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Abstract 
Social relations models allow the identification of cluster, actor, partner, and relationship effects when 
analysing clustered dyadic data on interactions between individuals or other units of analysis. We propose 
an extension of this model which handles longitudinal data and incorporates dynamic structure, where the 
response may be continuous, binary, or ordinal. This allows the disentangling of the relationship effects 
from temporal fluctuation and measurement error and the investigation of whether individuals respond to 
their partner’s behaviour at the previous observation. We motivate and illustrate the model with an 
application to Canadian data on pairs of individuals within families observed working together on a conflict 
discussion task. 
Keywords: autoregressive model, cross-lagged effects, dyadic data, dynamic panel model, round-robin data 

1 Introduction 
Data on pairs of subjects or dyads are commonly collected in social research, for example in stud-
ies of consensus in individuals’ perceptions of a common target (such as spouses’ assessment of the 
quality of their relationship) or in studies of interactions between individuals (such as cooperation 
between coworkers). The prototypical design for collecting dyadic data is a round-robin design in 
which each member of a group of subjects rates or interacts with every other member. The result-
ing directed relationship data exhibit a complex correlational structure as each person is a member 
of multiple dyads. Furthermore, each dyad contributes two responses, one associated with each 
dyad member in their distinct roles as ‘actor’ and ‘partner’ in their two-way ratings or interactions. 
The social relations model (SRM) is widely used to analyse dyadic data from round-robin designs. 
The SRM decomposes the overall variance in the directed dyadic measurements into separate vari-
ance components attributable to individuals as actors, individuals as partners, and unique inter-
action (relationship) variance. The SRM also provides detailed analysis of reciprocity both at 
the individual level (referred to as generalised reciprocity correlation) and at the level of unique 
relationships (dyadic reciprocity correlation). This allows one to answer the questions: Do individ-
uals who in general show high outcome behaviour in their roles as actors in their interactions also 
in general experience high outcome behaviour from others in their roles as partners? and Within 
dyads, is atypical outcome behaviour reciprocated, either positively or negatively? 
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Variants on the basic SRM that are of particular relevance to this article are models for clustered 
data where individuals within clusters have distinct roles (Kashy & Kenny, 1990; Snijders & 
Kenny, 1999). We present an application to data on constructiveness from family members work-
ing on a task in pairs in a round-robin design where the individuals within families are distinguish-
able by their roles (mother, father, child, with children potentially further differentiated by birth 
order) and separate actor, partner, and relationship variances and reciprocity correlations are spe-
cified by role or pairing of roles. Jenkins et al. (2012) study informant and partner influences 
among siblings on their ratings of sibling affection and hostility. Browne et al. (2016) study cog-
nitive sensitivity exhibited between family members on cooperative tasks and show the relative im-
portance of family, individuals, and unique relationships vary substantially by role. The findings 
from studies such as these have been that individuals do show consistency across family relation-
ships in terms of the behaviours that they direct to others (the actor effect) and to a lesser extent the 
behaviours that they elicit from others (the partner effect) but in general these effects are substan-
tially smaller than those attributable to the relationship. Thus the important theoretical conclusion 
from this area of research has been that the combination of people in the dyad is more important to 
understand relationship quality in families than the individuals themselves. However, a limitation 
of all these cross-sectional studies is that individual behaviours are measured only once and so the 
relationship effect is confounded with and therefore inflated by measurement error. 

There have been very few examples of longitudinal round-robin data where individual behav-
iours are measured repeatedly over time. Yet such data have a number of advantages. First, inten-
sive longitudinal data, because of the separation of time-invariant and time-varying processes, 
have greater potential to isolate different types of interpersonal influence. The non-dynamic 
SRM allows for the identification of a partner effect. This represents a particular type of interper-
sonal influence: an individual consistently elicits the same response from multiple interactional 
partners (e.g. a person elicits a high level of hostility from all partners). The dynamic SRM, 
through modelling the time-varying behaviour of each individual, allows us to identify another 
type of interpersonal influence: whether one person’s prior behaviour predicts another person’s 
subsequent behaviour. We refer to this as a ‘proximal trigger’. 

Separating the time-invariant from the time-varying also allows the opportunity to properly 
examine time-invariant processes, having removed both temporal fluctuation and measurement 
error. A theoretically important question for dyadic research is to estimate the different contribu-
tions from the stabilities of individuals (actors and partners), the unique combination of a dyad 
(relationship variance), and the unexplained temporal fluctuation (i.e. the combined effects of po-
tentially meaningful fluctuation in behaviour and measurement error, which we together refer to 
as ‘residual error’). Yet previous SRMs confound the relationship variance and residual error, with 
the result that researchers overstate the importance of relationship effects in driving dyadic inter-
actions, understate the importance of family and individual effects (actor and partner), and have 
nothing to say about temporal fluctuation (some of which may be explained by proximal triggers). 
Correctly assigning these components of variation additionally enables accurate assessment of 
how they, and the average level of the outcome variable, differ according to explanatory variables. 
For instance, do adults show less hostility than children? Understanding time-invariant influences 
on behaviour (e.g. personality and age-related biological maturation) have been core theoretical 
issues in social and developmental psychology. 

Analysing longitudinal dyadic data with a model that combines the key features of the SRM for 
cross-sectional dyadic data with methods for multivariate response longitudinal data allows for a 
richer exploration of the ways in which individuals affect one another. In this paper we propose a 
dynamic SRM for repeated measures data from a clustered round-robin design where individuals 
have specific roles. The model can be viewed as a type of cross-classified multilevel (random ef-
fects) model for bivariate longitudinal data with a first-order autocorrelation and cross-lagged 
structure on the within-dyad residual correlation matrix. We show that the dynamic SRM can 
also be framed as an extension of an autoregressive cross-lagged panel model (or vector autore-
gressive model). A generalisation suitable for binary and ordinal responses is developed and ap-
plied in an analysis of family, actor, partner, and relationship effects on the observed behaviour 
by one family member towards another in a conflict discussion task carried out by a sample of 
7-year old Canadian children and their families. Model estimation can be carried out using soft-
ware for Bayesian analysis using Markov chain Monte Carlo (MCMC) methods.  
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The rest of the paper is organised as follows. An overview of the SRM and other approaches to the 
analysis of dyadic data is given in Section 2. In Section 3, we describe a cross-sectional SRM for clus-
tered round-robin data in order to fix notation, terminology, and the interpretation of model param-
eters. Section 4 shows how this model can be extended for the analysis of longitudinal data with a 
first-order autoregressive and cross-lagged dynamic structure. Then, a generalisation of this model, 
referred to as a latent dynamic SRM, is described for binary and ordinal responses. Section 5 describes 
the data we use from the Kids, Families and Places study, a birth cohort study of Canadian children 
and their families. Section 6 sets out the research questions to be investigated using the dynamic SRM 
(and various simplifications) and provides results from the data analysis. Section 7 concludes with a 
summary of the main findings and a discussion of potential model extensions. 

2 Overview of the SRM and other approaches to the analysis of dyadic 
data 
The SRM was proposed by David Kenny and colleagues in psychology to study interpersonal per-
ception and behaviours (Kenny et al., 2006; Kenny & La Voie, 1984). Application of the SRM has 
since expanded to incorporate a broad range of topics, including geography (studies of migration 
flows between countries; Zhang et al., 2020), international relations and economics (militarised 
interstate disputes and international trade; Dorff & Ward, 2013), anthropology and behavioural 
ecology (studies of food sharing among indigenous Nicaraguan horticulturalists; Koster & Leckie, 
2014), law (studies of jurors influencing each other on jury verdicts; Marcus et al., 2000), educa-
tion (reports of bullying among classmates within school classes; Veenstra et al., 2007), and man-
agement (ratings of deference shown towards coworkers within scientific research teams; Joshi & 
Knight, 2015). 

In the classic round-robin design each individual i is paired with every other individual j, leading 
to two directed responses for each undirected dyad, for example, the behaviour of i (the ‘actor’) 
towards j (the ‘partner’) and the behaviour of j towards i where the actor–partner roles are 
swapped. (The terms actor and partner may be replaced by others such as perceiver and target, 
sender and receiver, or rater and subject according to the application.) The pairing of each indi-
vidual with every other individual (or in some applications a subset of the others) allows three 
types of effect to be estimated: an individual’s actor effect (shared by all dyads with the same ac-
tor), an individual’s partner effect (shared by all dyads with the same partner), and a relationship 
effect (specific to each unique directed actor–partner combination). Interest lies in estimating the 
components of variance in the response that are attributable to these three effects, and in the cor-
relation between an individual’s actor and partner effects (referred to as generalised reciprocity) 
and between the two relationship effects for a given dyad (dyadic reciprocity). 

The SRM was originally formulated for single-group designs where both individuals and dyads 
are non-differentiated or exchangeable (Kenny & La Voie, 1984). More generally, dyads are 
formed within clusters such as families or organisations (Kenny et al., 2006) and individuals 
may have different roles such as parent and child in families or employee and manager in the work-
place. In such designs, cluster effects are of interest and the mean response, variance decompos-
ition, and reciprocity correlations for a dyad ij may depend on the roles of individuals i and j.  
Kashy and Kenny (1990) described an extended SRM for family designs where all parameters 
are role-specific and showed how the model can be framed as a structural equation model. An al-
ternative approach, proposed by Snijders and Kenny (1999), is to view the SRM as a type of cross- 
classified multilevel (random effects) model where actor and partner effects are crossed because 
each actor is paired with multiple partners, and vice versa. A complication arises in that, rather 
than making the usual assumption that the different sets of random effects are independent, the 
actor and partner random effects must be allowed to correlate in order to capture the generalised 
reciprocity correlation. Similarly, the residual terms must be allowed to correlate within dyads to 
capture the dyadic reciprocity correlation. An important advantage of the multilevel framework is 
the straightforward generalisation of the SRM to handle cluster effects in k-cluster designs where 
clusters may vary in size (Snijders & Kenny, 1999). 

Among the few studies that have considered SRMs for longitudinal round-robin data, the most 
common approaches for clustered data are based on cross-sectional models fitted separately to 
each time point. Nestler et al. (2017) review two-stage methods where estimates of actor and partner  
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effects from a series of cross-sectional SRMs are used as response variables in longitudinal analyses 
of changes in these effects over time. As noted by Nestler et al., two-stage approaches are problem-
atic because they ignore uncertainty in the estimation of actor and partner effects and their correl-
ation. An alternative approach described by Nestler et al. is to use a multivariate response SRM, 
employed in previous research for multiple cross-sectional responses (Card et al., 2008), treating re-
peated measures as a multivariate response for each directed dyad ij and estimating an unstructured 
covariance matrix. While a multivariate SRM fully captures within undirected dyad covariances, the 
lack of structure leads to a large number of random effect parameters. This would especially be the 
case in our application to family data where all parameters may be role-specific. 

A restricted form of the full multivariate model is the social relations growth model (SRGM) 
(Nestler et al., 2017) in which random effects for the intercept and a linear time effect are decom-
posed into actor, partner, and dyad effects. The SRGM is appropriate for developmental processes 
where there is interest in the relative contributions of actor, partner, and dyad effects to the mean 
of y at baseline (the intercept) and to changes in y over time (the slope), and correlations among the 
different intercept and slope effects. For example, Nestler et al. apply the SRGM to study changes 
in how much freshmen at a US university liked each other over time after their first meeting. 
Moreover, given the complexity of the covariance structure and large number of parameters to in-
terpret, the SRGM is most suited to applications where change can be represented by a linear func-
tion of time and to exchangeable round-robin designs (i.e. without role effects). 

Another approach to the analysis of dyadic data is a stochastic block model (SBM). In an SBM, 
each node in a network is assumed to belong to one (or possibly more) of K latent blocks and the 
objective is to discover the community structure of the network through identification of blocks of 
highly connected nodes (Airoldi et al., 2008; Holland et al., 1983). SBMs have been generalised to 
handle longitudinal network data where block membership may be time-varying and the evolution 
of a network over time is studied using a form of hidden Markov model in which block member-
ship at time t depends on membership at t − 1 (Bartolucci et al., 2018; Matias & Miele, 2017). 
SBMs are typically applied to network data where ties may exist between any pair of the observed 
nodes and the aim is to model the probability of a tie. While SRMs can also be used in this 
situation, and models that combine an SRM and an SBM have recently been proposed for 
cross-sectional data of this type (Redhead et al., 2023), the focus of this paper is the analysis of 
longitudinal network data from a round-robin design. In a blocked or clustered round-robin 
design, interest lies in interactions between nodes, rather than ties; these interactions are confined 
to members of the same block and block membership is known and time-invariant. In our 
application, for example, families are ‘blocks’ and the discrete latent variable for blocks in an 
SBM is instead represented by a continuous cluster-specific random effect. 

3 SRM for clustered cross-sectional round-robin data 
We begin with a description of an SRM for clustered round-robin data in the context of a family 
study with two parents and two children, although it is straightforward to accommodate mixed 
family sizes (e.g. single-parent or one-child families). Suppose that each pair of family members 
is observed in an interaction and the response of interest is the behaviour of one individual in a 
pair towards the other. Individuals are distinguished by their role in the family: mother (M), father 
(F), younger child/sibling (S1), and older child (S2). Dyads are also distinguished by the respective 
roles of the actor and partner. Denote by yijk the behaviour of actor i towards partner j in family k, 
where i, j = 1, . . . , 4 (i ≠ j) index the family roles (M, F, S1, S2), and k = 1, . . . , K. For each pair of 
family members, we observe the bivariate response (yijk, y jik), and within a family there are up to 
12 directed dyads (corresponding to each actor–partner combination) and 6 undirected dyads 
(corresponding to each pair of individuals without specifying one as the actor and the other as 
the partner). 

Following Snijders and Kenny (1999), a linear model for yijk can be written: 

yijk = μij + fk + aik + p jk + dijk for i ≠ j (1) 

where μij is the mean, which varies across directed dyads, fk is the family effect, aik is the actor ef-
fect for individual i in family k, p jk is the partner effect for individual j in family k, and dijk is the  
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relationship or dyad effect unique to the directed dyad ij in family k. The following univariate and 
bivariate distributions are assumed for the random effects, allowing the actor, partner, and rela-
tionship variances and covariances to depend on family roles (hence the inclusion of i and j sub-
scripts on these parameters). 

fk ∼ N(0, σ2
f )

aik

pik

􏼔 􏼕

∼ N
0

0

􏼔 􏼕

,
σ2

ai

ρapiσaiσ pi σ2
pi

􏼢 􏼣􏼠 􏼡

dijk

d jik

􏼢 􏼣

∼ N
0

0

􏼔 􏼕

,
σ2

dij

ρdijσdijσdji σ2
dji

􏼢 􏼣􏼠 􏼡

(2) 

The four ρap parameters are the role-specific generalised reciprocity correlations, i.e. the correla-
tions between the same individual’s actor and partner effects, and measure the relationship be-
tween an individual’s tendency to act in a certain way towards all other family members and 
their tendency to elicit a certain behaviour from all other family members. The six ρd parameters 
are dyad-level correlations between relationship effects, referred to as dyadic reciprocity; these are 
permitted to vary across the six undirected dyad types with ρdij = ρdji. These correlations measure 
the extent to which unusual behaviour within dyads, that is, behaviour unaccounted for by the two 
family members’ general actor and partner tendencies, is positively or negatively reciprocated. 

The total variance of yijk can thus be partitioned as 

var(yijk) = σ2
f + σ2

ai + σ2
pj + σ2

dij (3) 

where the variance components are respectively the between family variance, and the 
between-actor, between-partner, and between relationship variances across families. 

While the model can be estimated using maximum likelihood or iterative generalised least 
squares (Goldstein, 2010; Snijders & Kenny, 1999), Bayesian methods are more computationally 
efficient and flexible for estimation of cross-classified and other types of non-hierarchical multi-
level model (Browne et al., 2001; Gill & Swartz, 2001), and extensions to generalised linear mod-
els for discrete response data (Hoff, 2005; Koster & Leckie, 2014) and latent variable models for 
multivariate data (Gin et al., 2020). 

4 Dynamic SRM for clustered longitudinal round-robin data 
4.1 Longitudinal SRM with dynamic effects 
Our research questions concern the dynamics in dyadic interactions, that is, the persistence in an 
individual’s behaviour over the course of an interaction and the moment-to-moment influences of 
each undirected dyad member’s behaviour on the other’s. Also of interest is the extent to which 
such dynamics vary according to individual roles within the family and the respective roles of 
the actor and partner within a dyad. We therefore propose a dynamic SRM which has two com-
ponents: an SRM for the repeated measures of y and a dynamic (autoregressive and cross-lagged) 
structure for the time-varying residuals. 

The SRM component of the model is a simple extension of (1) with an extra subscript t to denote 
the timing of each measurement of y and the addition of a time-varying residual etijk to capture 
temporal fluctuations (and measurement error) in the behaviour shown between family members 
(i.e. the state): 

ytijk = μij + fk + aik + pjk + dijk + etijk for i ≠ j

etijk

etjik

􏼢 􏼣

∼ N
0

0

􏼔 􏼕

,
σ2

eij

ρeijσeijσeji σ2
eji

􏼢 􏼣􏼠 􏼡
(4)  
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where the distributions of the random effects fk, aik, p jk, and dijk are the same as in (2) for the cross- 
sectional case. 

The intercepts μij are the coefficients of 12 dummy variables, one for each combination of the 
family roles of the actor and partner. It is straightforward to extend (4) to include other covariates 
which may be time-invariant or time-varying characteristics of individuals, dyads, and families. 
We do not consider covariates in our application because our focus is on the unconditional autor-
egressive and cross-lagged effects, random effect variances and correlations, and variance parti-
tioning coefficients (VPCs). However, we consider a dyad-specific linear trend by replacing μij 
with β0ij + β1ijt in a special case of the social relations growth model of Nestler et al. (2017). 

We extend the model given by (4) and (2) to allow for autoregressive and cross-lagged correl-
ation among the within-dyad deviations etijk = ytijk − θijk, where θijk = μij + fk + aik + p jk + dijk is 
the linear predictor: an individual’s mean response over the entire period of the interaction in a 
particular dyad. Specifically we consider a first-order model where the deviation in the response 
for actor i towards partner j at time t from their mean response depends on their own lagged de-
viation one occasion ago, e(t−1)ijk, and that of their partner, e(t−1)jik. In other words, we allow an 
individual’s deviation from their long-run average behaviour towards any particular partner to 
be correlated with their corresponding deviation in long-run average behaviour towards the 
same partner at the previous measurement occasion (an autoregressive effect), and to be affected 
by that partner’s unique behaviour towards them at the previous measurement occasion (a cross- 
lagged effect). Including an autoregressive effect allows us to test the hypothesis that individuals’ 
unique behaviours exhibit some degree of persistence, while a cross-lagged effect tests the hypoth-
esis that individuals will react to the behaviour shown to them and reciprocate in kind (or alter-
natively, respond with opposite behaviour), i.e. that an individual’s behaviour towards another 
influences the second individual’s behaviour towards the first. 

The within-dyad model can therefore be written as 

etijk = ϕ1ije(t−1)ijk + ϕ2ije(t−1)jik + ηtijk for t > 1 (5) 

where ϕ1ij and ϕ2ij are the autoregressive and cross-lagged effects which vary across directed dyads. 
The residuals ηtijk, which capture both temporal fluctuation not accounted for by the autoregres-
sive and cross-lagged effects and measurement error, are sometimes referred to as shocks or inno-
vations and are assumed to have a bivariate normal distribution 

ηtijk
ηtjik

􏼔 􏼕

∼ N
0
0

􏼔 􏼕

,
σ2

ηij

ρηijσηijσηjiσ2
ηji

􏼢 􏼣􏼠 􏼡

(6) 

where ρηij = ρηji but we allow σ2
ηijk ≠ σ2

ηjik. To complete the model specification, we assume that the 
residuals for t = 1, (e1ijk, e1jik), also have a bivariate normal distribution but with a different co-
variance matrix to (ηtijk, ηtjik) for t > 1. 

Usami et al. (2019) review a range of cross-lagged panel models for longitudinal bivariate data 
of the form yti = (y1ti, y2ti) where the two responses at each time t are observed on the same unit i 
(e.g. individual). Such data have a two-level hierarchical structure with repeated measures of the 
bivariate response nested within individuals. One of the models reviewed by Usami et al. is a ran-
dom intercept model which includes (uncorrelated) response-specific random effects (u1i, u2i) to 
allow for unmeasured time-invariant influences on each response. The model specified by (4) 
and (5) generalises this model for the case of longitudinal dyadic data, a particular kind of bivari-
ate data that have a more complex non-hierarchical structure, as described above; moreover, dy-
ads are nested within family clusters. Thus the response-specific random intercepts are replaced by 
the linear combination of family, individual (actor and partner), and dyad random effects given by 
(4), allowing additionally for the random effect variances and covariances to be role-specific. In a 
random coefficients extension of the random intercept model of Usami et al., Hamaker et al. 
(2018) allow the autoregressive and cross-lagged effects in (5) to vary randomly across individuals. 
However, we restrict our attention to fixed dyad-type-specific effects due to the complex structure 
of our data and joint modelling of multiple dyads within families.  
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An alternative way to incorporate dynamic effects is to allow for autoregressive and cross- 
lagged effects among the responses ytijk rather than among the residuals. For standard bivariate 
panel data (on independent subjects rather than clustered dyads), such a model is known in psy-
chometrics as an autoregressive cross-lagged model (Bollen & Curran, 2006) and in econometrics 
as a random effects panel vector autoregressive model (Binder et al., 2005). However, by general-
ising a result from Anderson and Hsiao (1981) for univariate repeated models, it can be shown 
that the two specifications are equivalent. To see how the model of (5) can be reformulated as 
an SRM generalisation of an autoregressive cross-lagged model, we substitute etijk = ytijk − θijk 
in (5) to obtain 

ytijk = θ̃ijk + ϕ1ijy(t−1)ijk + ϕ2ijy(t−1)jik + ηtijk for t > 1 (7) 

where θ̃ijk = (1 − ϕ1ij)θijk − ϕ2ijθ jik. Since the coefficient of y(t−1)ijk in this parameterisation is iden-
tical with the coefficient of e(t−1)ijk in the original parameterisation given by (4) and (5), we can 
interpret ϕ1ij equally well as the effect of the actor’s response at the previous occasion on their cur-
rent response or as the effect of the deviation in their response at the previous occasion from their 
average when acting towards that partner on the deviation in their response at the current occa-
sion; the former interpretation is more straightforward but the latter corresponds to our concep-
tualisation of the model as a dynamic structural equation model (SEM). Similarly, we can equally 
well interpret ϕ2ij as the effect of the partner’s response at the previous occasion on the actor’s cur-
rent response or as the effect of the partner’s deviation in their response at the previous occasion 
from their average when acting towards this actor on the actor’s deviation in their response at the 
current occasion from their average when acting towards that partner. Finally, θ̃ijk can be decom-

posed as θ̃ijk = μ̃ij + f̃ ijk + ãijk + p̃ jik + d̃ijk with 

μ̃ij = (1 − ϕ1ij)μij − ϕ2ijμ ji

f̃ ijk = (1 − ϕ1ij)fk − ϕ2ijfk

ãijk = (1 − ϕ1ij)aik − ϕ2ija jk

p̃ jik = (1 − ϕ1ij)p jk − ϕ2ijpik

d̃ijk = (1 − ϕ1ij)dijk − ϕ2ijd jik

(8) 

We note that ( f̃ ijk, ãijk, p̃ jik, d̃ijk) cannot be interpreted as family, actor, partner, and relationship 
effects because all vary across both actors and partners within a family. In an alternative specifi-
cation of a dynamic model for ytijk, θ̃ijk could be replaced by an SRM decomposition, but the var-
iances and covariances of the family, actor, partner, and relationship effects in the resultant model 
would be conditional on (y(t−1)ijk, y(t−1)jik). We instead focus on the parameterisation given by (4) 
and (5) where the variance–covariance parameters for (fk, aik, p jk, dijk) have an unconditional in-
terpretation. However, we use the parameterisation of (7) and (8) for estimation, as described 
below. 

4.2 Latent dynamic SRM for ordinal data 
In our application, the response variable is ordinal rather than continuous. We therefore consider a 
generalisation of the dynamic SRM to handle ordinal responses. We note that binary responses are 
simply two-category ordinal responses and so this generalisation can equally be applied to binary 
response variables. The model is specified in terms of an underlying continuous response y∗tijk, re-
lated to an observed ordinal ytijk with C categories by 

ytijk = c ⇔ y∗tijk ∈ [τc−1, τc), c = 1, . . . , C (9)  
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where τc are threshold parameters with −∞ = τ0 < τ1 < · · · < τC−1 < τC = ∞. The dynamic SRM for 
ordinal responses can then be written as 

y∗tijk = μij + fk + aik + p jk + dijk + etijk for i ≠ j (10) 

For identification, we must fix the location and scale of y∗tijk. We fix the location of y∗tijk by setting 
τ1 = 0, and we fix its scale by setting var(ηtijk) = 1 in (5) and var(e1ij) = 1 in (10). Retaining the nor-
mality assumption for ηtijk and e1ijk gives an ordered probit model. 

As in the continuous response case, the dynamic SRM can be formulated as an autoregressive 
cross-lagged model where (7) is expressed in terms of the latent response y∗tijk and the lagged 
and cross-lagged latent responses y∗(t−1)ijk and y∗(t−1)jik. This leads to a bivariate generalisation of 
the latent autoregression model proposed by Pudney (2008) for a univariate ordinal response. 

It is well known in the latent variable modelling literature that the inappropriate treatment of 
multivariate ordinal data as continuous can lead to biased parameter estimates, especially when 
C is small and for skewed response distributions (Dolan, 1994). For this reason, it is commonly 
advocated for factor analysis of ordinal data to be based on polychoric correlations, which esti-
mate the associations among multivariate normal y∗s, rather than Pearson correlations for the 
manifest ordinal ys (e.g. Flora & Curran, 2004). Pearson correlations computed for discrete ys 
underestimate the dependency among the y∗s, which leads to biased estimates of factor loadings. 
These findings are relevant for the dynamic SRM proposed in this paper because it is a form of 
latent variable model with various correlation parameters relating to within-person autocorrel-
ation (ϕ1ij), and cross-person within-dyad autocorrelation (ϕ2ij) and the random effect and innov-
ation correlations in (2) and (6). 

4.3 Estimation 
As in the case of the basic cross-sectional SRM and the generalisations noted in Section 3, Bayesian 
MCMC estimation provides an efficient way of estimating the dynamic SRM, especially in data 
with many individuals per cluster and for ordinal and other discrete responses. All data analysis 
presented in Section 6 was carried out using Gibbs sampling, as implemented in the JAGS package 
(Plummer, 2003). Although the variance components and correlations of interest in the SRM part 
of the model are the unconditional parameters of (10), it is more convenient for estimation pur-
poses to specify the model in the autoregressive cross-lagged response form of (7) with y 
replaced by y∗ and the fixed intercept μ̃ij and the variance–covariance parameters of the random 
effects ( f̃ ijk, ãijk, p̃ jik, d̃ijk) expressed in terms of the parameters of interest using the relationships 
in (8). An advantage of MCMC estimation is the possibility to derive estimates and credible inter-
vals for functions of the parameters of the fitted model using the parameter chains. (The JAGS code 
is provided in the online supplementary material.) 

In order to ensure the estimates of the innovation correlations lie between −1 and 1, we model 
the off-diagonal elements of the precision matrix for each undirected dyad with a hyperbolic tan-
gent function (i.e. Fisher’s z transformation). We use exponential priors with rate 1 for the gaps 
between each pair of consecutive thresholds, Normal priors with mean 0 and precision 0.001 
for the fixed part parameters, Wishart priors with the 2 × 2 identity matrix and 2 degrees of free-
dom for the random part precision matrices (i.e. inverses of the variance–covariance matrices of 
the actor and partner effects for each role, and of the variance–covariance matrices of the relation-
ship effects for each directed dyad type), a Gamma prior with shape 0.001 and rate 0.001 for the 
precision of the family effects, and Normal priors with mean 0 and variance 0.001 for the param-
eters used in modelling the correlations between the innovations. 

5 Data 
Participants in this study were originally recruited as part of the Kids, Families, and Places study, a 
birth cohort longitudinal study that followed children born between February 2006 and February 
2008 in Toronto or Hamilton, Canada, into school (Browne et al., 2018; Meunier et al., 2013). 
This sample was recontacted to take part in a subsequent study, the goals of which were to under-
stand the development of cooperation in family relationships. The data for the current study were  
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drawn from the cooperation study. Participants from 223 families were video recorded working 
on a conflict discussion task in pairs, and raters subsequently watched the recordings and scored 
each individual’s constructiveness at 20 s intervals (‘snapshots’). In most families, the participants 
were the mother (M), father (F), younger child (S1), and older child (S2), but in 65 families the fa-
ther did not participate (in some cases because it was a single-parent family and in others because 
the father did not wish to participate), and in two families one of the children did not participate. 
Our analysis sample therefore includes observations on either four family members (M, F, S1, S2) 
or three family members (M, S1, S2; M, F, S1; or M, F, S2). No adjustment is required to handle 
families of different sizes, although families without a participating father do not contribute to es-
timates of parameters for dyads involving the father. The children who were newborns at the time 
of initial recruitment—termed the ‘younger siblings’ or ‘younger children’ in this study—were be-
tween 5 and 9 years old when these data were collected (M = 7.34; SD = 0.82; 51% female). Their 
next oldest siblings (‘older siblings’ or ‘older children’) were 7–13 years old (M = 9.93; SD = 1.05; 
48% female). In total, 825 individuals participated. The aim was to observe each possible pair of 
participating individuals within each family interacting. This was achieved for all but 42 of the 
families. In total, 1, 086 different dyads were observed. 

Constructiveness was scored on an ordinal five-point scale, from 1 (high destructive) to 5 (high 
constructive). (Further details of the types of behaviour exhibited in each category can be found in 
the online supplementary material, Section S2 on page 2.) In practice, no observation was rated as 
fitting in the first category, so the response has four categories, with the lowest being 2 (somewhat 
destructive). Two trained raters double coded between 23% and 32% of tapes for all dyads to es-
tablish inter-rater reliability. Kappas ranged from κ = 0.72 to 0.88 and percent agreement from 
92% to 96%, depending on the dyad. 

Each pair of participants was observed working on the task for a maximum of 5 min (i.e. 15 
snapshots), with the average observation length across all dyads being 9.7 snapshots (i.e. 3 min 
14 s). There are a few instances (123 out of 21, 194 total observations, or 0.6%) where the con-
structiveness score was unavailable for a dyad. Since the software can only handle cases where the 
response at any given snapshot is observed for both members of an undirected dyad, or for neither, 
we set to missing a further 107 observations where the partner’s response at the same snapshot is 
missing, so that in total 230 observations are missing (1.0%). Further analysis of missing data pat-
terns is given in the online supplementary material, Section S2 on pages 1–3. 

Table 1 gives some details of the distribution of the response and the length of time over which 
dyads were observed, overall and by dyad type. (Full details can be found in online supplementary 
material, Table S1 on page 3.) The overall mean 3.51 lies close to the middle of the portion of the 

Table 1. Descriptive statistics overall and by dyad type  

Mean SD Duration  

Mother ▸ father  3.67  0.53  10.90 

Father ▸ mother  3.55  0.54  10.90 

Mother ▸ younger child  3.79  0.70  9.80 

Younger child ▸ mother  3.11  0.67  9.80 

Mother ▸ older child  3.78  0.66  10.55 

Older child ▸ mother  3.31  0.68  10.55 

Father ▸ younger child  3.89  0.63  9.73 

Younger child ▸ father  3.30  0.61  9.73 

Father ▸ older child  3.72  0.62  10.23 

Older child ▸ father  3.32  0.55  10.23 

Younger child ▸ older child  3.26  0.58  7.75 

Older child ▸ younger child  3.37  0.63  7.75 

Overall  3.51  0.68  9.76   
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scale that is actually used, almost exactly midway between not clearly destructive or constructive 
and somewhat constructive. The means for the various dyad types also lie between these two 
points, but show some variation. The overall standard deviation 0.68 is a little over half a point 
on the scale. There is in general slightly less variability between dyads of the same type across dif-
ferent families (SD of mean) than within an individual dyad across time (mean SD), and the extent 
of each of these sources of variation is broadly similar across dyad types. Overall, dyads are ob-
served on average for between nine and ten snapshots, i.e. between 3 min and 3 min 20 s. 

6 Data analysis 
6.1 Research questions 
We have three research questions which form the focus of our analysis of these data. These can all 
be answered using the same model, that given by (4) and (5), that is, a dynamic SRM that treats the 
response as ordinal. Accordingly this is our model of interest and the only one for which results 
will be presented here. However, as we discuss in Section 6.2, we fit a number of other models 
to check that our model of interest is appropriate for these data and to provide a baseline indica-
tion of parameter estimates before dynamics are accounted for. We briefly summarise what these 
models tell us in Section 6.3.1 before turning to the model of interest for the remainder of Section  
6. Full details of these additional models and their results are given in online supplementary 
material, Sections S3 on page 4, S5.1 on page 18, S5.2 on page 31, and S5.4 on page 63. 

6.1.1 How much variance in constructiveness is attributable to family, actor, partner, 
relationship, and snapshot when longitudinal data are used and dynamic effects are introduced 
into the SRM? 
Previous cross-sectional studies of psychological measures in general find that the relationship is 
the most important source of variation and that actor and partner effects are small in comparison. 
We have longitudinal data and are thus able to separate residual error from the relationship com-
ponent of variation. As discussed in Section 1, since in the model given by (10) and (5) we are com-
paring the effect of the relationship itself with the effects of the actor and partner (as the residual 
error is separately partitioned), we can estimate the relative importance of individual characteris-
tics (here represented by the actor and partner) versus the importance of the combination of the 
two people in the dyad (relationship). 

A model using the longitudinal data but which does not include dynamics finds moderate dyadic 
variances for each dyad type (see online supplementary material, Table S12 on page 32 for full de-
tails), and that the relationship makes a moderate to large contribution, depending on dyad type, 
to the time-invariant variance (i.e. the sum of the family, actor, partner and relationship effects) in 
this model (see online supplementary material, Table S14 on page 39). For three of the six undir-
ected dyad types, there are moderate and significant dyadic reciprocities in this model, indicating 
an association between the time-invariant relationship effects in the two directed dyads. It is pos-
sible that the relationship variance can be substantially or completely explained by the effect of the 
partner’s response at the previous snapshot and/or the persistence of the actor’s own response 
from the previous snapshot once we add dynamics to the model, so we see whether the relationship 
variance still makes a similar contribution in the model with dynamics, and how the contributions 
of the other components of variation compare. (It is also possible that the dyadic reciprocities may 
be explained by the addition of dynamics; they are the focus of 6.1.3.) 

6.1.2 How much carry-over from one moment to the next is there in an individual’s behaviour 
(captured by the autoregressive effects ϕ1ij) and how much does each individual trigger the 
proximal behaviour of their partner (captured by the cross-lagged effects ϕ2ij)? 
We expect autoregressive effects to vary by role and cross-lags by dyad type. The degree to which 
an individual can return to their own baseline is seen as an indicator of emotion regulation 
(Kuppens et al., 2010). Emotion regulation has been found to increase across development 
(Keltner et al., 2018) but no-one has examined this in the context of the SRM. As SRM studies 
find strong relationship effects (behaviour varies across relationships), an individual’s emotion 
regulation may vary across relationships. In the Hamaker et al. (2018) dynamic SEM, this compo-
nent of the model is referred to as inertia; we have also referred to it in Section 4.1 as persistence.  
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Significant autoregressive effects are hypothesised for both parents and children and we examine 
whether they differ as a function of age or vary across relationships. 

As discussed in Section 1, we examine proximal triggers: the pathway of the partner’s behaviour 
at one snapshot influencing the actor’s at the next, picked up by the cross-lags ϕ2ij. We expect to see 
these proximal triggers more in family dyads with low power differentials (e.g. siblings and marital 
partners) than in those with high power differentials (parents and children) (Rasbash et al., 2011). 

6.1.3 Do siblings and adult partners show stronger dyadic reciprocity correlations on 
constructiveness than parents and children? Are the dyadic reciprocity correlations more 
important in explaining constructiveness than the cross-lagged influences across all dyads? 
On the basis of the power differential findings outlined in RQ2, we expect the dyadic reciprocity 
correlations to be lower for parent–child dyads than the other dyads. Furthermore, we expect 
dyadic reciprocity correlations to be stronger than cross-lagged effects (proximal triggers). The 
cross-lagged parameter is more exacting, as it relies on getting the time frame of influence correct. 
For example, a similarity of behavioural response that occurs within a 20 s snapshot (one person’s 
lack of constructiveness is immediately followed by the other person’s lack of constructiveness) 
will not be counted as one person influencing the other but rather as the behaviour of the two peo-
ple being correlated. 

6.2 Modelling 
Our model of interest is that given by (10) and (5), i.e. a dynamic SRM with the constructiveness 
response in a 20-s interval (snapshot) treated as ordinal with four categories; the autoregressive 
and cross-lag effects in (5) refer to the previous snapshot. As indicated in Section 4.1, we also 
fit a model with a linear time trend (allowed to differ across the six dyad types). We do not include 
time trends in our selected model since we are not interested in change in the means over time, and 
including the time trend adds complexity to the reparameterisation used to fit the models. 
However, we fit the model with time trends to check that their inclusion does not affect estimates 
of the parameters of interest. For the same reason, and to allow further comparisons outside the 
scope of this paper, we also fit the model given by (10), i.e. a non-dynamic ordinal SRM, and mod-
els given by (4) and (5) and by (4) alone, i.e. dynamic and non-dynamic SRMs which treat the re-
sponse as continuous, but do not present the results of any of these in this article (although as 
mentioned in Section 6.1 we do briefly summarise the findings in Section 6.3.1). Full equations 
and results for all these models can be found in the online supplementary material (in Section 
S3.4 on page 8 and Table S37 on page 63 for the equations and results, respectively, of the model 
with time trends; in Table S8 on page 19 for the results of the non-dynamic ordinal SRM and dy-
namic and non-dynamic continuous SRMs; and in equation (S5) on page 8 and Table S12 on page 
32 for the equations and results, respectively, of the ordinal SRM with autoregressive effects but 
no cross-lagged effects), as can other details of the modelling process omitted or only briefly 
touched on here (in online supplementary material, Section S3.5 on page 9 and Section S4 on 
page 11). 

Models are fitted using MCMC, calling JAGS from within R. Results are presented for the par-
ameterisation of (10) and (5), but the model fitted departs from this parameterisation in several 
respects, including that, as indicated in Section 4.3, we fit the autoregressive cross-lagged response 
form of the model. 

The model of interest was run using 5 chains, each with a burn-in of 200, 000 iterations follow-
ing an adaptation phase of 1, 000 iterations and monitored for 50, 000 iterations (storing every 
10th). The long burn-in was necessary due to poor mixing of the chains for the thresholds and in-
tercepts. Starting values for each chain were randomly drawn. Stochastic convergence was judged 
both by examining trajectory plots and effective sample sizes and by checking that Gelman–Rubin 
potential scale reduction factors were close to 1 (Gelman et al., 2004). Estimation was good for all 
parameters, with trajectory plots showing no issues, effective sample sizes of at least 1, 500, and 
potential scale reduction factors within 0.05 of 1. 

VPCs give the proportion of the total unexplained variance attributable to each set of random 
effects. To address 6.1.1, we examine a similar decomposition, but of the time-invariant variance 
(i.e. the sum of the family, actor, partner, and relationship variances) rather than of the total  
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variance. These and the differences between various parameters (such as the differences between 
the autoregressive effects for each possible pair of dyad types) are not parameters in the model but 
were calculated in R using the chains of parameter estimates. The shares of the time-invariant vari-
ance are calculated separately for each dyad type, using the family variance, the actor variance for 
the role who is the actor in that dyad type, the partner variance for the role who is the partner in 
that dyad type, and the relationship variance for that dyad type. 

6.3 Results 
Table 2 shows selected parameter estimates for our model of interest. (For estimates of parameters 
not shown here, see online supplementary material, Table S12 on page 32.) 

6.3.1 Preliminary analysis 
The results are broadly similar whether we treat the response as continuous or ordinal. As ex-
pected given that the model estimates polychoric rather than Pearson correlations, as discussed 
in Section 4.2, the point estimates of the autoregressive effects (the ϕ1), cross-lags (the ϕ2), gener-
alised reciprocity correlations (i.e. actor–partner correlations, ρap), dyadic reciprocity correlations 
(i.e. relationship correlations, ρd), and innovation correlations (ρη) are mostly larger when treating 
the response as ordinal rather than continuous. Although when including linear time trends we 
find that there is a significant (negative) trend for five of the six dyad types, these trends are small 
(the largest in magnitude being −0.06, so that it would take around 30 snapshots for predicted 
constructiveness to decrease by 1 category) and there is little difference in the parameter estimates 
between this model and our model of interest, justifying our omission of time trends in that model. 

We now turn to the model of interest for the remainder of this section to address our research 
questions. 

6.3.2 Research question 1 
As with the other parameters common to both models, the estimates for the relationship variances 
are not much different in the model of interest compared to a model without dynamics (see online 
supplementary material, Table S12 on page 32). Thus neither the actor’s own response or their 
partner’s response at the previous snapshot seem to explain much of the relationship variance. 

Table 3 shows, for each dyad type, the proportion of the time-invariant variance (i.e. the sum of 
the family, actor, partner, and relationship variances) accounted for by each component of vari-
ance. (These are similar to VPCs, but it is not the total variance that we are partitioning, since 
we are excluding both temporal fluctuation and measurement error.) Even though we have re-
moved both temporal fluctuation and measurement error to another component of variance, 
and added dynamics, the relationship effects still make a moderate to large contribution, account-
ing for a little over a quarter of the variance to a little under two thirds. They are perhaps generally 
more important than actor effects (which account for just under a fifth to somewhat under half), or 
partner effects (a little over a tenth to just over a quarter), but the credible intervals are wide for 
most dyad types; and indeed the point estimate of the actor effect is actually larger than that of the 
relationship effect in four dyad types (though the point estimate of the partner effect is smaller than 
that of the relationship effect in every case). The family effect is relatively unimportant, with point 
estimates of under 10% in all dyad types and under 5% in three types, though again the credible 
intervals are wide, with the upper limits reaching somewhere between a quarter and a third for 
some dyad types, but the lower limits extending almost all the way to no contribution for all types. 

With the addition of dynamics, two of the dyadic reciprocities which were significant in the 
model without dynamics have become non-significant (with the three which were already non- 
significant in that model remaining non-significant here). The third remains significant and mod-
erately strong. 

6.3.3 Research question 2 
The autoregressive effects (the ϕ1 parameters) are all positive and, with two exceptions, significant 
at the 5% level. Thus we can conclude that there is persistence from one snapshot to the next in 
individuals’ behaviour. However, this is not strong, with the largest point estimate being 0.237. 
(Recall that we noted in Section 4.2 that these can be interpreted as correlations between an  
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Table 2. Selected parameter estimates (with 95% credible intervals) for ordinal dynamic SRM 

Fixed part and innovation correlations  

Mean Percentiles 

2.5th 97.5th  

Autoregressive effects 

ϕ1 (M ▸ F)  0.068  −0.025  0.162 

ϕ1 (F ▸ M)  0.202*  0.112  0.293 

ϕ1 (M ▸ S1)  0.095*  0.029  0.161 

ϕ1 (S1 ▸ M)  0.224*  0.150  0.297 

ϕ1 (M ▸ S2)  0.102*  0.033  0.171 

ϕ1 (S2 ▸ M)  0.237*  0.168  0.307 

ϕ1 (F ▸ S1)  0.085  −0.006  0.175 

ϕ1 (S1 ▸ F)  0.208*  0.121  0.296 

ϕ1 (F ▸ S2)  0.108*  0.023  0.192 

ϕ1 (S2 ▸ F)  0.120*  0.030  0.209 

ϕ1 (S1 ▸ S2)  0.143*  0.051  0.233 

ϕ1 (S2 ▸ S1)  0.164*  0.067  0.262 

Cross-lags 

ϕ2 (M ▸ F)  −0.024  −0.113  0.066 

ϕ2 (F ▸ M)  0.007  −0.078  0.092 

ϕ2 (M ▸ S1)  −0.054  −0.135  0.027 

ϕ2 (S1 ▸ M)  −0.009  −0.065  0.046 

ϕ2 (M ▸ S2)  0.056  −0.014  0.127 

ϕ2 (S2 ▸ M)  0.045  −0.015  0.106 

ϕ2 (F ▸ S1)  0.016  −0.080  0.114 

ϕ2 (S1 ▸ F)  0.001  −0.073  0.075 

ϕ2 (F ▸ S2)  −0.016  −0.115  0.080 

ϕ2 (S2 ▸ F)  0.002  −0.068  0.073 

ϕ2 (S1 ▸ S2)  0.099*  0.015  0.180 

ϕ2 (S2 ▸ S1)  0.028  −0.067  0.123 

Innovation correlations 

ρη (M&F)  −0.021  −0.133  0.093 

ρη (M&S1)  0.089*  0.029  0.149 

ρη (M&S2)  0.104*  0.042  0.165 

ρη (F& S1)  0.184*  0.104  0.263 

ρη (F& S2)  0.108*  0.019  0.195 

ρη (S1& S2)  0.326*  0.241  0.407   

Random part (other than innovation correlations)  

Mean Percentiles 

2.5th 97.5th  

Family variance 

σ2
f  0.031  0.001  0.111                                                                                                                                                           

(continued)  
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individual’s constructiveness at the current snapshot and their constructiveness at the previous 
snapshot.) They do generally seem to be higher for children than for parents, with the notable ex-
ception of fathers acting towards mothers. 

Table 2. Continued  

Random part (other than innovation correlations)  

Mean Percentiles 

2.5th 97.5th  

Actor variances 

σ2
a (M)  0.200  0.121  0.294 

σ2
a (F)  0.183  0.110  0.273 

σ2
a (S1)  0.121  0.072  0.182 

σ2
a (S2)  0.101  0.059  0.157 

Partner variances 

σ2
p (M)  0.084  0.049  0.132 

σ2
p (F)  0.061  0.037  0.094 

σ2
p (S1)  0.115  0.066  0.180 

σ2
p (S2)  0.087  0.050  0.136 

Relationship variances 

σ2
d (M ▸ F)  0.157  0.081  0.266 

σ2
d (F ▸ M)  0.122  0.063  0.210 

σ2
d (M ▸ S1)  0.451  0.300  0.630 

σ2
d (S1 ▸ M)  0.350  0.223  0.504 

σ2
d (M ▸ S2)  0.386  0.243  0.557 

σ2
d (S2 ▸ M)  0.315  0.193  0.463 

σ2
d (F ▸ S1)  0.296  0.161  0.472 

σ2
d (S1 ▸ F)  0.119  0.063  0.204 

σ2
d (F ▸ S2)  0.218  0.110  0.362 

σ2
d (S2 ▸ F)  0.115  0.062  0.191 

σ2
d (S1 ▸ S2)  0.096  0.052  0.161 

σ2
d (S2 ▸ S1)  0.201  0.106  0.327 

Generalised reciprocity correlations 

ρap (M)  0.171  −0.188  0.485 

ρap (F)  0.041  −0.301  0.374 

ρap (S1)  0.302  −0.039  0.580 

ρap (S2)  0.360*  0.025  0.622 

Dyadic reciprocity correlations 

ρd (M&F)  0.173  −0.254  0.550 

ρd (M&S1)  0.503*  0.257  0.709 

ρd (M&S2)  0.281  −0.009  0.534 

ρd (F& S1)  0.050  −0.364  0.443 

ρd (F& S2)  0.151  −0.268  0.515 

ρd (S1& S2)  0.321  −0.071  0.633 

Note. SRM = social relations model. 
*Significant at the 5% level.   
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Figure 1, which shows the differences between the estimated autoregressive effects for the di-
rected dyads associated with each undirected dyad, allows us to examine whether the autoregres-
sive effects for one family role acting towards another are larger than the autoregressive effects for 
the same combination of family roles with actor and partner reversed. As described in Section 6.2, 
we use the chains of parameter estimates to calculate the difference between the autoregressive ef-
fects at each stored iteration, to produce a chain of differences. The mean of this chain of estimates 
provides the point estimate for the differences, shown in Figure 1 as black dots, while the 2.5th and 
97.5th percentiles provide the lower and upper limits, respectively, of 95% credible intervals, 
shown as light grey lines. 

Table 3. Proportions of time-invariant variance for ordinal dynamic SRM (with 95% credible intervals)  

Family Actor Partner Relationship  

M ▸ F 0.066 (0.001,0.219) 0.448 (0.288,0.609) 0.138 (0.080,0.216) 0.349 (0.204,0.511) 

F ▸ M 0.071 (0.001,0.239) 0.437 (0.278,0.592) 0.202 (0.115,0.314) 0.290 (0.164,0.442) 

M ▸ S1 0.038 (0.001,0.132) 0.252 (0.155,0.364) 0.145 (0.081,0.229) 0.564 (0.426,0.691) 

S1 ▸ M 0.052 (0.001,0.175) 0.209 (0.120,0.320) 0.145 (0.081,0.231) 0.595 (0.449,0.724) 

M ▸ S2 0.043 (0.001,0.148) 0.286 (0.172,0.418) 0.124 (0.070,0.199) 0.546 (0.391,0.688) 

S2 ▸ M 0.057 (0.001,0.193) 0.193 (0.107,0.308) 0.160 (0.089,0.258) 0.590 (0.428,0.730) 

F ▸ S1 0.049 (0.001,0.170) 0.296 (0.175,0.433) 0.186 (0.101,0.297) 0.469 (0.304,0.626) 

S1 ▸ F 0.088 (0.002,0.284) 0.368 (0.217,0.533) 0.186 (0.109,0.287) 0.358 (0.207,0.532) 

F ▸ S2 0.058 (0.001,0.198) 0.356 (0.209,0.516) 0.169 (0.094,0.269) 0.416 (0.244,0.588) 

S2 ▸ F 0.095 (0.002,0.302) 0.332 (0.192,0.492) 0.201 (0.118,0.310) 0.372 (0.223,0.537) 

S1 ▸ S2 0.088 (0.002,0.287) 0.363 (0.222,0.514) 0.261 (0.152,0.391) 0.287 (0.165,0.436) 

S2 ▸ S1 0.067 (0.001,0.226) 0.229 (0.128,0.355) 0.259 (0.146,0.395) 0.446 (0.278,0.610) 

Note. SRM = social relations model.  

Figure 1. Point estimates and 95% credible intervals for differences between estimated autoregressive effects for 
each undirected dyad type calculated from parameter chains.   
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For fathers, when they are interacting with mothers their autoregressive effects are (on average) 
higher than those of mothers, but there is no evidence of their having a higher autoregressive effect 
than their child when interacting with either child. Similarly, both older and younger children have 
higher autoregressive effects than mothers when interacting with them, but we cannot conclude 
that either have a higher autoregressive effect than fathers when interacting with them (though 
for younger siblings the point estimate of the difference is in the same direction and of a similar 
magnitude to the difference for younger siblings interacting with mothers, and only just misses 
being significant), nor that either has a higher autoregressive effect than the other when they inter-
act together. In contrast, mothers have low autoregressive effects regardless of partner. In sum-
mary, although we see a bit of support for the hypothesis that emotion regulation increases 
with age, we also see that it may depend on the interactional partner. 

With respect to the cross-lags (the ϕ2 parameters), these are mostly not significant at the 5% lev-
el. The exception is the cross-lag for younger siblings acting towards older siblings, which has a 
point estimate of 0.099. This is not a very strong effect: a difference of 1 unit either way in the older 
sibling’s unobserved underlying constructiveness at the previous snapshot leads to a difference of a 
10th of a unit in the younger sibling’s predicted underlying constructiveness. (For context, one unit 
is roughly half the distance between either pair of consecutive thresholds and exactly the standard 
deviation of the innovations.) 

6.3.4 Research question 3 
One of the dyadic reciprocity correlations (i.e. correlation between the relationship effects for dy-
ads consisting of the same individuals, the ρd parameters) is significant and quite strong (having a 
point estimate of 0.503), although none of the other dyadic reciprocity correlations are significant. 
Contrary to our hypothesis, this involves a parent and a child. There is no evidence that the dyadic 
reciprocity for any particular undirected dyad type is higher than the dyadic reciprocity for any 
other undirected dyad type so we cannot conclude that the dyadic reciprocities are stronger be-
tween siblings and/or between adult partners than they are between parents and children. 

Returning to the cross-lag parameters (the ϕ2), we find one of them to be significant (the one with 
the largest point estimate). In line with our hypothesis, this is for a sibling-sibling dyad. We can 
conclude that it is larger than the cross-lags for three of the other dyad types: mothers acting to-
wards fathers (where the difference is only just significant), mothers acting towards younger chil-
dren, and younger children acting towards mothers. (See online supplementary material, 
Table S23 on page 49 for full details.) We thus have limited evidence in support of the hypothesis 
that the cross-lagged effects are stronger for siblings acting towards each other than for parents 
acting towards children or children acting towards parents, but no evidence to support their 
also being stronger for adult partners acting towards each other. 

While the point estimates of some of the dyadic reciprocities indicate moderate or fairly strong 
correlations (with others being weak), they all have wide credible intervals, meaning that while it is 
plausible they are moderate to strong, for most dyad types it is also plausible they are weak to non- 
existent or even that the actor’s average constructiveness towards a particular partner has an in-
verse relationship to that partner’s average constructiveness towards them. The exception is that 
for mothers and younger children, which is found to be significant, with plausible values ranging 
from moderate and positive to strong and positive. This dyadic reciprocity is larger (both in the 
sense of being more positive and in the sense of having a greater absolute value) than every cross- 
lag parameter (that is, for each cross-lag parameter, when we subtract it from this dyadic reci-
procity, the credible interval lies entirely above zero). No dyadic reciprocities are found to be 
smaller (whether less positive or having a lower absolute value) than any cross-lag. There is 
thus limited evidence to suggest that, in line with our hypothesis, individuals respond in kind 
more to their partner’s general behaviour towards them than to their behaviour at any specific 
moment. 

However, it is possible that individuals respond either much more quickly, or slowly, than our 
20 s snapshots, in which case this response would not be picked up by the cross-lag. A quicker re-
sponse would be picked up by the innovation correlations (i.e. the ρη parameters). All but one of 
these are significant, though they are weak to moderate. The dyadic reciprocity for mothers and 
younger children is stronger than the innovation correlation (at both the first and subsequent  
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snapshots), but we cannot say which is stronger for the other dyad types. The innovation correl-
ation for snapshots after the first for the relevant undirected dyad type is stronger than the cross- 
lag parameter for mothers acting towards older children, older children acting towards mothers, 
fathers acting towards younger siblings, younger siblings acting towards fathers, and older siblings 
acting towards fathers; we cannot say which is stronger for the other dyad types. (See online 
supplementary material, Tables S27 on page 55 to S36 on page 62 for full details of the differences 
between the estimates of the dyadic reciprocities, innovation correlations, and cross-lag 
parameters.) 

Since the cross-lag parameters are almost all non-significant while the autoregressive parameters 
are mostly significant, it is natural to consider whether a model which includes autoregressive but 
not cross-lagged effects would be more appropriate. This is beyond the scope of this article, but we 
present the results in online supplementary material, Table S12 on page 32; the estimates for pa-
rameters common to this model and the model of interest are similar in both models, so similar 
conclusions would be reached by fitting either. 

6.3.5 Other parameters of interest 
The generalised reciprocity correlation (i.e. the correlation between the actor and partner effects 
for the same individual, the ρap parameters) is significant and fairly strong (point estimate 0.360) 
for the older child, but there is no evidence of any generalised reciprocity correlation for any other 
family role. 

7 Discussion 
In this paper, we considered the problem of studying the dynamics of individual behaviour where 
pairs of subjects (dyads) are observed to interact with each other over time, and individuals are 
clustered and distinguished by their roles within the cluster. We propose an extension of the widely 
used SRM that is suitable for round-robin designs, which can be framed as a cross-classified multi-
level (random effects) model where the responses have a complex correlation structure within clus-
ters. In addition to the actor and partner effects that can be identified in a cross-sectional SRM, we 
specify first-order autoregressive and cross-lagged effects to study the dynamics of individual be-
haviour. Autoregressive (or lagged) effects allow for persistence in an individual’s response, while 
cross-lagged effects allow for the influence of a person’s response at time t − 1 on their dyadic part-
ner’s response at t. Moreover, longitudinal data allow separation of relationship (dyad) effects 
from measurement error, which are confounded in a cross-sectional design. We show that the dy-
namic SRM, with an autoregressive and cross-lagged structure imposed on the residuals, is equiva-
lent to a SRM extension of the vector autoregressive model from econometrics and psychometrics 
where the dynamic structure is specified among the responses. Our approach can handle continu-
ous, binary and ordinal responses, where for discrete responses the model is expressed in terms of 
underlying continuous latent response variables. Model estimation can be carried out using 
MCMC methods implemented in Bayesian software. 

The development of the dynamic SRM was motivated by a study of intra-family dynamics using 
repeated observations on the behaviour of pairs of family members as they discuss a recent conflict. 
One question of interest is how much of the variation in the degree of constructiveness directed 
from one family member to another can be attributed to family, actor, partner, and relationship 
effects and to the residual. We find most of the variation is attributable to the residual (i.e. the time- 
varying behaviour that may be meaningful, combined with measurement error), and the remain-
der is mostly attributable to the actor, partner, and relationship effects in roughly equal measure 
(though perhaps the actor effects account for a little more than partner effects, and relationship 
effects for a little more than actor effects); little variation is attributable to family effects. We 
also investigate the persistence in individuals’ behaviour and the proximal triggers of one person’s 
behaviour on that of their interactional partner in the task, and the extent to which these vary ac-
cording to the particular combination of actor and partner family roles in the dyad. We find that 
for most combinations there is moderate persistence, but no evidence of any influence of one in-
dividual’s behaviour on another’s. The degree of persistence shown varies between combinations 
of family role, with some evidence of less persistence for mothers compared to children as actors 
but not for fathers; the degree of persistence seems to be explained more by the combination of  
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family roles than simply the actor’s or partner’s family role. Finally, we look at the extent to which 
one individual’s behaviour towards another in general across time is related to the second individ-
ual’s behaviour towards the first, after accounting for both individuals’ actor and partner effects, 
their persistence, and the moment-to-moment influence of each on the other. We find little evi-
dence of any such generalised reciprocity. We are mostly not able to say whether the strongest ef-
fect a partner has on an actor is through their behaviour at that moment, their behaviour 
immediately before, or their average behaviour over time. 

The dynamic SRM has many other potential applications in the social sciences where grouped or 
ungrouped dyadic data are collected using round-robin and related designs, and responses are 
often discrete. Another family example is a study of inter-generational exchanges of support be-
tween family members across the lifecourse, where there may be interest in the extent of family, 
giver, receiver, and relationship effects on exchanges, the persistence of exchanges between indi-
viduals A and B over time, and whether A giving support to B at t − 1 influences whether B pro-
vides (possibly a different form of) support to A at t. In management research, the model could be 
used to study the dynamics of interactions between coworkers within an organisation and vari-
ation in persistence and influence according to the relative seniority of individuals in a dyad. 

Our model assumes that the dynamics of interactions follow a first-order Markov process, al-
though in principle second and higher order lags and cross-lags may be included. While the trajec-
tories in behaviour over time were not a focus of our analysis, it is possible to combine the dynamic 
SRM with the growth curve SRM (Nestler et al., 2017) in an SRM extension of the autoregressive 
latent trait (ALT) model proposed by Bollen and Curran (2004). Such a model would allow the 
slopes of dyad-specific time trends (assumed fixed in our analysis), to vary randomly across part-
ners, actors, and relationships. However, an ALT SRM would have a highly complex implied co-
variance structure and should be applied with caution; even in the case of a univariate response 
ALT model, the results may be misleading if there is any misspecification of the autoregressive 
or growth component of the model (Voelke, 2008). Another potentially useful generalisation 
would be to allow the random effect and residual variances to depend on characteristics other 
than dyad type; for example, the relationship variance for sibling pairs may depend on their age 
difference and sex composition. 
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