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ABSTRACT
This article develops a concept of nonparametric likelihood for network data based on network moments,
and proposes general inference methods by adapting the theory of jackknife empirical likelihood. Our
methodology can be used not only to conduct inference on population network moments and parameters
in network formation models, but also to implement goodness-of-fit testing, such as testing block size
for stochastic block models. Theoretically we show that the jackknife empirical likelihood statistic for
acyclic or cyclic subgraph moments loses its asymptotic pivotalness in severely or moderately sparse cases,
respectively, and develop a modified statistic to recover pivotalness in such cases. The main advantage of our
modified jackknife empirical likelihood method is its validity under weaker sparsity conditions than existing
methods although it is computationally more demanding than the unmodified version. Supplementary
materials for this article are available online.
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1. Introduction

Analysis on network data is becoming increasingly important in
various fields of data science, such as social networks, technolog-
ical networks for communications, transportation, and energy,
biological networks for food webs and protein interactions, and
information networks for collaborations and semantic relation-
ships (see, e.g., Kolaczyk 2009, for a review). With this surge
of various network data as a background, there is a rapidly
growing literature on modeling and estimation for network
data (see, Crane 2018, for a survey on recent developments).
In particular, based on the Aldous-Hoover representation for
exchangeable random arrays (see, Kallenberg 2005), various
statistical models and their sampling properties are studied for
network data viewed as exchangeable random graphs; see, for
example, Bickel and Chen (2009), Bickel, Chen, and Levina
(2011), Bickel et al. (2013), Chatterjee, Diaconis, and Sly (2011),
Diaconis and Janson (2008), and Hoff, Raftery, and Handcock
(2002). Given this literature on modeling and estimation for
network data, substantial progress has been made in recent years
for inference methods, such as uncertainty quantification for
network moments or functionals, parameter hypotheses testing,
and goodness-of-fit testing; see references below.

In this article, we develop a concept of nonparametric like-
lihood for network data based on network moments, and pro-
pose general inference methods by adapting the methodology
of jackknife empirical likelihood (JEL). The method of JEL
proposed by Jing, Yuan, and Zhou (2009) and extended by
Matsushita and Otsu (2020) is an extension of Owen’s (1988)
empirical likelihood for U-statistics, and constructs a likelihood
function for estimating equations based on jackknife pseudo
values for the U-statistics. Based on the method of moments
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estimator by Bickel, Chen, and Levina (2011), we introduce its
jackknife pseudo values by using delete-one vertex subgraphs
and construct an empirical likelihood function. Then we study
its asymptotic properties under the latent variable model of
Bickel and Chen (2009), which allows sparse network models. As
in Bickel and Chen (2009), our methodology is general enough
to cover various network models (e.g., stochastic block models,
preferential attachment models, and random dot product graph
models) and can be used not only to conduct inference on popu-
lation network moments and parameters in network models but
also to implement goodness-of-fit testing, such as testing block
size for stochastic block models.

Theoretically this article makes two contributions. First, we
introduce three types of sparsity (mild, moderate, and severe)
and show that the JEL statistic for acyclic or cyclic subgraph
moments loses its asymptotic pivotalness and converges to a
weighted Chi-squared distribution in the severely or moder-
ately sparse case, respectively. A walk on a graph of length at
least three, where the starting and ending vertices are the same
but all other vertices are distinct from each other, is called a
cycle. A graph containing no cycles is called an acyclic graph.1
We argue that this lack of asymptotic pivotalness is caused
by an analogous reason to Efron and Stein’s (1981) bias of
the jackknife variance estimator. Under the conventional iid
setup, Efron and Stein (1981, Theorem 1) established a general
higher-order bias formula of the jackknife variance estimator.
In our setup for sparse networks, analogous higher-order bias

1Typical examples of cyclic graphs are covered by p-cycles (Example 4 in
Bhattacharyya and Bickel 2015) which include triangles and squares. Also
popular examples of acyclic graphs are wheels (Definition 1 in Bickel, Chen,
and Levina 2011) which include edges and stars.
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terms indeed appear in the first-order terms of the JEL statis-
tic, which cause the lack of asymptotic pivotalness. Second,
we develop a modified JEL statistic, which recovers asymptotic
pivotalness and converges to a Chi-squared distribution in those
cases of sparsity (i.e., emergence of Wilks’ phenomenon). The
basic idea is to incorporate leave-two-out adjustments as in
Hinkley (1978) and Efron and Stein (1981) into the estimat-
ing equations by the jackknife pseudo values. We emphasize
that the main advantage of our modified jackknife empirical
likelihood method is its validity under weaker sparsity con-
ditions than existing methods. Although it is computationally
more demanding than the unmodified version, this is not a
problem for commonly used subgraphs, such as two stars and
triangles.

In the statistics literature, several authors proposed inference
methods for network data. Anandkumar et al. (2013) employed
a method of moments approach for community detection in
network models with overlapping communities and studied its
guarantees for support or membership recovery. Bhattacharyya
and Bickel (2015) developed subsampling methods for smooth
functions of network moments. Green and Shalizi (2017) pro-
posed bootstrap procedures based on the empirical graphon.
Levin and Levina (2019) proposed a two-step bootstrap proce-
dure involving estimating the latent positions under the assump-
tion of a random dot product graph. Lin, Lunde, and Sarkar
(2020a) showed that the network jackknife procedure leads to
conservative estimates of the variance for network functionals.
They also showed the consistency of the jackknife variance
estimates for count functionals under some sparsity conditions.
Lin, Lunde, and Sarkar (2020b) proposed a multiplier bootstrap
procedure for count functionals and showed that it exhibits
higher-order correctness under appropriate sparsity conditions.
In contrast to these papers employing some resampling meth-
ods, this article proposes a nonparametric likelihood-based
inference method based on JEL. Also we emphasize that this
article considers inference under more general conditions on the
sparsity level. In particular, the above papers exclude the severely
sparse case (for acyclic subgraph moments) and the moderately
sparse case (for cyclic subgraph moments). Such cases were
discussed in Bickel, Chen, and Levina (2011) but inference for
these cases is an open question. To the best of our knowledge,
this is the first article that establishes an asymptotically valid
inference method under such sparsity conditions. Furthermore,
our simulation result illustrates desirable finite sample perfor-
mance of the (modified) JEL inference even for a very small size
of network.

This article is organized as follows. In Section 2, we introduce
our setup and JEL for network moments, derive its asymp-
totic properties, and develop a modified statistic to recover
asymptotic pivotalness for the scalar case (Section 2.1), vec-
tor case (Section 2.2), smooth functions of network moments
(Section 2.3), and alternative network moments (Section 2.4).
Section 3 presents applications of the proposed (modified) JEL
approach for specification testing (Section 3.1), two-sample
testing (Section 3.2), goodness-of-fit testing for stochastic
block models (Section 3.3), and other network models (Sec-
tion 3.4). Sections 4 illustrates our methodology by a sim-
ulation study. Section 5 presents real data examples for the
karate club data (Section 5.1) and Facebook data (Section 5.2).

Section 6 concludes. All proofs and derivations are contained in
Appendix.

2. Empirical Likelihood

Consider a random graph Gn on vertices 1, . . . , n represented by
an n × n adjacency matrix A, where Aij = 1 if there is an edge
from node i to j and 0 otherwise. We assume that the graph is
undirected (i.e., A is symmetric) and contains no self-loops (i.e.,
diagonals of A are all zero). Let P be the probability measure of
A and E be its expectation.

A subset R ⊆ {(i, j) : 1 ≤ i < j ≤ n} is identified by the
edge set E(R) = R and the vertex set V(R) = {i : (i, j) or (j, i) ∈
R for some j}. Typical examples of R include particular patterns,
such as triangles, stars, and wheels. Let Gn(R) be the subgraph
induced by V(R). We consider two types of count functionals.
The first one is occurrence probability of R defined as

P(R) = P{E(Gn(R)) = R}, (1)

and the second one is probability of an induced subgraph con-
taining the subgraph R defined as

Q(R) = P{R ⊆ Gn(R)}. (2)

These functionals are also studied by Bickel, Chen, and Levina
(2011) and Lin, Lunde, and Sarkar (2020a). See Section 2.4 for
some advantages of considering Q(R) with some normalization.

To define the method of moments estimator for P(R) and
Q(R), we introduce some notion. Two graphs R1 and R2 are
called isomorphic (denoted by R1 ∼ R2) if there exists a one-to-
one map σ of V(R1) to V(R2) such that the map (i, j) → (σi, σj)
is one-to-one from E(R1) to E(R2). Let Iso(R) be the set of
subgraphs that are isomorphic to R in Gn and |Iso(R)| be its
number of elements. Bickel, Chen, and Levina (2011) proposed
to estimate P(R) by

P̂(R) = 1(n
p
)|Iso(R)|

∑
S∈G

I{S ∼ R}, (3)

where p is the number of vertices of R,G is the set of all subgraphs
of Gn, and I{·} is the indicator function. Obviously P̂(R) is an
unbiased estimator for P(R), and Bickel, Chen, and Levina 2011)
developed the asymptotic theory for P̂(R) under certain sparsity
conditions.

We note that the estimator P̂(R) can be alternatively written
as

P̂(R) = 1(n
p
) ∑

1≤i1<···<ip≤n
Yi1...ip(R), (4)

where

Yi1...ip(R) = 1
|Iso(R)|

∑
S∼R,V(S)={i1,...,ip}

∏
(ik ,il)∈S

Aikil
∏

(ik ,il)∈S̄

(1 − Aikil),

and S̄ = {(i, j) /∈ S, i ∈ V(S), j ∈ V(S)}. For example, (i) if R is
an “edge”, then p = 2 and Yij(R) = Aij; (ii) if R is a “triangle”,
then p = 3 and Yijl(R) = AijAjlAil; and (iii) if R is a “2-star”
(or (1, 2)-wheel), then p = 3 and Yijl(R) = 1

3 {AijAjl(1 − Ail) +
Aij(1 − Ajk)Ail + (1 − Aij)AjlAil}. A (k, l)-wheel is a graph with
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kl + 1 vertices and kl edges isomorphic to the graph with edges
{(1, 2), . . . , (k, k+1); (1, k+2), . . . , (2k, 2k+1); . . . , (1, (l−1)k+
2), . . . , (lk, lk+1)}. See Bickel, Chen, and Levina (2011, p. 2286).

Similarly, as in Lin, Lunde, and Sarkar (2020a), Q(R) can be
estimated by

Q̂(R) = 1(n
p
) ∑

1≤i1<···<ip≤n
YQ

i1...ip(R), (5)

where

YQ
i1...ip(R) = 1

|Iso(R)|
∑

S∼R,V(S)={i1,...,ip}

∏
(ik,il)∈S

Aikil .

Based on the representations in (4) and (5), the only difference
of P̂(R) and Q̂(R) is presence of the factor “

∏
(ik,il)∈S̄(1 − Aikil)”.

As can be seen from our proof, this additional factor is asymp-
totically negligible after suitable normalization so that ρ−|R|

n P̂(R)

and ρ
−|R|
n Q̂(R) have the same limiting distribution, where ρn is

defined in Assumption A. Thus, we hereafter focus on P̂(R) for
the asymptotic analysis.

For statistical inference on P(R), we extend the notion of JEL
developed by Jing, Yuan, and Zhou (2009) to network data. To
overcome computational and theoretical difficulties of Owen’s
(1988) original empirical likelihood for the U-statistics, Jing,
Yuan, and Zhou (2009) proposed to construct an empirical
likelihood function based on jackknife pseudo values for the
statistical object of interest, say T. More precisely, for the leave-i-
out counterpart T−i of T, its jackknife pseudo value is defined as
VT,i = nT−(n−1)T−i, and the JEL function for τ = plimn→∞T
is constructed as

�T(τ ) = −2 sup
{wi}n

i=1

n∑
i=1

log(nwi), s.t. wi ≥ 0,

n∑
i=1

wi = 1,
n∑

i=1
wi(VT,i − τ) = 0. (6)

Note that if T is a sample mean (say, T = n−1 ∑n
i=1 Zi), then it

holds VT,i = Zi and �T(τ ) reduces to Owen’s (1988) original
empirical likelihood for the population mean of Zi. However,
the JEL approach is applicable to more general statistics, and
indeed Jing, Yuan, and Zhou (2009) showed that �T(τ ) con-
verges to Chi-squared distributions for the one- and two-sample
U-statistics. Intuitively, they verified Tukey’s (1958) conjecture
that the jackknife pseudo values can be treated like independent
observations. Theoretically even though VT,i’s are not indepen-
dent, they are asymptotically independent for the one- and two-
sample U-statistics and relevant limit theorems can still yield
Wilks’ theorem for the JEL statistic �T(τ ).

In this article we extend the JEL approach to conduct infer-
ence on the network moment estimator P̂(R) in (4) and show
that analogous results to Jing, Yuan, and Zhou (2009) can be
established even for network data. In particular, we construct
the JEL function based on the statistic T = P̂(R). For the leave-
i counterpart T−i in the context of network data analysis, we
employ the leave ith vertex out counterpart:

P̂−i(R) = 1(n−1
p
)|Iso(R)|

∑
S∈Gi

I{S ∼ R}, (7)

where Gi is the set of all subgraphs that do not contain the ith
vertex. Then the jackknife pseudo value for P̂(R) is defined as

Vi = n̂P(R) − (n − 1)̂P−i(R),

for i = 1, . . . , n, and the JEL function for P(R) is obtained as in
(6) by replacing VT,i with Vi.

More generally, for subsets {R1, . . . , Rk}, we can analo-
gously define the estimators (̂P(R1), . . . , P̂(Rk)) and the vector
of jackknife pseudo values Vi = (V1i, . . . , Vki)

′ for θ =
(P(R1), . . . , P(Rk))

′. Based on this notation, the JEL function for
θ is defined as

�(θ) = −2 sup
{wi}n

i=1

n∑
i=1

log(nwi), s.t. wi ≥ 0,

n∑
i=1

wi = 1,
n∑

i=1
wi(Vi − θ) = 0.

By applying the Lagrange multiplier method, the dual form of
�(θ) is written as

�(θ) = 2 sup
λ

n∑
i=1

log(1 + λ′(Vi − θ)). (8)

In practice, we use this dual form to implement the JEL infer-
ence. In the following sections, we study asymptotic properties
of the JEL statistic �(θ) and then develop a modified statistic that
exhibits desirable robustness for sparse network data.

2.1. Case of Scalar θ

This section considers the case of k = 1, where θ and
Vi are scalar and the JEL function is written as �(θ) =
2 supλ

∑n
i=1 log(1 + λ(Vi − θ)).

Let a ∧ b = min{a, b} and a ∨ b = max{a, b} for a, b ∈ R. To
study the asymptotic properties of P̂(R) and �(θ), we assume that
the network data {Aij} are generated from the nonparametric
latent variable model in Bickel, Chen, and Levina (2011) and
Bhattacharyya and Bickel (2015).

Assumption A. {Aij} are generated from

Aij = I{ξij ≤ ρnw(ξi, ξj) ∧ 1}, (9)

for i, j ∈ {1, . . . , n}, where {ρn} is a sequence of positive con-
stants satisfying ρn → 0 as n → ∞, (ξ1, . . . , ξn, ξ11, . . . , ξnn)
are iid U(0, 1) random variables, and w(·, ·) is a positive and
symmetric function satisfying

∫ 1
0
∫ 1

0 w(s, t)dsdt = 1.

This model is derived from a general representation theorem
of the adjacency matrix A (Kallenberg 2005, Theorem 7.22) and
is flexible to cover popular network formation models, such
as stochastic block models, latent variable models, and pref-
erential attachment models (see Kolaczyk 2009, for a review).
However, this assumption does not cover the inhomogeneous
Erdős-Rényi model and degree-corrected block model by Karrer
and Newman (2011) (unless degree parameters are randomized
appropriately), for example. Also extending this setup to accom-
modate covariates would be an important direction of future
research.
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When supa,b∈[0,1]2 |ρnw(a, b)| ≤ 1, the object ρn may be
interpreted as the edge occurrence probability, and then dn =
(n − 1)ρn is interpreted as the expected degree. Following the
literature (e.g., Borgs, Chayes, and Smith 2015; Klopp, Tsybakov,
and Verzelen 2017), we call networks with ρn → 0 as sparse net-
works. Otherwise, they are called dense networks. Throughout
this article, we assume ρn → 0 and focus on sparse networks.
Indeed many real world networks are considered to be sparse.
See Remark 5 for an extension of our result for dense networks.

For sparse networks with ρn → 0, we further focus on three
cases:

Mildly sparse case : np−1ρ
p
n → ∞,

Moderately sparse case : nρn → ∞, np−1ρ
p
n → C1 ∈ [0, ∞),

Severely sparse case : nρn → C2 ∈ (0, ∞).

For example, if ρn ∝ n−a, the mildly, moderately, and severely
sparse cases correspond to a ∈ (0, (p−1)/p), a ∈ [(p−1)/p, 1),
and a = 1, respectively. Intuitively, the mildly and moderately
sparse cases yield unbounded average degrees as the number
of vertices n diverges, and for the severely sparse case, average
degrees remain bounded as n diverges. As we will clarify in
Theorem 1, the distinction between the mildly/moderately and
severely sparse cases is critical for inference on P(R) with acyclic
R. On the other hand, the distinction between the mildly and
moderately sparse cases is critical for inference on P(R) with
cyclic R. For cyclic R in the severely sparse case, the method of
moments estimator P̂(R) is even inconsistent for P(R).

Existing papers, such as Bickel, Chen, and Levina (2011),
Bhattacharyya and Bickel (2015), and Lin, Lunde, and Sarkar
(2020a, 2020b), consider the moderately sparse case for acyclic
R, and the mildly sparse case for cyclic R. To the best of
our knowledge this is the first article which establishes valid
inference on network moments in (i) the mildly, moderately,
and severely sparse cases for acyclic R, and (ii) the mildly and
moderately sparse cases for cyclic R.

Let N̄ consist of all finite sequences (i1, . . . , ip) with distinct
entries i1, . . . , ip ∈ N. By using the latent variables in (9), there
exists a measurable function f : [0, 1]p+(p−1)p/2 → [0, 1] such
that

Yi1...ip(R) = f (ξi1 , . . . , ξip , ξi1i2 , . . . , ξip−1ip),

for each (i1, . . . , ip) ∈ N̄. To proceed, we introduce some
notation. Let

g1(1) = E[Y1...p|ξ1] − E[Y1...p],
g2(12) = E[Y1...p|ξ1, ξ2, ξ12] − g1(1) − g1(2) − E[Y1...p],

g3(123) = E[Y1...p|ξ1, ξ2, ξ3, ξ12, ξ13, ξ23]

−
3∑

i=1
g1(i) −

∑
1≤i1<i2≤3

g2(i1i2) − E[Y1...p],

...
gp(12 . . . p) = E[Y1...p|ξ1, . . . , ξp, ξ12, . . . , ξp−1,p]

−
p∑

i=1
g1(i) −

∑
1≤i1<i2≤p

gp(i1i2)

− · · · −
∑

1≤i1<···<ip−1≤p
gp−1(i1 . . . ip−1)

−E[Y1...p].

Note that Y1...p = E[Y1...p|ξ1, . . . , ξp, ξ12, . . . , ξp−1,p]. Let |R| =
|E(R)| be the number of edges in R. Based on the above notation
and repeated add and subtractions, the estimation error admits
the following ANOVA-type decomposition.

Proposition 1. Suppose Assumption A holds true. Then it holds

ρ
−|R|
n {̂P(R) − P(R)} = 1

n

n∑
i=1

βi + 1
n2

∑
i1<i2

βi1i2 + · · ·

+ 1
np

∑
i1<···<ip

βi1...ip , (10)

where βi = ρ
−|R|
n pg1(i), βi1i2 = ρ

−|R|
n 2!(p

2
)
g2(i1i2), . . . , βi1...ip

= ρ
−|R|
n p!gp(i1 . . . ip). Furthermore, it holds 1

n
∑n

i=1 βi =
Op

(
1√
n

)
, 1

ns
∑n

i1<···<is βi1...is = Op

(
1√

nsρs−1
n

∨ 1√
ns

)
for s =

2, . . . , p − 1, and

1
np

n∑
i1<···<ip

βi1...ip =

⎧⎪⎪⎪⎨⎪⎪⎪⎩
Op

(
1√

npρ
p−1
n

∨ 1√
np

)
if R is acyclic

Op

(
1√
npρ

p
n

∨ 1√
np

)
if R is cyclic

.

(11)

Note that all the random variables on the right side of (10)
have zero mean and no correlation. The above decomposition is
also employed by Lin, Lunde, and Sarkar (2020a), but is different
from the one by Bickel, Chen, and Levina (2011). The decompo-
sition in (10) is particularly suitable for our asymptotic analysis
since the uncorrelatedness of the components in (10) enables to
apply Efron and Stein’s (1981) argument for the modification on
certain discrepancy in the variance components; see a remark
on Theorem 1 for further detail. Note that for the Erdős-Rényi
model, βi (or ξi) is zero for all i, and the first term in (10)
disappears.

Remark 1 (Implication of (11)). It is important to note that the
term in (11) exhibits different stochastic orders for the cases of
acyclic and cyclic R. This difference is due to different orders of
the variances in the main term of βi1...ip . If R is acyclic, for the
mildly and moderately sparse cases (i.e., ρn → 0 and nρn →
∞), the linear term 1

n
∑n

i=1 βi will be a leading term in (10). On
the other hand, if R is cyclic, we need the condition nρn → ∞
for the consistency, ρ

−|R|
n {̂P(R) − P(R)} p→ 0, due to the order

in (11). Thus, it holds 1
ns

∑n
i1<···<is βi1...is = op

( 1
n
∑n

i=1 βi
)

for
s = 2, . . . , p − 1. If np−1ρ

p
n → ∞ (i.e., npρ

p
n/n → ∞), then

the limiting distribution of P̂(R) is determined by the linear
term 1

n
∑n

i=1 βi. If np−1ρ
p
n = O(1) (i.e., npρ

p
n/n = O(1)),

then the limiting distribution of P̂(R) is determined by the two
terms 1

n
∑n

i=1 βi and 1
np

∑n
i1<···<ip βi1...ip . In other words, the

distinction between the mildly and moderately sparse cases is
critical when R is cyclic.
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We now present the limiting distribution of the JEL statistic
�(θ). Let V(·) mean the variance. Define σ 2

s,n = V(β1...s) for
s = 1, . . . , p, and σ 2∗ = limn→∞(σ 2

n /ωn), where

ωn = σ 2
1,n
n

+ σ 2
2,n

2n2 + σ 2
3,n

6n3 + · · · + σ 2
p,n

p!np ,

σ 2
n = σ 2

1,n
n

+ σ 2
2,n

n2 + σ 2
3,n

2n3 + · · · + σ 2
p,n

(p − 1)!np . (12)

Theorem 1. Suppose Assumption A holds true.

(i) If R is acyclic, then

�(θ)
d→

⎧⎪⎪⎪⎨⎪⎪⎪⎩
χ2

1 for mildly or moderately sparse case
with random E[β1|ξ1],

σ−2∗ χ2
1 for severely sparse case, or nonrandom

E[β1|ξ1].
(ii) If R is cyclic, then

�(θ)
d→

⎧⎪⎪⎪⎨⎪⎪⎪⎩
χ2

1 for mildly sparse case with random
E[β1|ξ1],

σ−2∗ χ2
1 for moderately sparse case, or

nonrandom E[β1|ξ1].
This theorem shows that the limiting distribution of the JEL

statistic �(θ) depends on the degree of network sparsity. Part (i)
of this theorem is on the case of acyclic R. For the mildly and
moderately sparse cases (i.e., as far as nρn → ∞) with random
E[β1|ξ1], the JEL statistic is asymptotically pivotal. However, for
the severely sparse case (i.e., nρn → C2 ∈ (0, ∞)) or degenerate
E[β1|ξ1], the JEL statistic is no longer asymptotically pivotal.

For the case of cyclic R, Part (ii) of this theorem shows that
lack of asymptotic pivotalness of the JEL statistic occurs in the
moderately sparse case. Recall that for cyclic R, the method of
moments estimator P̂(R) is even inconsistent for P(R) in the
severely sparse case.

Remark 2 (Nonpivotal distribution). It is interesting to note
that the nonpivotal limiting distribution depends on σ 2∗ =
limn→∞(σ 2

n /ωn), which is the limit of the ratio of a normalized
sample variance ρ

−2|R|
n
n2

∑n
i=1(Vi −θ)2 to the population variance

ωn = V

(
ρ

−|R|
n
n

∑n
i=1(Vi − θ)

)
. Note that σ 2∗ ≤ 1 by the

definitions in (12). Thus, if we use the χ2 critical value χ2
1,α

for the JEL statistic �(θ) in the severely sparse case (for acyclic
R) or moderately sparse case (for cyclic R), the resulting JEL
confidence interval {θ : �(θ) ≤ χ2

1,α} will exhibit over-coverage.
The discrepancy of σ 2

n and ωn in (12) is analogous to Efron and
Stein’s (1981) bias in this context. In other words, the Efron-
Stein bias for the jackknife variance estimator emerges in the
first-order asymptotics in the moderately and severely sparse
cases. The discrepancy of σ 2

n and ωn can be large when the
components (σ 2

2,n, . . . , σ 2
p,n) are relatively large compared to σ 2

1,n.
For example, the Erdős-Rényi model satisfies σ 2

1,n = 0 so that the
discrepancy tends to be large.

Remark 3 (Degenerate case). The case where E[β1|ξ1] becomes
random corresponds to nondegeneracy of the U-statistic in the

current context (see also Menzel 2018). This only excludes the
possibility that E[Y1···p|ξ1] has a degenerate distribution, where
the conditional means given ξ1 happen to be constant. We note
that this degeneracy yields a nonstandard limiting distribution
of �(θ) only when ρn converges to a nonzero constant (i.e., the
network is dense), which is excluded in Theorem 1. In particular,
the terms of order Op(1/

√
ns) in Proposition 1 will induce

nonstandard limiting behaviors.

Remark 4 (Inference on ρn). An application of Theorem 1 (i) is
inference on ρn, which can be interpreted as the link formation
probability P(Aij = 1). Note that it can be written as P(Aij =
1) = P(R0) for the (1, 1)-wheel R0, which is an acyclic graph.
Thus, Theorem 1 directly applies by using the estimator P̂(R0) =(n

2
)−1 ∑n

k=1
∑n

l=k+1 Akl for ρn. This special case is studied by
Matsushita and Otsu (2020).

Our next step is to modify the JEL statistic to recover asymp-
totic pivotalness. To this end, we employ the bias correction
method suggested by Efron and Stein (1981). Let P̂−i1,...,−is(R)

be the leave-(i1, . . . , is)-out version of P̂(R), and define

Mi1...is = n̂P(R) − (n − 1)

( s∑
i=1

P̂−i(R)

)

+(n − 2)

⎛⎝ s∑
i1<i2

P̂−i1,−i2(R)

⎞⎠ + · · ·

+(−1)s(n − p)̂P−i1,...,−is(R),

for s = 2, . . . , p. These terms are used in Efron and Stein
(1981) to correct the higher-order bias of the jackknife variance
estimator when p = 2. Since the second sample moment of
Mi1...is is related to the components (σ 2

s,n, . . . , σ 2
p,n) as shown in

Lemma 1 in Appendix, it can be used to adjust mismatch in the
variance components of σ 2∗ due to Efron and Stein’s bias.

By using these terms, we modify the JEL statistic as

�m(θ) = 2 sup
λ

n∑
i=1

log(1 + λVm
i (θ)), (13)

where Vm
i (θ) = (Vi − θ̂ ) + 
̂
̃−1(θ̂ − θ) with θ̂ = P̂(R), and 
̂

and 
̃ are given by


̂ =
√√√√ n∑

i=1
(Vi − θ̂ )2, (14)


̃ =
√√√√ n∑

i=1
(Vi − θ̂ )2 −

n∑
i1<i2

M2
i1i2 − · · · − (−1)p

n∑
i1<···<ip

M2
i1...ip .

The asymptotic property of the modified JEL statistic is obtained
as follows.

Theorem 2. Suppose Assumption A holds true.

(i) If R is acyclic, then �m(θ)
d→ χ2

1 in the mildly, moderately,
and severely sparse cases.

(ii) If R is cyclic, then �m(θ)
d→ χ2

1 in the mildly and moderately
sparse cases.
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The modified JEL statistic �m(θ) is our main proposal and
this theorem clarifies its major advantage, robust size properties
even for the severely sparse case, which is a challenging case in
the literature and is not covered by the existing methods. The
cost for this advantage is computational one, particularly leave-
out operations to obtain 
̃ in (14).

In practice, it is common to employ smaller subgraphs, such
as two stars and triangles, as R. In this case, the computational
cost for obtaining 
̃ is relatively small. Moreover, for certain
subgraphs, it is relatively easy to compute the leave-out objects
Mi1...ip . For example, in the case of triangles, one may use A, A2,
and A3 to compute Mi1...ip since the ith diagonal element of A3

contains all triangles for the ith vertex.
Part (i) of this theorem says that for acyclic R, the modified

JEL statistic �m(θ) is asymptotically pivotal and converges to
the χ2

1 distribution regardless of sparsity of the network. We
emphasize that this theorem covers the severely sparse case (i.e.,
nρn → C ∈ (0, ∞)). To the best of our knowledge, this is the
first result to provide an asymptotically valid inference in the
severely sparse case. Part (ii) of this theorem says that for cyclic
R, asymptotic pivotalness of the modified JEL statistic �m(θ) is
maintained in the mildly and moderately cases.

Moreover, these limiting behaviors are robust to degeneracy
of the component E[β1|ξ1]. Based on this theorem, the asymp-
totic 1 − α confidence set for θ can be obtained as ELCIα = {θ :
�m(θ) ≤ χ2

1,α}, where χ2
1,α is the (1 − α)th quantile of the χ2

1
distribution.

Remark 5 (Dense network). Although this article focuses on
sparse networks satisfying ρn → 0, our proof of Theorem 1 can
also be adapted to cover dense networks, where ρn converges to
a nonzero constant. For example, as in Theorem 1, if E[β1|ξ1]
is random, then �(θ)

d→ χ2
1 even for dense networks. Fur-

thermore, a similar argument to the proof of Theorem 2 yields
�m(θ)

d→ χ2
1 if E[β1|ξ1] is random.

Remark 6 (Computationally cheaper modification). To reduce
the computational burden of calculating 
̃ in (14) which
involves the leave-(i1, . . . , ip)-out versions of P̂(R), we could
replace 
̃ by a size b = cn subsample counterpart for some
c ∈ (0, 1):


̃sub =
√√√√√ n∑

i=1
(Vi − θ̂ )2 −

b∑
i1<i2

M∗2
i1i2 − · · · − (−1)p

b∑
i1<···<ip

M∗2
i1...ip ,

where M∗2
i1...ip = n(n−1)···(n−p+1)

b(b−1)···(b−p+1)
M2

i1...ip . We note that the state-
ments in Theorem 2 still hold under the same assumptions even
if we use 
̃sub instead of 
̃. For the simulation study in Section 4
and empirical example in Section 5.2, we use 
̃sub with b = 50.

2.2. Case of Vector θ

For a vector case, we can apply the decomposition in (10)
for each element in the vector (̂P(R1) − P(R1), . . . , P̂(Rk) −
P(Rk)) with corresponding components {β(j)

i , . . . , β(j)
i1...ipj

} for

j = 1, . . . , k. Define σ
(j,h)2
s,n = E[β(j)

i1...isβ
(h)
i1...is ] for s = 1, . . . , p,

and

�n = k × k matrix with (j, h)th element
σ

(j,h)2
1,n
n

+ σ
(j,h)2
2,n
2n2

+σ
(j,h)2
3,n
6n3 + · · · + σ

(j,h)2
pj∧ph,n

p!npj∧ph
, (15)

�n = k × k diagonal matrix with (j, h)th element
σ

(j,h)2
1,n
n

+σ
(j,h)2
2,n
n2 + σ

(j,h)2
3,n
2n3 + · · · + σ

(j,h)2
pj∧ph,n

(p − 1)!npj∧ph
.

Based on the above notation, the limiting distribution of the
JEL statistic �(θ) in (8) is obtained as follows. To simplify the
presentation, we only present the result corresponding to Part
(i) of Theorem 1.

Theorem 3. Suppose Assumption A holds true, and �n and �n
are positive definite for all n large enough. If Rj is acyclic for each
j = 1, . . . , k, then

�(θ)
d→ ζ ′�∗−1ζ ,

where �∗ = limn→∞ �
−1/2
n �n�

−1/2
n and ζ ∼ N(0, Ik).

Since the proof is similar to that of Theorem 1, it is omitted.
Similar to Theorem 1 for the case of scalar θ , the JEL statistic
is not asymptotically pivotal and depends on the unknown
component �∗. When nρn → ∞ (the mildly and moderately
sparse cases) andE[β(j)

1 |ξ1] is random for all j = 1, . . . , k, we can
recover asymptotic pivotalness as �(θ)

d→ χ2
k . The discrepancy

of �n and �n can be understood as Efron and Stein’s (1981) bias
in this context. Note that the variance components �n and �n
only contain the covariance terms up to the order pj ∧ ph. This
is due to uncorrelatedness of β

(j)
i1...is ’s. Finally, analogous results

can be derived for the case where some or all of (R1, . . . , Rk) are
cyclic. In this case, we need to impose the additional condition
nρn → ∞.

To recover asymptotic pivotalness for the case of vector θ , the
JEL statistic is modified as follows

�m(θ) = 2 sup
λ

n∑
l=1

log(1 + λ′Vm
i (θ)), (16)

where Vm
i (θ) = (Vi − θ̂ ) + 
̂
̃−1(θ̂ − θ) with θ̂ =

(̂P(R1), . . . , P̂(Rk))
′, and 
̂ and 
̃ are given by


̂
̂′ =
n∑

i=1
(Vi − θ̂ )(Vi − θ̂ )′,


̃
̃′ = k × k matrix with (j, h)th element (17)⎧⎨⎩
∑n

i=1(V(j)
i − θ̂ (j))(V(h)

i − θ̂ (h)) − ∑
i1<i2 M(j)

i1i2 M(h)
i1i2

− · · · − (−1)pj∧ph
∑

i1<···<ipj∧ph
M(j)

i1...ipj∧ph
M(h)

i1...ipj∧ph

⎫⎬⎭ .

The asymptotic property of the modified JEL statistic is obtained
as follows.
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Theorem 4. Suppose Assumption A holds true, and �n and �n
are positive definite for all n large enough. If Rj is acyclic for each
j = 1, . . . , k, then

�m(θ)
d→ χ2

k .

Also the same result can be obtained even if some or all
of (R1, . . . , Rk) are cyclic under the additional condition
nρn → ∞.

Since the proof is similar to that of Theorem 2, it is omitted.
Similar comments to Theorem 2 apply. Even if θ is a vector, the
modified JEL statistic �m(θ) is asymptotically pivotal and con-
verges to the χ2

k distribution under mild conditions on network
sparsity.

2.3. Inference on Smooth Function of θ

The asymptotic theory for the modified JEL statistic in the
last section can be extended to deal with the case where the
object of interest is a smooth function of θ , say ϑ = h(θ).
Examples include inference on the normalized object ϑ =
P(R0)

−|R|P(R) with the (1,1)-wheel R0, and the transitivity index
ϑ = P(R1)/{P(R1) + P(R2)}, where R1 is a 3-cycle and R2 is a
(1,2)-wheel.

In this case, we can adapt the argument in Hall and La Scala
(1990, Theorem 2.1) to establish the asymptotic property of the
modified JEL statistic.

Theorem 5. Suppose Assumption A holds true, and �n and �n
defined in (15) are positive definite for all n large enough. If Rj is
acyclic for each j = 1, . . . , k, h(·) is continuously differentiable
in a neighborhood of θ , and ∂h(θ)/∂θ ′ has the full column rank,
then

�m(ϑ) = min
θ∈{θ :h(θ)=ϑ}

�m(θ)
d→ χ2

dim(ϑ).

Also an analogous result can be obtained even if some or
all of (R1, . . . , Rk) are cyclic under the additional condition
nρn → ∞.

The asymptotic 1 −α confidence set for ϑ can be obtained as
{ϑ : �m(ϑ) ≤ χ2

dim(ϑ),α}. It should be noted that our modified
JEL statistic �m(ϑ) and its confidence set do not suffer from
the linearization errors as in the delta method whose effect may
be nontrivial in finite samples particularly for highly nonlinear
objects, such as ϑ = P(R0)−|R|P(R) with large |R|.

2.4. Inference on Q(R)

Based on the representations in (4) and (5), our theoretical
developments for P̂(R) so far can be adapted to the estimator
Q̂(R) for Q(R) in (2). By using the leave-i counterpart Q̂−i(R)

of Q̂(R), the jackknife pseudo value for Q̂(R) can be defined as
VQ,i = nQ̂(R) − (n − 1)Q̂−i(R), and the modified JEL function
�m(θQ) for θQ = Q(R) can be defined as in (16) with

Vm
Q,i(θQ) = (VQ,i − θ̂Q) + 
̂Q
̃−1

Q (θ̂Q − θQ), (18)

where θ̂Q = Q̂(R), and 
̂Q and 
̃Q are defined as in (14) by
replacing P̂(R) with Q̂(R).

By a similar argument for Theorem 4, we obtain

�m(θQ)
d→ χ2

dim(θQ),

under the same assumption of Theorem 4.
We note that there are some advantages to consider

ρ
−|R|
n Q(R) instead of ρ

−|R|
n P(R). The first is that it is often more

computationally tractable to find “edge” matches for Q̂(R) rather
than “exact” matches for P̂(R). The second is that ρ

−|R|
n Q(R) =

E
[∏

{i,j}∈R w(ξi, ξj)
]

is independent of n, whereas ρ
−|R|
n P(R) =

E
[∏

{i,j}∈R w(ξi, ξj)
∏

{i,j}∈R(1 − ρnw(ξi, ξj))
]

does depend on n.
For example, when we consider two-sample testing of network
homogeneity as in Section 3.2, it is more natural to assess homo-
geneity of ρ−|R|

n Q(R). As discussed in Section 2.3, Theorem 5 can
be applied to conduct inference on ρ

−|R|
n P(R) = P(R0)

−|R|P(R)

with the (1,1)-wheel R0. Similarly, Theorem 5 can be adapted to
the normalized object ρ

−|R|
n Q(R) = P(R0)

−|R|Q(R), which is a
smooth function of (P(R0), Q(R)).

3. Applications

In this section, we apply the methodology of (modified) JEL in
the last section to several statistical models and problems for
network data.

3.1. Specification Test

Consider the network model

Aij = I{ξij ≤ ρ0
nw0(ξi, ξj) ∧ 1}, (19)

where w0(·, ·) and ρ0
n are specified by the researcher and contain

no nuisance parameter. Validity of this specified model may be
assessed by testing the hypothesis H0 : P(Rj) = P0(Rj) for
j = 1, . . . , k, where Rj’s are chosen by researcher’s interest. For
example, Bhattacharyya and Bickel (2015, sec. 6.1) specified a
stochastic block model and preferential attachment model to
conduct inference on high school network data. Also Zhang
and Xia (2022) studied this testing in detail. Our (modified)
JEL approach can provide an alternative method for this testing
problem. We emphasize that in contrast to these existing papers,
our method allows the severely sparse case (for acyclic Rj) and
moderately sparse case (for cyclic Rj).

Let {P0(Rj) : j = 1, . . . , k} be the network moments implied
by the null model in (19). Then the modified JEL goodness-
of-fit statistic is given by �

gof
m = �m(P0(R1), . . . , P0(Rk)) using

the definition in (16), which converges to χ2
k by Theorem 4.

Similarly we can conduct goodness-of-fit testing based on Q0(R)

specified by the researcher.
Although it is beyond the scope of this article, we conjecture

that consistent goodness-of-fit testing of the specified model in
(19) would be possible by letting k → ∞ as n → ∞.

3.2. Two-Sample Test

Our JEL approach can be extended to two-sample testing prob-
lems. Suppose we wish to test whether two network data {A1

ij}
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and {A2
ij} share the same features in terms of moments for

(R1, . . . , Rk). For example, Bhattacharyya and Bickel (2015)
studied homogeneity of two subnetworks drawn from Facebook
network. Let {Q1(Rj), Q2(Rj) : j = 1, . . . , k} be the network
moments for {A1

ij} and {A2
ij}, respectively. Then the null of the

two-sample testing problem is formulated as H0 : Q1(Rj) =
Q2(Rj) for j = 1, . . . , k.

By extending the two-sample empirical likelihood (Wu and
Yan 2012) to network data, the modified JEL statistic for H0 can
be constructed as minθ �hom

m (θ , θ), where

�hom
m (θ1, θ2) = 2 sup

λ1

n∑
l1=1

log(1 + λ′
1Vm

Q,1,l1(θ1))

+ 2 sup
λ2

m∑
l2=1

log(1 + λ′
2Vm

Q,2,l2(θ2)),

and Vm
Q,1,l1(θ) and Vm

Q,2,l2(θ) are defined as in (18) using {A1
ij}

and {A2
ij}, respectively. If {A1

ij} and {A2
ij} are independent, we can

apply the analogous argument by Wu and Yan (2012) to our
context, which implies minθ �hom

m (θ , θ)
d→ χ2

k under H0 and
analogous conditions to Theorem 4.

3.3. Stochastic Block Model

Consider the function w(·, ·) in (9) corresponding to a K-block
model so that the implied link formation probabilities are writ-
ten as

P{Aij = 1|i ∈ a, j ∈ b} = ρnSab,

for a, b = 1, . . . , K by some K × K matrix S = [Sab], a
K × 1 vector π for block assignment probabilities for the blocks
{1, . . . , K}, and ρn as defined in (9). Let η = (π , ρn, S) and
F = ρnS. The number of free parameters in this block model
is K − 1 for π and K(K + 1)/2 for F. Note that ρn satisfies∑K

a=1
∑K

b=1 Fab = ρn. For example, when K = 1, this model
becomes the Erdős-Rényi model, which contains only one free
parameter. Also, when K = 3, the number of free parameters is
eight, which can be identified by eight moments. In this section,
we consider goodness-of-fit (or block size) testing: H0 : K = K0
for some specified value K0 versus H1 : K > K0.

Let L2(0, 1) be the L2 space for functions defined on the
interval (0, 1), and T : L2(0, 1) → L2(0, 1) be an operator
defined by

[Tf ](u) =
∫ 1

0
h(u, v)f (v)dv,

where h(u, v) = ρnw(u, v). For stochastic block models, it
is convenient to consider the moment Q(R) = P{Aij =
1, for all (i, j) ∈ R}. From Bickel, Chen, and Levina (2011,
Theorem 1), stochastic block models are generally identified by
some set of wheels. Therefore, this section focuses on the case
where R’s are wheels. If the graph R is a (k, l)-wheel, it can be
written as

Q(R) = E

⎡⎣ ∏
(i,j)∈E(R)

h(ξi, ξj)

⎤⎦

= E

⎡⎣E
⎡⎣∏

(i,j)
h(ξi, ξj) : (i, j) ∈ E(R)

∣∣∣∣∣∣ ξ1

⎤⎦⎤⎦
= E

[(∫ 1

0
· · ·

∫ 1

0
h(ξ1, ξ2) · · · h(ξk, ξk+1)dξ2 · · · ξk+1

)l]
= E[{Tk(1)(ξ1)}l].

Based on this formula, we can compute the moment, say Q(R; η),
implied from given parameter values η = (π , ρn, S).

For example, when K = 2, it can be written as T(1)(ξ) = v1
for ξ ∈ [0, π1] and v2 for ξ ∈ (π1, 1], where vj = π1F1j + (1 −
π1)F2j with v1 < v2. Let Wkl be a (k, l)-wheel. Thus, the first
three moments of T(1)(ξ) are

E[{T(1)(ξ)}l] = E[Q(W1l)] = π1vl
1 + (1 − π1)vl

2,

for l = 1, 2, 3. Similarly, we have T(1)2(ξ) = π1v1F11 + (1 −
π1)v1F21 for ξ ∈ [0, π1] and π1v1F12 + (1 − π1)v2F22 for ξ ∈
(π1, 1]. Thus, the first three moments of T(1)2(ξ) are

E[{T(1)2(ξ)}l] = E[Q(W2l)]
= π1{π1v1F11 + (1 − π1)v2F21}l

+ (1 − π1){π1v1F12 + (1 − π1)v2F22}l.

For wheels (R1, . . . , Rk), we consider the estimator Q̂(Rj) in
(5) of the moment Q(Rj, η) for j = 1, . . . , k. The jackknife
pseudo value for Q̂(Rj) can be defined as V(j)

Q,i = nQ̂(Rj) −
(n−1)Q̂−i(Rj) for j = 1, . . . , k. Then the modified JEL function
�m(η) can be defined as in (16) by setting

Vm
Q,i(η) = (VQ,i − θ̂Q) + 
̂
̃−1(θ̂Q − θQ(η)), (20)

where VQ,i = (V(1)
Q,i , . . . , V(k)

Q,i )
′, θ̂Q = (Q̂(R1), . . . , Q̂(Rk))

′,
θQ(η) = (Q(R1; η), . . . , Q(Rk; η))′, and 
̂ and 
̃ are defined as in
(17) by replacing {̂P(R1), . . . , P̂(Rk)} with {Q̂(R1), . . . , Q̂(Rk)}.
The goodness-of-fit statistic based on the modified JEL is
defined as

Tn = min
η∈ϒ

�m(η), (21)

and the asymptotic property of this statistic is presented as
follows.

Theorem 6. Assume (i) there exists a unique η0 ∈ int(ϒ) such
that Q(Rj) = Q(Rj; η0) is satisfied with all wheels Rj for j =
1, . . . k, and ϒ is compact, (ii) θ(η) is continuously differentiable
in a neighborhood of η0 and ∂θ(η0)/∂η′ has the full column
rank, and (iii) Assumption A holds true, and �n and �n defined
in (15) are positive definite for all n large enough. Then under
H0 : K = K0, it holds

Tn
d→ χ2

k−dim(η0)
,

Also under H1 : K > K0, it holds

P{Tn > χ2
k−dim(η0),α} → 1,

for the (1 − α)th quantile χ2
k−dim(η0),α of the χ2

k−dim(η0)
distribution.
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The assumptions (i)–(ii) for this theorem are standard for
overidentified models. Identification of η0 needs to be verified
for each application (see, Theorem 1 of Bickel, Chen, and Levina
2011, for stochastic block models).

It should be noted that Theorem 6 applies to the case of
K0 = 1, where the null model becomes the Erdős-Rényi
model containing only one free parameter. In this case, our
goodness-of-fit test can be considered as a community detection
test, which complements eigenvalue-based testing by Bickel and
Sarkar (2016).

Although the goodness-of-fit test in Theorem 6 applies to
any finite K in principle, it is computationally expensive to
implement our test for large values of K, where we typically need
to consider (k, l)-wheels with large k and/or l, and computation
of those moments is demanding (see, e.g., Section 5 of Bickel,
Chen, and Levina 2011). This practical issue applies to any
statistical methods based on subgraph counting, and it is an
important direction of future research to build an efficient algo-
rithm to implement our JEL method; see Ribeiro et al. (2021) for
recent advances in subgraph counting methods.

Furthermore, although it is also beyond the scope of this arti-
cle, based on Andrews (1999) for consistent moment selection
procedures, we conjecture that sequential testing based on the
test statistic Tn for different values of K0 with suitably chosen
critical values (typically letting significance values converge to
zero) may yield an asymptotically valid model selection pro-
cedure for the stochastic block models. This approach can be
a complement to the likelihood-based model selection method
developed in Wang and Bickel (2017).

Remark 7 (Plug-in statistic). When the dimension of the param-
eters η is high, the minimization in (21) to compute Tn may be
computationally expensive. In such a scenario, if some consistent
and computationally cheaper estimator η̃ is available (e.g., Bickel
et al. 2013), we can adapt the plug-in approach in Zheng, Zhao,
and Yu (2012) to construct a goodness-of-fit statistic based on
η̃. More precisely, let Vm

Q,i(η) = (Vm(1)
Q,i (η)′, Vm(2)

Q,i (η)′)′, where
Vm(1)

Q,i (η) and Vm(2)
Q,i (η) are (k − dim(η0)) × 1 and dim(η0) × 1,

respectively. Then define

Vm∗,i(̃η) = Vm(1)
Q,i (̃η) −

(
1
n

n∑
i=1

∂Vm(1)
Q,i (̃η)

∂η′

)
[

1
n

n∑
i=1

∂Vm(2)
Q,i (̃η)

∂η′

]−1

Vm(2)
Q,i (̃η).

The goodness-of-fit statistic is obtained as

T̃n = 2 sup
λ

n∑
i=1

log(1 + λ′Vm∗,i(̃η)).

Note that this statistic does not involve minimization for η as
in (21). By applying the same argument in Zheng, Zhao, and Yu
(2012), we can show that T̃n is asymptotically equivalent to Tn.

3.4. Other Network Models

The goodness-of-fit testing approach in the previous section
can be applied to other network models. Once we specify the

function w(·, ·; η) in (9) with parameters η, we can take a
set of subgraphs (R1, . . . , Rk) and characterize the moments
θ(η) = (Q(R1; η), . . . , Q(Rk; η))′ implied from the model
w(·, ·; η). Then the JEL goodness-of-fit statistic is obtained as in
(20) and (21).

For example, Bhattacharyya and Bickel (2015, sec. 5.3) con-
sidered the function w(u, v) = (1−u)−1/2(1−v)−1/2 motivated
by the preferential attachment model, where the (m+1)th vertex
attaches to one of the preceding m vertices with probability pro-
portional to degree. Other examples include w(u, v) = exp(u +
v)/{1 + exp(u + v)} based on the β-model (see, e.g., Chatterjee,
Diaconis, and Sly 2011), and the random threshold graphs with
w(u, v) = I{F(u) + F(v) ≥ α} for some cumulative distribution
function F and α > 0 (see, e.g., Diaconis and Janson 2008).

4. Simulation

This section conducts a simulation study to evaluate the finite
sample properties of the JEL inference methods. In particular,
we consider a stochastic block model with K = 2 equal-sized
communities and the following edge probabilities

Fab = P(Aij = 1|i ∈ a, j ∈ b) = snSab, for a, b ∈ {1, 2}.

We set S =
(

0.6 0.4
0.4 0.4

)
and vary sn such that ρn = 0.45sn =

π ′Fπ ∈ (0.1, 0.05, 0.02) with π = (0.5, 0.5)′. The cases of ρn =
0.05 or 0.02 may be considered as sparse networks. For example,
Facebook networks considered in Section 5.2 exhibit ρn ≈ 0.02.

We compare four methods to construct confidence intervals
for (a) P(R) where R is (1,2)-wheels, (b) P(R)(= Q(R)) where
R is 3-cycles (or triangles), (c) Q(R) where R is (1,2)-wheels,
and (d) Q(R) where R is (1,3)-wheels: (i) Wald-type confidence
interval (Wald), which is defined as [θ̂ ± 1.96σ̂ ] with σ̂ 2 =
n−1

n
∑n

i=1(θ̂
(i) − θ̂ )2, (ii) bootstrap confidence interval (Boot),

which is defined as [θ̂ −c∗
97.5σ̂ , θ̂ −c∗

2.5σ̂ ] with the αth percentile
of the bootstrap approximation c∗

α based on the node resampling
network bootstrap by Green and Shalizi (2017) with 199 boot-
strap replications, (iii) jackknife empirical likelihood confidence
interval (JEL) using the χ2 critical value, and (iv) modified
jackknife empirical likelihood confidence interval (mJEL).

Tables 1–4 give the empirical coverage rates and average
lengths of the confidence intervals above for (a)–(d), respec-
tively. The number of Monte Carlo replications is 1000 for
(a)–(c), and 500 for (d). To highlight desirable finite sample
performance of our JEL methods, we set the network size as
n = 400, which is quite small in the context of network data
analysis. Our empirical analysis in the next section considers
larger networks such as Facebook data. The nominal rate is 0.95.
Main findings from the simulation study are in line with our
theoretical results. The Wald and JEL confidence intervals (using
the normal and χ2 critical values, respectively) tend to over-
cover especially when the network is sparse, which verifies our
theoretical results mentioned in Remark 2.

The bootstrap-based intervals are more accurate than the
Wald and JEL except for the case of ρn = 0.02. When ρn =
0.02, the bootstrap-based intervals severely under-cover for
wheels, and over-cover for 3-cycles. On the other hand, the
mJEL confidence intervals are most robust to the sparsity of
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Table 1. Coverage rates and average lengths of 95% confidence intervals for P(R) with R = (1, 2)-wheel and n = 400.

Coverage rates Average interval lengths

ρn Wald Boot JEL mJEL Wald Boot JEL mJEL

0.1 0.984 0.933 0.981 0.946 0.0013 0.0011 0.0012 0.0011
0.05 0.984 0.917 0.984 0.952 0.00046 0.00039 0.00045 0.00035
0.02 0.992 0.833 0.991 0.944 0.00012 0.00009 0.00012 0.00009

Table 2. Coverage rates and average lengths of 95% confidence intervals for P(R) with R = 3-cycle and n = 400.

Coverage rates Average interval lengths

ρn Wald Boot JEL mJEL Wald Boot JEL mJEL

0.1 0.987 0.966 0.987 0.949 0.00025 0.00023 0.00025 0.00020
0.05 0.991 0.969 0.990 0.940 0.000045 0.000039 0.000046 0.000032
0.02 0.998 0.983 0.998 0.947 0.0000071 0.0000065 0.0000072 0.0000054

Table 3. Coverage rates and average lengths of 95% confidence intervals for Q(R) with R = (1, 2)-wheel and n = 400.

Coverage rates Average interval lengths

ρn Wald Boot JEL mJEL Wald Boot JEL mJEL

0.1 0.980 0.942 0.980 0.946 0.0015 0.0014 0.0015 0.0013
0.05 0.982 0.924 0.985 0.954 0.00049 0.00042 0.00049 0.00038
0.02 0.992 0.848 0.990 0.942 0.00012 0.00010 0.00012 0.000087

Table 4. Coverage rates and average lengths of 95% confidence intervals for Q(R) with R = (1, 3)-wheel and n = 400.

Coverage rates Average interval lengths

ρn Wald Boot JEL mJEL Wald Boot JEL mJEL

0.1 0.986 0.888 0.988 0.944 0.00095 0.00082 0.00095 0.00079
0.05 0.988 0.750 0.988 0.954 0.00016 0.00012 0.00016 0.00012
0.02 0.994 0.464 0.994 0.934 0.000016 0.000010 0.000016 0.000011

the network compared to the other intervals, and offer close-to-
correct empirical coverages in all cases. Furthermore, in terms
of the average lengths of the confidence intervals, the mJEL
outperforms other methods for all cases. Overall, the modified
JEL method exhibit excellent finite sample performances even
for a very small sample size.

5. Real Data Example

5.1. Karate Club Network

We consider the well-known karate club data of Zachary (1977)
which describe social network friendships between 34 members
of a karate club at a U.S. university in the 1970s. It is known that
the members split into two groups after a disagreement on class
fees later (Zachary 1977). We assess whether this ground truth
fact is formally supported by the observed network data using
our method.

Let Wk,l be a (k, l)-wheel. Under the null hypothesis that the
data is generated from a stochastic block model with K = 1 (i.e.,
Erdős-Rényi model), the modified JEL test based on Q(W11) and
Q(W12) gives the p-value of 0.0043 (the value of the statistic is
8.13) indicating strong evidence to reject the null hypothesis. On
the other hand, the JEL and Wald statistics take rather smaller
values (4.56 and 3.03, respectively). Under the χ2 critical values
which are valid in the mildly and moderately sparse cases, their
p-values are 0.033 for the JEL and 0.082 for the Wald. Thus, the
Wald test cannot reject the null of K = 1 at 5% significance level.

5.2. Facebook Network

Using Facebook network data by Rossi and Ahmed (2015), we
test whether two network data share the same features in terms
of the transitivity (i.e., ϑ = Q(R1)/Q(R2) or P(R1)/{P(R1) +
P(R2)}, where R1 is a 3-cycle and R2 is a (1,2)-wheel).

The modified JEL statistic is defined as minϑ �hom
m (ϑ , ϑ),

where

�hom
m (ϑ1, ϑ2) = 2 min

θ1∈{θ1:h(θ1)=ϑ1}
sup
λ1

n∑
l1=1

log(1 + λ′
1Vm

1l1(θ1))

+ 2 min
θ2∈{θ2:h(θ2)=ϑ2}

sup
λ2

m∑
l2=1

log(1 + λ′
2Vm

2l2(θ2)),

θ1 = (Q1(R1), Q1(R2)), θ2 = (Q2(R1), Q2(R2)), h(θ) =
Q(R1)/Q(R2), and Vm

1l1(θ) and Vm
2l2(θ) are defined as in (16)

using {A1
ij} and {A2

ij}, respectively. If {A1
ij} and {A2

ij} are indepen-

dent, we have minθ �hom
m (ϑ , ϑ)

d→ χ2
1 under H0 : ϑ1 = ϑ2 and

analogous conditions to Theorem 4.
Transitivity in this example refers to the case where the friend

of your friend is also a friend of yours, and is of substantial
interest in the social network literature (see, e.g., Section 7
of Graham 2020). We consider two college pairs: (Williams,
Wellesley) and (Rice, Johns Hopkins). Table 3 gives a summary
of the networks we used. Williams and Wellesley are chosen
as examples of strong liberal arts colleges with relatively small
number of students. We choose Rice and Johns Hopkins since
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Table 5. Summary of college networks we used.

Williams Wellesley Rice Johns Hopkins

Nodes 2790 2970 4087 5180
Edges 112986 94899 184828 186586
Densities 0.0290 0.0215 0.0221 0.0139
Transitivities 0.2075 0.1727 0.2032 0.1932

they have similar numbers of nodes and edges in our data as
shown in Table 3.

For Williams and Wellesley, under the null hypothesis that
the two network data share the same features in terms of the
transitivity, the p-values are 7.8770e-13 and 1.1957e-13 for the
JEL and modified JEL tests, respectively (the values of the statis-
tics are 51.31 and 55.01, respectively). Thus, both tests indicate
strong evidence to reject the null hypothesis (Table 5).

On the other hand, for Rice and Johns Hopkins, the JEL test
gives the p-value of 0.053 (the value of the test statistic is 3.74)
and hence cannot reject the null at 5% level, while the modified
JEL gives the p-value of 0.048 (the value of the test statistic is
3.90) and delivers marginal significance at the 5% level.

6. Conclusion

In this article, we extend the methodology of jackknife empir-
ical likelihood for network moments, and study its asymptotic
properties for different types of sparsity. We find that the jack-
knife empirical likelihood statistic for acyclic or cyclic subgraph
moments loses its asymptotic pivotalness in the severely or mod-
erately sparse case, respectively, and a modification is possible
to recover pivotalness under those sparsity conditions. Several
applications for specification, two-sample, or goodness-of-fit
testing and numerical examples illustrate usefulness of the pro-
posed approach, particularly the modified jackknife empirical
likelihood statistic.

There are several directions of future research. First, it is
interesting to extend our method to cover more general net-
work models, such as degree-corrected block models (Karrer
and Newman 2011) and inhomogeneous Erdős-Rényi models
(Bollobás, Janson, and Riordan 2007), which are not covered
by the nonparametric latent variable model considered in this
article. Second, it is important to generalize our framework
to accommodate covariates. Third, as mentioned in a remark
of Theorem 6, it is worthwhile to study use of the (modified)
jackknife empirical likelihood statistics for different hypotheses
to construct a valid model selection procedure.

Supplementary Materials

The supplementary material contains the proofs for the proposition and
theorems in this article.
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