
Efficient Caching with Reserves via Marking
Sharat Ibrahimpur #Ñ

Department of Mathematics, London School of Economics and Political Science, UK

Manish Purohit # Ñ

Google Research, USA

Zoya Svitkina #

Google Research, USA

Erik Vee #

Google Research, USA

Joshua R. Wang #Ñ

Google Research, USA

Abstract
Online caching is among the most fundamental and well-studied problems in the area of online
algorithms. Innovative algorithmic ideas and analysis – including potential functions and primal-dual
techniques – give insight into this still-growing area. Here, we introduce a new analysis technique
that first uses a potential function to upper bound the cost of an online algorithm and then pairs that
with a new dual-fitting strategy to lower bound the cost of an offline optimal algorithm. We apply
these techniques to the Caching with Reserves problem recently introduced by Ibrahimpur et al. [10]
and give an O(log k)-competitive fractional online algorithm via a marking strategy, where k denotes
the size of the cache. We also design a new online rounding algorithm that runs in polynomial time
to obtain an O(log k)-competitive randomized integral algorithm. Additionally, we provide a new,
simple proof for randomized marking for the classical unweighted paging problem.

2012 ACM Subject Classification Theory of computation → Caching and paging algorithms

Keywords and phrases Approximation Algorithms, Online Algorithms, Caching

Digital Object Identifier 10.4230/LIPIcs.ICALP.2023.80

Category Track A: Algorithms, Complexity and Games

Related Version Full Version: https://arxiv.org/abs/2305.02508 [11]

Funding Sharat Ibrahimpur : Received funding from the following sources: NSERC grant 327620-09
and an NSERC DAS Award, European Research Council (ERC) under the European Union’s
Horizon 2020 research and innovation programme (grant agreement no. ScaleOpt–757481), and
Dutch Research Council NWO Vidi Grant 016.Vidi.189.087.

1 Introduction

Caching is a critical component in many computer systems, including computer networks,
distributed systems, and web applications. The idea behind caching is simple: store frequently
used data items in a cache so that subsequent requests can be served directly from the
cache to reduce the resources required for data retrieval. In the classical unweighted caching
problem, a sequence of page requests arrives one-by-one and an algorithm is required to
maintain a small set of pages to hold in the cache so that the number of requests not served
from the cache is minimized.

Traditional caching algorithms, both in theory and practice, are designed to optimize the
global efficiency of the system and aim to maximize the hit rate, i.e., fraction of requests
that are served from the cache. However, such a viewpoint is not particularly suitable for

EA
T
C
S

© Sharat Ibrahimpur, Manish Purohit, Zoya Svitkina, Erik Vee, and Joshua R. Wang;
licensed under Creative Commons License CC-BY 4.0

50th International Colloquium on Automata, Languages, and Programming (ICALP 2023).
Editors: Kousha Etessami, Uriel Feige, and Gabriele Puppis; Article No. 80; pp. 80:1–80:20

Leibniz International Proceedings in Informatics
Schloss Dagstuhl – Leibniz-Zentrum für Informatik, Dagstuhl Publishing, Germany

mailto:s.ibrahimpur@lse.ac.uk
http://www.math.uwaterloo.ca/~s26ibrah
https://orcid.org/0000-0002-1575-9648
mailto:mpurohit@google.com
https://sites.google.com/view/manishpurohit
https://orcid.org/0000-0002-8650-2022
mailto:zoya@google.com
mailto:erikvee@google.com
mailto:joshuawang@google.com
https://sites.google.com/site/joshw0/
https://doi.org/10.4230/LIPIcs.ICALP.2023.80
https://arxiv.org/abs/2305.02508
https://creativecommons.org/licenses/by/4.0/
https://www.dagstuhl.de/lipics/
https://www.dagstuhl.de

80:2 Efficient Caching with Reserves via Marking

cache management in a multi-user or multi-processor environment. Many cloud computing
services allow multiple users to share the same physical workstations and thereby share the
caching system. In such multi-user environments, traditional caching policies can lead to
undesirable outcomes as some users may not be able to reap any benefits of the cache at all.
Recently, Ibrahimpur et al. [10] introduced the Caching with Reserves model that ensures
certain user-level fairness guarantees while still attempting to maximize the global efficiency
of the system. In this formulation, a cache of size k is shared among m agents and each agent
i is guaranteed a reserved cache size of ki. An algorithm then attempts to minimize the total
number of requests that are not served from the cache while guaranteeing that any time step,
each agent i holds at least ki pages in the cache. Unlike the classical paging problem, Caching
with Reserves is NP-complete even in the offline setting when the algorithm knows the entire
page request sequence ahead of time and Ibrahimpur et al. [10] gave a 2-approximation
algorithm. They also gave an O(log k)-competitive online fractional algorithm for Caching
with Reserves via a primal-dual technique and then design a rounding scheme to obtain
an O(log k)-competitive online randomized algorithm. Unfortunately, the rounding scheme
presented in [10] does not run in polynomial time and the fractional primal-dual algorithm,
while simple to state, also does not yield itself to easy implementation.

Caching and its many variants have been among the most well-studied problems in
theoretical computer science. It has long been a testbed for novel algorithmic and analysis
techniques and it has been investigated via general techniques such as potential function
analysis, primal-dual algorithms, and even learning-augmented algorithms. For the classical
unweighted caching problem, a particularly simple algorithm, randomized marking [9], is
known to yield the optimal competitive ratio (up to constant factors). At any point in
time, the randomized marking algorithm partitions the set of pages in cache into marked
and unmarked pages and upon a cache miss, it evicts an unmarked page chosen uniformly
at random. Cache hits and pages brought into the cache are marked. When a cache miss
occurs, but there are no more unmarked pages, a new phase begins, and all pages in the
cache become unmarked. In this paper, we build upon this algorithm, adapting it to caching
with reserves.

Our Contributions
We study the Caching with Reserves model of Ibrahimpur et al. [10] in the online setting
and improve upon those results. Our first main result is a simpler fractional algorithm that
is a generalization of randomized marking for classical caching.

▶ Theorem 1. There is an O(log k)-competitive fractional marking algorithm for online
Caching with Reserves. The competitive guarantee holds even when the optimal offline
algorithm is allowed to hold fractional pages in the cache.

We remark that our algorithm in Theorem 1 and its analysis are more involved than
those of the classical randomized marking algorithm. One complication is that due to the
reserve constraints, a marking-style algorithm for the caching with reserves setting cannot
evict an arbitrary unmarked page. Another key difficulty comes from the fact that even
the notion of a phase is non-trivial to define in our setting. In particular, unlike in classical
caching, it can happen that the cache still contains unmarked pages, but none of them can
be evicted to make space for a new page, because of the reserve constraints. Thus, we need a
rule to isolate agents whose reserve constraints prevent the algorithm from having a clean
end of a phase, while also ensuring that the already marked pages of such isolated agents are
not erased prematurely. To this end, we introduce the notion of global and local phases to
effectively model the state of each agent. We elaborate on this in Section 3.1.

S. Ibrahimpur, M. Purohit, Z. Svitkina, E. Vee, and J. R. Wang 80:3

Our analysis of the fractional marking algorithm introduces two novel components that
may be of independent interest. First, we upper-bound the total cost incurred by our fractional
marking algorithm using a new potential function. This potential function, introduced in
Section 3.3, depends only on the decisions of the algorithm and is independent of the optimal
solution. To the best of our knowledge, all previous potential function based analyses of
(variants of) caching [4, 5, 6, 10] define a potential function that depends on the optimal
solution. Second, we introduce a new lower bound for the cost of the optimal solution via
the dual-fitting method. Our techniques also yield a new simple proof that the classical
randomized marking [9] for unweighted paging is O(log k)-competitive (see the full version
[11] for more details).

We also design a new online rounding algorithm that converts a deterministic, fractional
algorithm into a randomized, integral algorithm while only incurring a constant factor loss
in the competitive ratio. Via a careful discretization technique (inspired by Adamaszek et al.
[2]), the new rounding algorithm runs in polynomial time and only uses limited randomization.
Our fractional marking algorithm (Algorithm 1) maintains that at any point in time, a
particular page p is either completely in the cache or at least 1/k fraction of the page has
been evicted. We exploit this key property to show that the fractional solution at any time
t can be discretized so that the fraction of any page that is evicted is an integral multiple
of 1/k3. This discretization allows us to maintain a distribution over feasible integer cache
states with bounded support.

▶ Theorem 2. There is a polynomial-time O(log k)-competitive randomized integral algorithm
for online caching with reserves.

Other Related Work
The unweighted caching (also known as paging) problem has been widely studied and its
optimal competitive ratio is well-understood even up to constant factors. Tight algorithms
[1, 14] are known that yield a competitive ratio of exactly Hk, where Hk is the kth harmonic
number. Recently, Agrawal et al. [3] consider the parallel paging model where a common
cache is shared among p agents – each agent is presented with a request sequence of pages and
the algorithm must decide how to partition the cache among agents at any time. It allows the
p processors to make progress simultaneously, i.e., incur cache hits and misses concurrently.
Multi-agent paging has also been extensively studied in the systems community [7, 16, 17]
often in the context of caching in multi-core systems. Closely related to the Caching with
Reserves setting, motivated by fairness constraints in multi-agent settings, a number of recent
systems [12, 13, 15, 18] aim to provide isolation guarantees to each user, i.e., guarantee
that the cache hit rate for each user is at least as much as what it would be if each user is
allocated its own isolated cache. Also motivated by fairness constraints, Chiplunkar et al. [8]
consider the Min-Max paging problem where the goal is to minimize the maximum number
of page faults incurred by any agent.

2 Preliminaries and Notation

Formally, an instance of the Caching with Reserves problem consists of the following. We are
given a number of agents m and a total (integer) cache capacity k. Let [m] denote the set
{1, . . . , m}. Each agent i ∈ [m] owns a set of pages P(i) (referred to as i-pages) and has a
reserved cache size ki ≥ 0. Pages have a unique owner, i.e. P(i)∩P(j) = ∅ for all i ̸= j, and
we use P ≜ ∪i∈[m]P(i) to refer to the universe of all pages. For any page p ∈ P , let ag(p) be

ICALP 2023

80:4 Efficient Caching with Reserves via Marking

the unique agent that owns p. We assume without loss of generality that at least one unit of
cache is not reserved:

∑
i∈[m] ki < k.1 At each timestep t, a page pt ∈ P is requested. We

can wrap all these into an instance tuple: σ = (m, k, {P(i)}, {ki}, {pt}).
An integral algorithm for the Caching with Reserves problem maintains a set of k pages

in the cache such that for each agent i, the cache always contains at least ki pages from P(i).
At time t, the page request pt is revealed to the algorithm. If this page is not currently in the
cache, then the algorithm is said to incur a cache miss and it must fetch pt into the cache by
possibly evicting another page qt. For any (integral) algorithm A we write its total cache
misses on instance σ as costA(σ).

A fractional algorithm for the Caching with Reserves problem maintains a fraction
xp ∈ [0, 1] for how much each page p ∈ P is in the cache such that the total size of pages
in the cache is at most k, i.e,

∑
p∈P xp ≤ k, and the total size of i-pages is at least ki, i.e.,∑

p∈P(i) xp ≥ ki. At time t, the page request pt is revealed to the algorithm, which incurs
a fractional cache miss of size 1 − xpt

. The algorithm must then fully fetch pt into cache
(xpt ← 1) by possibly evicting other pages. For any (fractional) algorithm A we again write
its total size of cache misses on instance σ as costA(σ).

Let costOP T (σ) be the cost of the optimal offline algorithm on instance σ.

▶ Definition 3 (Competitive Ratio). An online algorithm A for Caching with Reserves is
said to be c-competitive, if for any instance σ, E[costA(σ)] ≤ c · costOP T (σ) + b, where b is a
constant independent of the number of page requests in σ. The expectation is taken over all
the random choices made by the algorithm (if any).

3 Fractional O(log k)-Competitive Algorithm for Caching with
Reserves

For any time t and page p ∈ P , the algorithm maintains a variable yt
p ∈ [0, 1] representing the

portion of page p that is outside the cache. Then xt
p ≜ 1− yt

p represents the portion of p that
is in cache. Algorithm 1 ensures feasibility at all times t: the total of all y values is exactly
the complementary cache size |P|−k, i.e.,

∑
p∈P yt

p = |P|−k; and the total y value for pages
of any agent i is within its respective complementary reserve size,

∑
p∈P(i) yt

p ≤ |P(i)| − ki.
When a request for page pt arrives at time t, the algorithm fully fetches pt into the cache
by paying a fetch-cost of yt

pt
while simultaneously evicting a total of yt

pt
amount of other

suitably chosen pages.

3.1 Fractional Algorithm
The complete algorithm (referred to as Algorithm A in the proofs) is presented in Algorithm 1.
We present a high-level discussion here. At any time t, we say that an agent i is tight if∑

p∈P(i) xt
p = ki, i.e., the algorithm is not allowed to further evict any pages (even fractionally)

of agent i. Conversely, an agent i is non-tight if
∑

p∈P(i) xt
p > ki.

The algorithm is a fractional marking algorithm and runs in phases where each phase
corresponds to a maximal sequence of page requests that can be served while maintaining
feasibility and ensuring that no “marked” pages are evicted. Within each phase, the currently
requested page pt is fully fetched into cache by continuously evicting an infinitesimal amount
of an “available” (described below) unmarked page q with the smallest yq value; if there are
multiple choices of q, then all of them are simultaneously evicted at the same rate. Page pt

gets marked after it has been served and this mark may only be erased at the end of a phase.

1 If all of cache is reserved, the problem decomposes over agents into the standard caching task.

S. Ibrahimpur, M. Purohit, Z. Svitkina, E. Vee, and J. R. Wang 80:5

At the end of a phase, an agent i is designated as isolated if strictly fewer than ki i-pages
are marked in the cache at this time point. This designation changes to non-isolated as soon
as ki i-pages get marked at some point in the future. An isolated agent essentially runs a
separate instance of caching on its own pages and in its own reserved space. At the end of a
phase, the marks of pages owned by non-isolated agents (i.e., agents with at least ki marked
i-pages) are erased.

It remains to describe when a page q is considered available for eviction. Clearly, yt
q < 1

must hold, since otherwise page q is already fully outside the cache. Moreover, ag(q) must
be non-tight, i.e., evicting page q must not violate the reserve constraint of the agent that
owns it. The last condition for q to be considered available for eviction depends on whether
the agent it := ag(pt) is isolated or not: (i) if agent it is isolated, then ag(q) = it should
hold, i.e., only unmarked it-pages are available for eviction; and (ii) if agent it is not isolated,
then ag(q) should also be non-isolated. We recall again that among all available pages for
eviction, pages with the smallest yt

q value are evicted first.

Notation. Let I(t) ⊊ [m] denote the set of isolated agents at time t. For a global phase r0,
we use I(r0) to denote the set of isolated agents at the end of phase r0. Let T (t) denote
the set of tight agents at time t. At any time t, let rt

i denote the value of the local phase
counter ri for agent i, and let Ri = rT

i be the total number of local phases for agent i. By
definition, for any agent i ∈ [m], P (i, ri − 1) and P (i, ri) denote the set of i-pages in the
cache (integrally) at the beginning of the rith local phase and the end of the rith local phase
for agent i, respectively. For any agent i ∈ [m], let M(i, t) ⊆ P(i) denote the set of marked
i-pages in the cache and U(i, t) = P (i, rt

i − 1) \M(i, t) denote the set of unmarked i-pages.
We emphasize that the notion of unmarked pages will only be relevant while referring to

pages in P (i, rt
i − 1) for some i, t; in particular, every i-page q ∈ P(i) \ (P (i, rt

i − 1)∪M(i, t))
is not marked, but we do not refer to it as unmarked. Analogous to the notion of clean and
stale pages used by the randomized marking algorithm [9], we define clean, pseudo-clean
and stale pages as follows. Fix an agent i and let ri be its local phase counter at time t.
Any i-page q ∈ P (i, ri − 1) is considered stale. The currently requested page pt is said to be
clean if pt /∈ P (i, ri − 1). Next, we say that the currently requested page pt is pseudo-clean if
pt ∈ P (i, ri − 1) and yt

pt
= 1 holds right before Algorithm A starts to fetch pt into the cache.

Lemmas 7 and 8 show that a pseudo-clean page necessarily belongs to an agent who was
isolated at the start of (global) phase r0 but is non-isolated at time t. To simplify notation,
we drop the superscript t from all notation whenever the time index is clear from the context.

The following lemma compiles a list of key invariants that are maintained throughout the
execution of the algorithm that follow directly from an examination of Algorithm 1.

▶ Lemma 4. Algorithm 1 maintains the following invariants.
(i) When a new phase begins, all marked pages belong to isolated agents.
(ii) At any time t, all isolated agents are tight.
(iii) At any time t and for any agent i, all unmarked pages of agent i have the same y value.
(iv) Any page belonging to an isolated agent is (fractionally) evicted only in those timesteps

when a different page of the same agent has been requested.

The following lemmas show that the algorithm is well-defined and that the operations in
Lines 12 and 18 of Algorithm 1 are always feasible.

2 Agent it is considered non-tight here because fetching pt while evicting other q ∈ P(it) \ pt does not
violate reserve feasibility.

ICALP 2023

80:6 Efficient Caching with Reserves via Marking

Algorithm 1 Fractional Marking Algorithm for Caching with Reserves.

1 /* Initialization */
2 r0 ← 1 /* global phase counter */
3 ri ← 1, ∀i ∈ [m] /* local phase counters */
4 Let P (i, 0) ⊂ P(i) be set of i-pages in the initial cache (assume |P (i, 0)| ≥ ki) ∀i ∈ [m]
5 All agents i ∈ [m] are non-isolated and all pages p in the cache are unmarked
6 for each page request pt of agent it do
7 if ypt = 0, i.e., xpt = 1, then
8 Mark page pt and serve the request.
9 else if agent it is isolated, then

10 /* Continuously fetch page pt while uniformly evicting all unmarked
it-pages. */

11 Set ypt ← 0, mark page pt and serve the request.
12 Increase yq at the same rate for all unmarked it-pages in the cache until the cache

becomes feasible, i.e.
∑

p∈P yp ≥ |P| − k holds.
13 if agent it now has ki marked pages then
14 Designate it as non-isolated

15 else if ∃ page q owned by some non-tight agent2and satisfying yq < 1, then
16 /* Continuously fetch page pt while uniformly evicting all unmarked

pages (belonging to any non-tight agent) with the least y-value. */
17 Set ypt ← 0, mark page pt and serve the request.
18 Increase yq at the same rate for all unmarked pages of non-tight agents with the

smallest y values until the cache becomes feasible, i.e.
∑

p∈P yp ≥ |P| − k holds.
19 else
20 /* End of phase */
21 for each agent i ∈ [m] do
22 if i has strictly fewer than ki marked pages, then
23 Designate i as isolated.
24 else
25 /* i is non-isolated and undergoes a phase reset */
26 Set P (i, ri)← collection of all (integral and marked) i-pages in cache.
27 Set ri ← ri + 1
28 All marked i-pages are now unmarked

29 Set r0 ← r0 + 1
30 Re-process the current page request pt in the new phase

▶ Lemma 5. If the requested page pt has xt
pt
∈ [0, 1) and agent it is isolated, then pt can be

fetched fully by evicting unmarked pages of agent it.

Proof. As agent it is isolated when page pt is requested,
∑

p∈P(i) xt
p = ki (by invariant (ii)

in Lemma 4) and it has fewer than ki marked pages in cache. Hence
∑

p∈U(i,t) xt
p ≥ 1 and∑

p∈U(i,t)\{pt} xt
p ≥ 1− xt

pt
. ◀

▶ Lemma 6. If the requested page pt has 0 < xt
pt

< 1 and its owner it is non-isolated, then
there is always enough fractional mass of pages belonging to non-tight agents that can be
evicted to fully fetch page pt. In particular, line 18 of Algorithm 1 is well-defined.

Proof. Suppose page pt is fetched in a continuous manner. To show that page pt can be
fetched fully, it suffices to show that at any instantaneous time t when xt

pt
< 1, there always

exists an unmarked page q belonging to a non-tight agent i such that xt
q > 0, i.e. page

S. Ibrahimpur, M. Purohit, Z. Svitkina, E. Vee, and J. R. Wang 80:7

q can be evicted. Observe that k =
∑

q∈P xt
q =

∑
i∈T (t) ki +

∑
i/∈T (t)

∑
q∈P(i) xt

q. Due to
integrality of k and {ki}i∈[m], we must have

∑
i/∈T (t)

∑
q∈P(i) xt

q is an integer. Since any
marked page q always has xt

q = 1, µ :=
∑

i/∈T (t)
∑

q∈U(i,t) xt
q is also an integer. Further,

since it /∈ T (t) and xt
pt

> 0, we must have µ ≥ 1 and hence there exists a page q belonging
to some non-tight agent i with xt

q > 0 as desired. ◀

Since we always evict an available page with the least y value, at any time step t, all
available pages (i.e., unmarked pages q belonging to non-tight agents and satisfying yq < 1)
have the same y value at all times. We denote this common y-value by h∗ and refer to the
corresponding set of evictable pages (with y-value h∗) as the frontier. The following two key
structural lemmas formalize this property.

▶ Lemma 7. At any time t, let i be an agent that was isolated at the beginning of the current
phase, and let q be one of its unmarked pages. Then yt

q < 1 if and only if i is still isolated at
time t.

Proof. For the if direction, suppose that i is still isolated. By invariant (ii), it is also tight.
By invariant (iii), all its unmarked pages have the same x-value and in total they occupy
ki − |M(i, t)| > 0 units of cache space. Thus, xt

q > 0 and yt
q < 1.

For the only if direction, suppose that i is no longer isolated. Just before the kith i-page
to be marked was requested, (ki − 1) i-pages were marked. Since i was tight, the total x

value of all its unmarked pages must have been 1. Then the algorithm replaced all of them
with the kith marked page, and the x-value of all remaining unmarked pages became 0. Thus,
the property holds for a newly non-isolated agent i. This property continues to hold for the
rest of the phase since yq never decreases for an unmarked page. ◀

▶ Lemma 8. At any time t, there is a value h∗
t ∈ [0, 1] such that: for any agent i that was

non-isolated at the beginning of the current phase and any unmarked i-page q, yq ≤ h∗
t holds

and yq = h∗
t holds whenever i is non-tight.

Proof. We prove the lemma by induction. Clearly, the lemma holds at the start of the phase:
all unmarked pages belonging to non-isolated agents have y-value 0. Now consider a time t

during phase r such that the lemma holds for all timepoints before t in this phase. We may
also assume that ypt

> 0, since otherwise none of the variables are modified in this timestep.
By induction hypothesis, any unmarked i-page q satisfies yq ≤ h∗

t−1, and this inequality
is tight whenever i is non-tight. If agent it is non-tight, then its unmarked pages are already
part of the frontier. Otherwise, Algorithm A fetches pt fully into the cache by increasing the
y-value of other unmarked it-pages until one of the following happens: (a) pt is fully fetched.
In this case, it continues to remain tight; or (b) The y-value of unmarked it-pages becomes
equal to the frontier’s y-value, h∗

t−1. In the latter case, unmarked it-pages become part of
the frontier and the y-value of the frontier is uniformly increased until pt gets fully fetched
into the cache. If some agent i′ becomes tight before the fetch operation is completed, then
its unmarked pages get excluded from the frontier and the corresponding y-values remain
unchanged for the rest of this timestep. In all cases, the lemma continues to hold since
the y-value of the frontier is never decreased and only tight agents get dropped from the
frontier. ◀

▶ Remark 9. Within any phase, h∗
t is non-decreasing over time and takes values 0 and 1 at

the endpoints. This follows from the fact that A never decreases yq for an unmarked page
q ̸= pt.

ICALP 2023

80:8 Efficient Caching with Reserves via Marking

The following lemma shows that any page that is not completely in Algorithm A’s
cache must be evicted to at least a 1/k portion. This property will be useful to us in
Sections 3.3 and 4.

▶ Lemma 10. At the end of any time step t, for any page p ∈ P, we have yt
p = 0 or yt

p ≥ 1/k.

Proof. First, note that for all marked pages, we have yt
p = 1− xt

p = 0. Let i ∈ T (t) be any
tight agent. Then we have ki =

∑
p∈P(i) xt

p = |M(i, t)|+
∑

p∈U(i,t) xt
p. By Lemma 4 (part

iii), all unmarked pages of agent i have the same y value: yt
p = 1− xt

p = hi (say). Since ki is
integral, we have either hi = 0 or hi. Rearranging, we have |U(i, t)|hi = |M(i, t)|+|U(i, t)|−ki.
Since all terms on the RHS are integral, we have either hi = 0 or hi ≥ 1/|U(i, t)| ≥ 1/k.

By Lemma 8, all unmarked pages p belonging to non-tight agents satisfy yt
p = h∗

t . Let
U(t) be the set of all unmarked pages belonging to all non-tight agents that were also
non-isolated at the beginning of the phase. Recall that by definition, we have |U(t)| ≤ k

since all pages in U(t) must have been fully in the cache at the beginning of the current
phase. Since we have k =

∑
i∈T (t) ki +

∑
i/∈T (t)

∑
p∈P(i) xt

p, once again by integrality of k

and {ki}, we must have that
∑

p∈U(t) yt
p =

∑
p∈U(t) h∗

t is an integer. Hence, either h∗
t = 0 or

h∗
t ≥ 1/|U(t)| ≥ 1/k. ◀

3.2 Analysis Overview
At any time t, we consider the set of y values of pages in

⋃
i∈[m] P (i, ri − 1) as the state of

the system. We define a non-negative potential function Ψ that is purely a function of this
state. For any page request pt, we attempt to bound the algorithm’s cost by an increase in
the potential function, thereby bounding the total cost incurred by the algorithm by the
final value of the potential function. There are two difficulties with this approach: (i) when
a phase ends, the potential function abruptly drops since all the unmarked pages that were
fully evicted no longer contribute to the state, and (ii) when the agent it was isolated at
the beginning of the phase but is now non-isolated, the change in potential is not sufficient
to cover the fetch cost. In both these situations we charge the cost incurred by the online
algorithm to a new quantity that is a function of the sets {P (i, ri)}. To complete the analysis,
we show that this quantity is upper-bounded by the cost of the optimal solution.

3.3 Potential Function Analysis
Consider the function ϕ : [0, 1]→ R≥0 defined as:

ϕ(h) ≜ 2h · ln(1 + kh) (1)

As h goes from 0 to 1, ϕ(h) increases from 0 to 2 ln(1 + k).
The potential at any time t is defined as follows:

Ψ(t) ≜
m∑

i=1

∑
p∈U(i,t)

ϕ(yt
p) (2)

Note that only unmarked pages at any time t contribute to the potential. So when page
pt is fetched at time t and marked, it stops contributing to the potential. But since ϕ is
monotone, the newly evicted pages increase their contribution to the potential. We remark
that the potential is purely a function of the state of the system as defined by the y values of
unmarked pages in the cache and is thus always bounded by a quantity independent of the
length of the page request sequence.

S. Ibrahimpur, M. Purohit, Z. Svitkina, E. Vee, and J. R. Wang 80:9

▶ Lemma 11. For any h ≥ 1/k, we have ϕ(h) ≥ h and ϕ′(h) ≥ 1 + 2 ln(1 + kh).

Proof. The first conclusion follows from the logarithmic inequality ln(1 + x) ≥ x/(1 + x)
which holds for any nonnegative x: we have ϕ(h) = 2h ln(1 + kh) ≥ h · 2kh/(1 + kh) ≥ h

whenever kh ≥ 1. Next, ϕ′(h) = dϕ
dh = 2(1− 1/(1 + kh) + ln(1 + kh)). So, for any h ≥ 1/k

we have 1/2 ≥ 1/(1 + kh), which gives the other conclusion. ◀

The rest of this section is devoted to proving the following theorem where we bound
the total cost incurred by the algorithm in terms of the sets {P (i, ri)} and the number of
requests to pseudo-clean pages.

▶ Theorem 12. The following bound holds on the cost incurred by A to process the first T

page requests:

costA(σ) ≤ 2 ln(1 + k) ·

mk +
T∑

t=1
1pt is pseudo-clean +

∑
i∈[m]

Ri∑
ri=1
|P (i, ri − 1) \ P (i, ri)|

 .

Recall that the algorithm incurs a cost of yt
pt

to fetch page pt at time t. So the total cost
incurred by the algorithm is simply costA(σ) =

∑
t yt

pt
. We first bound this cost for time

steps when the requested page pt is at least partially in the cache, i.e., yt
pt

< 1. Recall by
Lemmas 5 and 6, the algorithm does not undergo a phase transition in this time step.

▶ Lemma 13. Consider any time step t such that yt
pt

< 1 for the currently requested
(unmarked) page pt. Let ∆Ψ(t) denote the change in the potential function during time step
t. Then yt

pt
≤ ∆Ψ(t).

Proof. We assume that yt
pt
≥ 1

k , since otherwise by Lemma 10, we must have yt
pt

= 0 and
the lemma follows trivially. Since yt

pt
< 1, by Lemma 8, either agent it is tight or we have

yt
q = yt

pt
for every unmarked page q owned by any non-tight agent i that was non-isolated at

the start of this phase. In either case, the pages that get evicted to make space for pt have
their initial y values at least yt

pt
≥ 1/k. The potential function Ψ changes in this step due

to two factors: (i) Ψ drops as page pt stops contributing to the potential as soon as it gets
marked; and (ii) Ψ increases as the y-value of (fractionally) evicted pages increases in this
step.

Let h ≜ yt
pt

. At the beginning to time t, page pt contributed exactly ϕ(h) = 2h ln(1 + kh)
to the potential; This contribution is lost as soon as pt gets marked. To prove the lemma, it
suffices to show that the rate of increase in the potential function (without including pt’s
contribution) is at least 1 + 2 ln(1 + kh) throughout the eviction of an h amount of unmarked
pages belonging to non-tight agents: the 1 term in total pays for the fetch-cost of h and the
2 ln(1 + kh) term in total pays for the 2h ln(1 + kh) loss in potential. This directly follows
from Lemma 11 from the fact that the y-values of pages that are fractionally evicted in this
timestep were already at least h ≥ 1/k. Here, we also use the monotonicity of the function
h′ 7→ ln(1 + kh′). ◀

We still need to bound the cost incurred by the algorithm when the incoming request is
to a page that is fully outside the cache. Note that the algorithm incurs exactly unit cost for
all such time steps. The following lemma shows that the total cost incurred by the algorithm
can be bounded by the drop in potential function at the end of a phase and by a term that
depends only on the change in the potential function while processing a request to a page
fully outside the cache.

ICALP 2023

80:10 Efficient Caching with Reserves via Marking

▶ Lemma 14. For any global phase r0, let ∆Ψ(r0) denote the change in the potential function
at the end of phase r0 (line 30 in Algorithm 1). Let R0 denote the total number of global
phases and T denote the time at the end of phase R0. Then we have the following upper
bound on the cost incurred by A for processing the first T page requests:

costA(σ) ≤ 2mk ln(1 + k) +
∑

t∈[T]:yt
pt

=1

(1−∆Ψ(t))−
R0∑

r0=1
∆Ψ(r0)

Proof. We have:

costA(σ) =
∑

t∈[T]

yt
pt

=
∑

t∈[T]:yt
pt

<1

yt
pt

+ |{t ∈ [T] : yt
pt

= 1}|

≤
∑

t:yt
pt

<1

∆Ψ(t) + |{t : yt
pt

= 1}| (Using Lemma 13)

= Ψ(T)−Ψ(0)−
∑

t:yt
pt

=1

∆Ψ(t)−
R0∑

r0=1
∆Ψ(r0) + |{t : yt

pt
= 1}|.

The lemma follows since Ψ(T) ≤ 2mk ln(1 + k) and Ψ(0) = 0. The bound on Ψ(T) is because
we have m agents each with |P (i, ri − 1)| ≤ k, and ϕ(1) = 2 ln(1 + k). ◀

So, it is enough to bound the total cost and drop in potential for time steps when the
requested page is fully outside the cache and also to bound the drop in potential when the
phase changes.

Proof of Theorem 12. Consider any time step t such that the currently requested page pt is
fully outside the cache, i.e. yt

pt
= 1. We differentiate such requests into two cases depending

on whether the page pt is in the set P (it, rit
− 1) at the time or not. In other words, we

do a case analysis on pt being clean or pseudo-clean. (Recall that only unmarked pages in
P (it, rit

− 1) contribute to the potential).

Case 1: pt /∈ P (it, rit
− 1), i.e, pt is clean. Since page pt /∈ U(i, t), it does not contribute

to the potential before (or after) the request has been served. Consider any page q that is
evicted (fractionally) by the algorithm in this step. By Lemma 4, before the eviction, we
have yq = 0 or yq ≥ 1/k. In either case, by Lemma 11, we have ∆ϕ(yq) ≥ ∆yq where ∆yq

denotes the change in y-value of page q in this step. Since we have
∑

q ∆yq = yt
pt

= 1, we
have ∆Ψ(t) =

∑
q ∆ϕ(yq) ≥ 1.

Case 2: pt ∈ P (it, rit−1), i.e., pt is pseudo-clean. By the same reasoning as above, we have∑
q ̸=pt

∆ϕ(yq) ≥ 1. However, in this case, page pt also contributed exactly 2 ln(1 + k) to the
potential at the beginning of the time step. So we have ∆Ψ(t) =

∑
q ̸=pt

∆ϕ(yq)−2 ln(1+k) ≥
1− 2 ln(1 + k).

Combining the two cases we get:∑
t:yt

pt
=1

(1−∆Ψ(t)) ≤ 2 ln(1 + k) · |{t : ypt = 1 and pt ∈ P (it, rit − 1)}| (3)

Consider the end of some phase r0 and let i be a non-isolated agent. Let ri denote the
current local phase of agent i that must also end along with the global phase r0. Consider
any unmarked page q in U(i, t). As the phase r0 is ending, page q must be fully evicted
and thus contributes ϕ(1) to the potential. Once phase r0 ends and phase r0 + 1 begins,

S. Ibrahimpur, M. Purohit, Z. Svitkina, E. Vee, and J. R. Wang 80:11

page q no longer contributes to the potential. Note that the set of such unmarked pages is
exactly P (i, ri − 1) \ P (i, ri). Hence, the change in potential at the end of (global) phase r0
is given by:

∆Ψ(r0) = −2 ln(1 + k) ·
∑

i/∈I(r0)

|P (i, ri − 1) \ P (i, ri)|

Since an agent only changes its local phase when it is non-isolated at the end of a global
phase, we have:

R0∑
r0=1

∆Ψ(r0) = −2 ln(1 + k) ·
∑

i∈[m]

Ri∑
ri=1
|P (i, ri − 1) \ P (i, ri)|. (4)

The theorem now follows from Lemma 14. ◀

3.4 A Lower Bound on OPT through Dual Fitting
In this section, we give a novel LP-based lower bound on the cost of any offline algorithm for
caching with reserves via dual-fitting. This lower bound analysis is new even for the classical
unweighted paging setting. Crucially, the lower bound derived here perfectly matches the
two terms used to bound the cost of the fractional algorithm A in Theorem 12, thereby
completing the proof of our main result (Theorem 1).

We now describe the linear relaxation of the caching with reserves problem and its dual
program. The following notation will be useful. For any page q ∈ P, let tq,1 < tq,2 < ...

denote the time steps when q is requested in the online sequence. For an integer a ≥ 0, define
I(q, a) = {tq,a + 1, . . . , tq,a+1 − 1} to be the time interval between the ath and (a + 1)th
requests for q. We define tq,0 ≜ 0 for all pages. Let a(q, t) denote the number of requests
to page q that have been seen until time t (inclusive). Hence, by definition, for any time t

and page q ∈ P \ {pt}, we have t ∈ I(q, a(q, t)). The primal LP has variables y(q, a) ∈ [0, 1]
which denote the portion of page q that is evicted between its ath and (a + 1)th requests, i.e.,
1−y(q, a) portion of q is held in the cache during the time-interval I(q, a). For convenience, we
define n ≜ |P| and ni ≜ |P(i)| for any i ∈ [m]. The first and second set of primal constraints
encode the cache size constraint and the agent-level reserve constraints for all times. The dual
LP has variables α(t) and β(t, i) corresponding to these primal constraints. We also have
dual variables γ(q, a) corresponding to the primal constraint encoding y(q, a) ≤ 1. Besides
nonnegativity, the dual has a single constraint for each interval I(q, a). The primal and dual
LPs are stated below. We emphasize that we use these linear programs purely for analysis
and the algorithm itself does not need to solve any linear program.

Primal LP

min
∑
q∈P

∑
a≥1

y(q, a)

subject to:∑
q∈P,q ̸=pt

y(q, a(q, t)) ≥ n− k ∀t (5)

∑
q∈P(i),q ̸=pt

y(q, a(q, t)) ≤ ni − ki ∀t, ∀i (6)

y(q, a) ≤ 1 ∀q,∀a (7)
y ≥ 0 (8)

Dual LP

max
∑

t

(n− k)α(t)−
∑

t,i

(ni − ki)β(t, i)

−
∑
q,a

γ(q, a)

subject to:∑
t∈I(q,a)

(
α(t)− β(t, ag(q))

)
− γ(q, a)

≤ 1 ∀q,∀a (9)
α, β, γ ≥ 0 (10)

ICALP 2023

80:12 Efficient Caching with Reserves via Marking

Consider time T that marks the end of a global phase R0 for some integer R0. Let
OPT = costOPT(σ) denote the total cost incurred by an optimal offline algorithm. By weak
LP duality, the objective function of the Dual LP yields a lower bound on OPT for any
feasible dual solution. We now construct an explicit dual solution (α, β, γ) whose objective
value is roughly equal to the total number of clean and pseudo-clean pages seen by the
algorithm. See Section 3.1 to recall relevant notation and terminology. The dual solution is
updated at the end of each (global) phase in two stages. Updates in the first stage, denoted
update(r0, 1), are simple and account for stale pages belonging to non-isolated agents that got
evicted in the most recent local phase for that agent. Updates in the second stage, denoted
update(r0, 2), are more involved and account for the pseudo-clean pages of agents who lost
their isolated status in the current phase. The dual solution that we maintain will always be
approximately feasible up to O(1) factors, so the objective value of this dual solution serves
as a lower bound on OPT(T) within a constant factor. We remark that the assumption
that T marks the end of a phase is without loss of generality since it can lead to at most an
additive O(k) loss in the lower bound. Formally, we show the following.

▶ Theorem 15. Let T denote the timepoint when global phase R0 ends, and let (Ri)i∈[m]
denote the corresponding local phase counters. Let (α, β, γ) denote the dual solution that is con-
structed by the end of time T , i.e., the solution that arises from a sequential application of dual
updates in the order update(1, 1), update(1, 2), update(2, 1), update(2, 2), . . . , update(R0, 1),
and update(R0, 2). We have:
(a) The dual solution is approximately feasible: for any i-page q and an integer a ≥ 0,∑

t∈I(q,a)(α(t)− β(t, i))− γ(q, a) ≤ 5 holds.
(b) The dual objective value of (α, β, γ) is:

dual(R0) ≜
T∑

t=1
(n− k)α(t)−

T∑
t=1

∑
i∈[m]

(ni − ki)β(t, i)−
∑
q∈P

a(q,T)∑
a=1

γ(q, a)

=
∑

i∈[m]

Ri∑
ri=1
|P (i, ri−1)\P (i, ri)|+

R0∑
r0=1

∑
i∈I(r0−1)\I(r0)

(|P (i, ri−1)∪P (i, ri)|−ki).

We first show how Theorem 15 implies that our fractional algorithm A is O(log k)-
competitive.

Proof of Theorem 1. In Theorem 12 we proved the following upper bound on the cost
incurred by A for processing the first T page requests:

costA(σ) ≤ 2 ln(1 + k) ·
(

mk +
T∑

t=1
1pt is pseudo-clean +

∑
i∈[m]

Ri∑
ri=1
|P (i, ri − 1) \ P (i, ri)|

)
.

Clearly, the second nontrivial term in the above cost-expression matches the first term in
the expression for dual(R0). Now consider an arbitrary global phase r0 ∈ {1, . . . , R0} and
a timestep t in this phase. By definition, a pseudo-clean page pt is necessarily stale, i.e.,
pt ∈ P (it, rit

− 1) holds, and it must be that agent it was isolated at the start of phase r0
but is non-isolated by time t. Therefore, it ∈ I(r0 − 1) \ I(r0) and the following holds:

|P (i, ri − 1) ∪ P (i, ri)| − ki ≥ |P (i, ri)| − ki ≥ |{t ∈ phase r0 : pt is pseudo-clean}|.

In the above, the final inequality is because among all pages in P (i, ri) (w.r.t. the order
in which they were marked by A), the first ki pages are not pseudo-clean. Thus, the first
nontrivial term in the cost-expression for A can be bounded by the second term in dual(R0).

Overall, we have shown that costA(σ) ≤ 2 ln(1 + k) ·
(
mk + dual(R0)

)
holds. Since the

dual solution is O(1)-feasible, we get that A is O(log k)-competitive. ◀

S. Ibrahimpur, M. Purohit, Z. Svitkina, E. Vee, and J. R. Wang 80:13

We now furnish the details of our dual updates. Initially, all our dual variables
{α(t)}, {β(i, t)}, {γ(q, a)} with t ∈ [T], i ∈ [m], q ∈ P, a ∈ [a(q, T)] are set to zero. We
assume that the dual updates are applied in the sequence given in Theorem 15. That is, the
set of updates in {update(r0, s)}r0∈[R0],s∈{1,2} are applied in increasing order of r0 and within
each phase first stage updates are applied first. With a slight abuse of notation, let dual(r0, s)
denote the objective value of the dual solution right after updates until update(r0, s) (inclusive)
have been applied where r0 ∈ [R0], s ∈ {1, 2}. Note that dual(R0) = dual(R0, 2). We also
define dual(0, 1) = dual(0, 2) := 0. Throughout our updates, we ensure that the dual objec-
tive value never decreases, i.e., 0 ≤ dual(1, 1) ≤ dual(1, 2) ≤ · · · ≤ dual(R0, 1) ≤ dual(R0, 2)
holds. We remark that β variables may decrease and this only happens in the second stage;
However, the α and γ variables never decrease.

In Section 3.4, we describe the first stage of updates and show that the gain in the dual
objective corresponds to the first term in Theorem 15(b). In Section 3.4, we describe the
second stage of updates and show that the gain in the dual objective corresponds to the
second term in Theorem 15(b). Lastly, in Section 3.4, we show that the dual solution that we
maintain is always feasible up to constant factors and thus complete the proof of Theorem 15.

First Stage of Dual Updates

Fix a phase r0 ∈ [R0] and consider the set I(r0) ⊊ [m] of agents that are designated as
isolated at the end of phase r0. Let C(r0) denote the set of timesteps t (in this phase) when
the following two conditions hold: (a) yt

pt
= 1 in the fractional algorithm A just before pt is

requested; and (b) it is not isolated at time t. Define ℓ(r0) ≜ |C(r0)|. It is not hard to see
that the following is an equivalent expression for ℓ(r0).

ℓ(r0) :=
∑

i/∈I(r0−1)∪I(r0)

|P (i, ri) \ P (i, ri − 1)|+
∑

i∈I(r0−1)\I(r0)

(|P (i, ri)| − ki). (11)

Observe that for agents who are non-isolated both at the start and end of phase r0, ℓ(r0)

counts all their clean pages. However, for agents who were isolated at the start of this phase
but are no longer isolated by the end, ℓ(r0) only counts clean and pseudo-clean pages that
are requested after the agent has become non-isolated. Roughly speaking, the motivation for
the definition of ℓ(r0) comes from the intuition that an offline algorithm should incur, on an
average, a cost of Ω(ℓ(r0)) to serve page requests in phase r0.

Description of update(r0, 1). For each time t ∈ C(r0), we separately apply the following
updates. First, we increase α(t) by 1/ℓ(r0). Next, we increase β(t, i) by 1/ℓ(r0) for every
agent i ∈ I(r0). Last, for each agent i /∈ I(r0), we increase γ(q, a(q, t)) by 1/ℓ(r0) for every
i-page q ∈ P(i) \ (P (i, ri − 1) ∪ P (i, ri)).

It will be clear from the description of our updates that the α and β variables that were
modified in update(r0, 1) were previously at 0. However, no such guarantee holds for the
affected γ variables. We also remark that the same γ(q, a) variable can be increased more
than once during update(r0, 1); this happens when there are multiple times t ∈ C(r0) with
the same a(q, t) value. In fact, since the γ(q, a) variables arise from intervals I(q, a) that can
possibly span across multiple phases, it is possible that the same γ variable is increased by
different 1/ℓ(r0) amounts across different update(r0, 1) steps.

For convenience, let t ∈ phase r0 be a shorthand for all timepoints in phase r0. The
following result will be useful to us.

ICALP 2023

80:14 Efficient Caching with Reserves via Marking

▶ Lemma 16. Let (α, β, γ) denote the dual solution that is obtained right after update(r0, 1)
has been applied. We have: (a)

∑
t∈phase r0

α(t) = 1; and (b)
∑

t∈phase r0
β(t, i) = 1 for any

agent i ∈ I(r0).

Proof. Follows directly from our choice of ℓ(r0) = |C(r0)|. ◀

Our key technical result in this section is that the gain in the dual objective value that
comes from update(r0, 1) is equal to the number of stale pages owned by non-isolated agents
that were not requested in their most recent local phases. For convenience, we use the prefix
∆ to refer to changes that occured during update(r0, 1).

▶ Lemma 17. We have ∆dual(r0, 1) =
∑

i/∈I(r0) |P (i, ri−1)\P (i, ri)|, where ∆dual(r0, 1) ≜
dual(r0, 1)− dual(r0 − 1, 2) is the change in the dual objective after update(r0, 1).

Proof. Since the only affected α(t) and β(t, i) variables have are those with t ∈ C(r0) and
they are all increased by exactly 1/|C(r0)|, we get:

∆dual(r0, 1) =
∑

t

(n− k)∆α(t)−
∑
t,i

(ni − ki)∆β(t, i)−
∑
q,a

∆γ(q, a)

= (n− k)−
∑

i∈I(r0)

(ni − ki)−
∑
q,a

∆γ(q, a)

=
(∑

i/∈I(r0)

ni

)
− k +

(∑
i∈I(r0)

ki

)
−

∑
q,a

∆γ(q, a)

Now observe that for every t ∈ C(r0) and i /∈ I(r0), the update(r0, 1) step increases the
γ(q, a) variable corresponding to exactly ni − |P (i, ri − 1) ∪ P (i, ri)| unique i-pages, each by
an amount 1/ℓ(r0). So we have

∑
q,a ∆γ(q, a) = (1/ℓ(r0)) ·

∑
t∈C(r0)

∑
i/∈I(r0)(ni − |P (i, ri −

1) ∪ P (i, ri)|) =
∑

i/∈I(r0)(ni − |P (i, ri − 1) ∪ P (i, ri)|). Substituting back into the equation
above, we get:

∆dual(r0, 1) =
(∑

i/∈I(r0)

ni

)
− k +

(∑
i∈I(r0)

ki

)
−

∑
i/∈I(r0)

(ni − |P (i, ri − 1) ∪ P (i, ri)|)

=
(
−k +

∑
i∈I(r0)

ki +
∑

i/∈I(r0)

|P (i, ri)|
)

+
∑

i/∈I(r0)

|P (i, ri − 1) \ P (i, ri)|

The lemma follows from observing that the above group of terms within the parentheses is 0:
this is because the cache (of size k) at the end of phase r0 consists exactly ki (fractional)
pages for isolated agents i ∈ I(r0) and exactly |P (i, ri)| (integral) pages for non-isolated
agents i /∈ I(r0). ◀

Second Stage of Dual Updates

We now describe the second stage of dual updates that are carried out at the end of each
phase r0 ∈ [R0]. Unlike the first stage, where we only increased the α and β variables of
time steps in phase r0, in the second stage we decrease the β variables of time steps in the
previous phase r0 − 1.

Description of update(r0, 2). These dual updates correspond to agents that were isolated
at the end of phase r0−1 but are no longer isolated at the end of phase r0. Consider an agent
i ∈ I(r0−1)\I(r0). For every time t in phase r0−1 with β(t, i) > 0 (i.e., t ∈ C(r0−1)), we do
the following: we increase γ(q, a(q, t)) by β(t, i) for all i-pages q ∈ P(i)\

(
P (i, ri−1)∪P (i, ri)

)
followed by resetting β(t, i) to 0.

S. Ibrahimpur, M. Purohit, Z. Svitkina, E. Vee, and J. R. Wang 80:15

For clarity, we note the following: (i) resetting β(t, i) to zero is the only dual update
when a variable is decreased; (ii) the β(t, i) updates are applied to timepoints in phase r0 − 1
(i.e., the previous phase); and (iii) the γ(q, a(q, t)) variables that we updated above were
unchanged while applying update(r0 − 1, 1) at the end of phase r0 − 1 because their owner i

was designated as isolated at that time. The reason for decreasing the β(t, i) variables is that
it leads to an increase in the dual objective, which will be needed to pay for costs associated
with pseudo-clean pages. We formalize this in the following lemma.

▶ Lemma 18. We have ∆dual(r0, 2) =
∑

i∈I(r0−1)\I(r0) (|P (i, ri − 1) ∪ P (i, ri)| − ki) where
∆dual(r0, 2) ≜ dual(r0, 2)− dual(r0, 1) is the change in the dual objective after update(r0, 2).

Proof. Fix an agent i ∈ I(r0−1)\I(r0). In Lemma 16 we showed that after update(r0−1, 1),∑
t∈phase r0−1 β(t, i) = 1 and β(t, i) ∈ {0, 1/ℓ(r0−1)}. Consider any time t in phase r0−1 with

β(t, i) > 0. By the definition of update(r0, 2), we decrease β(t, i) by 1/ℓ(r0−1) while increasing
γ(q, a(q, t)) by the same amount for all pages q ∈ P(i) \

(
P (i, ri − 1) ∪ P (i, ri)

)
. Recalling

the coefficients in the dual objective function, we see that the updates corresponding to agent
i increases the dual objective by exactly:

(ni − ki)− |P(i) \ (P (i, ri) ∪ P (i, ri − 1))| = |(P (i, ri) ∪ P (i, ri − 1))| − ki. ◀

Approximate Dual Feasibility

We finish this section by showing that the dual solution is always approximately feasible.

▶ Lemma 19. Let (α, β, γ) denote the dual solution that is obtained right after update(r0, s)
has been applied for some r0 ∈ [R0] and s ∈ {0, 1}. For any i-page q and an integer a ≥ 1
satisfying a ≤ a(q, T), we have

∑
t∈I(q,a)(α(t)− β(t, i))− γ(q, a) ≤ 5.

Proof. First of all, for the purposes of this proof, the specific values of r0 and s are irrelevant,
so we ignore them. Fix some i-page q and an integer a satisfying a ≤ a(q, T). Recall that
I(q, a) = {tq,a + 1, . . . , tq,a+1 − 1}, where tq,a′ denotes the time when q is requested for the
a′th time; We redefine tq,a+1 to be T + 1 if tq,a+1 > T holds.

The lemma holds trivially if I(q, a) is empty, so we assume otherwise. Let rb
0, re

0 ∈ [R0]
denote the global phases that contain timesteps tq,a + 1 and tq,a+1 − 1, respectively. Clearly,
rb

0 ≤ re
0. Another easy case of the lemma is when re

0 ≤ rb
0 + 1 holds. The desired conclusion

follows easily because all the dual variables are nonnegative and the sum of all α(t) variables
in any phase is at most 1 (by Lemma 16). Formally,∑

t∈I(q,a)

(
α(t)− β(t, i)

)
− γ(q, a) ≤

∑
t∈phase rb

0

α(t) +
∑

t∈phase re
0

α(t) ≤ 2.

Now suppose that rb
0 + 2 ≤ re

0 holds. Define Z := {rb
0 + 1, . . . , re

0 − 1}. Repeating the
above calculation, we get:

∑
t∈I(q,a)

(α(t)− β(t, i))− γ(q, a) ≤ 2 +

 ∑
r0∈Z

∑
t∈phase r0

(
α(t)− β(t, i)

)− γ(q, a),

so the crux of the lemma is to show that the sum of δ(t) ≜ α(t) − β(t, i) over timepoints
spanning phases in Z is not much larger than γ(q, a). For a phase r0 ∈ Z, we overload
the notation δ(r0) to mean

∑
t∈phase r0

δ(t). Note that by nonnegativity of β variables and
Lemma 17, δ(r0) ≤ 1 for every r0 ∈ Z. We do a case analysis on phase r0 ∈ Z to get a better
handle on the changes that happens during our dual update procedures.

ICALP 2023

80:16 Efficient Caching with Reserves via Marking

(a) Suppose that i ∈ I(r0)∩I(r0+1) holds. Since i is isolated by the end of phase r0, we know
that any increase in α(t) (as part of update(r0, 1)) for some t ∈ C(r0) is accompanied
with the same increase in β(t, i). Since i ∈ I(r0 + 1) holds, update(r0 + 1, 2) does not
decrease/reset any of the {β(t, i)}t∈phase r0 variables to 0. Thus, δ(r0) = 0 holds. Note
that there can be an arbitrary number of phases r0 that fall under this case, but this is
not a problem for us since δ(r0) = 0.

(b) Suppose that i ∈ I(r0) \ I(r0 + 1) and q ∈ P (i, ri − 1) ∪ P (i, ri) hold. We rely on the
trivial bound δ(r0) ≤ 1 for this case. Since i is isolated by the end of phase r0 but is
non-isolated by the end of phase r0 +1, the local phase counter ri goes up by 1 at the end
of phase r0 + 1, and subsequently the P (i, ·) set gets updated with some new collection
of marked i-pages. By definition of I(q, a), there are no page-requests for q during any of
the phases in Z. Thus, there can be at most 2 local phase increments for agent i before
q gets dropped from the P (i, ·) set; By the design of A, page q cannot enter any of the
future P (i, ri) until the next time it is requested, which does not happen during any of
the phases in Z.

(c) Suppose that i ∈ I(r0) \ I(r0 + 1) and q /∈ P (i, ri − 1) ∪ P (i, ri) hold. Similar to
case (a) above, we know that any increase in α(t) (as part of update(r0, 1)) for some
t ∈ C(r0) is accompanied with the same increase in β(t, i). Now, although update(r0+1, 2)
decreases/resets all the {β(t, i)}t∈C(r0) variables to 0, it also increases γ(q, a) by the
same amount since q /∈ P (i, ri − 1) ∪ P (i, ri). Thus,

∑
t∈phase r0

α(t) equals the increase
in γ(q, a) due to update(r0 + 1, 2). So, the difference is essentially 0.

(d) Suppose i /∈ I(r0) and q ∈ P (i, ri − 1) ∪ P (i, ri) hold. We rely on the trivial bound
δ(r0) ≤ 1 for this case. Since i is non-isolated by the end of phase r0, the local phase
counter ri goes up by 1 at the end of phase r0. Repeating the argument from case (c),
there can be at most 1 more local phase increment for agent i before q gets dropped
from the P (i, ·) set for the rest of the phases in Z.

(e) Suppose i /∈ I(r0) and q /∈ P (i, ri − 1) ∪ P (i, ri) hold. Since i is non-isolated by the
end of phase r0 and q is not in P (i, ri − 1) ∪ P (i, ri), we know that any increase in α(t)
(as part of update(r0, 1)) for some t ∈ C(r0) is accompanied with the same increase in
γ(q, a). Thus,

∑
t∈phase r0

α(t) equals the increase in γ(q, a) due to update(r0, 1). So, the
difference is essentially 0.

From the above case analysis, it follows that {
∑

r0∈Z

∑
t∈phase r0

(
α(t)−β(t, i)

)
}−γ(q, a)

is bounded by the number of phases r0 ∈ Z for which case (b) or (d) hold. Since we argued
that there can be at most 3 such occurences,

∑
t∈I(q,a)(α(t)− β(t, i))− γ(q, a) ≤ 2 + 3 = 5

holds. ◀

We now prove the main theorem in this section by combining the above lemmas.

Proof of Theorem 15. The first part of the theorem follows from Lemma 19. The second
part follows directly from Lemmas 17 and 18 since we have dual(R0) =

∑R0
r0=1

(
∆dual(r0, 1)+

∆dual(r0, 2)
)

◀

4 Rounding

In this section we show how to convert the fractional Algorithm 1 into a randomized integral
online algorithm for Caching with Reserves, each step of which runs in polynomial time.

The algorithm maintains a uniform distribution on N = k3 valid cache states. In each step,
these states are updated based on the actions of the fractional algorithm. The randomized
algorithm selects one of these states uniformly at random in the beginning, and then follows
it throughout the run.

S. Ibrahimpur, M. Purohit, Z. Svitkina, E. Vee, and J. R. Wang 80:17

Initially, all N cache states in the distribution are the same as the initial cache state in
Algorithm 1. Given the fractional algorithm values xt

p after each page request, the distribution
is updated in two steps. First, we produce a discretized version of these fractions, x̃t

p, which
are also a feasible fractional solution. This is based on the technique in [2]. Second, we
update the N cache states so that all of them remain valid, and for each page p, exactly
N · x̃t

p of the states contain p. This is based on the technique in [10]. We note that the
rounding procedure can be done online, as it does not need the knowledge of any future page
requests.

4.1 Discretization Procedure
In this subsection, we explain how to perform the first step: discretizing the fractional
algorithm’s values xt

p into x̃t
p which are multiples of 1

N . Our procedure is quite simple: we
iterate over the pages in any order π that arranges all pages belonging to the same agent
consecutively (i.e., order the agents arbitrarily and order each agent’s pages arbitrarily, but
do not interleave pages from different agents). Then for i ∈ [|P|], set:

x̃t
π(i) ≜

 i∑
j=1

xt
π(j)


1/N

−

i−1∑
j=1

xt
π(j)


1/N

where ⌊a⌋b denotes rounding a down to the nearest multiple of b; formally: ⌊a⌋b ≜ b ⌊a/b⌋.

▶ Lemma 20. Discretization satisfies the following guarantees:
1. x̃t

p is a multiple of 1/N

2.
∣∣x̃t

p − xt
p

∣∣ < 1/N

3. for each agent i,
∣∣∣∑p∈P(i) x̃t

p −
∑

p∈P(i) xt
p

∣∣∣ < 1/N

4. if xt
p ∈ {0, 1}, then x̃t

p = xt
p

Due to space constraints, the proof of the above lemma is deferred to the full version [11].

▶ Corollary 21. If {xt
p} satisfy total cache capacity (

∑
p∈P xt

p ≤ k) and reserve requirements
(
∑

p∈P(i) xt
p ≥ ki), then so do {x̃t

p}.

Proof. The total cache capacity constraint continues to hold due to a telescoping argument:

∑
p∈P

x̃t
p =

∑
i∈[|P|]

x̃t
π(i) =

∑
i∈[|P|]


 i∑

j=1
xt

π(j)


1/N

−

i−1∑
j=1

xt
π(j)


1/N


=

 |P|∑
j=1

xt
π(j)


1/N

≤
|P|∑
j=1

xt
π(j) ≤ k

Next, we will prove that reserve cache sizes are satisfied. For the sake of contradiction,
suppose that for some agent i,

∑
p∈P(i) x̃t

p < ki. Since the right-hand side of this inequality
is an integer and therefore a multiple of 1/N , the left-hand side, which is also a multiple of
1/N due to being a sum of multiples of 1/N (by Lemma 20’s first guarantee), must be at
least a full multiple of 1/N less than the right-hand side:

∑
p∈P(i) x̃t

p ≤ ki − 1/N . But this

contradicts Lemma 20’s third guarantee,
∣∣∣∑p∈P(i) x̃t

p −
∑

p∈P(i) xt
p

∣∣∣ < 1/N . Therefore for
all agents i,

∑
p∈P(i) x̃t

p ≥ ki, completing the proof. ◀

ICALP 2023

80:18 Efficient Caching with Reserves via Marking

▶ Corollary 22.
∑

p

∣∣x̃t
p − xt

p

∣∣ ≤ k2/N

Proof. Without loss of generality, there are at most k agents since we can combine all agents
that do not have any reserve. Each agent i has at most k fractional pages by the algorithm
(the i-pages that were in cache when i’s local phase began). The x value of each fractional
page is distorted by at most 1/N by Lemma 20’s second guarantee, while not being distorted
for non-fractional pages by the fourth guarantee. This completes the proof. ◀

▶ Lemma 23. Let xt
p and xt+1

p be the amounts of each page p in cache in the fractional
algorithm for two consecutive time steps, and x̃t

p and x̃t+1
p be the corresponding discretized

values. Then the cost of cache update from x̃t to x̃t+1 (call it c̃) is at most twice the cost of
cache update from xt to xt+1 (call it c).

Proof. Lemma 10 implies that either c = 0 (i.e., the requested page was already in cache
and there is no change to the cache state), or c ≥ 1/k. In the first case, there is no change
to the discretized cache state either, so c̃ = 0. So we focus on the second case. By triangle
inequality, for any page p,

|x̃t
p − x̃t+1

p | ≤ |x̃t
p − xt

p|+ |xt
p − xt+1

p |+ |xt+1
p − x̃t+1

p |.

We note that since cost is incurred for adding pages to cache, and both the original fractional
solution and the discretized one add as much page mass to cache as they evict, 2c =∑

p |xt
p − xt+1

p |, and similarly for c̃. Summing the above inequality over p, we get

2c̃ =
∑

p

|x̃t
p − x̃t+1

p | ≤
∑

p

|xt
p − xt+1

p |+ 2k2/N = 2c + 2/k ≤ 4c,

where we used
∑

p(|x̃t
p − xt

p|+ |xt+1
p − x̃t+1

p |) ≤ 2k2/N by Corollary 22, then N = k3, then
c ≥ 1/k. ◀

4.2 Updating the Distribution of Cache States
In this subsection, we explain how to perform the second step: updating the N cache
states. We would like (i) all cache states to be valid, (ii) exactly N · x̃t

p (integral due to our
discretization step) of the states to contain page p, and (iii) to not use too many evictions.

Formally, let X be a set of N cache states with k pages each, which corresponds to the
discretized values x̃t

p for time step t. Given the discretized values x̃t+1
p for time step t + 1,

we show how to transform X into X ′, in which each page p appears in exactly N · x̃t+1
p cache

states and such that each cache state satisfies all the reserve requirements.
Let P be a multiset of pages whose fraction in the cache increased from time t to t + 1,

with each page p appearing max(0, (x̃t+1
p − x̃t

p)N) times. Let Q be an analagous multiset for
decreases, with each page appearing max(0, (x̃t

p − x̃t+1
p)N) times. Since the total amount of

pages in the cache is unchanged, |P | = |Q|. We find a matching between pages in P and Q

and use it to transform X into X ′ gradually, one pair at a time. The matching is constructed
as follows. First, any pages from P and Q that belong to the same agent are matched up.
Then, the remaining pages in P and Q are matched up arbitrarily.

▶ Lemma 24. Let (p1, q1), (p2, q2), ... be the matching between P and Q described above.
Then for any j, the fractional solution that adds 1/N fraction of pages p1, ..., pj to x̃t and
removes 1/N fraction of pages q1, ..., qj from it satisfies all the reserve requirements.

S. Ibrahimpur, M. Purohit, Z. Svitkina, E. Vee, and J. R. Wang 80:19

We defer the proof of the above lemma to the full version [11].
We now show how to modify X with the next pair (p, q) from the matching. This follows

the procedure in [10], with the difference that we work on a limited number of N sets, and
the amount of increase in p and decrease in q is fixed at 1/N .

Let X be the current set of cache states (possibly modified by the previous page pairs).
If there is a cache state S ∈ X such that p /∈ S and q ∈ S, add p to S and remove q from S.
Otherwise, find cache states S ∈ X and T ∈ X with p /∈ S and q ∈ T , add p to S and remove
q from T . Next, move some page r ∈ S \ T from S to T to adjust the set sizes back to k.

At this point, each page is in the correct number of cache states. However, reserve
requirements could be violated by one page for ag(q) or ag(r) in the cache states from which
the corresponding pages were removed. In such a case, suppose the requirement is violated for
agent i in a cache state V ∈ X . Since, by Lemma 24, each reserve requirement is satisfied on
average, there must be another set W ∈ X which has strictly more than ki pages belonging
to agent i. We move one such page from W to V . Now V has k + 1 pages, so there must be
an agent j which has more than kj pages in V . We move one of j’s pages from V to W to
restore the sizes. This completes the update, resulting in new valid sets corresponding to the
fractions x̃t+1.

We conclude by bounding the cost of update to X , and thus the expected cost of the
randomized algorithm, relative to the cost of the fractional algorithm.

▶ Lemma 25. The cost of update to X is at most 6 times the cost of fractional cache update
from x̃t to x̃t+1.

Proof. Each pair (p, q) in the matching corresponds to a cost of 1/N incurred by the
discretized fractional solution. In the updates to sets in X , each time a page is removed
from one of the cache states incurs a cost of 1/N to the randomized algorithm. At most,
the following six removals are done: remove q from T ; remove r from S; two pages each are
swapped to fix the reserve requirements for ag(q) and ag(r). ◀

The proof of Theorem 2 follows by combining Lemmas 23 and 25.

References
1 Dimitris Achlioptas, Marek Chrobak, and John Noga. Competitive Analysis of Randomized

Paging Algorithms. Theoretical Computer Science, 234(1):203–218, 2000. doi:10.1016/
S0304-3975(98)00116-9.

2 Anna Adamaszek, Artur Czumaj, Matthias Englert, and Harald Räcke. An O(log k)-
Competitive Algorithm for Generalized Caching. ACM Transactions on Algorithms, 15(1):6:1–
6:18, 2018. doi:10.1145/3280826.

3 Kunal Agrawal, Michael A. Bender, Rathish Das, William Kuszmaul, Enoch Peserico, and
Michele Scquizzato. Tight Bounds for Parallel Paging and Green Paging. In Proceedings
of the 32nd Symposium on Discrete Algorithms, pages 3022–3041, 2021. doi:10.1137/1.
9781611976465.180.

4 Nikhil Bansal, Niv Buchbinder, and Joseph Seffi Naor. A Simple Analysis for Randomized
Online Weighted Paging. Unpublished Manuscript, 2010.

5 Nikhil Bansal, Niv Buchbinder, and Joseph (Seffi) Naor. Towards the Randomized k-Server
Conjecture: A Primal-Dual Approach: (Extended Abstract). In Proceedings of the 21st
Symposium on Discrete Algorithms, pages 40–55, 2010. doi:10.1137/1.9781611973075.5.

6 Nikhil Bansal, Christian Coester, Ravi Kumar, Manish Purohit, and Erik Vee. Learning-
Augmented Weighted Paging. In Proceedings of the 33rd Symposium on Discrete Algorithms,
pages 67–89, 2022. doi:10.1137/1.9781611977073.4.

ICALP 2023

https://doi.org/10.1016/S0304-3975(98)00116-9
https://doi.org/10.1016/S0304-3975(98)00116-9
https://doi.org/10.1145/3280826
https://doi.org/10.1137/1.9781611976465.180
https://doi.org/10.1137/1.9781611976465.180
https://doi.org/10.1137/1.9781611973075.5
https://doi.org/10.1137/1.9781611977073.4

80:20 Efficient Caching with Reserves via Marking

7 Jichuan Chang and Gurindar S Sohi. Cooperative Cache Partitioning for Chip Multiprocessors.
In Proceedings of the 21st ACM International Conference on Supercomputing, pages 242–252,
2007. doi:10.1145/1274971.1275005.

8 Ashish Chiplunkar, Monika Henzinger, Sagar Sudhir Kale, and Maximilian Vötsch. Online
Min-Max Paging. In Proceedings of the 34th Symposium on Discrete Algorithms, pages
1545–1565, 2023. doi:10.1137/1.9781611977554.ch57.

9 Amos Fiat, Richard M. Karp, Michael Luby, Lyle A. McGeoch, Daniel D. Sleator, and
Neal E. Young. Competitive Paging Algorithms. Journal of Algorithms, 12(4):685–699, 1991.
doi:10.1016/0196-6774(91)90041-V.

10 Sharat Ibrahimpur, Manish Purohit, Zoya Svitkina, Erik Vee, and Joshua R. Wang. Caching
with Reserves. In Proceedings of the 25th International Conference on Approximation Algo-
rithms for Combinatorial Optimization Problems (APPROX), volume 245, pages 52:1–52:16,
2022. doi:10.4230/LIPIcs.APPROX/RANDOM.2022.52.

11 Sharat Ibrahimpur, Manish Purohit, Zoya Svitkina, Erik Vee, and Joshua R. Wang. Efficient
Caching with Reserves via Marking. CoRR, abs/2305.02508, 2023. doi:10.48550/arXiv.
2305.02508.

12 Wu Kan, Tu Kaiwei, Patel Yuvraj, Sen Rathijit, Park Kwanghyun, Arpaci-Dusseau An-
drea, and Remzi Arpaci-Dusseau. NyxCache: Flexible and Efficient Multi-tenant Persistent
Memory Caching. In Proceedings of the 20th USENIX Conference on File and Storage Tech-
nologies (FAST), pages 1–16, 2022. URL: https://www.usenix.org/conference/fast22/
presentation/wu.

13 Mayuresh Kunjir, Brandon Fain, Kamesh Munagala, and Shivnath Babu. ROBUS: Fair
Cache Allocation for Data-parallel Workloads. In Proceedings of the 2017 ACM International
Conference on Management of Data (SIGMOD), pages 219–234, 2017. doi:10.1145/3035918.
3064018.

14 Lyle A. McGeoch and Daniel D. Sleator. A Strongly Competitive Randomized Paging
Algorithm. Algorithmica, 6:816–825, 1991. doi:10.1007/BF01759073.

15 Qifan Pu, Haoyuan Li, Matei Zaharia, Ali Ghodsi, and Ion Stoica. FairRide: Near-Optimal,
Fair Cache Sharing. In Proceedings of the 13th USENIX Symposium on Networked Systems
Design and Implementation (NSDI), pages 393–406, 2016. URL: https://www.usenix.org/
conference/nsdi16/technical-sessions/presentation/pu.

16 Harold S. Stone, John Turek, and Joel L. Wolf. Optimal Partitioning of Cache Memory. IEEE
Transactions on Computers, 41(9):1054–1068, 1992. doi:10.1109/12.165388.

17 G Edward Suh, Larry Rudolph, and Srinivas Devadas. Dynamic Partitioning of Shared Cache
Memory. The Journal of Supercomputing, 28(1):7–26, 2004. doi:10.1023/B:SUPE.0000014800.
27383.8f.

18 Yinghao Yu, Wei Wang, Jun Zhang, and Khaled Ben Letaief. LACS: Load-Aware Cache
Sharing with Isolation Guarantee. In Proceedings of the 39th IEEE International Conference
on Distributed Computing Systems (ICDCS), pages 207–217. IEEE, 2019. doi:10.1109/ICDCS.
2019.00029.

https://doi.org/10.1145/1274971.1275005
https://doi.org/10.1137/1.9781611977554.ch57
https://doi.org/10.1016/0196-6774(91)90041-V
https://doi.org/10.4230/LIPIcs.APPROX/RANDOM.2022.52
https://doi.org/10.48550/arXiv.2305.02508
https://doi.org/10.48550/arXiv.2305.02508
https://www.usenix.org/conference/fast22/presentation/wu
https://www.usenix.org/conference/fast22/presentation/wu
https://doi.org/10.1145/3035918.3064018
https://doi.org/10.1145/3035918.3064018
https://doi.org/10.1007/BF01759073
https://www.usenix.org/conference/nsdi16/technical-sessions/presentation/pu
https://www.usenix.org/conference/nsdi16/technical-sessions/presentation/pu
https://doi.org/10.1109/12.165388
https://doi.org/10.1023/B:SUPE.0000014800.27383.8f
https://doi.org/10.1023/B:SUPE.0000014800.27383.8f
https://doi.org/10.1109/ICDCS.2019.00029
https://doi.org/10.1109/ICDCS.2019.00029

	1 Introduction
	2 Preliminaries and Notation
	3 Fractional O(log k)-Competitive Algorithm for Caching with Reserves
	3.1 Fractional Algorithm
	3.2 Analysis Overview
	3.3 Potential Function Analysis
	3.4 A Lower Bound on OPT through Dual Fitting

	4 Rounding
	4.1 Discretization Procedure
	4.2 Updating the Distribution of Cache States

