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A B S T R A C T   

This paper investigates the determinants of the gap between girls and boys in mathematics 
performance (the ‘math gap’). We are particularly interested in the role played by pubertal 
development in explaining the widening of the math gap over adolescence. We estimate rich 
production function models of math skills, using data from the 1958 British National Child 
Development Study (NCDS), a longitudinal survey of all British children born in a single week in 
March 1958 which contains unique information on pubertal development and educational out
comes. Using (cumulative) value-added models, we show that the impact of puberty varies by the 
age and gender of the child, and that this heterogeneity can explain about two thirds of the math 
gap that emerges between the ages of 11 and 16. We find also that the widening of the math gap 
during adolescence is driven by markers of pubertal development which are publicly evident, 
rather than by markers which are only privately evident; and that the relationship between pu
berty and math scores is strongly associated with children’s self-perceived ability in math. Taken 
together, these results suggest that the mechanisms underlying the relationship between pubertal 
development and the math gender gap are socially rather than biologically driven.   

1. Introduction 

The gender gap in academic achievement has reversed in recent decades, with more women than men now holding college degrees 
(Ceci et al., 2014; Goldin et al., 2006; OECD, 2019a). However, research has consistently shown that in many countries, boys still tend 
to outperform girls in mathematics (Guiso et al., 2008; Kane and Mertz, 2012). The ‘math gap’ is present among children of primary 
school age, and appears to widen as they progress from primary to secondary school: on average, girls’ math scores are about 9% lower 
than those of boys at age 15.1 This gender gap in math is a factor contributing to the underrepresentation of women in STEM fields, 

* Corresponding author at: Department of Economics and Economic History, Universidad de Sevilla, Ramon y Cajal 1, Seville 41018, Spain. 
E-mail address: cborra@us.es (C. Borra).   

1 Studies from various countries (Bharadwaj et al., 2016; Borgonovi et al., 2021; Contini et al., 2017; Ellison and Swanson, 2021) document a 
math gender gap which approximately triples over adolescence, from about 3% of a standard deviation at age 9/10 to about 9% at age 15/16. 
Studies using the international TIMMS and PISA data sets (Mullis et al., 2016; OECD, 2019b, 2014, 2010) confirm that the widening of the math 
gender gap over adolescence is a worldwide phenomenon. Our own analysis of UK cohorts (the 1993 cohort, interviewed aged 9-10 in TIMMS 2003 
and aged 15-16 in PISA 2009; the 1996-97 cohort, interviewed aged 9-10 in TIMMS 2007 and aged 15-16 in PISA 2012; and the 2001-2002 cohort, 
interviewed aged 9-10 in TIMMS 2011 and aged 15-16 in PISA 2018) indicates no significant math gender gap at age 9, widening to a significant 
positive gap in favour of boys at age 15-16. The size of the math gap seems to have diminished over time from about 21% of a standard deviation in 
2009 to about 12% of a standard deviation in 2012 and 2018, but remains sizeable and significant. 
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which tend to be high-paying (Black et al., 2008; Blau and Kahn, 2017; Card and Payne, 2021; Joensen and Nielsen, 2016; Kahn and 
Ginther, 2018). Understanding the mechanisms that influence math performance among boys and girls is thus crucial for promoting 
equal opportunities and gender equality. This paper explores whether pubertal development can explain the different trends observed 
in boys’ and girls’ math performance over the adolescent period, and investigates potential underlying mechanisms. 

We estimate rich production function models of boys’ and girls’ math skills at ages 11 and 16, incorporating measures of pubertal 
development at those ages as well as controls for other school and family inputs. We use data from the first four waves of the 1958 
National Child Development Study (NCDS), collected during pregnancy and birth, and then at 7, 11 and 16 years old. The NCDS is 
particularly useful for several reasons: its wide coverage (which encompasses detailed data on family background, schooling, academic 
and cognitive skills, and pubertal development); its longitudinal design, which means that repeated measures of all the variables of 
interest are available; and the fact that multiple indicators of pubertal development were collected, including standardized assessments 
by trained health personnel. 

We pay special attention to the assumptions needed to identify key parameters in the models we estimate (Del Boca et al., 2017; 
Fiorini and Keane, 2014; Todd and Wolpin, 2003). Estimating child production functions is a difficult undertaking, given the endo
geneity and imperfect observability of essentially all inputs. Our approach is to implement several different empirical strategies based 
on previous research in the area. We address two key challenges for the correct identification of parameters. First, we seek to minimize 
selection bias due to unobservable factors. Measures of pubertal development may be correlated with omitted variables, such as 
nutrition or genetic endowments. Our longitudinal data allow us to use child fixed-effects and value-added models, which coupled with 
the wide range of additional control variables available allows us to account for unobservable factors. Second, we minimize the po
tential attenuation bias induced by measurement error in indicators of lagged achievement (Andrabi et al., 2011). In our case, if past 
achievement in math is incorrectly measured, for example because a child performs poorly due to feeling unwell on the day of the test, 
the estimated coefficient on past performance may be biased downwards, which could in turn bias the estimated impact of pubertal 
development. Our rich data set containing math scores measured at multiple points in a child’s life allows us to address measurement 
error in lagged measures of performance through an instrumental-variables strategy (Del Bono et al., 2016). 

Our findings are generally consistent across models and suggest that pubertal development plays a substantial role in explaining the 
widening of the math gender gap over the adolescent years. We find that puberty affects math performance differently for boys and 
girls. For girls, more advanced pubertal development is associated with better performance in math at age 11, but with poorer per
formance at age 16. For boys, pubertal development is not associated with math scores at age 11, but is associated with higher scores at 
age 16. Direct estimates of the size of the math gap reveal that, once we control for prior achievement in math, no math gender gap 
remains at age 11, but a gap of about 18% of a standard deviation is observed at age 16. After controlling for pubertal development, the 
estimated math gap at age 16 falls to about 8% of a standard deviation; thus, well over half of the math gender gap at age 16 may be 
explained by pubertal development. Our results are robust to a range of tests for the presence of unobserved heterogeneity and de
viations from standard model assumptions. 

We then discuss possible mechanisms driving the relationship between pubertal development and the math gap. There are plausible 
arguments for both biological and social mechanisms. We investigate the relative impacts of markers of puberty that are evident in 
public (eg. breast development) and those that are not publicly evident (eg. pubic hair growth); our finding that the impact of pubertal 
development on math scores is driven by changes in publicly evident markers of puberty suggests a socially-driven mechanism. This is 
also supported by our finding of a substantially larger impact of pubertal development in boys with higher self-perception of their own 
ability in math, in the context of evidence that self-assessed ability is largely driven by social stereotypes (Bordalo et al., 2016; Carlana, 
2019; Coffman, 2014). 

This paper contributes to a growing literature in economics concerned with adolescent development and its relationship to so
cioeconomic outcomes (Del Boca et al., 2019; Doepke et al., 2019).2 To our knowledge, this is the first paper to provide evidence of the 
impact of adolescent development on mathematical performance.3 In contrast to previous correlational studies that look at the 
contemporaneous influence of adolescent development on educational performance (Cavanagh et al., 2007; Koerselman and Pek
karinen, 2018; Martin and Steinbeck, 2017), the availability of rich longitudinal data and detailed medical assessments of pubertal 
development enables us to estimate dynamic skill production function models of math performance by gender and age. 

We also contribute to the literature on gender gaps. Previous studies have considered a multitude of factors for explaining the math 
gap, including the gender composition of the child’s class (Booth et al., 2018; Cools et al., 2022); the number of math subjects and math 
hours taken by students (Ellison and Swanson, 2021; Machin and McNally, 2005); maternal employment and occupation (Carneiro 
et al., 2013; Fryer and Levitt, 2010); and teachers’ and parents’ expectations and attitudes (Alan et al., 2018; Carlana, 2019; Dossi 
et al., 2021; Fryer and Levitt, 2010; Iriberri and Rey-Biel, 2019; Lavy and Sand, 2018; Maloney et al., 2015). In this paper we have 
shown that pubertal development is key to the understanding of the evolution of the math gender gap, and that this relationship is 

2 This literature has looked at risky behaviour (Aizer, 2017; Rodríguez-Planas et al., 2022), time investment behaviour (del Boca et al. 2017), 
non-cognitive skills (Lei and Lundberg, 2020; Schurer, 2017), and the impact of educational interventions during adolescence (Guryan et al., 2023) 
among others.  

3 There is considerable debate in the literature on whether it makes sense to talk about the causal effect of a non-manipulable factor (see Holland, 
1986 and Heckman and Pinto, 2015 among others). However, as highlighted in the paper, the gender gap in math can be partly attributed to the 
timing of pubertal development and the resulting gender roles. Therefore, in line with Greiner and Rubin (2011), even though pubertal development 
itself may not be manipulable, the potential impact of its timing on gender roles and subsequent math performance may be subject to intervention 
and can be studied causally. 
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driven by social factors and social stereotypes. 
The paper is organized as follows. Section 2 describes the data used. Section 3 presents the different specifications of the math skill 

production function which are used for empirical estimation. Section 4 presents our main estimation results together with specification 
and identification checks. Section 5 discusses potential mechanisms underlying the relationships which we uncover. Section 6 
concludes. 

2. Data 

The 1958 National Child Development Study (NCDS) is a longitudinal survey that sampled all children born in a single week of 
1958. Originally designed as a perinatal mortality study, the initial birth survey was followed by sweeps carried out when cohort 
members were 7, 11, 16, 23, 33, 41, 46, 50, and 55 years old (see Centre for Longitudinal Studies, 2023). NCDS data have formed the 
basis for a large number of studies, for example those by Persico et al. (2004) and Case and Paxson (2008) studying the relationship 
between adolescent height and labour market outcomes, and by Goodman (2014) examining the association between handedness and 
human capital accumulation. 

The surveys carried out at ages 7, 11 and 16 collected information on cognitive outcomes, schooling, health, and family circum
stances. The NCDS has special features that make it particularly suitable for the study of the relationship between puberty and 
educational achievement. First, thanks to the longitudinal nature of the survey, we are able to construct different measures of pubertal 
development for ages 11 and 16, coincident with the measurement of cognitive achievement at those ages. Second, the NCDS offers 
extremely rich information on the child’s family and school environments. And third, the study offers both self-reported and medical 
assessments of pubertal development. This last feature constitutes the main advantage of the NCDS over other longitudinal studies that 
also include education and puberty measures, such as the Avon Longitudinal Study of Parents and Children (ALSPAC), the Millennium 
Cohort Study (MCS), the US Child Development Supplement, the National Longitudinal Study of Adolescent to Adult Health (Add 
Health), and the Longitudinal Study of Australian Children. These studies offer only measures of pubertal development assessed by 
parents or children themselves; these are generally considered to be less accurate than objective assessments by doctors (Brooks-Gunn 
et al., 1987; Walker et al., 2020). Additionally, the fact that all members of the NCDS cohort were born within a single week means that 
issues arising from differences in the chronological age at which their development was assessed are minimized. And finally, because 
examinations of pubertal development were performed together with the other medical examinations carried out in the NCDS, sample 
attrition was minimized. 

The original (pregnancy and birth) sweep of NCDS included 8957 girls and 9600 boys. As with any longitudinal survey, attrition 
means that follow-up samples are smaller: our main results are based on 5501 boys and 5283 girls (age 11) and 3610 boys and 3425 
girls (age 16). Columns 1–4 in Table A.1 (Appendix A) show the relationship between attrition and selected covariates. We 
acknowledge that our sample may not be adequately representative of the non-white population. However, the small size of the co
efficients for the remainder of the independent variables suggests that selection on observables is quantitatively weak. In order to 
maximize sample size we use as many observations as are available for each regression; sample size therefore varies between models.4 

In Section 4 below we perform a robustness test, showing that our results are virtually the same, albeit slightly less efficiently esti
mated, when using a consistent sample at age 11. 

2.1. Test scores 

Our main dependent variables are standardized math scores. The NCDS administered math tests at ages 7, 11 and 16. At age 7, 10 
problems were read to the child, and children’s scores ranged from 0 to 10. At age 11, a written test contained 40 questions, with scores 
ranging from 0 to 40; at age 16, the test contained 31 questions, and scores ranged from 0 to 31. Examples of the problems in each test 
may be found in Appendix B. All scores are standardized to have a mean of 0 and a standard deviation of 1 across the entire cohort for 
the year in which they were observed, so that all coefficients can be read in units of one standard deviation.5 Although all the children 
in the sample were born in a single week in 1958, the tests were taken at different times; in the empirical analyses we include controls 
for the child’s age at testing, to allow for comparisons between children of different ages. 

Fig. 1, and Panel A in Table 1, illustrate that a gender gap in math scores is evident as early as 7 years old, with a difference of 
around 8% of a standard deviation. This gap decreases to around 5% of a SD at the age of 11, but widens substantially to over 20% of a 
SD by age 16. 

2.2. Measures of adolescent development 

Our main explanatory variables are measures of pubertal development, collected at ages 11 and 16, via both medical assessments 
and self-reports by the child. 

4 As described in Sections 3 and 4, we employ a range of empirical models to estimate math scores at ages 11 and 16. All models, with the 
exception of a fixed-effects specification, use background data drawn from the original pregnancy and birth sweep. All require contemporaneous 
measures of math achievement and pubertal development; most also use one-period-lagged measures of achievement and some, which we can 
estimate only at age 16, use two-period lagged measures.  

5 Fig. C.1 in Appendix C shows the distributions of raw math scores by age and gender. 
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Our principal measure of adolescent development is an index derived from the medical assessments carried out at ages 11 and 16. 
Trained health personnel assessed pubertal development at ages 11 and 16, using standard procedures (see Brooks-Gunn et al., 1987; 
Coleman and Coleman, 2002). 

At age 11, the NCDS collected data on the development of pubic hair (both girls and boys), breast development (girls) and genitalia 
(boys). All three measures were coded on a scale from 1 (no development) to 5 (advanced/adult development). Our age 11 puberty index 
is constructed, following (Koerselman and Pekkarinen, 2018), by adding together the two relevant measures for each child, which 
produces an index ranging from 2 to 10. 

At age 16, the survey collected information on the development of pubic and axillary (armpit) hair for both girls and boys, with 
both measured on a 4-point scale (1 absent; 2 sparse; 3 intermediate; 4 adult). In addition, the survey recorded the growth of facial hair 
for boys (1 absent; 2 sparse; 3 adult) and breast development for girls (1 absent; 2 intermediate; 3 adult). Adding together the three 
relevant measures for each child produces our age 16 puberty index ranging from 3 to 11. 

Both puberty indices were then rescaled to the 0–1 interval, with 0 corresponding to no development on any measure, and 1 
representing ‘adult’ development on all measures. These rescaled indices may be interpreted as the proportion of pubertal maturation 
which the individual had undergone at the time of assessment. 

In addition to the measures collected by trained personnel, the survey also includes information reported by cohort members 
themselves on the age at menarche (girls) and the age at which the voice broke (boys). Both of these constitute distinct events in 
puberty (Day et al., 2015). Age at menarche, although not adequately validated, has been widely used in epidemiological studies as a 
proxy for pubertal stage (Walker et al., 2020); the voice breaking is a validated marker of boys’ pubertal development, associated with 
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Fig. 1. Standardized math scores by gender at ages 7, 11 and 16. 
Note: Math scores were standardized in each wave to have a mean of zero for the whole cohort. The values plotted are for cohort members with 
complete data at ages 7, 11 and 16; mean values for this sample are higher than zero. 
Source: NCDS. 6461 observations. 

Table 1 
Descriptive statistics: standardized math scores and puberty index.   

Age 7 Age 11 Age 16 

Panel A. Standardized Math Scores 
Girls 0.0346 0.1219 0.0090 

(0.975) (0.963) (0.963) 
Boys 0.1184 0.1757 0.2159 

(0.990) (1.009) (1.031) 
Mean gender difference significant − 0.084*** − 0.054* − 0.207*** 
Panel B. Puberty Index 
Girls  0.2327 0.8014  

(0.216) (0.207) 
Boys  0.1510 0.6109  

(0.146) (0.240) 
Mean gender difference significant  0.082*** 0.190*** 
No. of observations 6461 6461 6461 

Notes: The table presents means by age and gender. Math scores were standardized in each wave to have a mean of zero for the whole cohort. The 
values plotted are for cohort members with complete data at ages 7, 11 and 16; the means shown are therefore a little higher than zero. 
Standard deviations in parentheses. Gender differences significant at the * 10%, ** 5% and *** 1% levels. 
Source: NCDS. 
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Tanner stages 3 and 4 of late puberty (Hodges-Simeon et al., 2013). This variable, which we call age at development is used as a 
supplementary measure of pubertal development.6 

The NCDS has the advantage that all the cohort members are almost exactly the same age, and (in contrast with some other surveys) 
the measures of pubertal development are therefore collected at very similar ages. However, they are not collected at identical ages. 
We therefore control for the calendar month in which assessments were performed, in order to assure comparability between 
individuals. 

Fig. 2 presents the distributions of the puberty index at ages 11 and 16, and of the age at development variable, for boys and girls 
separately. Panel B in Table 1 also presents descriptive statistics for the puberty index. At age 11, both boys and girls are in the early 
stages of development; mean values on the 0–1 scale are 0.23 (girls) and 0.15 (boys). For girls, the mean of 0.23 would translate back to 
a score of 3.86 on the original 2–10 scale – a little below a score of 4, which could arise from a score of 2 (early -to-mid-stage 
development) on both the breast and pubic hair scales. For boys, the mean of 0.15 would translate back to a score of 3.2 on the original 
scale (corresponding approximately to, for example, a development level of 2 for genitalia and a level of 1 (no development) for pubic 
hair). At 16 years of age both boys and girls are in the second half of their pubertal development, with mean scores of 0.80 for girls and 
0.61 for boys. These scores translate back to scores of 9.4 and 7.9 respectively on the original 3–11 scale. 

Gender disparities are also present in the age at development variable (see Fig. 2), with the menarche occurring on average at age 
12 and a half years, and the voice breaking on average at just under 14 years. 

2.3. Controls and other variables used in the analysis 

The NCDS offers a vast array of potential control variables; we are therefore able to control both for the basic maternal de
mographics usually included in math gender gap analyses (see for instance Fryer and Levitt, 2010), but also for a range of additional 
variables which can safely be considered exogenous to the impact of pubertal development on cognitive outcomes. Descriptive sta
tistics for these variables are presented by gender in Table A.2 in Appendix A. 

Panel A of Table A.2 contains information on basic controls (ethnicity; mother’s age at the birth of the cohort child; lone parenthood; 
and maternal education). We also control for variables relating to birth and pregnancy (birth order, birth weight, gestation at birth, and 
indicators of birth complications, maternal smoking during pregnancy, and whether the mother had a job before birth); additional 
family background variables (English not spoken at home, indicators of the mother’s height and body mass index (BMI), and region of 
residence); characteristics of the child’s school (the type of secondary school attended); and the child’s BMI measured at age 7. The use 
of such a rich set of control variables minimizes the risk of omitted variable bias when estimating skill production functions. 

3. Empirical specification 

Our goal is to determine whether there exists a relationship between pubertal development and boys’ and girls’ math performance. 
We model the math skill production function using the framework developed by Todd and Wolpin (2007, 2003), which considers 
school, family, and children’s inputs. 

Recent literature has demonstrated the existence of ‘sensitive periods’ in the formation of skills over the life cycle; that is, that 
human capital inputs are likely to have different effects at different developmental stages (Cunha and Heckman, 2007; Kautz et al., 
2014; Keane et al., 2022). There should thus be no a priori expectation that the impact of pubertal development on math scores is 
constant with age. Therefore, as a starting point, we test whether the effect of pubertal development on math skills at 11 years of age is 
similar to the effect at 16 years, using the following contemporaneous model: 

Testit = PUitαt + Biρt + eit (1)  

where Testit is individual i’’s standardized test score at age t; PUit is a vector of individual i’s level of adolescent development at age t, as 
measured by a puberty index; Bi is a vector of a wide set of controls, including pregnancy and birth characteristics, family charac
teristics, school characteristics, and the child’s own attributes as described in Table A.2 in Appendix A; and eit is the error term. 

As noted by Fiorini and Keane (2014), in estimating Eq. (1) we face the problem of distinguishing between a mere correlation 
between adolescent development and cognitive achievement, and a true causal effect. A common source of endogeneity is simultaneity 
(reverse causality). This source of endogeneity is unlikely to be a problem in our case; we do not believe that children will be able to 
influence their adolescent development based on their scores in cognitive tests. A second source of endogeneity relates to omitted 
variables, such as unobserved inputs and endowments. For instance, the child’s diet may influence both the child’s adolescent 
development and test scores. Given that no dataset contains a complete history of all relevant inputs, omitted variables remain a 
possibility. The third source of potential endogeneity is measurement error in both inputs and outcome measures. We use a very rich 
source of data which hopefully reduces measurement error, but we also address this potential problem below. 

The literature has proposed two broad estimation strategies to deal with endogeneity due to omitted variables: fixed-effects models 
and value-added models (see Del Boca et al., 2017; Fiorini and Keane, 2014; Todd and Wolpin, 2007, 2003). Within-child fixed-effects 
(first-difference) models require that human capital production functions are constant with age, so that both unobserved inputs and the 

6 For girls, the correlation between the reported age at menarche and the medically assessed puberty index is 0.53 at age 11 and 0.22 at age 16. 
For boys, the correlation between the reported age at which the voice broke and the puberty index is 0.17 at age 11 and 0.32 at age 16. 
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endowment can be differenced out. This assumption is not plausible in the context of sensitive periods during childhood and 
adolescence. We thus adopt value-added models as our preferred approach, although we also estimate a child fixed-effects model in 
Section 4.2 as a robustness check. 

The value-added (VA) specification considers that both unobserved inputs and the endowment can be accounted for by past test 
scores. Todd and Wolpin (2003) show that this requires that (i) the effects of all inputs, observed and unobserved, and the endowment 
decline at the same rate with age, and (ii) unobserved current inputs are uncorrelated with observed current inputs. For instance, the 
first condition requires that the impact of pubertal development at age 11 on test scores at age 16 is a fraction λt of the impact of 
pubertal development at age 11 on test scores at age 11, and the impact of the endowment at age 16 is a fraction λt of the impact of the 
endowment at age 11. If the estimated coefficient on past test scores λ̂t is less than one, the value-added specification implies that the 
effect of past inputs must always decrease over time. The second condition requires that the set of unobserved current inputs is un
correlated with the contemporaneous impact of pubertal development at 11 and 16 years of age. We include a wide set of controls Bi to 
attempt to satisfy this condition.7 Formally, our basic VA specification may be written: 

Testit = PUitαt + Biρt + λtTestit− 1 + eit (2) 

We may relax the assumption that the effect of observed inputs on test scores declines at the same rate as the effects of unobserved 
inputs and the endowment by estimating an extended version of the value-added model that includes lagged inputs. This gives the 
cumulative value-added (CVA) model (Todd and Wolpin, 2007). Given that we only observe pubertal development at 16 and 11 years, 
this model is only estimable for test scores at age 16. By including terms for past inputs in the estimating equation we are able to 
estimate long-term dynamic impacts of pubertal development on cognitive skills and allow for different impacts of pubertal devel
opment at age 11 on test scores at ages 16 and 11. We do, however, still need to assume that the effect of unobserved inputs and 
endowments declines with age at a specific rate (λt) and is uncorrelated with the error term eit . Formally, we specify the CVA model as: 

Testit =
∑t

k=0
PUit− kαk + Biρt + λtTestit− 1 + eit (3) 

Next, we address measurement error in the lagged test score.8 In value-added models, measurement error tends to bias downwards 
the coefficient on lagged achievement (λt in Eq. (3)) and may bias the observed input coefficients in an ambiguous direction (Del Bono 
et al., 2016; Keane et al., 2022). Our preferred specification involves instrumenting for lagged test scores using two-period lagged 
outcomes in a cumulative value-added instrumental variables (CVA-IV) specification: 

Testit =
∑t

k=0
PUit− kαk + Biρt + λt ̂Testit− 1 + eit (4) 

Note that the CVA-IV model can only be estimated for skills at age 16. 

4. Results: the dynamic effects of pubertal development and math test scores 

In this section we present our main estimates of the impact of pubertal development on math performance for boys and girls. We 
evaluate the impact of pubertal development on math scores at 11 and 16 years old, using the contemporaneous, VA, CVA, and CVA-IV 
models described in Section 3. 

Table 2 presents estimates of the relationship between the puberty index and math test scores for boys and girls at ages 11 and 16, 

Table 2 
Impact of pubertal development on math scores. Contemporaneous model.   

(1) (2) (3) (4) 
Age 11 Age 16 
Boys Girls Boys Girls 

Puberty Index at t 0.207** 0.173*** 0.220*** − 0.033  
(0.082) (0.056) (0.056) (0.063) 

No. of observations 5501 5283 3610 3425 

Notes: Estimates obtained from the contemporaneous specification in Eq. (1) estimated at ages 11 and 16. 
Each regression includes basic demographic controls (ethnicity, mother’s age at birth, whether the mother is a lone parent, mother’s education); 
pregnancy and birth controls (birth order, birth weight, gestation, birth complications, maternal smoking during pregnancy, maternal working before 
birth); other family controls (English not spoken at home, mother’s height, mother’s BMI); school type; the child’s BMI at age 7; the child’s age in 
months at assessment; and region of residence at birth. 
Standard errors in parentheses. Coefficients significant at the * 10%, ** 5% and *** 1% levels. 
Source: NCDS. 

7 See, however, Section 4.2 below where we address the possibility of potential additional sources of endogeneity.  
8 We do not address measurement error in pubertal development, first, because doctors’ assessments are relatively unlikely to show measurement 

errors correlated to test scores; and second, because it is difficult to obtain valid instruments for puberty measures. 
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using the contemporaneous specification in Eq. (1). The estimates show clearly that the association between pubertal development and 
math test scores differs by gender and age: whereas for boys the association between these variables is very similar at ages 11 and 16, 
for girls the positive association observed at 11 years is no longer present at 16. 

Column 1 shows that a one-point increase in the puberty index at age 11 (the difference between a child who has not started puberty 
and a completely developed child), is associated with an increase in boys’ math scores of 20% of a standard deviation. A more realistic 
difference in the boys’ puberty index of 10 percentage points (eg genital development at stage 2 rather than stage 1, on the 5-stage scale 
of genital development) would be associated with an increase in math test scores of approximately 2% of a standard deviation at 11 
years of age, an impact similar to 6% of the impact of having a mother with post-secondary education. Column 2 shows that for girls, a 
similar increase of 10 percentage points in the puberty index at age 11 (such as breast development at stage 2 rather than stage 1 on a 5- 
stage scale of breast development) is associated with increases in math test scores at age 11 of approximately 1.7% of a standard 
deviation, an impact similar to 5% of the impact of having a mother with post-secondary education. The results at age 16 are shown in 
Columns 3 and 4. For boys, a 10 percentage point increase in the puberty index (eg pubic hair development at stage 4 instead of stage 2, 
on the 4-point scale of pubic hair growth) is associated with an increase in math scores for boys of approximately 2% of a standard 
deviation, but for girls there is no significant effect. 

Table 3 presents results from the value-added (VA), cumulative value-added (CVA) and cumulative value-added instrumental- 
variables (CVA-IV) models described in Eqs. (2), (3) and (4), addressing concerns over potential endogeneity arising from omitted 
variables and measurement error. The coefficients in Table 3 differ substantially from those in Table 2: the estimated effects are 
reduced for boys at both ages and for girls at age 11. However, the negative relationship between girls’ pubertal development and math 
scores at age 16, insignificant in Table 2, is significant in columns (4), (6) and (8) of Table 3. The fact that the estimates of the value- 
added model in Table 3 differ from the estimates of the contemporaneous model in Table 2 suggest that unobserved inputs and the 
endowment are correlated with pubertal development and the estimates in Table 2 are likely biased.9 

Columns 1 and 2 of Table 3 show that at 11 years of age, the impact of current pubertal development is no longer significant for 
boys, and for girls it drops to half the size suggested by the estimates in Table 2: a 10pp increase in the girls’ puberty index at age 11 is 
now associated with an increase in math scores of just 0.9% of a standard deviation. At 16 years of age (Columns 3 and 4), a 10pp 
increase in the puberty index (such as axillary hair development at stage 4 [adult] instead of stage 3 [intermediate]) increases boys’ 
math scores by about 0.8% of a standard deviation, but reduces girls’ math scores by 0.9% of a standard deviation. Therefore, moving 
from absent (0) to fully mature (1) pubertal development at age 16 increases boys’ math scores and decreases girls’ math scores by 
roughly 10% of a standard deviation. 

Columns 5 and 6 of Table 3 present estimates for the cumulative value-added model of Eq. (3), relaxing the assumption that the 
effect of pubertal development on math scores declines over time at the same rate as the impacts of unobserved inputs and the 

Table 3 
Impact of pubertal development on math scores. Value-added, cumulative value-added and IV cumulative value-added models.   

(1) (2) (3) (4) (5) (6) (7) (8) 
Age 11 Age 16 
Value-added Value-added Cum. Value-added Cum. Value-added IV 
Boys Girls Boys Girls Boys Girls Boys Girls 

Puberty Index at t 0.115 0.095* 0.083* − 0.095** 0.078* − 0.117** 0.065 − 0.140** 
(0.070) (0.049) (0.043) (0.048) (0.046) (0.052) (0.048) (0.056) 

Puberty Index at t − 1     − 0.027 0.147*** − 0.029 0.135**     
(0.073) (0.052) (0.077) (0.057) 

Math scores at t − 1 0.468*** 0.431*** 0.674*** 0.616*** 0.669*** 0.620*** 0.780*** 0.824*** 
(0.011) (0.011) (0.012) (0.013) (0.013) (0.014) (0.027) (0.031) 

No. of observations 5501 5283 3610 3425 3610 3425 3307 3158 

Notes: Estimates obtained from the VA model (age 11) and the VA, CVA and CVA-IV models (age 16). 
Each regression includes basic demographic controls (ethnicity, mother’s age at birth, whether the mother is a lone parent, mother’s education); 
pregnancy and birth controls (birth order, birth weight, gestation, birth complications, maternal smoking during pregnancy, maternal working before 
birth); other family controls (English not spoken at home, mother’s height, mother’s BMI); school type; the child’s BMI at age 7; the child’s age in 
months at assessment; and region of residence at birth. 
Standard errors in parentheses. Coefficients significant at the * 10%, ** 5% and *** 1% levels. 
Source: NCDS. 

9 Table A.3 in Appendix A shows that results remain virtually identical, albeit less precisely estimated, when we use consistent samples throughout 
and in particular, when the restricted sample of boys and girls for which we have data at age 16 is used to estimate the impact of puberty at age 11. 
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endowment. In general, including information on pubertal development at age 11 does not change our estimates of the contempo
raneous impact of pubertal development on boys’ math scores at age 16, but suggests an even larger negative contemporaneous impact 
of puberty on girls’ math scores at age 16.10 These estimates suggest that at 16 years of age, a 10pp increase in the puberty index 
increases boys’ math scores by about 0.8% of a standard deviation as in Column 3, but reduces girls’ math scores by 1.2% of a standard 
deviation, compared with the 0.95% in Column 4. Column 6 additionally shows that early pubertal development has long-term effects 
beyond its impact through past scores for girls. A 10-percentage-point increase in the puberty index for girls at age 11 (such as pre
senting breast development at stage 3 instead of 2 out of 5 possible stages) increases math test scores at age 16 by 1.4% of a standard 
deviation, that is, roughly a 15% increase for moving from absent (0) to mature (1) development at age 11.11 

Columns 7 and 8 of Table 3 further address measurement problems. Using twice-lagged skills to instrument for lagged test scores 
increases the coefficient on the lagged test scores as expected by about 20 – 30 percent. The point estimates of the effect of pubertal 
development on math scores remain very similar, however. As in Columns 3 and 5, pubertal development continues to impact boys’ 
math scores positively, though the effect is no longer significant. For girls, a 10pp increase in the puberty index at age 16 reduces math 
scores by 1.4% of a standard deviation, 0.2pp more than previously in Column 6. The long-term impact of a 10-percentage-point 
increase in the puberty index of girls at age 11 increases math test scores at age 16 by 1.3% of a standard deviation, 0.1pp less 
than in Column 6. 

Overall, the findings in Table 3 indicate that the impact of pubertal development on math outcomes varies by age between boys and 
girls. Specifically, advanced development at the age of 11 appears to have a beneficial effect on math performance for girls, yet 
advanced development at 16 years of age appears to impair girls’ math performance. By contrast, the math performance of boys 
generally appears to be positively influenced by development at the age of 16 years, but not necessarily at the age of 11 years. These 
results suggest that the relationship between the development index and math scores is not linear. This non-linearity could be caused 
by most boys in the sample being just starting puberty at 11 and most girls having already completed it at 16, leveling the playing field 
for girls. 

To put these results into perspective, Carneiro et al. (2013) report that one additional year of mother’s education increases 
standardized math scores by 3.8% of a standard deviation at ages 12 – 14. We estimate that the difference between absent and mature 

Table 4 
Impact of pubertal development on the math gender gap. Value-added models.   

Age 11 Age 16 
(1) (2) (3) (4) 
Value-added Value-added CVA CVA-IV 

Panel A: Without measures of pubertal development 
Female (ref: male) 0.002 − 0.179*** − 0.179*** − 0.171*** 

(0.014) (0.014) (0.014) (0.015) 
Panel B: Including measures of pubertal development 
Female (ref: male) − 0.005 − 0.055 − 0.081 − 0.068 

(0.020) (0.048) (0.051) (0.054) 
Pubertal development at t 0.104 0.090** 0.081* 0.06 

(0.069) (0.042) (0.045) (0.048) 
Pubertal development at t * Girl − 0.011 − 0.179*** − 0.198*** − 0.195*** 

(0.083) (0.063) (0.069) (0.072) 
Pubertal development at t-1   − 0.029 − 0.03   

(0.072) (0.077) 
Pubertal development at t-1 * Girl   0.183** 0.172*   

(0.088) (0.094) 
No. of observations 10,793 7727 7727 6465 

Notes: Estimates obtained from the VA model (age 11) and the VA, CVA and CVA-IV models (age 16). 
Each regression includes basic demographic controls (ethnicity, mother’s age at birth, whether the mother is a lone parent, mother’s education); 
pregnancy and birth controls (birth order, birth weight, gestation, birth complications, maternal smoking during pregnancy, maternal working before 
birth); other family controls (English not spoken at home, mother’s height, mother’s BMI); school type; the child’s BMI at age 7; the child’s age in 
months at assessment; and region of residence at birth. 
Standard errors in parentheses. Coefficients significant at the * 10%, ** 5% and *** 1% levels. 
Source: NCDS. 

10 Given that the value-added model is nested on the cumulative value-added model, a straightforward test for the validity of the value-added 
specification is to test whether the coefficients for pubertal development at age 11 are significantly different from zero in the cumulative value- 
added specification (Todd and Wolpin, 2007). The fact that the contemporaneous impact of pubertal development on boys’ math scores at age 
16 does not change implies that the value-added model may be adequate to estimate the unbiased impact of pubertal development on boys’ math 
skills. Probably because girls tend to develop earlier than boys, controlling for pubertal development at age 11 reduces the contemporaneous impact 
of puberty on math scores at age 16 for girls. In this case, the cumulative value-added model would be more appropriate than the value-added model 
to estimate the unbiased impact of pubertal development on girls’ math skills.  
11 In our data, the correlation between the puberty indices at ages 11 and 16 is far from perfect. For girls, the correlation between the index of 

pubertal development at age 11 and the index at age 16 is 0.22. For boys, the correlation between the index of pubertal development at age 11 and 
the index at age 16 is 0.23. These figures are unlikely to give rise to multicollinearity problems in our estimates. 
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development in girls at age 11 is associated with an increase of about 15% of a standard deviation in their math scores at age 16, and 
that the difference between absent and mature development in boys at age 16 is associated with an increase in about 7% of a standard 
deviation in their math scores at the that age. Thus, our estimated effects are comparable in magnitude to the impact of between 1 and 
4 additional years of maternal education. The impact of pubertal development on math scores is quantitatively and qualitatively 
important. 

4.1. Puberty and the math gender gap 

The results in the previous section estimated the effects of pubertal development on girls’ and boys’ math scores separately. We now 
focus on estimating the size of the math gender gap, which we implement by estimating a single equation for girls and boys together, 
with the inclusion of a gender dummy. Estimating a single equation implicitly assumes that boys and girls share the same production 
function (see the discussion in Baker and Milligan, 2016). 

Table 4 presents estimates obtained from the VA, CVA, and CVA-IV models12 described in Eqs. (2), (3) and (4). The top panel (Panel 
A) shows the size of the math gender gap without the inclusion of any puberty measures. The models estimated in Panel B include the 
puberty index plus its interaction with the gender dummy. Results for age 11 (column 1) show that once previous test scores are 
controlled for, there is virtually no gender gap in math at 11 years of age, and this finding is unchanged by the inclusion of controls for 
pubertal development. Results for age 16 (columns 2 – 4) show a gender gap of about 18% of a standard deviation in the model which 
does not control for pubertal development. This gap diminishes dramatically to almost a third of its previous size and becomes 
insignificant when pubertal development and its interaction with gender are included in the regressions. In the simplest terms, well 
over half of the math gender gap at age 16 may be explained by the effects of puberty. 

4.2. Robustness checks: alternative model specifications and measures of adolescent development 

In this section we assess the sensitivity of our findings to (1) changes in model specification and (2) the use of an alternative self- 

Table 5 
Impact of pubertal development on math scores at age 16. Alternative model specifications and alternative measure of puberty.   

(1) (2) (3) (4) (5) (6) (7) (8) 
CVA-IV Two-step CVA Latent-factor CVA-IV First-difference 
Boys Girls Boys Girls Boys Girls Boys Girls 

Panel A: alternative model specifications 
Puberty Index at t 0.065 − 0.140** 0.117** − 0.106* 0.072 − 0.205*** 0.023 − 0.134** 

(0.048) (0.056) (0.049) (0.055) (0.049) (0.073) (0.049) (0.058) 
Puberty Index at t-1 − 0.029 0.135** − 0.019 0.151*** − 0.041 0.212*** − 0.033 0.133** 

(0.077) (0.057) (0.078) (0.056) (0.079) (0.074) (0.079) (0.057) 
Math scores at t-1 0.780*** 0.824***   0.736*** 1.233***   

(0.027) (0.031)   (0.095) (0.139)   
Reading scores at t-1     0.064 − 0.533***       

(0.095) (0.143)   
Non-cognitive scores at t-1     − 0.023 − 0.002       

(0.027) (0.035)   
Panel B: alternative puberty indicator 
Age at development 0.268* − 0.195 0.367** − 0.085 0.342** − 0.209 0.211 − 0.196 

(0.154) (0.133) (0.152) (0.132) (0.160) (0.170) (0.168) (0.138) 
Age at development squared − 0.010* 0.008 − 0.014** 0.003 − 0.013** 0.008 − 0.008 0.008 

(0.006) (0.005) (0.006) (0.005) (0.006) (0.007) (0.006) (0.005) 
Math scores a t-1 0.748*** 0.790***   0.586*** 1.190***   

(0.029) (0.029)   (0.101) (0.132)   
Reading scores at t-1     0.188* − 0.509***       

(0.101) (0.136)   
Non-cognitive scores at t-1     − 0.006 0.028       

(0.029) (0.034)   
No. of observations 3307 3158 3307 3158 3307 3158 3610 3425 

Notes: Estimates obtained from the CVA-IV model (Equation 4); the two-step CVA model (Equation 5); the latent-factor CVA-IV model (Eq. (6)) and 
the first-difference model (Eq. (7)). 
Each regression includes basic demographic controls (ethnicity, mother’s age at birth, whether the mother is a lone parent, mother’s education); 
pregnancy and birth controls (birth order, birth weight, gestation, birth complications, maternal smoking during pregnancy, maternal working before 
birth); other family controls (English not spoken at home, mother’s height, mother’s BMI); school type; the child’s BMI at age 7; the child’s age in 
months at assessment; and region of residence at birth. 
Standard errors in parentheses. Coefficients significant at the * 10%, ** 5% and *** 1% levels. 
Source: NCDS. 

12 We lack information on math performance before age 7 and thus cannot analyse changes in the math gender gap between ages 7 and 11 using 
any of our value-added models. 
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assessed measure of pubertal development. We first present two variations on our basic value-added model of the impact of pubertal 
development at 16 years of age that incorporate additional information on reading scores and non-cognitive skills in estimating math 
skill production functions, followed by estimates from a child fixed-effects model. 

First, Del Boca et al. (2017) propose an additional model that relaxes the requirement that past scores are uncorrelated with the 
error term in Eq. (3). In their two-step estimation procedure, they first compute an individual fixed-effects estimate of the depreciation 
rate (λt in Eq. (3)), using the information on the different skills for each child at times t and t-1. We use math, reading, and 
non-cognitive test scores at 11 and 16 years of age to estimate this persistence parameter that controls for the child-specific endow
ment. In a second step, λt is replaced with its estimate from the fixed-effects regression, obtaining the two-step cumulative value-added 
model: 

Testit − λ̂t Testit− 1 =
∑t

k=0
PUit− kαk + Biρt + eit (5) 

Secondly, in the spirit of Cunha et al. (2010), we consider skills as imperfectly measured latent variables and include in the pro
duction function for math skills past measures of other skills, namely reading and non-cognitive skills. Following Agostinelli et al. 
(2019) we address potential mismeasurement of these lagged skill measures by instrumenting them with two-period-lagged skill 
measures. Thus, our second robustness check involves estimating a variant of Eq. (4) that also incorporates information on past reading 
and non-cognitive outcomes, adequately instrumented. This latent-factor cumulative value-added IV specification may be written as: 

Testk
it =

∑t

k=0
PUit− kαk + Biρt + λt

∑J

j=1

̂Testj
it + eit (6) 

Thirdly, following Todd and Wolpin (2003) and Keane et al. (2022) we also estimate a child fixed-effects (first-difference) model. 
The key assumption behind this model is that the effects of unobserved inputs and endowments are constant over time and can be 
differenced out. We do, however, allow for the impact of puberty to depend on age as in Keane et al. (2022). This model allows for the 
effects of puberty to differ by age while controlling for the potential non-randomness of puberty.13 Our child fixed-effects model may 
be written thus: 

Testit − Testit− 1 = PUitαt − PUit− 1α∗
t− 1 + vit (7) 

Panel A in Table 5 presents estimates from the alternate specifications in Equations (5) – (7). For the purposes of comparison, 
estimates from the CVA-IV model (Columns 7 and 8 of Table 3) are reproduced in Columns 1 and 2. These estimates remain broadly 
unchanged under both the two-step and the latent-factor CVA models of Eqs. (5) and (6) and the fixed-effects model of Eq. (7).14 

Estimates of the contemporaneous impact of pubertal development on boys’ math scores at 16 years of age now range from 0.2% to 
1.2% of a standard deviation for a 10pp increase in the puberty index. Similarly, a 10pp increase in girls’ puberty index at 16 years of 
age decreases girls’ math scores between 1% and 2% of a standard deviation, and a similar increase in the puberty index at 11 years of 
age increases girls’ math scores by between 1.3% and 2% of a standard deviation. 

We then test the sensitivity of our findings to an alternative measure of adolescent development, namely the self-reported age at 
menarche (girls) and the voice breaking (boys). Panel B of Table 5 considers the association between a quadratic function of age at 
development, and math scores at age 16, using the CVA-IV model of Eq. (4).15 Age at development has a convex relationship with girls’ 
math scores and a clearly concave relationship with boys’ math scores. The relationship between age at development and boys’ math 
scores presents a maximum between 13.1 and 13.4 years of age, about half a year before the average age at development for boys of 
13.9 years. The estimated impact implies that for the representative boy developing at 13.9 years of age, developing 6 months earlier 
would be associated with between 0.3% and 0.7% of a standard deviation higher math score. These results are in line with the effects 
shown in Table 3 of generally positive effects of puberty on boys’ math scores at age 16, and generally negative effects of puberty on 
math scores for girls.16 

Taken together, the results in this section suggest that the findings reported in Table 3 are quite robust; the estimates obtained from 
Eq. (4) can be considered a lower bound for the impact of pubertal development on math scores for boys and girls. 

13 For instance, early life adversity has been shown to be associated with early puberty onset (Colich et al., 2020). The fixed-effects specification 
controls for time-invariant sources of pubertal development and ensures that our estimates are not (for example) merely picking up cognitive 
differences between girls who have, and have not, experienced early adversity. See, however, the discussion in Section 4.2 on the potential 
time-varying factors affecting the non-randomness of pubertal development.  
14 In the latent-factor cumulative value-added model, we include past reading scores and past non-cognitive scores as additional information to 

control for unobserved inputs and the endowment. It is hard to interpret these coefficients in any reasonable way due to the high correlation 
obtained between past math performance and past reading performance: over 0.73 for both boys and girls at 16 years of age.  
15 Most studies using age at development as a measure of pubertal development use non-linear specifications for indicators of early development: 

for instance Cavanagh et al. (2007) use onset of menarche before age 12. Given the arbitrariness of such thresholds we opted for maintaining 
non-linearities in a less rigid fashion, using a quadratic function in age at development.  
16 The relationship between age at development and girls’ math scores is not significantly different from zero. As previously noted, while voice 

breaking has been validated as an adequate marker for boys’ pubertal development, girls’ age at menarche has not. 
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4.3. Identification checks: looking for any remaining sources of bias 

The main assumption behind the value-added models used in the previous analysis is that, after controlling for past test scores, 
there remain no unobserved time-invariant or time-varying sources of endogeneity affecting the impact of pubertal development on 
math performance. However, it is possible that pubertal development may be related to childhood factors such as childhood trauma or 
nutrition (Colich et al., 2020; Kaplowitz et al., 2001), and that controlling for past test scores may not be enough to account for these 
sources of endogeneity as value-added models assume. There is no formal means of testing this assumption. However, we perform a 
validation exercise by identifying a set of variables which are highly likely to be correlated with any such unobserved factors, and 
testing whether these variables are associated with pubertal development. We select three such variables. Birth weight has been shown 
to have long-lasting impacts on cognitive development (Figlio et al., 2014). Similarly, maternal education also increases the child’s 
cognitive ability (Carneiro et al., 2013) and maternal smoking during pregnancy is associated with lower cognitive test scores and 
behavioural problems (Wehby et al., 2011). These variables are measured before the start of adolescence, and could not be affected by 
pubertal development; a significant relationship would indicate that there remains some selection bias not properly accounted for by 
model specifications. 

Results are presented in Table 6, in the form of estimates from OLS models using birth weight, maternal education, and smoking 
during pregnancy as dependent variables. While pubertal development is generally unrelated to birthweight and smoking during 
pregnancy, there does seem to be a systematic association between pubertal development at age 16 and maternal education for boys. 
We test whether this association may be sufficient to affect our estimates of the relationship between pubertal development and math 
scores. Table A.4 in the Appendix presents results for the same regressions estimated in Table 3, but also controlling for the interaction 
between maternal education and pubertal development at ages 11 and 16. The fact that the results in Table A.4 are very similar to those 
presented in Table 3 may be taken as a sign that omitted variable bias is limited (Oster, 2019). Overall, the evidence suggests that 
selection bias not properly accounted for by model specifications is unlikely to be driving our results. 

We continue this line of inquiry by adding into the model a range of covariates that have been shown to be correlated with puberty 
as well as math outcomes. We test three sets of variables: the first related to family background, the second to school characteristics and 
the third to physical and psychological characteristics of the child.17 

Family background may impact gender differences in math through at least three potential channels. First, family resources may 
differently impact boys’ and girls’ educational outcomes (Autor et al., 2019; Lei and Lundberg, 2020). Second, parents may make 
differentiated gender-specific investments, particularly time investments (Baker and Milligan, 2016); for example, sons may receive 
more inputs of time from fathers (Lundberg, 2005). And third, parents’ preferences or gender attitudes may be transmitted to their 

Table 6 
Validation exercise.   

(1) (2) (3) (4) (5) (6) (7) (8) 
Age 11 Age 16 
OLS OLS Cum. OLS Cum. OLS-IV 
Boys Girls Boys Girls Boys Girls Boys Girls 

Panel A: Dep. Var. Birth Weight 
Puberty Index at t 0.113 − 0.076 − 0.03 − 0.054 − 0.051 − 0.086 − 0.053 − 0.111 

(0.093) (0.064) (0.067) (0.077) (0.072) (0.083) (0.077) (0.086) 
Puberty Index at t-1     0.221* − 0.061 0.224* − 0.08     

(0.115) (0.078) (0.122) (0.082) 
Panel B: Dep. Var. Mother with Post-Secondary Education 
Puberty Index at t − 0.037 − 0.021 − 0.047* 0.02 − 0.055* 0.018 − 0.066** 0.023 

(0.036) (0.026) (0.026) (0.031) (0.028) (0.034) (0.029) (0.035) 
Puberty Index at t-1     0.007 − 0.030 0.030 − 0.027     

(0.046) (0.034) (0.049) (0.036) 
Panel C: Dep. Var. Mother Smoked during Pregnancy 
Puberty Index at t − 0.021 − 0.011 − 0.017 0.063* − 0.014 0.022 − 0.01 0.037 

(0.044) (0.031) (0.031) (0.037) (0.033) (0.040) (0.035) (0.042) 
Puberty Index at t-1     − 0.018 0.003 − 0.021 − 0.009     

(0.054) (0.038) (0.057) (0.040) 
No. of observations 5501 5283 3610 3425 3610 3425 3307 3158 

Notes: Estimates obtained from regressions analogous to those in Eqs. (2)–(4) with dependent variables as indicated (lagged values of math scores 
rather than lagged dependent variables are included). 
Each regression includes basic demographic controls (ethnicity, mother’s age at birth, whether the mother is a lone parent, mother’s education); 
pregnancy and birth controls (birth order, birth weight, gestation, birth complications, maternal smoking during pregnancy, maternal working before 
birth); other family controls (English not spoken at home, mother’s height, mother’s BMI); school type; the child’s BMI at age 7; the child’s age in 
months at assessment; and region of residence at birth. 
Standard errors in parentheses. Coefficients significant at the * 10%, ** 5% and *** 1% levels. 
Source: NCDS. 

17 Table A.5 In Appendix A presents descriptive statistics by gender for the variables used in this section. 
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children (Dossi et al., 2021). There is evidence on the critical impact of same-sex family figures during adolescence in shaping later 
roles and choices (Olivetti et al., 2020). The literature shows not only correlations between mothers’ and children’s attitudes towards 
working women (Farré and Vella, 2013), but also correlations between mothers’ and daughters’ labour supply (Olivetti et al., 2020). 
Fryer and Levitt (2010) hypothesize that maternal occupation in STEM jobs and expectations for having children in STEM jobs should 
reduce the gender gap in math, but find no corroborating evidence. Table A.6 compares results from a benchmark regression based on 
estimates in Table 3, with results from regressions including the three family variables: whether the mother had a job, whether the 
mother was a manager, and whether the mother expects the child to have a management-level job. Results show that these variables do 
not affect the estimated impact of pubertal development on boys’ and girls’ math scores. 

Table A.7 presents results from a similar exercise which investigates the role of school environment. School environments may 
affect the math gender gap, especially via the influence of teachers and peers. Teachers’ gender role beliefs and expectations may 
influence students’ self-image, affecting their interests and aspirations and ultimately their academic outcomes, leading to a self- 
fulfilling prophecy (Carlana, 2019; Papageorge et al., 2020). Teachers may interact differently with boys and girls, giving different 
types of feedback or spending more time training boys in math relative to girls, directly affecting their academic outcomes (Alan et al., 
2018; Lavy and Sand, 2018). The gender composition of the classroom has also been studied as a potential explanatory factor in gender 
differences in math scores. Girls are more likely to conform to gender stereotypes in the presence of boys to avoid disappointing 
gender-specific expectations (Steele, 1997). Alternatively, girls may also shy away from competition, especially when confronted with 
boys (Gneezy et al., 2003; Niederle and Vesterlund, 2010). The empirical evidence shows that the proportion of boys in the classroom 
does not affect the gender gap in math, however, except when it considers only the proportion of high-achieving boys (Bharadwaj 
et al., 2016; Cools et al., 2022). Nonetheless, single-sex schooling has been found to improve girls’ academic outcomes in math and 
math related subjects (Booth et al., 2018; Eisenkopf et al., 2015). The results in Table A.7 show that the inclusion of school inputs (the 
gender of the teacher; whether the teacher expects the child to follow STEM subjects; the number of math courses taken by the child; 
and whether the child attends a coeducational school) does not significantly change the estimated impact of puberty on the math scores 
of either boys or girls. 

Table A.8 repeats the same exercise with characteristics of the children themselves. From a biological standpoint, being overweight 
has been shown to be correlated with academic outcomes (Sabia, 2007). Differences in perseverance, risk aversion, or leadership may 
also be behind math differences between boys and girls: Ellison & Swanson (2021) show that girls give up more easily; Andreoni et al. 
(2020) show that they are more risk-averse, and Alan et al. (2020) show that they are less willing to take leadership roles. Table A.8 
tests the effects of the child’s BMI and a binary indicator of behavioural problems based on the Rutter scale (Rutter, 1967). Results 
show that neither of these variables alters the estimated relationship between pubertal development and math scores. 

In summary, the analysis in Sections 4.2 and 4.3 demonstrates that our estimates of the impact of pubertal development on boys’ 
and girls’ math scores in adolescence are robust to a wide range of challenges. We now move on to explore possible mechanisms 
underlying those estimated relationships. 

5. Understanding the mechanisms behind the impact of puberty on math outcomes by gender 

Adolescence may impact gender disparities in mathematical performance through both biological and societal factors. Biological 
mechanisms could operate via the physical and hormonal changes associated with puberty, if these also affect cognitive abilities and 
behavior related to math performance (Halpern, 2011).18 In addition, adolescence is a sensitive period, second only to early childhood, 
when connections between neurons (synapses) can be pruned or strengthened to increase neural efficiency (Blakemore and Choud
hury, 2006; Dahl et al., 2018; Steinberg, 2014).19 Social mechanisms could operate via increased pressures to conform to stereotypical 
gender roles, leading to widening gaps in math performance as boys and girls develop differentiated identities and attitudes. Studies 
have found that this gap can be seen in traits such as competitiveness and risk-taking, with girls becoming less competitive and more 
risk-averse compared to boys in patriarchal societies (Alan et al., 2020; Andersen et al., 2013; Andreoni et al., 2020; Niederle and 
Vesterlund, 2010). 

The purpose of this paper is not to make a definitive argument as to whether the mathematical performance of boys and girls are 
determined by nature or nurture, particularly in light of recent discoveries in neuroscience establishing that the social environment 
plays a crucial role in brain development (Blakemore, 2018). However, it is certainly worth discussing whether our findings point to 
biological or social mechanisms. 

18 For instance, adolescents’ testosterone levels have been shown to relate to spatial ability and competitiveness not only for boys but also for girls 
(Bateup et al., 2002; Vuoksimaa et al., 2012).  
19 Recent research in neuroscience recognizes that adolescents’ brains are physically different from the brains of younger children and adults 

(Blakemore 2018 p.73). In particular during adolescence grey matter diminishes in volume as synapses are pruned, while white matter increases as 
axons are myelinated to increase information speed (Blakemore et al., 2010; Giedd et al., 1999). Longitudinal studies suggest that the physical and 
hormonal changes during puberty may also directly influence the grey matter decreases and white matter increases taking place in adolescence 
(Goddings et al., 2014; Herting et al., 2015; Piekarski et al., 2017). Brain maturation is accompanied by higher efficiency in cognitive function 
including improvements in intelligence quotient, working memory, problem solving, executive functioning, and social cognition (Fuhrmann et al., 
2015; Steinberg et al., 2009). In consequence pubertal development may directly impact social and cognitive abilities (Picci and Scherf, 2016; 
Steinberg, 2008), especially executive functioning skills playing a critical role in the development of mathematics proficiency (Cragg and Gilmore, 
2014). 
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Our results so far suggest a socially-driven explanation for the widening of the math gender gap in adolescence. If the effect of 
puberty on math outcomes were due solely to physiological factors, this effect would arguably remain consistent regardless of the 
child’s age. The observed variations in the impact of pubertal development at ages 11 and 16, particularly among girls, suggest a social 
channel coming into play alongside the physical changes. In what follows we present additional evidence to support the theory that it is 
socialization and gender roles rather than biological forces that shape how adolescent development impacts the math performance of 
boys and girls. 

We first check whether markers of puberty are differently related to math performance according to whether these markers are 
generally evident to the public or not. We re-estimate the value-added models in Table 3 using the index of breast development (a 
publicly evident marker of puberty for girls) and the index of pubic hair development (a marker which is not publicly evident) as 
explanatory variables.20 Panel A in Table 7 presents estimates of the impact of breast development on math scores within groups of 
girls with similar stages of pubic hair development; Panel B in Table 7 shows the estimated impact of pubic hair development on math 
scores within groups of girls at similar stages of breast development. 

As shown in Panel A, an increase of 10pp in the breast development index at age 11 is associated with an increase of between 1% 
and 1.4% of a standard deviation in math scores at ages 11 and 16, while a 10pp increase in the breast development index at age 16 is 
associated with a reduction of almost 1.4% of a standard deviation in math scores at age 16. Conversely, Panel B shows that we do not 
find any significant contemporaneous impacts of pubic hair development on girls’ math scores at either 11 or 16 years of age. In sum, 
the results in Table 7 show that our main results in Table 3 are driven by the effects of a publicly evident markers of pubertal 
development such as girls’ breast development, rather than non-publicly evident markers of maturation such as pubic hair growth, 
pointing towards a social channel for the impact of pubertal development on math outcomes. 

Second, we explore heterogeneity in the impacts of pubertal development on math scores by self-assessed math ability. Prior 
literature emphasizes that self-assessed measures of ability are largely driven by socially gendered stereotypes (Bordalo et al., 2019, 
2016; Carlana, 2019; Coffman, 2014). A finding that the impact of pubertal development on math performance differs by self-assessed 
ability, a socially-driven factor, would be consistent with a social rather than a biological explanation for the impact of puberty on the 
widening of the gender gap in math. We re-estimate the VA specifications, including a binary indicator of above-average levels of 
self-assessed math ability, and interactions between this variable and the puberty index. Panel A in Table 8 reveals that there are no 
significant interactions for girls, but that for boys there is a significant positive interaction between the puberty index at age 16 and 
above-average self-assessed ability; in other words, the positive impact of pubertal development on boys’ math scores is driven by 
those with higher self-assessed math ability. For boys with above-average self-perceived ability, a 10pp increase in the puberty index at 
age 16 is associated with an increase in math scores of almost 2% of a standard deviation. The fact that pubertal development positively 
impacts math scores of boys with above average self-perceived ability, and does not affect the scores of boys with lower self-perceived 
ability, is again consistent with social factors playing a role in explaining the effect of puberty on math outcomes by gender. 

Finally, we explore whether the impact of adolescent development on math scores varies by the level of early skills. A finding of 
differential impacts of pubertal development on math performance by early skills would be consistent with a greater intrinsic 

Table 7 
Comparison of publicly evident vs. non publicly evident markers of pubertal development.   

(1) (2) (3) (4) 
Age 11 Age 16   
Value-added Value-added Cum. value-added Cum. value-added IV 

Panel A: Impact of Breast Development Within Pubic Hair Development Categories 
Breast Development Index at t 0.137** − 0.112** − 0.137*** − 0.126** 

(0.062) (0.049) (0.052) (0.055) 
Breast Development Index at t-1   0.121** 0.097*   

(0.049) (0.053) 
Panel B: Impact of Pubic Hair Development Within Breast Development Categories 
Pubic Hair Measure at t − 0.037 0.034 0.034 0.007 

(0.063) (0.057) (0.060) (0.064) 
Pubic Hair Measure at t-1   0.135*** 0.137***   

(0.046) (0.050) 
No. of observations 5283 3425 3425 3158 

Notes: Estimates obtained from the VA model (age 11) and the VA, CVA and CVA-IV models (age 16). Panel A includes pubic hair development 
categories fixed effects. Panel B includes breast development categories fixed effects. 
Each regression also includes basic demographic controls (ethnicity, mother’s age at birth, whether the mother is a lone parent, mother’s education); 
pregnancy and birth controls (birth order, birth weight, gestation, birth complications, maternal smoking during pregnancy, maternal working before 
birth); other family controls (English not spoken at home, mother’s height, mother’s BMI); school type; the child’s BMI at age 7; the child’s age in 
months at assessment; and region of residence at birth. 
Standard errors in parentheses. Coefficients significant at the * 10%, ** 5% and *** 1% levels. 
Source: NCDS. 

20 We focus on publicly evident and non-publicly evident measures of development for girls because we lack information on publicly evident 
measures of development for boys at 11 years of age. 
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variability in math abilities among males (Ellison and Swanson, 2010; Hyde and Mertz, 2009; Machin and Pekkarinen, 2008).21 If we 
assume that early skills are largely biologically determined, a finding of larger impacts of pubertal development for high-performing 
boys would suggest a biological channel for the impact of puberty on the gender gap in math. We re-estimate the VA specifications 
including interactions between the puberty indices and an indicator of having above-average math skills at 7 years of age. The esti
mates in Panel B of Table 8 show that there are no significant differences in the impact of pubertal development on math scores by this 
indicator of early skills, showing a lack of support for a biological explanation. Notice, however, that both the point estimates and the 
confidence intervals for the interaction variables are very large, especially for the impact of pubertal development at 11 years of age on 
girls’ math performance at 11 and boys’ math performance at 16. In any case, the evidence found in Panel B of Table 8 regarding 
differences in the impact of puberty by early skills is not as conclusive as the evidence found in Panel A of Table 8 regarding differences 
by self-assessed ability, and our results fail to support a clear biological explanation for the impact of pubertal development on the 
widening of the gender gap in math. 

All in all, the evidence we present on the differentiated impacts of pubertal development on math scores by age and gender, 
together with the fact that more publicly evident measures of pubertal development show larger impacts, and the fact that the impact 
of pubertal development on boys’ math scores is driven by boys with a higher self-perception of their own ability in math, seems to rule 
out a purely biological explanation for the gender gap in math and suggests that social conditions take precedence over biological 
factors in shaping the gender gap in math. 

6. Conclusion 

This paper has investigated the relationship between adolescent development and the increase in the gender math gap from pri
mary to secondary school. We use data from the NCDS, a unique longitudinal dataset that followed all British children born in a single 

Table 8 
Heterogeneity in the impact of pubertal development by maternal education, initial skills and self-assessed math efficacy.   

(1) (2) (3) (4) (5) (6) 
Age 11 Age 16 
Value-added  Cum. value-added  Cum. value-added IV  
Boys Girls Boys Girls Boys Girls 

Panel A: By Self-Assessed Math Performance 
Above Average Self-Assessed Performance 0.534*** 0.485*** 0.394*** 0.616*** 0.308*** 0.423*** 

(0.038) (0.050) (0.074) (0.122) (0.078) (0.126) 
Puberty Index at t 0.151** 0.072 0.042 − 0.119** 0.031 − 0.151*** 

(0.075) (0.050) (0.049) (0.053) (0.052) (0.057) 
Puberty Index at t-1   0.041 0.155*** 0.028 0.142**   

(0.077) (0.054) (0.082) (0.059) 
Above Average*Puberty Index at t − 0.065 0.137 0.185* − 0.019 0.193* 0.047 

(0.179) (0.139) (0.109) (0.151) (0.112) (0.151) 
Above Average*Puberty Index at t-1  − 0.18 − 0.1  − 0.137 − 0.09   

(0.175) (0.141) (0.181) (0.142) 
Panel B: By Initial Skills 
Top Half at Age 7 0.082* − 0.001 0.054 0.127 − 0.076 − 0.066 

(0.043) (0.044) (0.063) (0.089) (0.078) (0.099) 
Puberty Index at t 0.118 0.149** 0.043 − 0.138** 0.019 − 0.181*** 

(0.093) (0.062) (0.056) (0.062) (0.063) (0.069) 
Puberty Index at t-1   0.058 0.196*** 0.081 0.178**   

(0.092) (0.065) (0.103) (0.076) 
Top Half*Puberty Index at t − 0.006 − 0.128 0.077 0.044 0.09 0.09 

(0.139) (0.094) (0.093) (0.110) (0.097) (0.113) 
Top Half*Puberty Index at t-1   − 0.203 − 0.105 − 0.231 − 0.1   

(0.148) (0.103) (0.156) (0.110) 
No. of observations 5501 5283 3610 3425 3307 3158 

Notes: Estimates obtained from the VA model (age 11) and the VA, CVA and CVA-IV models (age 16). 
Each regression includes basic demographic controls (ethnicity, mother’s age at birth, whether the mother is a lone parent, mother’s education); 
pregnancy and birth controls (birth order, birth weight, gestation, birth complications, maternal smoking during pregnancy, maternal working before 
birth); other family controls (English not spoken at home, mother’s height, mother’s BMI); school type; the child’s BMI at age 7; the child’s age in 
months at assessment; and region of residence at birth. 
Standard errors in parentheses. Coefficients significant at the * 10%, ** 5% and *** 1% levels. 
Source: NCDS. 

21 There is some controversy regarding this greater variability hypothesis. Using PISA data for 2003, Machin and Pekkarinen (2008) find that the 
average variance ratio (boys’ variance over girls’ variance) which should be 1.00 if there was equality is 1.13; and is even larger − 1.70- when 
considering the top 5 percent of the distribution. However, Using TIMMs data for 2003 and 2007, Kane and Mertz (2012) present evidence against 
this greater male variability hypothesis: the average variance ratio ranges from 0.90 to 1.49 across countries and therefore the greater variability of 
boys’ over girls’ performance is not found in some countries. 
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week in 1958, and which offers medical assessments of pubertal development alongside data on children’s cognitive outcomes and a 
rich set of household, school, and birth characteristics. We document that for this cohort, the gender gap in math widens by about 10% 
of a standard deviation over the adolescent years. Using dynamic production function models, we show that pubertal development can 
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Fig. C.1. Distribution of math test scores by gender at ages 7, 11 and 16. 6461 observations. 
Source: NCDS. 
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explain almost two thirds of the increased gap in math scores between boys and girls. Our results are robust to the use of a range of 
alternative model specifications and a different self-assessed measure of adolescent development. 

We also explore the mechanisms behind the estimated impact of adolescent development on the math gender gap. The fact that 
impacts are larger for publicly evident measures of pubertal development, and that they vary with the ages of boys and girls and with 
the degree of self-perceived math ability, allow us to rule out a purely biological channel for this effect. Consistent with recent 
neurobiological theories that emphasize that brain synapses are pruned in response to environmental influences (Dahl et al., 2018), our 
results imply a sociologically driven explanation for the gender gap in math. 

Our finding that the widening of the math gender gap during adolescence is partly due to socially-driven factors associated with the 
timing of puberty has important policy implications. It suggests, for instance, that interventions aimed at lessening gender stereotyping 
(for example, informational or promotional campaigns to highlight the importance of math for later professional development, or 
positive role models for girls in math-related fields) have the potential to be effective in addressing the math gap; it suggests also that 
the timing of interventions to support math achievement in girls matters, and that such interventions may need to be targeted earlier 
rather than later, and certainly before puberty is complete. 

Our study is based on data from the National Child Development Study (NCDS) cohort, who were aged 16 in 1974. Given that 
puberty is starting earlier in the lifecycle (Farello et al., 2019), it is possible that the gender gap in math may also start to widen at 
earlier ages in more recent cohorts. This has important implications for educators and policymakers, as it suggests that interventions to 
support academic achievement may need to be implemented at even earlier ages than are suggested by the results in this paper. Further 
research is needed to determine the generalizability of our findings to more contemporaneous cohorts and to explore the relationship 
between puberty and academic achievement in more depth. 
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Appendix B. Examples of questions in math tests administered to NCDS cohort 

Tests administered at age 7  

- Peter had 4 toy cars and he bought 2 more. How many toy cars did he have altogether?  
- How many socks are there in 4 pairs?  
- What is half of 38?  
- A boy spent 4d, a day for 5 days. How much would he have left out of 2 pounds? 

Tests administered at age 11  

- In a class of 40 pupils 3/4 are girls. How many of the pupils are boys?  
- A rectangle whose length is 6 in. and breadth is 4 in. has an area of 24 sq. in. Give the length and breadth of another rectangle whose 

area is 24, sq. in. 

Tests administered at age 16  

- The solution of the equations x + y = 8 and x – y = 4 is:  

a. x = 4 y = 4 

C. Borra et al.                                                                                                                                                                                                          

https://beta.ukdataservice.ac.uk/datacatalogue/studies/study?id=5565
https://doi.org/10.1016/j.euroecorev.2023.104542


European Economic Review 158 (2023) 104542

18

b. x = 7 y = 3  
c. x = 5 y = 3  
d. x = 2 y = − 2  
e. x = 6 y = 2  

- Which of the following is an even number for any whole number of n?  

a. n2  
b. 2n  
c. 2n - 1  
d. 2n + 1  
e. n2 – 2 

Appendix C. Distribution of scores in NCDS math tests  
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