom 
right quadrant while white bar indicates the frequency of diamonds generated outside of it.   
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Diffusion modelling aims at alleviating the challenges faced by score matching when dealing 
with disjointed, multimodal distributions such as the mixture square/diamond considered here 
(Song & Ermon, 2019). However, we encountered difficulties in accurately sampling according 
to the training set mixture weights: the sampled diamond frequencies did not reflect the training 
set diamond frequencies across the various datasets (Figure 2). Interestingly, these sampled fre-
quencies differed when using another seed to initialise the U-Net weights (but were still 
unexpected). 

While the link between simple properties of the neural network chosen and the class of distri-
butions implicitly defined can sometimes be understood (Yim et al., 2023), a general characterisa-
tion is missing from the literature. This phenomenon is further compounded by additional 
unknown neural network properties. We are curious about the current understanding of this 
matter. 
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This paper proposes a neural network-based approach for automating offline change-point detec-
tion. The authors show that cumulative sum (CUSUM) and generalized CUSUM are a special case 
of their neural network class. They emphasize misclassification error rates and their theoretical 
contribution is to establish some elegant results for these under i.i.d. unit variance Gaussian 
data with a possible change in mean. Their theoretical results outline the conditions on the empir-
ical risk minimization neural network that allow it to achieve comparable performance to the clas-
sic CUSUM test for this very specific setting. The framework relies on N training data samples that 
are independent and identical copies where N ≫ n2 log n, which seems like a lot of training is 
needed! The CUSUM test only needs the sample of size n. In many financial applications, we 
have a single time series {X1, . . . , Xn} and we are interested in when and how change points occur 
throughout the whole observation period. It is not clear how or why we should divide the data into 
training and testing samples and some guidance on this would be appreciated. In those applica-
tions, considerable care needs to be taken in how to account for time series dependence and where 
this is treated non-parametrically issues arise with bandwidth selection. The self-normalization 
method proposed by Shao (2010) does not require the choice of tuning parameter and so is also 
automatic, and is quite widely used for identifying change points within a given dataset (Shao 
& Zhang, 2010). However, this method is known to have poor power properties. Recently, 
Hong et al. (2024) proposed the adjusted-range-based self-normalization, instead of the usual 
long-run variance normalization, and this appears to work better under some long memory 
alternatives. 

The current paper avoids the normalization issue altogether by making use of training data, and 
perhaps where that exists their method can have advantages, but it would be interesting to know 
how competitive their method is on financial time series and on realistic sampling schemes with 
longer range dependence. 
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publication of this paper. 
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Relating to the excellent Benton et al. paper, I just wanted to highlight a potential use of denoising 
Markov models (DMMs): the generation of synthetic data sets for statistical disclosure control 
(Little, 1993; Rubin, 1993). Although this link to synthetic data is somewhat obvious—after 
all, the objective of generative modelling is essentially equivalent to that of synthetic data 
generation—such crossovers between different areas of statistics (never mind between statistics 
and machine learning) are often overlooked. 

The synthetic data literature (e.g. Drechsler, 2011) is naturally focused on the Rd space (or, say, 
{0, 1}d if the data are binary). It would be interesting to see: (i) how DMMs perform relative to 
traditional synthetic data methods (e.g. the use of generalized linear models), not only in terms 
of risk and utility, but also in terms of computational time; and (ii) how DMMs perform when 
synthesizing data sets on more complex spaces, where traditional synthetic data methods fail. 

Statistics and machine learning are becoming ever more intertwined. The generation of synthetic 
data is a good example of this and DMMs can be added into the ever-growing array of synthetic 
data generation methods. 
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Introduction 
We have read the paper ‘Automatic Change-Point Detection in Time Series Via Deep Learning’ by 
Jie Li, Paul Fearnhead, Piotr Fryzlewicz, and Tengyao Wang with great interest. We congratulate 
the authors for an important and forward-looking contribution. We agree that time-series data 
often have change points that can degrade the prediction quality considerably. The paper’s use 
of deep learning to detect change points is, therefore, definitely interesting. 

Besides, our own work shows that change-point detection is also vital for time-series pipelines 
that are based on deep learning themselves (Jungbluth & Lederer, 2023). We have also shown that 
change points can be accounted in deep learning in a surprisingly simple and effective way. Indeed, 
most deep-learning-based forecasting methods learn by taking batches from the time-series data. 
In essence, our BatchCP method selects batches from the time series such that change points are 
avoided while we are still able to use the entire time series as data. For this, BatchCP needs to 
know where the change points are before the training begins. Based on this information, the 
batches are then deemed suitable or not as illustrated in Figure 1. 

BatchCP is agnostic to the way change points are detected and, therefore, should work very well 
with the method proposed in the discussed paper. Indeed, the combination of BatchCP and the 
proposed method in their paper would equip modern architectures such as DeepAR and trans-
formers with a quite automated approach to deal with change points. Our numerical studies still 
need to be completed, but the initial results look promising already. 
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Figure 1. Visualization of the change-point method BatchCP, taken from the mentioned reference. It shows an 
example of a batch selection around a change-point. The points represent time-series data. The first area shows a 
batch created by choosing t = 1 as the start index, and with a selected batch size of s = 6, the batch contains the 
points t = 1 to t = 6. The change-point is located at t = 7 and is therefore outside the detected batch. The batch is 
therefore permissible. The area in the middle shows a prohibited batch. The start index of this batch is t = 4 and the 
end index at t = 9, so the change-point is located inside the batch and is not allowed in training. A new batch must be 
found. The area to the right indicates another permissible batch, since the change-point lies outside of it.   

Discussion Paper Contribution                                                                                                                 323 
D

ow
nloaded from

 https://academ
ic.oup.com

/jrsssb/article/86/2/273/7517020 by guest on 11 July 2024



John Kent’s contribution to the Discussion of 
the ‘Discussion Meeting on Probabilistic and 
statistical aspects of machine learning’ 
John T. Kent 
School of Mathematics, University of Leeds, Leeds, UK 
Address for correspondence: John T. Kent, School of Mathematics, University of Leeds, Woodhouse Lane, Leeds LS2 
9JT, UK. Email: j.t.kent@leeds.ac.uk 

I would like to thank Benton and his co-authors for a very stimulating paper. I will focus my com-
ments on some ideas related to diffusions and directional distributions. 

In the context of Euclidean space, the forwards diffusion in the discussion below equation (2) is 
taken to be an Ornstein–Uhlenbeck process with drift b(x) = −λx, and with infinitesimal variance 
equal to σ2. The equilibrium distribution is an isotropic multivariate normal distribution, 
Np(0, σ2/(2λ)I). The authors take λ = 1/2 and σ2 = 1, but I wonder these parameters can be use-
fully viewed as tuning parameters. In particular, is it important to take σ2/(2λ) large enough for 
the information of interest to be distinguishable, but not so large that the information is lost in 
a sea of irrelevant ‘noise’? 

In the case of a compact Riemannian manifold, a natural choice in the forwards diffusion is to 
set the drift equal to 0; then the equilibrium distribution is the uniform distribution. But if the in-
formation of interest is concentrated in a small portion of the manifold, then perhaps it is helpful to 
consider alternative diffusions. Consider the unit sphere Sp−1 in Rp. Two possible choices for the 
drift along a geodesic from the north pole to the south pole are b(θ) = −λ sin θ and b(θ) = −λ sin2 θ, 
where θ is the colatitude. The corresponding equilibrium distributions are the von Mises–Fisher 
distribution and the Watson distribution (a special case of the Bingham distribution), respectively 
(e.g. Kent, 1978). The Bingham distribution is mentioned here because there is a classic identifica-
tion between S3 and SO(3) through a two-to-one mapping. Hence, any calculation on SO(3) can 
be recast in terms of a corresponding calculation on S3. In particular, the Bingham distribution on 
S3 can be identified with the matrix von Mises–Fisher distribution on SO(3). 

Further, since the isotropic matrix Fisher distribution is similar in behaviour to the Brownian 
motion distribution of equation (29), and since the isotropic and anisotropic matrix Fisher 
distributions are easy to simulate efficiently (Kent et al., 2018), they may provide a useful 
alternative to equation (29) in certain settings. By the way, the wrapping procedure of Section 
J5 is not very satisfactory in general (except on the circle). In particular, on SO(3) it leads to a 
density with a singularity at the identity matrix; my colleague Kanti Mardia is giving more 
details. 
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Discussion 
The authors are to be congratulated on a valuable and thought-provoking contribution. Deep 
neural network models have become increasingly prominent across many domains of science, 
engineering, and industry, finding applications in almost every field. These models have proven 
particularly valuable when dealing with data exhibiting spatial dependencies (such as images) 
or temporal dependencies (as in this paper). There is growing interest in combining the ideas 
and approaches from deep machine learning and neural networks with spatial statistical methods, 
to capitalize on the expressiveness that deep machine learning models often provide, and/or to 
approximate intractable or computationally difficult aspects of a well-accepted statistical proced-
ure (Wikle et al., 2023). 

I want to emphasize the idea of viewing the change-point detection problem as a classification 
instead of a testing problem, and here I outline two extensions of detecting change points in time 
series to spatial (and spatio-temporal) data. 

Detecting change points in multivariate settings is usually carried out by analysing all marginals 
either independently, via univariate methods, or jointly, through multivariate approaches. The 
former discards any inherent dependencies between different marginals and the latter may suffer 
from domination/masking among different change points of distinct marginals. Moradi et al. 
(2023) propose an approach which groups marginals with similar temporal behaviours, and 
then performs group-wise multivariate change-point detection. The approach groups marginals 
based on hierarchical clustering using distances which adjust for inherent dependencies. This 
method significantly enhances the general performance of multivariate change-point detection 
methods. Adding flexible multi-layer neural networks, as the authors propose in this paper, can 
surely bring computational gains and generality in detecting the change points. 

In a discriminant problem in spatial point patterns, identifying structural differences among 
observed point patterns from several populations is of interest in several applications. Jalilian 
and Mateu (2023) use deep convolutional neural networks and employ a Siamese framework to 
build a discriminant model for distinguishing structural differences between spatial point patterns 
together with a one-shot learning classification method. In this paper, the authors comment of 
posing the same strategy when dealing with change points rather than structural characteristics. 
It would be nice to see how the author’s method can be adapted to this context. 

I finally would like to call the attention of the authors to the recent paper by Briz and Mateu 
(2023) in which we use Bayesian inference to detect change points in univariate Hawkes point 
processes. Adapting the authors method to this other context can open further avenues of interest-
ing research. 

Conflicts of interest: None declared. 
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I congratulate the authors for their fundamental contribution that demonstrates how the existing 
tests for change-points can be represented by a neural network. The major consequence is that 
with sufficient data, the performance of these neural networks should be at par with these existing 
tests. This formulation is very insightful and inspired me to revisit the previous work on models for 
non-stationary time series that use time-localized representations such as wavelets, wavelet pack-
ets (WP), and the smooth localized complex exponentials (SLEXs). Orthonormal representations 
are mathematically elegant and they generalize the Cramer representation for stationary time ser-
ies which use the Fourier basis functions. 

One advantage of the WP and SLEX is that they form a library of many bases and thus provide a 
collection of candidate representations. The best representation is selected data-adaptively to be 
the one that minimizes the penalized Kullback–Leibler criterion. Due to the localized nature of 
the basis functions, the best model gives a specific segmentation of the time series data (in the 
case of SLEX, this is the segmentation of time). Thus, selecting the best model implicitly provides 
the estimated change-points in the tine series data. 

The current implementation limits the choice of the model to have a dyadic segmentation of time 
(in the case of SLEX) or frequency (in the case of WPs). This dyadic constraint is necessary to take 
advantage of the best basis algorithm of Coifman and Wickerhauser which requires the magnitude 
of O(T ) operations (where T is the number of time points). The dyadic nature is a primary limi-
tation of these methods because the change-points are constrained to lie on dyadic time points. 
This is where the current work of Li et al. can provide a major improvement. The dyadic change- 
points could serve as the initial values of these change-points but could be refined and made more 
precise by taking advantage of the neural networks. 
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We provide comments only on the read paper “From Denoising Diffusions to Denoising Markov 
Models” by Benton, Shi, De Bortoli, Deligiannidis and Doucet. 

We congratulate the authors on an important contribution to the exciting area of generative 
models: providing a simple framework for applying the idea of diffusion generative models to 
data defined on general spaces and for general noising processes. 

Diffusion models have shown remarkable empirical performance for several applications, most 
notably as a way of defining implicit models for images. However it is unclear, to us at least, why 
these methods are so successful. They typically involve fitting highly parameterized models for the 
score, and it is unclear why one would expect to be able to find good parameter estimates for such 
models. Furthermore, such models may be sufficiently flexible to learn the exact denoising process 
for the samples they are trained on—thereby collapsing the diffusion model to a categorical sam-
pler from the training data. Could the authors provide insight into why these methods work? Is 
there intuition as to what types of data their denoising Markov models will work well for? 

Diffusion models are often used when the data are supported on a low-dimensional manifold of 
the state space. However, the Kullback-Leibler (KL) divergence which these models implicitly min-
imize can be infinite when the supports of the distributions are disjoint. Can the proposed frame-
work extend to objectives which do not have this issue? Or is the use of KL beneficial, in that it 
actually helps force the model to sample from close to the manifold? 

The proposed framework parameterizes the generative process in terms of a function β(x; t), whose 
optimal value is the marginal density of the noised data at time t. However, in practice the authors use 
different parameterizations, mainly based on differences in log β(x; t). Can the authors give more 
intuition as to why this is the best choice? And do they think this would be the case in general? 

Finally, both parameterizations of the continuous-time Markov chain model revolve around 
log r(x, y; t) = log β(x; t) − log β(y; t). As far as we can tell, the authors do not impose the anti- 
symmetry log r(x, y; t) = − log r(y, x; t) when fitting r, which seems like some form of relaxation 
of the optimization problem. Are there advantages in fitting a more general functional form? 
Even if you fit a general function r, you can apply a post-hoc anti-symmetric correction: 

r̃(x, y; t) =
r(x, y; t)
r(y, x; t)

 1/2

. (1) 

Table 1. Image quality metrics for MNIST 14 × 14 inpainting, with standard errors in brackets  

Original implementation With correction (1)  

Mean-squared error (scaled) 5.49 (±0.03) 5.49 (±0.03) 

Structural similarity index measure 0.759 (±0.001) 0.758 (±0.001)   
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With the denoising formulation, this does not require additional neural network evaluations. We 
found that this correction produced almost identical results for the MNIST inpainting example 
(see Table 1). 

Conflict of interest: Paul Fearnhead co-authored the read paper “Automatic Change-Point 
Detection in Time Series via Deep Learning”. 
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I thank the authors for a compelling paper, which describes methodology with the potential for 
very wide applicability. The work approaches the task of extending denoising diffusion models 
to general spaces by observing that even quite exotic state spaces can still accommodate convenient 
Markovian evolutions. A recent note of Montanari (2023) has instead obtained generalizations by 
focusing on indirect ‘observation processes’ y of the signal x, which could be taken to live on a 
space of one’s own choice (potentially entirely unrelated to the domain of x). Could the authors 
comment on the advantages which they perceive of the ‘Markov perspective’ relative to the ‘obser-
vation perspective’? 

Conflict of interest: None declared. 
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I would like to congratulate the authors to this important contribution linking change-point de-
tection and machine learning. My first comment is related to convolutional neural networks 
(CNNs) that are considered in Section 6. Empirical studies for image classification have shown 
that in the first hidden layer, CNNs learn, among other features, to detect edges in various direc-
tions. This can be viewed as change-point detection in two dimensions. For one change point, the 
article uses that the cumulative sum (CUSUM) transformation C(x) = (v⊤

1 x, . . . , v⊤
n−1x)⊤ can be 

realized by the first layer in a neural network with n − 1 units in the hidden layer and input vector 
x. Since 

vi =
(

ri, . . . , ri��������
i times

, −rn−i, . . . , − rn−i��������������������
n−i times



with ri :=
���
n−i
ni



, all weight vectors v1, . . . , vn−1 have a similar structure. If the ri would not depend 

on i, the CUSUM transformation could even be realized by a feature map in a CNN. But always a 
small discrepancy remains between the CUSUM approach and feature learning in CNNs. An in-
teresting follow-up question is whether one could derive an analogue of Theorem 4.2 for CNNs 
instead of fully connected neural networks. To answer this question, the right setting might be 
(as in Section 6) to assume that there are several change points present and that any two change 
points could be close. This requires a more local approach and CNNs might then be close to 
optimal. 

My second comment relates to depth. While shallow networks are sufficient for the change-point 
detection problem considered here, one can wonder what type of relevant higher order structures 
become learnable by adding layers. This question might be even more relevant for edge detection in 
the two-dimensional case. It seems conceivable that adding another convolutional layer allows to 
learn patterns within the detected edges. Consequently, a neural network with two hidden layers 
could potentially recognize far more complex shapes. 

Conflict of interests: None declared. 
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We congratulate the authors for an interesting article. Below are our comments: 

1. An important task moving forward will be to investigate under what conditions such algo-
rithms are sub-optimal. For example, certainly if there is a simple parametric form and it is 
known, correctly, then an estimate taking advantage of this information should be expected 
to outperform a simple neural network algorithm that does not use this information. 

2. The proof that the CUSUM-based statistic corresponds to a neural network estimate is in-
structive and very nice, but this alone does not ensure that in practice, a neural network is es-
timated that matches the ideal estimate, even in simple cases.  

3. When estimating a change-point in a practical setting, one gets a sense that the problem 
ultimately boils down typically to whether the values in some time interval are sufficiently 
different from values in the previous time interval. I wonder if using complex models such 
as neural networks obscures this somewhat. 

4. There are really several different change-point problems, even within the context of estimat-
ing a single change-point, rather than multiple change-points. One problem is to pinpoint the 
time of a change-point, given knowledge that one has occurred in the past. Another is to 
evaluate in real time whether a change-point seems to have just occurred. A third is to evalu-
ate, retrospectively, whether a change-point seems to have occurred in the past, and perhaps 
also jointly to pinpoint its timing. This third task is the focus of the current paper. The second 
task, however, is often to be performed in real time, and having a fully automatic method for 
accomplishing this task is typically considerably more valuable for this second problem than 
the others. It seems plausible that neural network algorithms might be more desirable for this 
second problem of real-time evaluation of whether a change-point has recently occurred, 
rather than the more retrospective analytical problems of identifying an optimal change-point 
given knowledge that one has occurred, or assessing after the fact whether or not a change- 
point has occurred at some time in the past.  

5. It would be interesting to see if similar results can be obtained for point processes. For disease 
epidemics, for example, one often obtains point process data on incidence times and it is 
of significant interest to determine if there is a change in the process that could indicate a 
significant mutation of the disease.  

Conflicts of interest: None declared. 
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We thank the authors for the interesting and timely article. Our commentaries are as follows: 
From equilibrium Langevin dynamics to non-equilibrium ordinary and stochastic differential 

equations. We wish to add a little background explanation, with no claim of originality, to this 
deep and elegant paper that greatly expands the scope of diffusion/score-based models. The 
diffusion-based model can be viewed as a refined variational auto-encoder and a non-equilibrium 
Langevin sampler. While the variational auto-encoder perspective seems more fundamental be-
cause it directly targets the log-likelihood through the variational lower bound, the non- 
equilibrium Langevin perspective is also revealing. 

Specifically, for a target density p(x), the Langevin dynamics for sampling p(x) is 

xt+Δt = xt +
Δt
2
∇x log p(xt) +

���
Δt
√

ϵt, 

where Δt is discretized time step, and ϵt ∼ N (0, I) independently over discretized t (more rigor-
ous treatment involves taking the limit Δt→ 0). The Langevin dynamics consists of a deter-
ministic gradient ascent term and a stochastic noise injection term. It is an equilibrium 
sampler in that if xt ∼ p(x), then xt+Δt ∼ p(x). However, for Markov chain Monte Carlo sam-
pling, we have to start from a simple initial noise distribution and iterate the Langevin dynam-
ics for infinite time in order to converge to p(x). 

But the familiar Langevin dynamics tells us a simple yet profound fact if we separate the 
deterministic gradient ascent step and the stochastic noise injection step. Suppose x ∼ p(x), let 
x− = x + Δt

2 ∇x log p(x) ∼ p−(x) by gradient ascent. Then x− +
���
Δt
√

ϵ ∼ p(x) after noise injection, 
where ϵ ∼ N (0, I). Put it another way, if x− ∼ p−(x), and x− +

���
Δt
√

ϵ ∼ p(x) after noise injection, 
then x + Δt

2 ∇x log p(x) ∼ p−(x). That is, the deterministic gradient ascent step reverses the noise in-
jection step as far as the marginal distribution is concerned. 

This suggests that if we start from the data distribution x0 ∼ p0(x), and iterates the noise injection 
step xt+Δt ∼ xt +

���
Δt
√

ϵt, then we can reverse it by the gradient ascent step x̃t−Δt = x̃t + Δt
2 ∇x log pt(x̃t), 

where pt is the density of xt, and we use x̃ notation for the samples along the reverse trajectory, where 
x̃t has the same marginal distribution as xt. This leads to denoising by ordinary differential equation. If 
we double the step size of gradient ascent, then x̃t + Δt∇x log pt(x̃t) amounts to x̃t−2Δt, and we need 
to inject noise 

���
Δt
√

ϵ̃t to get back to the marginal distribution at t − Δt. This leads to denoising 
by stochastic differential equation:  x̃t−Δt = x̃t + Δt∇x log pt(x̃t) +

���
Δt
√

ϵ̃t. Both ordinary and sto-
chastic differential equations are finite-time non-equilibrium samplers. 

Conflict of interests: None declared.  

The authors replied later, in writing, as follows: 
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We would like to thank the proposer, seconder, and all discussants for their time in reading our 
article and their thought-provoking comments. We are glad to find a broad consensus that 
neural-network-based approach offers a flexible framework for automatic change-point analysis. 
There are a number of common themes to the comments, and we have therefore structured our 
response around the topics of the theory, training, the importance of standardization and possible 
extensions, before addressing some of the remaining individual comments. 

Theory. Both Wilkinson and Zhang compare the theoretical bound on the generalization error 
in Theorem 4.2 with our empirical results in Figure 2 of main text, Figures S2 and S3 of 
supplement. Our experience has been that the empirical generalization error has been substantially 
lower than the theoretical bounds suggest—with good performance of our fitted neural network 
with training sample sizes that are orders of magnitude smaller than one may expect given the 
number of parameters within the neural network. Related to this is that how the bound on the gen-
eralization error depends on e.g. the number of layers, is not particularly informative about how 
these factors affect the error in practice. We agree with both Wilkinson and Zhang that there is a 
need for a new theoretical framework for bounding the generalization error of neural networks 
that is more meaningful in practice. 

We thank Zhang for pointing out how our theoretical analysis can be extended to more general 
data generating mechanisms, including heavier-than-Gaussian noise distributions and data with 
weak temporal correlation (a concern of Hong et al., 2024). Indeed, as Zhang comments, the 
same procedure still works in such settings and the current proof will go through, with minor mod-
ifications to the choice of λ in Corollary 4.1. As λ is adaptively chosen by the neural network (which 
is one of the main attractions of our procedure), the results in Theorems 4.2 and 4.3 will be essen-
tially unchanged. In a similar vein, Schmidt-Hieber mentions that our theory could be modified to 
prove local change-point detection error rates using convolutional neural networks (CNN). 
Indeed, by combining existing results on moving sum (MOSUM) (Eichinger & Kirch, 2018) to-
gether with Vapnik-Chervonenkis (VC) dimension results of CNN, we could arrive at a similar 
result to Theorems 4.2 and 4.3 in the paper. 

Gavioli-Akilagun points out that the current architecture cannot directly exactly represent the 
likelihood-ratio test statistic for detection of piecewise affine changes. We agree with this observa-
tion. However, by including squared observations as inputs, or if we include squaring in the set of 
nonlinearities permitted by the neural network, we can directly express the likelihood-ratio test as 
a function in the neural network class (VC-dimension results concerning neural networks with 
piecewise polynomial activation functions are given in Theorem 7 of Bartlett et al., 2019). 
Moreover, by including multiple layers within our architecture, the neural network can accurately 
approximate the square function. This is related to the nice results of Gavioli-Akilagun that show  
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test statistics based on linear functions, which can be represented simply by a neural network, can 
have statistical performance comparably to those based on the likelihood-ratio test. 

Regarding Zhang’s observation that the first term in Theorem 4.3 does not decrease as training 
sample size N increases, our intuition is that the first term represents the Bayes risk of the classi-
fication task on the test set, which is achieved by the cumulative sum based classifier. Therefore, it 
will not be affected by increasing training sample size and only depends on the test sample. 

Neural network architecture. Both Wilkinson and Nemeth raise the question of how to choose a 
suitable neural network architecture for different settings. This is a well-studied problem in ma-
chine learning. A few possible Neural Architecture Search approaches are mentioned in Paaß 
and Giesselbach (2023, Section 2.4.3) (also discussed in Section 6 of the main text). Nemeth 
also asks the question of whether it is easier to choose the neural network architecture than to 
choose stochastic models to represent the data. Given these Neural Architecture Search methods 
mentioned above, we believe that the former is at least a more structured problem that can be 
solved algorithmically. 

Schmidt-Hieber discusses the effect of the depth of the network on its ability to detect various 
structures in the signal. Indeed, we agree that in general the less we know about the data generating 
mechanism, the more layers we need in the architecture. 

Training. Cribben and Anastasiou raise a number of important practical considerations with 
training. First, as our approach requires labelled data, there is the challenge of obtaining such 
data. We agree that for manually labelled data, the labelling of changes is subjective, and this 
means that our method will only aim to replicate the manual classification. If we use simulation, 
then we can avoid this, but at the expense of needing to model what changes would look like. They 
also point out that often changes are rare—so training data may be imbalanced, and we would also 
want to account for this imbalance when detecting new changes. If we believe the frequency of 
changes will be different in the training than in the test data, or if we wish to account differently 
for different types of errors (false detection versus missing a true change), this is possible by includ-
ing different weights for each error when training. 

Both Bodenham and Adams, and Hong et al., ask how our approach could be applied to a single 
long time series, for example from finance. First, our method requires labelled training data, so we 
would require part of the time series to have labelled changes, or known to have no changes. In this 
case, we can divide such historical data into time series of a fixed length, leading to a set of labelled 
training data. One can then fit a neural network classifier to this data and use the fitted neural net-
work to classify windows of new data using the same moving window idea as in Section 6. 

When not enough training data is available, we proposed to simulate artificial data to train our 
neural network. Wilkinson points out that this has a close link to the simulation-based inference. 
We agree that it is worth investigating the links with this literature further. 

Standardization. We agree with Chen and Chen that the simple neural network classifier is not 
automatically invariant to the shifting and scaling because it may not have learned an exactly in-
variant statistic. 

Differences in the results for standardized versus nonstandardized data show that the algorithm 
(not unexpectedly) learns to perform classification for the problem at hand, whether or not it 
aligns with the analyst’s perceived best way of distinguishing the two classes. More specifically, 
the algorithm’s task is to solve a binary classification problem, distinguishing between two groups 
of sequences. While the analyst may suspect that it is the presence of the change point that is the 
main feature separating the two classes, the learning algorithm may take a different view given the 
training data. For example, in the nonstandardized case, if all the input data starts with μL = 0, 
what the analyst regards as a change-point problem the algorithm may construe as a testing prob-
lem of departure from a zero mean. 

Furthermore, as pointed out by Wilkinson, the min–max scaling used in our algorithm may not 
be appropriate for very heavy-tailed data. In such contexts, scaling by empirical quantiles other 
than 0 and 1 would be more appropriate. 

In many applications, one would also like the test to be invariant to the reversal of the time dir-
ection. Hence, Chen and Chen’s proposal of adding reversed sequence Xn, . . . , X1 into the train-
ing data, which has the additional benefit of enlarging the sample size, makes sense.  
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Extensions. As Bodenham and Adams point out, often one is interested in localizing changes, 
rather than just detecting them. As a first work in the area of using neural networks to automat-
ically construct change-point detectors, we deliberately focused on the problem of detection rather 
than localization. However frameworks similar to that of MOSUM (Eichinger & Kirch, 2018), 
where we apply a detector to different windows of data, can use a change-point detector to also 
estimate the location of any changes. We used this idea, i.e. Algorithm 1, in the analysis of the 
Human Activity Sensing Consortium data in Section 6. However, we believe that there may be 
more attractive ways of extending our idea to the problem of change-point localization. 

A number of discussants (Anastasiou and Cribben, Schoenberg and Wong, Bodenham and 
Adams) ask whether our method can be applied in an online setting. This is possible provided 
that we have a pretrained neural network that can classify data of a given window length, say h. 
When we receive a new observation, we can apply the neural network classifier to the most recent 
h time points. Computationally this is possible in an online setting, as once trained, the cost of run-
ning the classifier is fixed. There are challenges in terms of how to tune the classifier so that the re-
sulting online change-point detector has an appropriate average run length. Also, how to extend this 
idea so that we also update the classifier online as we get new data, is an interesting open question. 

Schoenberg and Wong, Anastasiou and Cribben, Mateu, van Lieshout and Lu ask whether our 
ideas could be extended to multivariate data, and in particular spatial data or point process data. 
We are interested to hear about the recent developments in this area and look forward to seeing 
future works in this direction. One challenge of dealing with point process data is that the number 
of points is random and cannot be easily interpreted as input of a neural network. As a first order 
approximation, we could bin the data into a (multivariate) time series of counts and a similar 
method to the one proposed in our article could then be applied. 

Other comments. We are interested to read about other research at the interface between neural 
networks and change point and related areas in statistics. This includes the using change-point de-
tection to improve the fitting of deep neural network models to time-series data (Jungbluth & 
Lederer, 2023) and the possibility of using ideas from our article to improve existing change-point 
detection methods as suggested by Ombao. Schmidt-Hieber also points out the possibility of using 
a convolutional neural network-based approach for detecting local change points or two- 
dimensional edge detection. Finally, we agree with MacKenzie that one disadvantage with auto-
mated procedures like the one in our article is that the final test statistic for a change is hard to 
interpret. We welcome work on improving interpretability of artificial intelligence (AI) and believe 
ideas in this area will be important as AI methods are increasingly using within statistics. 
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1 Response 
We would like to thank all the discussants for their contributions and comments on our work. 

1.1 Inductive biases of DMMs 
The question of why and on what class of distributions denoising Markov models (DMMs) work 
well in practice remains solidly open, as was highlighted by several discussants. Nevertheless, we 
may offer several hypotheses supported by recent investigations. Firstly, for a denoising diffusion 
in Rd approximating a data distribution supported on a submanifold, for small times t the score 
function ∇ log qt(x) points locally in the direction towards the manifold and explodes in magni-
tude. This behaviour is induced by the implicit Kullback-Leibler (KL) objective we minimize 
and forces the model to sample from close to the manifold, as suggested by Papp, Fearnhead 
and Sherlock, helping the model to recover the underlying data manifold (Stanczuk et al., 2023; 
Wenliang & Moran, 2023). We hypothesize that something similar may happen for DMMs 
more generally, whereby they pick up the geometry of the data distribution through observing lo-
cal changes in qt(x) for small times. Other work has identified conditions under which diffusion 
models on Rd will accurately reconstruct the data manifold (Pidstrigach, 2022), but diffusion 
models in practice operate far from the regime discussed therein. 

In any case, a generative model which perfectly memorized the empirical distribution would be 
useless, as it would not generalize beyond the training data. So, to understand the success of 
DMMs, we must also understand how the inductive bias of the score approximation network al-
lows them to interpolate between observed samples. It would appear that diffusion models have 
powerful inductive biases encouraging this interpolation, since it has been observed that diffusion 
models trained with the same architecture on disjoint training datasets often end up learning to 
generate very similar images (Kadkhodaie et al., 2023). Remarkably, it has ever been observed ex-
perimentally by Zhang et al. (2023) that ‘when starting with the same initial noise input and sam-
pling with a deterministic solver, diffusion models tend to produce nearly identical output content. 
This consistency holds true regardless of the choices of model architectures and training 
procedures’. 

Work bounding the error of diffusion models on Rd has decomposed the difference between the 
data distribution and the learned approximation into three terms, one arising from the approxi-
mation of the marginal qT of the forward process at time T with the reference distribution qref, 
one arising from the time-discretization of the reverse stochastic differential equation (SDE), 
and one arising from the error of the score approximation (Chen et al., 2023c; Chen et al., 
2023a). Empirically, we find that the last of these dominates, suggesting that the observed gener-
alization is coming mostly from the manner in which the score is approximated.  
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There are three factors affecting the approximation learned for the score, which were high-
lighted in Wang’s response. The first is our choice of the ELBO training objective, which we expect 
generally imparts a favourable bias—on Rd it reduces to the L2 score matching objective, which 
has an elegant and intuitive interpretation in terms of denoising score matching with multiple noise 
levels (Song & Ermon, 2019; Vincent, 2011). The second is the use of gradient-based optimizers 
such as stochastic gradient descent or Adam to learn the parameters of our approximation, which 
as Wang highlights often finds solutions which generalize well. The third is the architecture of the 
neural network used to parameterize the score approximation. A typical choice of architecture is 
the UNet, which seems empirically to perform well (Ho et al., 2020). There have been some initial 
investigations into the appropriateness of the inductive bias of UNets for diffusion models [see, for 
example Williams et al., 2023 or the experiments provided by Kadkhodaie et al. (2023) and 
Gilliot, Andrieu, Lee, Liu, and Whitehouse]. However, our understanding of the relevance of 
the neural network architecture is far from complete, and the questions of which biases are in-
duced by the common choices of architectures and how to encode a given set of biases through 
an appropriate such choice remains understudied. 

In general, much of the existing literature on the inductive biases of diffusion models applies 
only to the case of models on Rd. Understanding the bias of arbitrary DMMs will inevitably be 
a much greater challenge. 

1.2 Inference techniques 
One of the main practical considerations when implementing DMMs is how to simulate the for-
ward and reverse processes. While we focused mostly on simple first-order methods in our paper, 
finding improved inference techniques may greatly improve the performance of DMMs in prac-
tice, since the number of steps required to simulate the reverse process dictates the number of neur-
al function evaluations required, which is typically the limiting factor in performance. A wide 
range of techniques have been developed for speeding up diffusion models in Rd, including the 
probability flow ordinary differential equation (probability flow ODE, or PF ODE) (Song, Sohl- 
Dickstein, et al., 2021), consistency models (Song et al., 2023), distillation (Salimans & Ho, 
2022), using higher order ODE simulation methods (Karras et al., 2022), or using 
non-Markovian noising processes such as in the denoising diffusion implicit model (DDIM) or 
flow matching methods (Lipman et al., 2023; Liu et al., 2023; Song, Meng, et al., 2021). 

Unfortunately, most of these techniques do not immediately transfer to the more general DMM 
setting. Nevertheless, we are hopeful that specific techniques can speed up inference for particular 
classes of DMMs. For example, the tau-leaping method developed by Campbell et al. (2022) and 
which we use in Section 6.2 can be viewed as one such method. Other possibilities may include 
extending the probability flow ODE to new state spaces—indeed, De Bortoli et al. (2022) show 
how the PF ODE can be extended to the Riemannian manifold setting—though we are not current-
ly aware of a straightforward and computationally tractable generalization of the PF ODE to ar-
bitrary DMMs. Alternatively, we could find higher order simulation methods or adaptive 
time-stepping procedures for other classes of Markov processes, as suggested by Wilkinson, which 
would mitigate the need for time-rescaling. 

1.3 Choosing the forward process 
In response to Kent’s question regarding the choice of hyperparameters for the Ornstein- 
Uhlenbeck (OU) forward process, we note that the forward process should be run until (approxi-
mate) convergence—that is, until the information in the original distribution is essentially com-
pletely destroyed. Assuming we do this, any choices of λ and σ will in fact lead to an equivalent 
diffusion model, up to linear rescalings of time and space. Therefore, there is little theoretical dif-
ference to be made by tuning the parameters λ and σ, beyond the inductive bias that particular 
choices impart when learning the score approximation. 

In practice, it is found that it is easiest to learn the score function if the data are normalized 
to take values in some standard interval. For example, for data on Rd, we typically rescale the 
data to lie in the interval [ − 1, 1], or have identity covariance, and then choose our forward pro-
cess to have the standard Gaussian as its invariant distribution (Ho et al., 2020). For a similar  
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reason, we also typically apply a time-rescaling function β(t) to make the score easier to learn near 
t = 0, as described in Song, Sohl-Dickstein, et al. (2021). 

1.4 Parameterization of the reverse process 
There are several reasons why we tend to prefer parameterizing the reverse process in terms of a loga-
rithmic gradient of β(x, t) rather than via β(x, t) directly. The first is that we expect the ∇ log operator 
to smooth the target substantially. At the optimum, β(x, t) is equal to the marginal qt(x), which may 
vary over many orders of magnitude when t is close to 0. Accordingly, log β(x, t) tends to be a much 
more stable training target. Second, we find that the objective I ISM and the reverse process are often 
more naturally parameterized by ∇ log β(x, t) or its equivalent, as can be seen for example in the real 
diffusion case in Appendix J.1. If it is ∇ log β(x, t) which features in both our training objective and 
our description of the reverse process, we believe that it makes most sense to target this quantity dir-
ectly. Finally, we find that this choice leads empirically to more stable training, validating our design 
decision. We expect this to be the case in most (though perhaps not all) applications of DMMs. 

Concerning our decision not to enforce symmetry constraints on log r(x, y; t) in the continuous- 
time Markov chain (CTMC) example, this was mostly for practical convenience, since it is simpler 
to parameterize the unconstrained function. In addition, we did not find that the performance of 
our models were noticably negatively affected by this lack of symmetry, as Papp, Fearnhead, and 
Sherlock themselves note. We speculate that this may be a particular instance of a common phe-
nomenon in machine learning whereby discarding certain domain-specific knowledge and opti-
mizing over an unconstrained state space turns out to perform just as well, if not better, than a 
more heavily customized model. 

1.5 Novel applications of DMMs 
One of our main motivations for introducing DMMs was to make it possible to apply the powerful 
denoising diffusion modelling technique to a much broader set of problems. While we had limited 
space to address such applications in our main work, we were extremely gratified by the many po-
tential real-world applications of DMMs that discussants highlighted, including in theoretical 
neurobiology (Cialfi), learning highly concentrated directional distributions (Kent), and creating 
synthetic datasets for statistical disclosure control (Jackson). Applications to spaces with mixed 
discrete and continuous components, as suggested by Wilkinson, are common in protein gener-
ation; see e.g. Morehead et al. (2024). 

1.6 Application to g-and-k distribution 
We expect DMMs to be most useful for very high-dimensional or multi-modal distributions. The 
primary purpose of providing the g-and-k example in Section 6.1 was to demonstrate that DMMs 
can also be competitive in standard Bayesian settings, and to evaluate their performance in a case 
where the ground truth was known and we could perform a comparison to other methods. We 
found that DMMs were at least as effective as other simulation-based inference (SBI) methods, 
though we agree with Nemeth and Wilkinson that the large computational cost of DMMs is a 
drawback which must be weighed against their benefits when considering whether to apply 
DMMs in such situations. This computational cost is likely a substantial part of the reason why 
DMMs are not yet used more widely for SBI. 

Nemeth notes that the neural networks we use for inference in the g-and-k example are vastly 
overparameterized compared to both the observed dataset and the underlying number of parame-
ters. However, we tend to view such overparameterization as an asset rather than a hindrance— 
in the machine learning literature, it is commonly found that such overparameterization provides 
a favourable inductive bias, leading us to learn a score approximation that generalizes well. 
Regarding how many parameters are required to have a high degree of statistical accuracy, Chen 
et al. (2023b) provide bounds on the size of a neural network required for a given accuracy of score 
approximation in the case where the data distribution is supported on a linear submanifold. 

Of course, where DMMs really come into their own is on problems that are much more 
complicated than the simple g-and-k distribution, such as the image inpainting example discussed 
later. For such high-dimensional problems, classical SBI techniques are infeasible and denoising- 
based methods really shine.  
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1.7 Singularities on SO(3) 
As Mardia highlights, many methods for defining or approximating distributions on SO(3) may 
run into problems arising from using singular charts for the manifold. We take this opportunity 
to clarify how our DMMs avoid this problem by respecting the manifold structure of SO(3). 
Mardia rightly points out that we use a wrapping procedure to construct the synthetic data distri-
bution on which we test our DMMs, and that this wrapping procedure could cause our test dis-
tributions to be non-smooth. However, this simply means that the distributions we test our 
method by approximating may be singular—it does not reflect a limitation of our DMM method. 

Conversely, we would like our learning procedure to be smooth and respect the manifold struc-
ture of SO(3), and indeed this was a significant motivation for introducing DMMs. When we apply 
DMMs on SO(3), we use a noising process—the Brownian diffusion—which respects the manifold 
structure, and we parameterize the reverse process in terms of a function {si

θ(x, t)}3
i=1, which is rep-

resented as a three-dimensional vector constrained to lie in the relevant tangent plane (for details, see 
Section 6.3 and Appendix J.5 of the paper). Accordingly, our parameterization of the reverse process 
is free of singularities and our learning procedure respects the structure and symmetry of SO(3). 

Our decision to use M = 16 components for the synthetic test distributions was a somewhat ar-
bitrary design choice made to strike a good balance between significant multi-modality and ease of 
visual representation. The values of σm are drawn randomly with mean 0.1. 

Regarding how we assess our methods, we chose to compare to the ground truth for inference 
problems where it was available in order to verify that our method produced sensible predictions. 
However, in many cases such as image generation, perhaps the most important metrics will concern 
the perceptual quality of samples. Hence, for these problems we focused on providing a range of 
samples from our models, and demonstrating that the samples we get appear to be diverse and rep-
resentative of the true image manifold. To further assess the performance in the absence of a ground 
truth, we may also consider using metrics such as the maximum mean discrepancy (Gretton et al., 
2012) to assess the distance between the distribution of the generated samples and the training data. 

1.8 Relationship to stochastic localization 
Power notes that recent work of Montanari (2023) has shown that real diffusion models are 
equivalent to stochastic localization sampling processes. This correspondence gives new powerful 
tools for studying diffusion models and their convergence properties—indeed, in separate work we 
have recently used this result to provide improved convergence bounds for real diffusion models 
(Benton et al., 2023). 

Nevertheless, the denoising perspective on diffusion models retains certain advantages. For ex-
ample, it suggests natural generalizations of diffusion models using non-Markovian forward proc-
esses, as in Song, Meng, et al. (2021) or Lipman et al. (2023). In addition, to make sampling from 
the observation process tractable, Montanari (2023) rely on a result which essentially categorizes 
the time-reversal of an SDE as another SDE (their Proposition 1.1). In order to apply the observa-
tion perspective on a general state space, we would need an equivalent of this result that held for 
arbitrary Markov processes. Perhaps this may be done, but our DMM work from our Markovian 
perspective circumvents the need for such a result—and indeed may be viewed from one perspec-
tive as deriving a result of this form, since if we assume the reverse process is learned perfectly, then 
it will be equal to the time-reversal of the forward process, giving a way to identify this time- 
reversal in the general case. 

Conflict of interests: None declared. 
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