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Abstract
We study the mean–variance hedging of an American-
type contingent claim that is exercised at a random
time in a Markovian setting. This problem is motivated
by applications in the areas of employee stock option
valuation, credit risk, or equity-linked life insurance
policies with an underlying risky asset value guarantee.
Our analysis is based on dynamic programming and
uses PDE techniques. In particular, we prove that the
complete solution to the problem can be expressed in
terms of the solution to a system of one quasi-linear
parabolic PDE and two linear parabolic PDEs. Using
a suitable iterative scheme involving linear parabolic
PDEs and Schauder’s interior estimates for parabolic
PDEs, we show that each of these PDEs has a classical
𝐶1,2 solution. Using these results, we express the claim’s
mean–variance hedging value that we derive as its
expected discounted payoff with respect to an equiv-
alent martingale measure that does not coincide with
the minimal martingale measure, which, in the context
that we consider, identifies with the minimum entropy
martingalemeasure aswell as the variance-optimalmar-
tingale measure. Furthermore, we present a numerical
study that illustrates aspects of our theoretical results.
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1 INTRODUCTION

We consider a frictionless financial market consisting of two primary assets. The first one is risk-
free and its unit initialized price is given by

d𝐵𝑡 = 𝑟(𝑡)𝐵𝑡 d𝑡, 𝐵0 = 1. (1)

The second one is risky and has price process 𝑆 that is modeled by the solution to the SDE

d𝑆𝑡 = 𝜇(𝑡, 𝑆𝑡)𝑆𝑡 d𝑡 + 𝜎(𝑡, 𝑆𝑡)𝑆𝑡 d𝑊𝑡, 𝑆0 = 𝑠 > 0. (2)

In this market, we consider an American-type contingent claim with maturity time 𝑇 > 0 that is
exercised at time 𝜂 ∧ 𝑇, where 𝜂 is a random time that is characterized by a hazard rate process(
𝓁(𝑡, 𝑆𝑡), 𝑡 ≥ 0

)
(see Equation 12 for the precise definition). Once exercised, the claim yields the

payoff

𝐹E(𝜂, 𝑆𝜂)𝟏{𝜂<𝑇} + 𝐹T(𝑆𝑇)𝟏{𝜂≥𝑇} (3)

to its holder.
The study of such contingent claims has beenmotivated by three types of applications. The first

one is in the context of employee stock options (ESOs). To fix ideas, consider a firm that issues an
ESO that expires at time𝑇 and is vested at time𝑇v ∈ [0, 𝑇[, meaning that the ESO can be exercised
at any time between 𝑇v and 𝑇. The firm estimate that the holder of the ESO will either exercise it
or have their job terminated at time 𝜂 ∧ 𝑇. If we denote by 𝐹 the payoff function of the ESO, then
the functions 𝐹E and 𝐹T in Equation (3) are given by

𝐹E(𝑡, 𝑠) = 𝐹(𝑠)𝟏[𝑇v ,𝑇](𝑡) and 𝐹T(𝑠) = 𝐹(𝑠), for 𝑡 ∈ [0, 𝑇[ and 𝑠 > 0. (4)

The use of a random time 𝜂 to model the exercise time of an ESO arises from endogenous consid-
erations and has become popular in the literature. Indeed, an ESO’s holder faces restrictions in
trading the option and might exercise the option earlier than dictated by risk-neutrality if in need
of liquidity.
Credit risk is the second area of application, in which, the random time 𝜂 models an exoge-

nous shock. In this context, suppose that the underlying risky asset is default-free and consider a
European option’s writer who faces the risk of default at a random time 𝜂. If we denote by 𝐹 the
payoff function of the European option that such a writer sells, then the functions 𝐹E and 𝐹T in
Equation (3) that represent the options holder’s payoff are given by

𝐹E(𝑡, 𝑠) = δ(𝑡)𝐹(𝑠) and 𝐹T(𝑠) = 𝐹(𝑠), for 𝑡 ∈ [0, 𝑇[ and 𝑠 > 0,
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KLADÍVKO and ZERVOS 3

where the function δmodels the recovery rate.
The third area of application arises in the context of equity-linked life insurance policies with

an underlying risky asset value guarantee. Such a policy payoff depends on the performance of a
risky asset, such as the value of a reference portfolio, subject to a minimum guaranteed benefit.
The policy matures at time 𝑇 if the insured is still alive and has not withdrawn from the policy. On
the other hand, it expires early if the insured dies or withdraws from the policy at a random time
𝜂 prior to 𝑇. A standard example of a policy payoff function 𝐹 is given by 𝐹(𝑡, 𝑠) = max{𝐾𝑒δ𝑡, 𝑠},
where 𝐾 is a fixed guarantee (sometimes 𝐾 = 𝑆0) and δ is a fixed guarantee rate. In terms of the
functions 𝐹E and 𝐹T in Equation (3), we have the following examples:

Pure endowment policy: 𝐹E(𝑡, 𝑠) = 0 and 𝐹T(𝑠) = 𝐹(𝑇, 𝑠);

Term insurance policy: 𝐹E(𝑡, 𝑠) = 𝐹(𝑡, 𝑠) and 𝐹T(𝑠) = 0;

Endowment policy: 𝐹E(𝑡, 𝑠) = 𝐹(𝑡, 𝑠) and 𝐹T(𝑠) = 𝐹(𝑇, 𝑠).

The time 𝜂 ∧ 𝑇 at which the claim is liquidated introducesmarket incompleteness in themodel
because 𝜂 is not a stopping time but a random time. As a result, perfect hedging of the claim’s
payoff is not possible. Therefore, one has to rely on an incomplete market methodology (see
Rheinlander & Sexton, 2011 for a textbook).
The super-replication value of the claim that we consider is obtained by viewing the liquidation

time 𝜂 ∧ 𝑇 as a discretionary stopping time and then treating the claim as a standard American
option. Such a value of the claim is unrealistically high because it ignores all of the modeling
issues that give rise to the consideration of the random time 𝜂. Indeed, it is this observation that
has given rise to most of the relevant research literature.
Another approach is to assign a value to the claim by computing its expected discounted payoff

with respect to a martingale measure. For instance, we can assign the risk-neutral value

𝑥rn = 𝔼
ℚ1

[
𝑒− ∫ 𝜂∧𝑇

0
𝑟(𝑢) d𝑢

(
𝐹E(𝜂, 𝑆𝜂)𝟏{𝜂<𝑇} + 𝐹T(𝑆𝑇)𝟏{𝜂≥𝑇}

)]
(5)

to the claim, whereℚ1 is theminimal martingale measure, which, in the context that we consider
here, coincides with the variance-optimal martingale measure as well as the minimum entropy
measure (see Remarks 2.5 and 4.4). In the context of ESO valuation, such a choice was proposed
by Jennergren and Näslund (1993) and Carr and Linetsky (2000) by appealing to a heuristic diver-
sification argument, which amounts to assuming that the jump risk is not priced. In the context
of pricing unit-linked life insurance policies, the same choice was proposed by Aase and Persson
(1994) and features in part of the analysis by Møller (1998). Furthermore, the minimal martin-
gale measure is a standard choice in the intensity-based credit risk theory (e.g., see Bielecki &
Rutkowski, 2002, Chapter 13).
Here, we establish the existence of a different martingale measure that arises from the mean–

variance hedging of the claim’s payoff. To this end, we consider the optimization problem

minimize 𝔼
ℙ
[(

𝑒− ∫ 𝜂∧𝑇

0
𝑟(𝑢) d𝑢

(
𝑋𝑥,𝜋
𝜂∧𝑇 − 𝐹E(𝜂, 𝑆𝜂)𝟏{𝜂<𝑇} − 𝐹T(𝑆𝑇)𝟏{𝜂≥𝑇}

))2]
over (𝑥, 𝜋), (6)

where𝑋𝑥,𝜋 is the value process of an admissible self-financing portfolio strategy 𝜋 that starts with
initial endowment 𝑥 andℙ is the natural probabilitymeasure.We solve this problem by first using
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4 KLADÍVKO and ZERVOS

the properties of the random time 𝜂 to integrate it out of the performance criterion in Equation (6)
and obtain a performance index involving stochastic optimal control over a finite timehorizon.We
then use dynamic programming and PDE techniques. In particular, we prove that the complete
solution to the problem can be expressed in terms of the solution to a system of one quasi-linear
parabolic PDE and two linear parabolic PDEs. Using a suitable iterative scheme involving linear
parabolic PDEs and Schauder’s interior estimates for parabolic PDEs, we show that each of these
PDEs has a classical 𝐶1,2 solution. Furthermore, we identify a martingale measure ℚ such that
the portfolio’s initial endowment 𝑥mvh arising from the solution to the problem in Equation (6)
admits the expression

𝑥mvh = 𝔼
ℚ
[
𝑒− ∫ 𝜂∧𝑇

0
𝑟(𝑢) d𝑢

(
𝐹E(𝜂, 𝑆𝜂)𝟏{𝜂<𝑇} + 𝐹T(𝑆𝑇)𝟏{𝜂≥𝑇}

)]
(7)

(see Remark 4.2). In full generality, this martingale measureℚ is different from the minimal mar-
tingale measure ℚ1, which, in the context that we consider here, identifies with the minimum
entropy martingale measure as well as the variance-optimal martingale measure, because the
mean–variance hedging is implemented in the random time interval [0, 𝜂 ∧ 𝑇] rather than in the
deterministic time interval [0, 𝑇] (see Remarks 2.5 and 4.3).
In the context of the credit risk applications including the one discussed above, Bielecki et al.

(2004, Section 9), Biagini and Cretarola (2007, Section 6), and several references therein study the
mean–variance hedging of a payoff delivered at a given time 𝑇 (see Remark 4.3 for more context).
Using ideas from Jeanblanc et al. (2012), Kharroubi et al. (2013) study a problem ofmean–variance
hedging of a contingent claim’s payoff over a random time horizon, which has several similarities
to the problem that we study here. However, the techniques that these authors use and the nature
of the results that they obtain are different from the ones in this paper. In particular, they show
that the problem admits an optimal strategy that is described by the solution to a system of BSDEs
with random time horizon and prove that this system of BSDEs does have a solution.
The paper is organized as follows. In Section 2, we formulate the mean–variance hedging prob-

lem that we study. In Section 3, we derive the classical solution to the problem’s HJB equation,
which reduces to a system of one quasi-linear parabolic PDE and two linear parabolic PDEs. We
establish themain results on themean–variance hedging of the claim’s payoff in Section 4. Finally,
we present a numerical investigation of the theory that we develop in Section 5. In this last section,
we focus on ESO valuation because there is a rather large body of relevant literature, particularly,
on the more applied side.

2 THE SETTING

We build the model that we study on a complete probability space (Ω,, ℙ) carrying a standard
one-dimensional Brownian motion𝑊 as well as an independent random variable 𝑈 that has the
uniform distribution on [0,1]. We denote by (𝑡) the natural filtration of 𝑊, augmented by the
ℙ-negligible sets in .
We fix a time horizon 𝑇 > 0 and we consider a frictionless market consisting of two primary

assets with price processes given by Equations (1) and (2) in the introduction. The value pro-
cess 𝑋𝑥,𝜋 of a self-financing portfolio with a position in these two assets that starts with initial
endowment 𝑥 has dynamics given by

d𝑋𝑥,𝜋
𝑡 =

(
𝑟(𝑡)𝑋𝑥,𝜋

𝑡 + 𝜎(𝑡, 𝑆𝑡)𝜗(𝑡, 𝑆𝑡)𝜋𝑡

)
d𝑡 + 𝜎(𝑡, 𝑆𝑡)𝜋𝑡 d𝑊𝑡, 𝑋𝑥,𝜋

0 = 𝑥, (8)
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KLADÍVKO and ZERVOS 5

where 𝜋𝑡 is the amount of money invested in the risky asset at time 𝑡 and

𝜗(𝑡, 𝑆𝑡) =
𝜇(𝑡, 𝑆𝑡) − 𝑟(𝑡)

𝜎(𝑡, 𝑆𝑡)
, 𝑡 ≥ 0,

defines the market price of risk process. We make the following assumption.

Assumption 2.1. The functions 𝑟 ∶ [0, 𝑇] → ℝ and 𝜎, 𝜗 ∶ [0, 𝑇] × ℝ+ → ℝ are 𝐶2. Furthermore,
there exists a constant 𝜅 ≥ 1 such that

0 < 𝜎(𝑡, 𝑠), 𝜅−1 ≤ 𝜎2(𝑡, 𝑠) ≤ 𝜅, ||𝑟(𝑡)|| ≤ 𝜅 (9)

and

𝜗2(𝑡, 𝑠) + ||𝜎𝑡(𝑡, 𝑠)|| + (𝑠 + 1)||𝜎𝑠(𝑡, 𝑠)|| + 𝑠2||𝜎𝑠𝑠(𝑡, 𝑠)|| + (𝑠 + 1)||𝜗𝑠(𝑡, 𝑠)|| + 𝑠2||𝜗𝑠𝑠(𝑡, 𝑠)|| ≤ 𝜅 (10)

for all 𝑡 ∈ [0, 𝑇] and 𝑠 > 0.1

Apart from ensuring that the SDE (2) has a unique strong solution, this assumption includes
several conditions that wewill need in the analysis of the stochastic control problem that we solve.
We restrict our attention to admissible portfolio strategies that are introduced by the following

definition.

Definition 2.2. A portfolio process 𝜋 is admissible if it is (𝑡)-progressively measurable and

𝔼
ℙ
[
∫

𝑇

0

𝜋2
𝑡 d𝑡

]
< ∞. (11)

We denote by the family of all such portfolio processes.

In this context, we consider an American-type contingent claim with maturity time 𝑇 > 0 that
may be liquidated at a random time 𝜂 ∧ 𝑇. On the event of early exercise, namely, on the event
{𝜂 < 𝑇}, the claim yields a payoff 𝐹E(𝜂, 𝑆𝜂). On the event {𝜂 ≥ 𝑇}, the claim yields a payoff 𝐹T(𝑆𝑇).
Furthermore, we model the random time 𝜂 by

𝜂 = inf

{
𝑡 ≥ 0

||| exp
(
−∫

𝑡

0

𝓁(𝑢, 𝑆𝑢) d𝑢

)
≤ 𝑈

}
. (12)

We make the following additional assumption.

Assumption 2.3. The functions𝐹T ∶ ℝ+ → ℝ and𝓁, 𝐹E ∶ [0, 𝑇] × ℝ+ → ℝ are𝐶1. Furthermore,
there exist constants 𝜅 ≥ 12 and 𝜉 ≥ 1 such that

0 ≤ 𝓁(𝑡, 𝑠), (𝑠 + 1)𝓁(𝑡, 𝑠) + 𝑠||𝓁𝑠(𝑡, 𝑠)|| ≤ 𝜅, 0 ≤ 𝐹E(𝑡, 𝑠), 0 ≤ 𝐹T(𝑠) (13)

and 𝐹E(𝑡, 𝑠) + 𝑠||(𝐹E)𝑠(𝑡, 𝑠)|| + 𝐹T(𝑠) + 𝑠||𝐹′
T(𝑠)

|| ≤ 𝜅(1 + 𝑠𝜉) (14)
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6 KLADÍVKO and ZERVOS

for all 𝑡 ∈ [0, 𝑇] and 𝑠 > 0.

Remark 2.4. The independence of 𝑈 and ∞ imply that

ℙ(𝜂 > 𝑡 ∣ 𝑡) = ℙ

(
𝑈 < exp

(
−∫

𝑡

0

𝓁(𝑢, 𝑆𝑢) d𝑢

) ||| 𝑡

)
= exp

(
−∫

𝑡

0

𝓁(𝑢, 𝑆𝑢) d𝑢

)
. (15)

We denote by (𝑡) the filtration derived by rendering right-continuous the filtration defined by𝑡 ∨ 𝜎
(
{𝜂 ≤ 𝑠}, 𝑠 ≤ 𝑡

)
, for 𝑡 ≥ 0. It is a standard exercise of the credit risk theory to show that the

process𝑀 defined by

𝑀𝑡 = 𝟏{𝜂≤𝑡} − ∫
𝑡∧𝜂

0

𝓁(𝑢, 𝑆𝑢) d𝑢 (16)

is a (𝑡)-martingale.
Remark 2.5. In the context that we consider here, the so-called (H) hypothesis, namely, every
square integrable (𝑡)-martingale is a square integrable (𝑡)-martingale, which is equivalent to

ℙ(𝜂 > 𝑡 ∣ 𝑡) = ℙ(𝜂 > 𝑡 ∣ ∞) for all 𝑡 ≥ 0,

is satisfied (see Blanchet-Scalliet & Jeanblanc, 2004, Section 3.2).
The family of all probability measures that are equivalent to ℙ is characterized by (𝑡)-

predictable processes 𝛾 > 0 satisfying suitable integrability conditions. Given such a process, the
solution to the SDE

d𝐿
𝛾
𝑡 = (𝛾𝑡− − 1)𝐿

𝛾
𝑡− d𝑀𝑡 − 𝜗(𝑡, 𝑆𝑡)𝐿

𝛾
𝑡 d𝑊𝑡,

where𝑀 is the (𝑡)-martingale defined by Equation (16), which is given by

𝐿
𝛾
𝑡 = exp

(
𝟏{𝜂≤𝑡} ln 𝛾𝜂 − ∫

𝑡∧𝜂

0

𝓁(𝑢, 𝑆𝑢)
(
𝛾𝑢 − 1

)
d𝑢 −

1

2 ∫
𝑡

0

𝜗2(𝑢, 𝑆𝑢) d𝑢 − ∫
𝑡

0

𝜗(𝑢, 𝑆𝑢) d𝑊𝑢

)
,

defines an exponential martingale. If we denote by ℚ𝛾 the probability measure on (Ω,𝑇) that
has Radon–Nikodym derivative with respect to ℙ given by dℚ𝛾

dℙ
|𝑇 = 𝐿

𝛾
𝑇 , then Girsanov’s theorem

implies that the process
(
𝑊̃𝑡, 𝑡 ∈ [0, 𝑇]

)
is a standard Brownian motion under ℚ𝛾, while the

process
(
𝑀̃𝑡, 𝑡 ∈ [0, 𝑇]

)
is a martingale underℚ𝛾, where

𝑊̃𝑡 = ∫
𝑡

0

𝜗(𝑢, 𝑆𝑢) d𝑢 +𝑊𝑡 and 𝑀̃𝑡 = 𝟏{𝜂≤𝑡} − ∫
𝑡∧𝜂

0

𝓁(𝑢, 𝑆𝑢)𝛾𝑢 d𝑢, for 𝑡 ∈ [0, 𝑇].

Furthermore, the price process of the risky asset satisfies the SDE

d𝑆𝑡 = 𝑟(𝑡)𝑆𝑡 d𝑡 + 𝜎(𝑡, 𝑆𝑡)𝑆𝑡 d𝑊̃𝑡, 𝑆0 = 𝑠 > 0,

in the time interval [0, 𝑇], while the conditional distribution of 𝜂 is given by

ℚ𝛾(𝜂 > 𝑡 ∣ 𝑡) = exp

(
−∫

𝑡

0

𝓁(𝑢, 𝑆𝑢)𝛾𝑢 d𝑢

)
, for 𝑡 ∈ [0, 𝑇]. (17)
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KLADÍVKO and ZERVOS 7

The claims in this paragraph can be found in Blanchet-Scalliet et al. (2005, Proposition 1) and
Björk et al. (1997, Theorem 3.12).
In the context of contingent claims with random maturity, Biagini and Cretarola (2007, (36)

on p. 441 and Lemma 5.7) show that the minimal martingale measure (Biagini & Cretarola, 2007,
Definition 5.5; Blanchet-Scalliet et al., 2005, Definition 3) coincides with the variance-optimal
martingale measure (Biagini & Cretarola, 2007, p. 440; Szimayer, 2004, Definition 3.(a)) if 𝓁 is
a deterministic function of time. Blanchet-Scalliet et al. (2005, Propositions 6 and 7) show that
the minimum entropy martingale measure (Blanchet-Scalliet et al., 2005, Definition 4; Szimayer,
2004,Definition 3.(b)) coincideswith theminimalmartingalemeasure if𝜎 and𝜗 are deterministic
functions of time. Furthermore, Szimayer (2004, Theorem 4) shows that the minimum entropy
measure coincides with the variance-optimal measure if 𝜎 and 𝜗 are constants. The identity of
the three martingale measures remains valid in the setting of stochastic 𝜎, 𝜗, and 𝓁 that we con-
sider here thanks to a proof that was communicated to us by Professor Tahir Choulli. These three
martingale measures correspond to the choice 𝛾 = 1.

In the setting we have developed thus far, we consider the problem of investing an initial
amount 𝑥 in a self-financing portfolio with a view to hedging the claim’s payoff. To this end,
we are faced with the market’s incompleteness. We, therefore, consider minimizing the expected
squared hedging error, which gives rise to the stochastic control problem that aims at minimizing
the performance criterion

𝐽𝑇,𝑥,𝑠(𝜋) = 𝔼
ℙ
[
𝑒−2 ∫

𝜂∧𝑇

0
𝑟(𝑢) d𝑢

(
𝑋𝑥,𝜋
𝜂∧𝑇 − 𝐹E(𝜂, 𝑆𝜂)𝟏{𝜂<𝑇} − 𝐹T(𝑆𝑇)𝟏{𝜂≥𝑇}

)2]
(18)

over all admissible self-financing portfolio strategies. In view of the underlying probabilistic
setting, this performance index admits the expression

𝐽𝑇,𝑥,𝑠(𝜋) = 𝔼
ℙ
[
∫

𝑇

0

𝑒−Λ𝑡𝓁(𝑡, 𝑆𝑡)
(
𝑋𝑥,𝜋
𝑡 − 𝐹E(𝑡, 𝑆𝑡)

)2
d𝑡 + 𝑒−Λ𝑇

(
𝑋𝑥,𝜋
𝑇 − 𝐹T(𝑆𝑇)

)2]
, (19)

where

Λ𝑡 = ∫
𝑡

0

(
2𝑟(𝑢) + 𝓁(𝑢, 𝑆𝑢)

)
d𝑢.

The value function of the resulting optimization problem is defined by

𝑣(𝑇, 𝑥, 𝑠) = inf
𝜋∈ 𝐽𝑇,𝑥,𝑠(𝜋). (20)

3 THE CLASSICAL SOLUTION TO THE HJB EQUATION

In view of standard stochastic control theory, the value function 𝑣 should identify with a solution
𝑤 to the HJB PDE

𝑤𝑡(𝑡, 𝑥, 𝑠)

+ inf
𝜋

{
1

2
𝜎2(𝑡, 𝑠)𝜋2𝑤𝑥𝑥(𝑡, 𝑥, 𝑠) + 𝜎2(𝑡, 𝑠)𝑠𝜋𝑤𝑥𝑠(𝑡, 𝑥, 𝑠) +

(
𝑟(𝑡)𝑥 + 𝜎(𝑡, 𝑠)𝜗(𝑡, 𝑠)𝜋

)
𝑤𝑥(𝑡, 𝑥, 𝑠)

}
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8 KLADÍVKO and ZERVOS

+
1

2
𝜎2(𝑡, 𝑠)𝑠2𝑤𝑠𝑠(𝑡, 𝑥, 𝑠) + 𝜇(𝑡, 𝑠)𝑠𝑤𝑠(𝑡, 𝑥, 𝑠) −

(
2𝑟(𝑡) + 𝓁(𝑡, 𝑠)

)
𝑤(𝑡, 𝑥, 𝑠)

+ 𝓁(𝑡, 𝑠)
(
𝑥 − 𝐹E(𝑡, 𝑠)

)2
= 0 (21)

that satisfies the boundary condition

𝑤(𝑇, 𝑥, 𝑠) =
(
𝑥 − 𝐹T(𝑠)

)2
. (22)

If the function 𝑤(𝑡, ⋅, 𝑠) is convex for all (𝑡, 𝑠) ∈ [0, 𝑇] × ℝ+, then the infimum in this PDE is
achieved by

𝜋†(𝑡, 𝑥, 𝑠) = −
𝜎(𝑡, 𝑠)𝑠𝑤𝑥𝑠(𝑡, 𝑥, 𝑠) + 𝜗(𝑡, 𝑠)𝑤𝑥(𝑡, 𝑥, 𝑠)

𝜎(𝑡, 𝑠)𝑤𝑥𝑥(𝑡, 𝑥, 𝑠)
(23)

and Equation (21) is equivalent to

𝑤𝑡(𝑡, 𝑥, 𝑠) −

(
𝜎(𝑡, 𝑠)𝑠𝑤𝑥𝑠(𝑡, 𝑥, 𝑠) + 𝜗(𝑡, 𝑠)𝑤𝑥(𝑡, 𝑥, 𝑠)

)2
2𝑤𝑥𝑥(𝑡, 𝑥, 𝑠)

+
1

2
𝜎2(𝑡, 𝑠)𝑠2𝑤𝑠𝑠(𝑡, 𝑥, 𝑠) + 𝑟(𝑡)𝑥𝑤𝑥(𝑡, 𝑥, 𝑠)

+ 𝜇(𝑡, 𝑠)𝑠𝑤𝑠(𝑡, 𝑥, 𝑠) −
(
2𝑟(𝑡) + 𝓁(𝑡, 𝑠)

)
𝑤(𝑡, 𝑥, 𝑠) + 𝓁(𝑡, 𝑠)

(
𝑥 − 𝐹E(𝑡, 𝑠)

)2
= 0. (24)

In view of the quadratic structure of the problem we consider, we look for a solution to this PDE
of the form

𝑤(𝑡, 𝑥, 𝑠) = 𝑓(𝑡, 𝑠)
(
𝑥 − 𝑔(𝑡, 𝑠)

)2
+ ℎ(𝑡, 𝑠), (25)

for some functions 𝑓, 𝑔, and ℎ. Substituting this expression for𝑤 in Equation (24), we can see that
the functions 𝑓, 𝑔, and ℎ should satisfy the PDEs

𝑓𝑡(𝑡, 𝑠) +
1

2
𝜎2(𝑡, 𝑠)𝑠2𝑓𝑠𝑠(𝑡, 𝑠) + 𝜇(𝑡, 𝑠)𝑠𝑓𝑠(𝑡, 𝑠) − 𝓁(𝑡, 𝑠)𝑓(𝑡, 𝑠) + 𝓁(𝑡, 𝑠)

−

(
𝜎(𝑡, 𝑠)𝑠𝑓𝑠(𝑡, 𝑠) + 𝜗(𝑡, 𝑠)𝑓(𝑡, 𝑠)

)2
𝑓(𝑡, 𝑠)

= 0, (26)

𝑔𝑡(𝑡, 𝑠) +
1

2
𝜎2(𝑡, 𝑠)𝑠2𝑔𝑠𝑠(𝑡, 𝑠) + 𝑟(𝑡)𝑠𝑔𝑠(𝑡, 𝑠) −

(
𝑟(𝑡) +

𝓁(𝑡, 𝑠)

𝑓(𝑡, 𝑠)

)
𝑔(𝑡, 𝑠)

+
𝓁(𝑡, 𝑠)𝐹E(𝑡, 𝑠)

𝑓(𝑡, 𝑠)
= 0, (27)

ℎ𝑡(𝑡, 𝑠) +
1

2
𝜎2(𝑡, 𝑠)𝑠2ℎ𝑠𝑠(𝑡, 𝑠) + 𝜇(𝑡, 𝑠)𝑠ℎ𝑠(𝑡, 𝑠) −

(
2𝑟(𝑡) + 𝓁(𝑡, 𝑠)

)
ℎ(𝑡, 𝑠)

+ 𝓁(𝑡, 𝑠)
(
𝐹E(𝑡, 𝑠) − 𝑔(𝑡, 𝑠)

)2
= 0 (28)

in [0, 𝑇] × ]0,∞[, with boundary conditions

𝑓(𝑇, 𝑠) = 1, 𝑔(𝑇, 𝑠) = 𝐹T(𝑠), and ℎ(𝑇, 𝑠) = 0. (29)

Before addressing the solvability of these PDEs, we need to consider the following result.
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KLADÍVKO and ZERVOS 9

Lemma 3.1. Consider Lipschitz continuous functions χ, 𝜎 such that ||χ(𝑡, 𝑠)|| + 𝜎2(𝑡, 𝑠) ≤ 𝐶 for all
𝑡 ∈ [0, 𝑇] and 𝑠 > 0, where 𝐶 > 0 is a constant. The SDE

d𝑆̂𝑡 = χ(𝑡, 𝑆̂𝑡)𝑆̂𝑡 d𝑡 + 𝜎(𝑡, 𝑆̂𝑡)𝑆̂𝑡 d𝐵𝑡, 𝑆̂0 = 𝑠 > 0, (30)

which is driven by a standard one-dimensional Brownian motion 𝐵, has a unique strong solution
such that, given constants 𝜉1 ∈ ℝ and 𝜉2 > 0,

𝔼
[
𝑆̂
𝜉1
𝑡

] ≤ 𝐶̂1𝑠
𝜉1 and 𝔼

[
sup
0≤𝑡≤𝑇 𝑆̂

2𝜉2
𝑡

]
< 𝐶̂2𝑠

2𝜉2 for all (𝑡, 𝑠) ∈ [0, 𝑇] × ]0,∞[, (31)

where 𝐶̂𝑖 = 𝐶̂𝑖(𝐶, 𝜉𝑖) > 0, 𝑖 = 1, 2, are constants.

Proof. The SDE (30) has a unique strong solution because the functions χ, 𝜎 satisfy the required
boundedness and Lipschitz continuity assumptions. Given any constant 𝜉1 ∈ ℝ, the boundedness
of 𝜎2 implies that the process𝑀(𝜉1) defined by

𝑀
(𝜉1)
𝑡 = exp

(
−
1

2
𝜉21 ∫

𝑡

0

𝜎2(𝑢, 𝑆̂𝑢) d𝑢 + 𝜉1 ∫
𝑡

0

𝜎(𝑢, 𝑆̂𝑢) d𝐵𝑢

)
, for 𝑡 ≥ 0,

is a martingale because Novikov’s condition is satisfied.

In view of this observation, we can see that

𝔼
[
𝑆̂
𝜉1
𝑡

]
= 𝑠𝜉1 𝔼

[
exp

(
𝜉1 ∫

𝑡

0

(
χ(𝑢, 𝑆̂𝑢) +

1

2
(𝜉1 − 1)𝜎2(𝑢, 𝑆̂𝑢)

)
d𝑢

)
𝑀

(𝜉1)
𝑡

]
≤ exp

(|𝜉1|𝐶𝑇 +
1

2

(
𝜉21 + |𝜉1|)𝐶𝑇)𝑠𝜉1 for all (𝑡, 𝑠) ∈ [0, 𝑇] × ]0,∞[,

and the first estimate in Equation (31) follows. On the other hand, given any 𝜉2 > 0, we use Itô’s
formula, Jensen’s inequality, the Burkholder–Davis–Gundy inequalities (see Karatzas & Shreve,
1988, Theorem 3.3.28) and Fubini’s theorem to obtain

𝔼

[
sup
0≤𝑡≤𝑇 𝑆̂

2𝜉2
𝑡

]
= 𝔼

[
sup
0≤𝑡≤𝑇

(
𝑠𝜉2 + ∫

𝑡

0

(
𝜉2χ(𝑢, 𝑆̂𝑢) +

1

2
𝜉2(𝜉2 − 1)𝜎2(𝑢, 𝑆̂𝑢)

)
𝑆̂
𝜉2
𝑢 d𝑢

+∫
𝑡

0

𝜉2𝜎(𝑢, 𝑆̂𝑢)𝑆̂
𝜉2
𝑢 d𝐵𝑢

)2]

≤ 4𝑠2𝜉 + 4𝑇 𝔼

[
∫

𝑇

0

(
𝜉2χ(𝑢, 𝑆̂𝑢) +

1

2
𝜉2(𝜉2 − 1)𝜎2(𝑢, 𝑆̂𝑢)

)2

𝑆̂
2𝜉2
𝑢 d𝑢

]

+ 4𝐶BDG 𝔼

[
∫

𝑇

0

𝜉22𝜎
2(𝑢, 𝑆̂𝑢)𝑆̂

2𝜉2
𝑢 d𝑢

]

≤ 4𝑠2𝜉2 + 4𝑇(2𝜉2 + 𝜉22)
2
𝐶2 ∫

𝑇

0

𝔼
[
𝑆̂
2𝜉2
𝑢

]
d𝑢 + 4𝐶BDG𝜉

2
2𝐶 ∫

𝑇

0

𝔼
[
𝑆̂
2𝜉2
𝑢

]
d𝑢,
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10 KLADÍVKO and ZERVOS

where 𝐶BDG > 0 is a constant. Combining these inequalities with the first estimate in Equation
(31), we derive the second estimate in Equation (31).
The following is the main result of the section.

Theorem 3.2. The following statements, which involve the constants 𝜅 ≥ 1 and 𝜉 ≥ 1 appearing in
Assumptions 2.1 and 2.3, hold true:

(I) The PDE (26) with the corresponding boundary condition in Equation (29) has a 𝐶1,2 solution
such that

̄
𝐾𝑓 ≤ 𝑓(𝑡, 𝑠) ≤ 1 and ||𝑓𝑠(𝑡, 𝑠)|| ≤ 𝐾̄𝑓𝑠

−1 for all 𝑡 ∈ [0, 𝑇] and 𝑠 > 0, (32)

for some 0 <
̄
𝐾𝑓 < 𝐾̄𝑓 that do not depend on (𝑡, 𝑠). Furthermore, if 𝜗2 > 0, then

𝑓(𝑡, 𝑠) < 1 for all 𝑡 ∈ [0, 𝑇[ and 𝑠 > 0. (33)

(II) The PDE (27) with the corresponding boundary condition in Equation (29) has a 𝐶1,2 solution
such that

0 ≤ 𝑔(𝑡, 𝑠) ≤ 𝐾𝑔(1 + 𝑠𝜉) for all 𝑡 ∈ [0, 𝑇] and 𝑠 > 0 (34)

and ||𝑔𝑠(𝑡, 𝑠)|| ≤ 𝐾𝑔(1 + 𝑠𝜉)𝑠−1 for all 𝑡 ∈ [0, 𝑇] and 𝑠 > 0, (35)

for some 𝐾𝑔 > 0 that does not depend on (𝑡, 𝑠).
(III) The PDE (28) with the corresponding boundary condition in Equation (29) has a 𝐶1,2 solution

such that

0 ≤ ℎ(𝑡, 𝑠) ≤ 𝐾ℎ(1 + 𝑠2𝜉) for all 𝑡 ∈ [0, 𝑇] and 𝑠 > 0, (36)

for some 𝐾ℎ > 0 that does not depend on (𝑡, 𝑠).

Proof. At several places in the proof, we adopt the standard convention of using a generic con-
stant ℭ > 0, which may depend on the constant 𝜅 appearing in Assumptions 2.1, 2.3, and on the
fixed time horizon 𝑇 > 0, to indicate an upper bound of a function. For instance, we will write||2𝑒𝑧𝜗(𝑡, 𝑒𝑧)𝜗𝑠(𝑡, 𝑒𝑧) − 𝑒𝜅𝑡𝑒𝑧𝓁𝑠(𝑡, 𝑒

𝑧)|| ≤ ℭ for all (𝑡, 𝑧) ∈ [0, 𝑇] × ℝ instead of the more accurate||2𝑒𝑧𝜗(𝑡, 𝑒𝑧)𝜗𝑠(𝑡, 𝑒𝑧) − 𝑒𝜅𝑡𝑒𝑧𝓁𝑠(𝑡, 𝑒
𝑧)|| ≤ 2𝜅3∕2 + 𝜅𝑒𝜅𝑇 .

Proof of (I). If we define

𝑓(𝑡, 𝑠) =
1

𝜙(𝑡, 𝑠)
, for 𝑡 ∈ [0, 𝑇] and 𝑠 > 0, (37)

then we can see that 𝑓 satisfies the PDE (26) with the corresponding boundary condition in
Equation (29) if and only if 𝜙 satisfies the PDE

𝜙𝑡(𝑡, 𝑠) +
1

2
𝜎2(𝑡, 𝑠)𝑠2𝜙𝑠𝑠(𝑡, 𝑠) +

(
𝑟(𝑡) − 𝜎(𝑡, 𝑠)𝜗(𝑡, 𝑠)

)
𝑠𝜙𝑠(𝑡, 𝑠)

−
(
𝓁(𝑡, 𝑠)𝜙(𝑡, 𝑠) − 𝓁(𝑡, 𝑠) − 𝜗2(𝑡, 𝑠)

)
𝜙(𝑡, 𝑠) = 0 (38)
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KLADÍVKO and ZERVOS 11

in [0, 𝑇] × ]0,∞[ with boundary condition

𝜙(𝑇, 𝑠) = 1, for 𝑠 > 0. (39)

Furthermore, if we write

𝜙(𝑡, 𝑠) = 𝑒2𝜅(𝑇−𝑡)𝜑(𝑡, ln 𝑠), for 𝑡 ∈ [0, 𝑇] and 𝑠 > 0, (40)

for some function (𝑡, 𝑧) ↦ 𝜑(𝑡, 𝑧), and we define

𝜁(𝑡, 𝑠) = 2𝜅 − 𝓁(𝑡, 𝑠) − 𝜗2(𝑡, 𝑠) ≥ 0,

then we can check that 𝜙 satisfies the PDE (38) with boundary condition (39) if and only if 𝜑
satisfies the PDE

𝜑𝑡(𝑡, 𝑧) +
1

2
𝜎2(𝑡, 𝑒𝑧)𝜑𝑧𝑧(𝑡, 𝑧) +

(
𝑟(𝑡) − 𝜎(𝑡, 𝑒𝑧)𝜗(𝑡, 𝑒𝑧) −

1

2
𝜎2(𝑡, 𝑒𝑧)

)
𝜑𝑧(𝑡, 𝑧)

−
(
𝑒2𝜅(𝑇−𝑡)𝓁(𝑡, 𝑒𝑧)𝜑(𝑡, 𝑧) + 𝜁(𝑡, 𝑒𝑧)

)
𝜑(𝑡, 𝑧) = 0 (41)

in [0, 𝑇] × ℝ with boundary condition

𝜑(𝑇, 𝑧) = 1, for 𝑧 ∈ ℝ. (42)

To solve this nonlinear PDE, we consider the family of linear PDEs

𝜑
𝜓
𝑡 (𝑡, 𝑧) +

1

2
𝜎2(𝑡, 𝑒𝑧)𝜑

𝜓
𝑧𝑧(𝑡, 𝑧) + χ0(𝑡, 𝑧)𝜑

𝜓
𝑧 (𝑡, 𝑧) − 𝛿𝜓(𝑡, 𝑧)𝜑𝜓(𝑡, 𝑧) = 0 (43)

in [0, 𝑇] × ℝ with boundary condition

𝜑𝜓(𝑇, 𝑧) = 1, for 𝑧 ∈ ℝ, (44)

which is parametrized by smooth positive functions 𝜓, where

χ0(𝑡, 𝑧) = 𝑟(𝑡) − 𝜎(𝑡, 𝑒𝑧)𝜗(𝑡, 𝑒𝑧) −
1

2
𝜎2(𝑡, 𝑒𝑧) (45)

and 𝛿𝜓(𝑡, 𝑧) = 𝑒2𝜅(𝑇−𝑡)𝓁(𝑡, 𝑒𝑧)𝜓(𝑡, 𝑧) + 𝜁(𝑡, 𝑒𝑧) ≥ 0. (46)

In particular, we note that a solution 𝜑 to Equation (41) satisfies Equation (43) for 𝜓 = 𝜑.
Conversely, a solution 𝜑𝜓 to Equation (43) such that 𝜓 = 𝜑𝜓 satisfies Equation (41).
Consider a 𝐶1,2 function 𝜓 satisfying

0 ≤ 𝜓(𝑡, 𝑧) ≤ 1 and |𝜓𝑧(𝑡, 𝑧)| ≤ 𝐶1 for all 𝑡 ∈ [0, 𝑇] and 𝑧 ∈ ℝ, (47)

for some constant 𝐶1. The properties of such a function and Assumption 2.1 imply the uniform
parabolicity, boundedness, and Lipschitz conditions required for the existence of a unique 𝐶1,2

function 𝜑𝜓 of polynomial growth that solves the Cauchy problem (43)–(44) (see Friedman, 2006,
Section 6.4 or Friedman, 2008, Section 1.7). In view of the Feynman–Kac formula (see Friedman,
2006, Section 6.5 or Karatzas & Shreve, 1988, Theorem 5.7.6), this function admits the probabilistic
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12 KLADÍVKO and ZERVOS

representation

𝜑𝜓(𝑡, 𝑧) = 𝔼

[
exp

(
−∫

𝑇

𝑡

𝛿𝜓(𝑢, 𝑍𝑢) d𝑢

) |||| 𝑍𝑡 = 𝑧

]
∈ ]0, 1], (48)

for 𝑡 ∈ [0, 𝑇] and 𝑧 ∈ ℝ, where 𝑍 is the strong solution to the SDE

d𝑍𝑡 = χ0(𝑡, 𝑍𝑡) d𝑡 + 𝜎(𝑡, 𝑒𝑍𝑡 ) d𝐵𝑡, 𝑍0 ∈ ℝ, (49)

which is driven by a standard one-dimensional Brownianmotion𝐵. Note that this SDE indeed has
a unique strong solution thanks toAssumption 2.1. Furthermore, Assumption 2.1 and the assump-
tions on 𝜓 imply that 𝜑𝜓

𝑧 is 𝐶1,2 (see Friedman, 2008, Section 3.5). Differentiating Equation (43),
we can see that 𝜑𝜓

𝑧 satisfies

𝜑
𝜓
𝑡𝑧(𝑡, 𝑧) +

1

2
𝜎2(𝑡, 𝑒𝑧)𝜑

𝜓
𝑧𝑧𝑧(𝑡, 𝑧) + χ1(𝑡, 𝑧)𝜑

𝜓
𝑧𝑧(𝑡, 𝑧) − χ2(𝑡, 𝑧)𝜑

𝜓
𝑧 (𝑡, 𝑧) + 1(𝑡, 𝑧) = 0

in [0, 𝑇] × ℝ, where

χ1(𝑡, 𝑧) = 𝑟(𝑡) − 𝜎(𝑡, 𝑒𝑧)𝜗(𝑡, 𝑒𝑧) −
1

2
𝜎2(𝑡, 𝑒𝑧) + 𝑒𝑧𝜎(𝑡, 𝑒𝑧)𝜎𝑠(𝑡, 𝑒

𝑧),

χ2(𝑡, 𝑧) = 𝛿𝜓(𝑡, 𝑧) + 𝑒𝑧𝜗(𝑡, 𝑒𝑧)𝜎𝑠(𝑡, 𝑒
𝑧) + 𝑒𝑧𝜎(𝑡, 𝑒𝑧)𝜗𝑠(𝑡, 𝑒

𝑧) + 𝑒𝑧𝜎(𝑡, 𝑒𝑧)𝜎𝑠(𝑡, 𝑒
𝑧)

and 1(𝑡, 𝑧) =
(
𝑒𝑧𝓁𝑠(𝑡, 𝑒

𝑧) + 2𝑒𝑧𝜗(𝑡, 𝑒𝑧)𝜗𝑠(𝑡, 𝑒
𝑧)

− 𝑒2𝜅(𝑇−𝑡)𝑒𝑧𝓁𝑠(𝑡, 𝑒
𝑧)𝜓(𝑡, 𝑧) − 𝑒2𝜅(𝑇−𝑡)𝓁(𝑡, 𝑒𝑧)𝜓𝑧(𝑡, 𝑧)

)
𝜑𝜓(𝑡, 𝑧).

In particular, we note that Assumption 2.1 implies that the Cauchy problem given by this PDE
with boundary condition

𝜑
𝜓
𝑧 (𝑇, 𝑧) = 0, for 𝑧 ∈ ℝ,

has a unique 𝐶1,2 solution of polynomial growth.
Using Assumption 2.1, the assumptions in Equation (47) and the fact that |𝜑𝜓| ≤ 1 (see

Equation 48), we can see that

||χ1(𝑡, 𝑧)|| ≤ ℭ, ||χ2(𝑡, 𝑧)|| ≤ ℭ and ||1(𝑡, 𝑧)|| ≤ ℭ for all 𝑡 ∈ [0, 𝑇] and 𝑧 ∈ ℝ,

for some constant ℭ > 0. Furthermore, Assumption 2.1 implies that the SDE

d𝑍𝑡 = χ1(𝑡, 𝑍𝑡) d𝑡 + 𝜎(𝑡, 𝑒𝑍𝑡 ) d𝐵𝑡, 𝑍0 ∈ ℝ,

which is driven by a standard one-dimensional Brownianmotion 𝐵, has a unique strong solution.
In view of these observations, we can use the Feynman–Kac formula to obtain

||𝜑𝜓
𝑧 (𝑡, 𝑧)

|| ≤ 𝔼

[
∫

𝑇

𝑡

exp

(
−∫

𝑢

𝑡

χ2(𝑞, 𝑍𝑞) d𝑞

)||1(𝑢, 𝑍𝑢)|| d𝑢 |||| 𝑍𝑡 = 𝑧

]
≤ ℭ for all 𝑡 ∈ [0, 𝑇] and 𝑧 ∈ ℝ,
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KLADÍVKO and ZERVOS 13

whereℭ > 0 is a constant. It follows that 𝜑𝜓 inherits all of the properties that we have assumed for
𝜓 above, namely, it is 𝐶1,2 and satisfies Equation (47). Furthermore, the regularity of 𝜑𝜓 implies
that its restriction in ]𝑡, 𝑡[×]𝑧, 𝑧[ belongs to the Hölder space 𝐶1+𝑎,2+𝑎

(
]𝑡, 𝑡[×]𝑧, 𝑧[

)
for all 0 < 𝑡 <

𝑡 < 𝑇, 𝑧 < 𝑧 and 𝑎 ∈ ]0, 1], where 𝐶1+𝑎,2+𝑎() is the Banach space with norm

‖𝜑‖1+𝑎,2+𝑎 = ‖𝜑‖𝑎 + ‖𝜑𝑡‖𝑎 + ‖𝜑𝑧‖𝑎 + ‖𝜑𝑧𝑧‖𝑎 , (50)

in which definition, is an open and bounded subset of ℝ2 and

‖𝜑‖𝑎 = sup
(𝑡,𝑧)∈

|𝜑(𝑡, 𝑧)| + sup
(𝑡,𝑧),(𝑡′,𝑧′)∈
(𝑡,𝑧)≠(𝑡′,𝑧′)

|𝜑(𝑡, 𝑧) − 𝜑(𝑡′, 𝑧′)|
(|𝑡 − 𝑡′| + |𝑧 − 𝑧′|2)𝑎∕2 .

Given any 0 < 𝑡 < 𝑡 < 𝑇, 𝑧 < 𝑧 and 𝜀 > 0 such that 0 < 𝑡 − 𝜀 and 𝑡 + 𝜀 < 𝑇, Schauder’s interior
estimates for parabolic PDEs given by Theorem 3.5 in Friedman (2008) with

 = ]𝑡 − 𝜀, 𝑡 + 𝜀[ × ]𝑧 − 𝜀, 𝑧 + 𝜀[

imply that

‖𝜑𝜓‖]𝑡,𝑡[×]𝑧,𝑧[1+𝑎,2+𝑎 ≤ 𝐶2 sup
(𝑡,𝑧)∈]𝑡,𝑡[×]𝑧,𝑧[

||𝜑𝜓(𝑡, 𝑧)|| ≤ 𝐶2, (51)

where 𝐶2 depends only on 𝑎, 𝑡, 𝑡, 𝑧, 𝑧, 𝜀 and the constant 𝜅 in Assumptions 2.1 and 2.3. Here, we
should note that the consideration of 𝜀 > 0 is needed to account for the difference of the norm
defined by Equation (50) from the weighted norm defined by Equation (2.11) in Friedman (2008,
Section 3.2).
To proceed further, we denote by 𝜑(0) the solution to Equations (43) and (44) for 𝜓 ≡ 0 and by

𝜑(𝑗+1) the solution to Equations (43) and (44) for 𝜓 = 𝜑(𝑗) and 𝑗 ≥ 0. By appealing to a simple
induction argument, we can see that each 𝜑(𝑗) has all of the properties that we have assumed
for 𝜓, namely, it is 𝐶1,2 and satisfies Equation (47). Therefore, the functions 𝜑(𝑗), 𝑗 ≥ 0, satisfy
the estimate (51) for a constant 𝐶2 that does not depend on 𝑗. We next argue as in the proof of
Theorem 3 in Friedman (2008, Section 3.2), which considers the same norm as the one given by
Equation (50) above. The inequalities

sup
(𝑡,𝑧)∈]𝑡,𝑡[×]𝑧,𝑧[

|𝜑(𝑗)
𝑧𝑧 (𝑡, 𝑧)| + sup

(𝑡,𝑧),(𝑡′,𝑧′)∈]𝑡,𝑡[×]𝑧,𝑧[

(𝑡,𝑧)≠(𝑡′,𝑧′)

|𝜑(𝑗)
𝑧𝑧 (𝑡, 𝑧) − 𝜑

(𝑗)
𝑧𝑧 (𝑡

′, 𝑧′)|
(|𝑡 − 𝑡′| + |𝑧 − 𝑧′|2)𝑎∕2 ≤ 𝐶2

imply that the restrictions of the functions𝜑(𝑗)
𝑧𝑧 , 𝑗 ≥ 1, in [𝑡, 𝑡] × [𝑧, 𝑧] provide a uniformly bounded

and equicontinuous family of functions. This observation and the Arzelà–Ascoli theorem imply
that there exists a subsequence (𝜑(𝑗𝑛)) of (𝜑(𝑗)) such that (𝜑(𝑗𝑛)

𝑧𝑧 ) is uniformly convergent in [𝑡, 𝑡] ×
[𝑧, 𝑧]. Repeating the same argument and passing to further subsequences if necessary, we obtain
a 𝐶1,2 function 𝜑 on [𝑡, 𝑡] × [𝑧, 𝑧] such that

𝜑(𝑗𝑛) ⟶
𝑛→∞

𝜑, 𝜑
(𝑗𝑛)
𝑡 ⟶

𝑛→∞
𝜑𝑡, 𝜑

(𝑗𝑛)
𝑧 ⟶

𝑛→∞
𝜑𝑧 and 𝜑

(𝑗𝑛)
𝑧𝑧 ⟶

𝑛→∞
𝜑𝑧𝑧, (52)

uniformly on [𝑡, 𝑡] × [𝑧, 𝑧]. Furthermore, passing to further subsequences using the same argu-
ments with each of the domains ]𝑡

𝑛
, 𝑡𝑛[×]𝑧𝑛, 𝑧𝑛[, where (𝑡𝑛) and (𝑧𝑛) (respectively, (𝑡𝑛) and (𝑧𝑛))
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14 KLADÍVKO and ZERVOS

are strictly decreasing (respectively, strictly increasing) sequences such that

𝑡
0
< 𝑡0, 𝑧

0
< 𝑧0, lim

𝑛↑∞
𝑡
𝑛
= 0, lim

𝑛↑∞
𝑡𝑛 = 𝑇, lim

𝑛↑∞
𝑧
𝑛
= −∞, and lim

𝑛↑∞
𝑧𝑛 = ∞,

we obtain a 𝐶1,2 function 𝜑 on ]0, 𝑇[×ℝ such that Equation (52) hold true uniformly on compacts.
This limiting function is a solution to Equation (43) for 𝜓 = 𝜑, namely, a solution to the nonlinear
PDE (41).
To proceed further, we note that Equation (48) yields the representations

𝜑(0)(𝑡, 𝑧) = 𝔼

[
exp

(
−∫

𝑇

𝑡

𝛿0(𝑢, 𝑍𝑢) d𝑢

) |||| 𝑍𝑡 = 𝑧

]

and 𝜑(𝑗+1)(𝑡, 𝑧) = 𝔼

[
exp

(
−∫

𝑇

𝑡

𝛿𝜑
(𝑗)
(𝑢, 𝑍𝑢) d𝑢

) |||| 𝑍𝑡 = 𝑧

]
, (53)

for 𝑡 ∈ [0, 𝑇], 𝑧 ∈ ℝ, and 𝑗 ≥ 0, where 𝑍 is the solution to the SDE (49). Combining these expres-
sions with the definition (46) of the functions 𝛿𝜑(𝑗) , we can see that 𝜑(0) > 𝜑(𝑗+1) for all 𝑗 ≥ 0

because

−𝛿0 = −𝜁(𝑡, 𝑒𝑧) > −𝑒2𝜅(𝑇−𝑡)𝓁(𝑡, 𝑒𝑧)𝜑(𝑗)(𝑡, 𝑧) − 𝜁(𝑡, 𝑒𝑧) = −𝛿𝜑
(𝑗)
.

Furthermore, we obtain the implications

𝜑(0) > 𝜑(1) ⇒ −𝛿𝜑
(0)

< −𝛿𝜑
(1)

⇒ 𝜑(1) < 𝜑(2),

𝜑(1) < 𝜑(2) ⇒ −𝛿𝜑
(1)

> −𝛿𝜑
(2)

⇒ 𝜑(2) > 𝜑(3),

𝜑(0) > 𝜑(2) ⇒ −𝛿𝜑
(0)

< −𝛿𝜑
(2)

⇒ 𝜑(1) < 𝜑(3),

and 𝜑(1) < 𝜑(3) ⇒ −𝛿𝜑
(1)

> −𝛿𝜑
(3)

⇒ 𝜑(2) > 𝜑(4).

Iterating these observations, we can see that the sequence of functions (𝜑(2𝑗)) is strictly decreasing,
while the sequence of functions (𝜑(2𝑗+1)) is strictly increasing. It follows that

𝜑(1) ≤ 𝜑 ≤ 𝜑(0) ≤ 1. (54)

The first two inequalities in Equation (54) imply immediately that 𝜑 satisfies the boundary
condition (42). On the other hand, the last two inequalities in Equation (54) imply that

𝑓(𝑡, 𝑠) =
1

𝜙(𝑡, 𝑠)
=

1

𝑒2𝜅(𝑇−𝑡)𝜑(𝑡, ln 𝑠)
≥ 𝑒−2𝜅𝑇.

Furthermore, if we define

𝜆(𝑡, 𝑧) = 𝜑(𝑡, 𝑧) − 𝑒−2𝜅(𝑇−𝑡), for 𝑡 ∈ [0, 𝑇] and 𝑧 ∈ ℝ,

then we can use Equations (41) and (42) to see that 𝜆 satisfies the PDE

𝜆𝑡(𝑡, 𝑧) +
1

2
𝜎2(𝑡, 𝑒𝑧)𝜆𝑧𝑧(𝑡, 𝑧) + χ0(𝑡, 𝑧)𝜆𝑧(𝑡, 𝑧) − 𝛿(𝑡, 𝑧)𝜆(𝑡, 𝑧) + 𝜗2(𝑡, 𝑒𝑧)𝑒−2𝜅(𝑇−𝑡) = 0
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KLADÍVKO and ZERVOS 15

in [0, 𝑇] × ℝ with boundary condition

𝜆(𝑇, 𝑧) = 0, for 𝑧 ∈ ℝ,

where χ0 is defined by Equation (45) and

𝛿(𝑡, 𝑧) = 𝑒2𝜅(𝑇−𝑡)𝓁(𝑡, 𝑒𝑧)𝜑(𝑡, 𝑧) + 2𝜅 − 𝜗2(𝑡, 𝑒𝑧).

Using the Feynman–Kac formula, it follows that

𝜆(𝑡, 𝑧) = 𝔼

[
∫

𝑇

𝑡

exp

(
−∫

𝑢

𝑡

𝛿(𝑞, 𝑍𝑞) d𝑞

)
𝑒−2𝜅(𝑇−𝑢)𝜗2(𝑢, 𝑒𝑍𝑢 ) d𝑢

|||| 𝑍𝑡 = 𝑧

]
(55)

for all 𝑡 ∈ [0, 𝑇] and 𝑧 ∈ ℝ. This representation implies that

𝜑(𝑡, 𝑧) ≥ 𝑒−2𝜅(𝑇−𝑡) ⇒ 𝑓(𝑡, 𝑠) =
1

𝑒2𝜅(𝑇−𝑡)𝜑(𝑡, ln 𝑠)
≤ 1,

with the inequalities being strict if 𝜗2 > 0. However, these arguments imply the estimates for 𝑓 in
Equation (32) as well as Equation (33).3
To derive the estimate for |𝑓𝑠| in Equation (32), we first note that the solution 𝜙 to the PDE (38)

with boundary condition (39) is such that 𝜙𝑠 satisfies the PDE

𝜙𝑡𝑠(𝑡, 𝑠) +
1

2
𝜎2(𝑡, 𝑠)𝑠2𝜙𝑠𝑠𝑠(𝑡, 𝑠) + χ3(𝑡, 𝑠)𝑠𝜙𝑠𝑠(𝑡, 𝑠) − χ4(𝑡, 𝑠)𝜙𝑠(𝑡, 𝑠)

+ 2(𝑡, 𝑠)𝜙(𝑡, 𝑠) = 0 (56)

in [0, 𝑇] × ]0,∞[, as well as the boundary condition

𝜙𝑠(𝑇, 𝑠) = 0, for 𝑠 > 0, (57)

where

χ3(𝑡, 𝑠) = 𝑟(𝑡) − 𝜎(𝑡, 𝑠)𝜗(𝑡, 𝑠) + 𝜎2(𝑡, 𝑠) + 𝑠𝜎(𝑡, 𝑠)𝜎𝑠(𝑡, 𝑠),

χ4(𝑡, 𝑠) = 2𝓁(𝑡, 𝑠)𝜙(𝑡, 𝑠) − 𝑟(𝑡) − 𝓁(𝑡, 𝑠) − 𝜗2(𝑡, 𝑠) + 𝜎(𝑡, 𝑠)𝜗(𝑡, 𝑠)

+ 𝑠𝜗(𝑡, 𝑠)𝜎𝑠(𝑡, 𝑠) + 𝑠𝜎(𝑡, 𝑠)𝜗𝑠(𝑡, 𝑠)

and 2(𝑡, 𝑠) = − 𝓁𝑠(𝑡, 𝑠)𝜙(𝑡, 𝑠) + 𝓁𝑠(𝑡, 𝑠) + 2𝜗(𝑡, 𝑠)𝜗𝑠(𝑡, 𝑠).

Using the Assumption 2.1 and the estimates for 𝑓 = 1∕𝜙 given by Equation (32), we can see that
these functions are such that

||χ3(𝑡, 𝑠)|| ≤ ℭ, ||χ4(𝑡, 𝑠)|| ≤ ℭ

and ||2(𝑡, 𝑠)|| ≤ (
𝑠||𝓁𝑠(𝑡, 𝑠)||𝜙(𝑡, 𝑠) + 𝑠||𝓁𝑠(𝑡, 𝑠)|| + 2𝑠||𝜗(𝑡, 𝑠)||||𝜗𝑠(𝑡, 𝑠)||)𝑠−1 ≤ ℭ𝑠−1,

for all 𝑡 ∈ [0, 𝑇] and 𝑠 > 0, where ℭ > 0 is a constant. Furthermore, Lemma 3.1 with 𝜉1 = −1

implies that the solution to the SDE

d𝑆̄𝑢 = χ3(𝑢, 𝑆̄𝑢)𝑆̄𝑢 d𝑢 + 𝜎(𝑢, 𝑆̄𝑢)𝑆̄𝑢 d𝐵𝑢,
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16 KLADÍVKO and ZERVOS

which is driven by a standard one-dimensional Brownian motion 𝐵, is such that

𝔼
[
𝑆̄−1𝑢 ∣ 𝑆̄𝑡 = 𝑠

] ≤ ℭ𝑠−1 for all 0 ≤ 𝑡 ≤ 𝑢 ≤ 𝑇 and 𝑠 > 0,

for some constant ℭ > 0 that does not depend on 𝑡. In view of these observations, the Feynman–
Kac formula and Jensen’s inequality, we can see that the solution to Equations (56)–(57) satisfies

||𝜙𝑠(𝑡, 𝑠)|| ≤ 𝔼

[
∫

𝑇

𝑡

exp

(
−∫

𝑢

𝑡

χ4(𝑞, 𝑆̄𝑞) d𝑞

)||2(𝑢, 𝑆̄𝑢)||𝜙(𝑢, 𝑆̄𝑢) d𝑢 |||| 𝑆̄𝑡 = 𝑠

]

≤ ∫
𝑇

0

𝑒ℭ𝑢ℭ2 𝔼
[
𝑆̄−1𝑢 ∣ 𝑆̄𝑡 = 𝑠

]
d𝑢 ≤ ℭ𝑠−1 for all 𝑡 ∈ [0, 𝑇] and 𝑠 > 0, (58)

where ℭ > 0 stands for constants. Combining this estimate with the estimates for 𝑓 = 1∕𝜙 given
by Equation (32), we obtain

||𝑓𝑠(𝑡, 𝑠)|| = ||𝜙𝑠(𝑡, 𝑠)||
𝜙2(𝑡, 𝑠)

≤ ℭ𝑠−1 for all 𝑡 ∈ [0, 𝑇] and 𝑠 > 0,

as claimed in Equation (32) follows.
Proof of (II). If we write

𝑔(𝑡, 𝑠) = 𝑔(𝑡, ln 𝑠), for 𝑡 ∈ [0, 𝑇] and 𝑠 > 0,

for some function (𝑡, 𝑧) ↦ 𝑔(𝑡, 𝑧), then 𝑔 satisfies the PDE (27) in [0, 𝑇] × ]0,∞[ with the
corresponding boundary condition in Equation (29) if and only if 𝑔 satisfies the PDE

𝑔𝑡(𝑡, 𝑧) +
1

2
𝜎2(𝑡, 𝑒𝑧)𝑔𝑧𝑧(𝑡, 𝑧) +

(
𝑟(𝑡) −

1

2
𝜎2(𝑡, 𝑒𝑧)

)
𝑔𝑧(𝑡, 𝑧)

−
(
𝑟(𝑡) + 𝑒2𝜅(𝑇−𝑡)𝓁(𝑡, 𝑒𝑧)𝜑(𝑡, 𝑧)

)
𝑔(𝑡, 𝑧) + 𝑒2𝜅(𝑇−𝑡)𝓁(𝑡, 𝑒𝑧)𝜑(𝑡, 𝑧)𝐹E(𝑡, 𝑒

𝑧) = 0,

in [0, 𝑇] × ℝ, where 𝜑 is introduced by Equation (40), with boundary condition

𝑔(𝑇, 𝑧) = 𝐹T(𝑒
𝑧), for 𝑧 ∈ ℝ.

In view of the assumptions on 𝓁, 𝐹E, and 𝐹T, and the smoothness and boundedness of 𝜑 that we
have established above, there exists a unique𝐶1,2 function 𝑔 of polynomial growth that solves this
Cauchy problem (see Friedman, 2008, Section 1.7).
Using the Feynman–Kac formula (Friedman, 2006, Section 6.5 or Karatzas & Shreve, 1988,

Theorem 5.7.6), we can see that the solution to the PDE (27) with the corresponding boundary
condition in Equation (29) admits the probabilistic expression

𝑔(𝑡, 𝑠) = 𝔼

[
∫

𝑇

𝑡

exp

(
−∫

𝑢

𝑡

(
𝑟(𝑞) +

𝓁(𝑞, 𝑆𝑞)

𝑓(𝑞, 𝑆𝑞)

)
d𝑞

)
𝓁(𝑢, 𝑆𝑢)𝐹E(𝑢, 𝑆𝑢)

𝑓(𝑢, 𝑆𝑢)
d𝑢

+ exp

(
−∫

𝑇

𝑡

(
𝑟(𝑞) +

𝓁(𝑞, 𝑆𝑞)

𝑓(𝑞, 𝑆𝑞)

)
d𝑞

)
𝐹T(𝑆𝑇)

|||| 𝑆𝑡 = 𝑠

]
≥ 0 for all 𝑡 ∈ [0, 𝑇] and 𝑠 > 0, (59)
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KLADÍVKO and ZERVOS 17

where 𝑆 is the solution to the SDE

d𝑆𝑡 = 𝑟(𝑡)𝑆𝑡 d𝑡 + 𝜎(𝑡, 𝑆𝑡)𝑆𝑡 d𝐵𝑡, (60)

which is driven by a standard one-dimensional Brownian motion 𝐵. Given the constant 𝜉 ≥ 1

appearing in Assumption 2.3, Lemma 3.1, implies that

𝔼
[
𝑆
𝜉
𝑢 ∣ 𝑆𝑡 = 𝑠

] ≤ ℭ𝑠𝜉 for all 0 ≤ 𝑡 ≤ 𝑢 ≤ 𝑇 and 𝑠 > 0,

for some constant ℭ > 0 that does not depend on 𝑡. Using this estimate and Assumptions 2.1, 2.3
and Equation (32), we can see that the identity in Equation (59) implies that

𝑔(𝑡, 𝑠) ≤ ℭ∫
𝑇

𝑡

(
1 + 𝔼

[
𝑆
𝜉
𝑢 ∣ 𝑆𝑡 = 𝑠

])
d𝑢 + ℭ

(
1 + 𝔼

[
𝑆
𝜉
𝑇 ∣ 𝑆𝑡 = 𝑠

])
≤ ℭ∫

𝑇

0

(1 + 𝑠𝜉) d𝑢 + ℭ(1 + 𝑠𝜉) for all 𝑡 ∈ [0, 𝑇] and 𝑠 > 0.

It follows that 𝑔 admits an upper bound as in Equation (34).
Similarly to the proof of (I) above, we can verify that 𝑔𝑠 satisfies the PDE

𝑔𝑡𝑠(𝑡, 𝑠) +
1

2
𝜎2(𝑡, 𝑠)𝑠2𝑔𝑠𝑠𝑠(𝑡, 𝑠) + χ5(𝑡, 𝑠)𝑠𝑔𝑠𝑠(𝑡, 𝑠) − χ6(𝑡, 𝑠)𝑔𝑠(𝑡, 𝑠) + 3(𝑡, 𝑠) = 0 (61)

in [0, 𝑇] × ]0,∞[ with boundary condition

𝑔𝑠(𝑇, 𝑠) = 𝐹′
T(𝑠), for 𝑠 > 0, (62)

where

χ5(𝑡, 𝑠) = 𝑟(𝑡) + 𝜎2(𝑡, 𝑠) + 𝑠𝜎(𝑡, 𝑠)𝜎𝑠(𝑡, 𝑠),

χ6(𝑡, 𝑠) = 𝓁(𝑡, 𝑠)𝜙(𝑡, 𝑠)

and 3(𝑡, 𝑠) = −
(
𝓁𝑠(𝑡, 𝑠)𝜙(𝑡, 𝑠) + 𝓁(𝑡, 𝑠)𝜙𝑠(𝑡, 𝑠)

)(
𝑔(𝑡, 𝑠) − 𝐹E(𝑡, 𝑠)

)
+ 𝓁(𝑡, 𝑠)𝜙(𝑡, 𝑠)(𝐹E)𝑠(𝑡, 𝑠),

with 𝜙 being as in Equation (37).
Combining the bounds in Assumptions 2.1, 2.3 with Equation (34), and the estimates for 𝑓 =

1∕𝜙 given by Equations (32) and (58), we can see that there exists a constant ℭ > 0 such that

||χ5(𝑡, 𝑠)|| ≤ ℭ and 0 ≤ χ6(𝑡, 𝑠) ≤ ℭ for all 𝑡 ∈ [0, 𝑇] and 𝑠 > 0,

as well as

||3(𝑡, 𝑠)|| ≤ (
𝑠||𝓁𝑠(𝑡, 𝑠)||𝜙(𝑡, 𝑠) + 𝓁(𝑡, 𝑠)𝑠||𝜙𝑠(𝑡, 𝑠)||)(𝑔(𝑡, 𝑠) + 𝐹E(𝑡, 𝑠)

)
𝑠−1

+ 𝓁(𝑡, 𝑠)𝜙(𝑡, 𝑠)𝑠||(𝐹E)𝑠(𝑡, 𝑠)||𝑠−1
≤ ℭ(1 + 𝑠𝜉)𝑠−1 for all 𝑡 ∈ [0, 𝑇] and 𝑠 > 0.
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18 KLADÍVKO and ZERVOS

Furthermore, Lemma 3.1 implies that the solution to the SDE

d𝑆̆𝑡 = χ5(𝑡, 𝑆̆𝑡)𝑆̆𝑡 d𝑡 + 𝜎(𝑡, 𝑆̆𝑡)𝑆̆𝑡 d𝐵𝑡,

which is driven by a standard one-dimensional Brownian motion 𝐵, is such that, given the
constant 𝜉 ≥ 1 appearing in Assumption 2.3,

𝔼
[
𝑆̆−1𝑢 ∣ 𝑆̆𝑡 = 𝑠

] ≤ ℭ𝑠−1 and 𝔼
[
𝑆̆
𝜉−1
𝑢 ∣ 𝑆̆𝑡 = 𝑠

] ≤ ℭ𝑠𝜉−1 for all 0 ≤ 𝑡 ≤ 𝑢 ≤ 𝑇 and 𝑠 > 0,

for some constant ℭ > 0 that does not depend on 𝑡. In view of these results, we can see that
Equations (61) and (62), the Feynman–Kac formula, and Jensen’s inequality imply that

||𝑔𝑠(𝑡, 𝑠)|| ≤ 𝔼

[
∫

𝑇

𝑡

exp

(
−∫

𝑢

𝑡

χ6(𝑞, 𝑆̆𝑞) d𝑞

)||3(𝑢, 𝑆̆𝑢)|| d𝑢
+ exp

(
−∫

𝑇

𝑡

χ6(𝑞, 𝑆̆𝑞) d𝑞

)||𝐹′
T(𝑆̆𝑢)

|| |||| 𝑆̆𝑡 = 𝑠

]

≤ ∫
𝑇

0

ℭ
(
𝔼
[
𝑆̆−1𝑢 ∣ 𝑆̆𝑡 = 𝑠

]
+ 𝔼

[
𝑆̆
𝜉−1
𝑢 ∣ 𝑆̆𝑡 = 𝑠

])
d𝑢

+ ℭ
(
𝔼
[
𝑆̆−1𝑇 ∣ 𝑆̆𝑡 = 𝑠

]
+ 𝔼

[
𝑆̆
𝜉−1
𝑇 ∣ 𝑆̆𝑡 = 𝑠

])
≤ ℭ(1 + 𝑠𝜉)𝑠−1 for all 𝑡 ∈ [0, 𝑇] and 𝑠 > 0,

where ℭ > 0 stands for constants. It follows that |𝑔𝑠| admits a bound as in Equation (35).
Proof of (III).We can show that the PDE (28) in [0, 𝑇] × ]0,∞[ with the corresponding bound-

ary condition in Equation (29) has a 𝐶1,2 solution in the same way as in the proof of (II). Using
the Feynman–Kac formula once again, we can see that this solution admits the probabilistic
expression

ℎ(𝑡, 𝑠) = 𝔼

[
∫

𝑇

𝑡

exp

(
−∫

𝑢

𝑡

(
2𝑟(𝑞) + 𝓁(𝑞, 𝑆𝑞)

)
d𝑞

)
𝓁(𝑢, 𝑆𝑢)

(
𝐹E(𝑢, 𝑆𝑢) − 𝑔(𝑢, 𝑆𝑢)

)2
d𝑢

|||| 𝑆𝑡 = 𝑠

]
≥ 0, (63)

where 𝑆 is the solution to the SDE (2). In this case, Lemma 3.1 implies that, given the constant
𝜉 ≥ 1 appearing in Assumption 2.3,

𝔼
[
𝑆
2𝜉
𝑢 ∣ 𝑆𝑡 = 𝑠

] ≤ ℭ𝑠2𝜉 for all 0 ≤ 𝑡 ≤ 𝑢 ≤ 𝑇 and 𝑠 > 0,

for some constant ℭ > 0 that does not depend on 𝑡. Combining this expression with Assump-
tions 2.1 and 2.3 as well as Equation (34), we can see that

ℎ(𝑡, 𝑠) ≤ 𝔼

[
∫

𝑇

0

2𝜅𝑒2𝜅𝑢
(
𝐹2
E(𝑢, 𝑆𝑢) + 𝑔2(𝑢, 𝑆𝑢)

)
d𝑢

|||| 𝑆𝑡 = 𝑠

]

≤ ℭ∫
𝑇

0

(
1 + 𝔼

[
𝑆
2𝜉
𝑢 ∣ 𝑆𝑡 = 𝑠

])
d𝑢

≤ ℭ
(
1 + 𝑠2𝜉

)
for all 𝑡 ∈ [0, 𝑇] and 𝑠 > 0,

as claimed in Equation (36).
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KLADÍVKO and ZERVOS 19

4 MEAN–VARIANCE HEDGING OF RANDOMLY EXERCISED
AMERICAN CLAIMS

In view of Equations (23) and (25), we can see that a solution to the stochastic control problemwe
have considered in the last two sections is given by the portfolio strategy defined by

𝜋⋆
𝑡 = 𝜋†(𝑡, 𝑋⋆

𝑡 , 𝑆𝑡) = −𝛼(𝑡, 𝑆𝑡)𝑋
⋆
𝑡 + 𝛽(𝑡, 𝑆𝑡), (64)

where 𝜋† is the function defined by Equation (23),

𝛼(𝑡, 𝑆𝑡) =
𝜎(𝑡, 𝑆𝑡)𝑆𝑡𝑓𝑠(𝑡, 𝑆𝑡) + 𝜗(𝑡, 𝑆𝑡)𝑓(𝑡, 𝑆𝑡)

𝜎(𝑡, 𝑆𝑡)𝑓(𝑡, 𝑆𝑡)
, (65)

𝛽(𝑡, 𝑆𝑡) = 𝛼(𝑡, 𝑆𝑡)𝑔(𝑡, 𝑆𝑡) + 𝑆𝑡𝑔𝑠(𝑡, 𝑆𝑡), (66)

and 𝑋⋆ is the associated solution to Equation (8).
The following result presents the solution to the control problem arising from the mean–

variance hedging of a randomly liquidated American claim.

Theorem 4.1. Consider the stochastic control problem defined by Equations (2), (8), (19), and (20),
and suppose that the assumptions of Theorem 3.2 hold true. The problem’s value function 𝑣 identifies
with the solution 𝑤 to the HJB PDE (21)–(22) that is as in Equations (25)–(29), namely,

𝑣(𝑇, 𝑥, 𝑠) = 𝑤(0, 𝑥, 𝑠) ≡ 𝑓(0, 𝑠)
(
𝑥 − 𝑔(0, 𝑠)

)2
+ ℎ(0, 𝑠) for all 𝑥 ∈ ℝ and 𝑠 > 0. (67)

Furthermore, the portfolio strategy 𝜋⋆ defined by Equations (64)–(66) is optimal.

Proof. We fix any initial condition (𝑥, 𝑠), as well as any admissible portfolio 𝜋 ∈ , and let 𝑋 be
the associated solution to Equation (8) (throughout the proof, we drop the superscript “𝑥, 𝜋” for
notational simplicity).
Using Itô’s formula, we calculate

∫
𝑡

0

𝑒−Λ𝑢𝓁(𝑢, 𝑆𝑢)
(
𝑋𝑢 − 𝐹E(𝑢, 𝑆𝑢)

)2
d𝑢

+ 𝑒−Λ𝑡𝑤(𝑡, 𝑋𝑡, 𝑆𝑡) = 𝑤(0, 𝑥, 𝑠) + 𝐴𝑡 +𝑀𝑡, for 𝑡 ∈ [0, 𝑇], (68)

where

𝐴𝑡 = ∫
𝑡

0

𝑒−Λ𝑢

(
𝑤𝑡(𝑢, 𝑋𝑢, 𝑆𝑢) +

1

2
𝜎2(𝑢, 𝑆𝑢)𝜋

2
𝑢𝑤𝑥𝑥(𝑢, 𝑋𝑢, 𝑆𝑢)

+ 𝜎2(𝑢, 𝑆𝑢)𝑆𝑢𝜋𝑢𝑤𝑥𝑠(𝑢, 𝑋𝑢, 𝑆𝑢) +
1

2
𝜎2(𝑢, 𝑆𝑢)𝑆

2
𝑢𝑤𝑠𝑠(𝑢, 𝑋𝑢, 𝑆𝑢)

+
(
𝑟(𝑢)𝑋𝑢 + 𝜎(𝑢, 𝑆𝑢)𝜗(𝑢, 𝑆𝑢)𝜋𝑢

)
𝑤𝑥(𝑢, 𝑋𝑢, 𝑆𝑢) + 𝜇(𝑢, 𝑆𝑢)𝑆𝑢𝑤𝑠(𝑢, 𝑋𝑢, 𝑆𝑢)

−
(
2𝑟(𝑢) + 𝓁(𝑢, 𝑆𝑢)

]
𝑤(𝑢, 𝑋𝑢, 𝑆𝑢) + 𝓁(𝑢, 𝑆𝑢)

[
𝑋𝑢 − 𝐹E(𝑢, 𝑆𝑢)

)2)
d𝑢
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20 KLADÍVKO and ZERVOS

and

𝑀𝑡 = ∫
𝑡∧𝑇

0

𝑒−Λ𝑢𝜎(𝑢, 𝑆𝑢)
(
𝜋𝑢𝑤𝑥(𝑢, 𝑋𝑢, 𝑆𝑢) + 𝑆𝑢𝑤𝑠(𝑢, 𝑋𝑢, 𝑆𝑢)

)
d𝑊𝑢.

Since𝑤 satisfies the PDE (21) and the boundary condition (22), we can see that this identity implies
that

𝔼
ℙ
[
∫

𝑇∧𝑇𝑛

0

𝑒−Λ𝑢𝓁(𝑢, 𝑆𝑢)
(
𝑋𝑢 − 𝐹E(𝑢, 𝑆𝑢)

)2
d𝑢

+ 𝑒−Λ𝑇
(
𝑋𝑇 − 𝐹T(𝑆𝑇)

)2
𝟏{𝑇≤𝑇𝑛} + 𝑒−Λ𝑇𝑛𝑤(𝑇𝑛, 𝑋𝑇𝑛 , 𝑆𝑇𝑛)𝟏{𝑇𝑛<𝑇}

]
≥ 𝑤(0, 𝑥, 𝑠), (69)

where (𝑇𝑛) is any sequence of localizing stopping times for the local martingale𝑀.
In view of the estimates in Equations (32), (34), and (36), we can see that

||𝑤(𝑡, 𝑥, 𝑠)|| ≤ 2𝑓(𝑡, 𝑠)
(
𝑥2 + 𝑔2(𝑡, 𝑠)

)
+ ℎ(𝑡, 𝑠)

≤ 𝐾𝑤(1 + 𝑥2 + 𝑠2𝜉) for all 𝑡 ∈ [0, 𝑇], 𝑥 ∈ ℝ and 𝑠 > 0,

for some constant 𝐾𝑤 = 𝐾𝑤(𝑇) > 0, where 𝜉 ≥ 1 is as in Assumption 2.3. On the other hand,
the admissibility condition (11), Fubini’s theorem, Jensen’s inequality, Itô’s isometry, and
Assumption 2.1 imply that

𝔼
ℙ[
𝑋2
𝑡

]
= 𝔼

ℙ

[
𝐵2
𝑡

(
𝑥 + ∫

𝑡

0

𝐵−1
𝑢 𝜎(𝑢, 𝑆𝑢)𝜗(𝑢, 𝑆𝑢)𝜋𝑢 d𝑢 + ∫

𝑡

0

𝐵−1
𝑢 𝜎(𝑢, 𝑆𝑢)𝜋𝑢 d𝑊𝑢

)2
]

≤ 9𝐵2
𝑡

(
𝑥2 + 𝔼

ℙ

[(
∫

𝑡

0

𝐵−1
𝑢 𝜎(𝑢, 𝑆𝑢)𝜗(𝑢, 𝑆𝑢)𝜋𝑢 d𝑢

)2
]
+ 𝔼

ℙ

[(
∫

𝑡

0

𝐵−1
𝑢 𝜎(𝑢, 𝑆𝑢)𝜋𝑢 d𝑊𝑢

)2
])

≤ 9𝐵2
𝑡

(
𝑥2 + 𝜅(𝑡 + 1) 𝔼

ℙ

[
∫

𝑡

0

𝐵−2
𝑢 𝜋2

𝑢 d𝑢

])

< ∞.

These results and Lemma 3.1 imply that the random variable sup𝑡∈[0,𝑇]||𝑤(𝑡, 𝑋𝑡, 𝑆𝑡)|| is integrable.
We can, therefore, pass to the limit as 𝑛 → ∞ in Equation (69) using the monotone and the
dominated convergence theorems to obtain

𝐽𝑇,𝑥,𝑠(𝜋) ≡ 𝔼
ℙ
[
∫

𝑇

0

𝑒−Λ𝑡𝓁(𝑡, 𝑆𝑡)
(
𝑋𝑡 − 𝐹E(𝑡, 𝑆𝑡)

)2
d𝑡 + 𝑒−Λ𝑇

(
𝑋𝑇 − 𝐹T(𝑆𝑇)

)2]
≥ 𝑤(0, 𝑥, 𝑠). (70)

Since the initial condition (𝑥, 𝑠) and the portfolio strategy 𝜋 ∈  have been arbitrary, it follows
that

𝑣(𝑇, 𝑥, 𝑠) ≥ 𝑤(0, 𝑥, 𝑠) for all 𝑥 ∈ ℝ and 𝑠 > 0. (71)

To prove the reverse inequality and establish (67) as well as the optimality of the portfolio strat-
egy 𝜋⋆ defined by Equations (64)–(66), we first show that 𝜋⋆ is admissible, namely, 𝜋⋆ ∈ . To
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KLADÍVKO and ZERVOS 21

this end, we first note that

𝔼
ℙ[
𝑋⋆
𝑡

2] ≤ 25

(
𝑥2 + 𝔼

ℙ

[(
∫

𝑡

0

(
𝑟(𝑢) − 𝜎(𝑢, 𝑆𝑢)𝜗(𝑢, 𝑆𝑢)𝛼(𝑢, 𝑆𝑢)

)
𝑋⋆
𝑢 d𝑢

)2
]

+ 𝔼
ℙ

[(
∫

𝑡

0

𝜎(𝑢, 𝑆𝑢)𝜗(𝑢, 𝑆𝑢)𝛽(𝑢, 𝑆𝑢) d𝑢

)2
]

+ 𝔼
ℙ
[
∫

𝑡

0

𝜎2(𝑢, 𝑆𝑢)𝛼
2(𝑢, 𝑆𝑢)𝑋

⋆
𝑢
2
d𝑢

]
+ 𝔼

ℙ
[
∫

𝑡

0

𝜎2(𝑢, 𝑆𝑢)𝛽
2(𝑢, 𝑆𝑢) d𝑢

])
, (72)

where we have also used Itô’s isometry. Assumption 2.1 and the estimates (32) imply that there
exists a constant 𝐾𝛼 > 0 such that

||𝛼(𝑡, 𝑆𝑡)|| ≤ 𝜎(𝑡, 𝑆𝑡)𝑆𝑡||𝑓𝑠(𝑡, 𝑆𝑡)|| + 𝜗(𝑡, 𝑆𝑡)𝑓(𝑡, 𝑆𝑡)

𝜎(𝑡, 𝑆𝑡)𝑓(𝑡, 𝑆𝑡)
≤ 𝐾𝛼 for all 𝑡 ∈ [0, 𝑇], (73)

while the estimates (34)–(35) imply that there exists a constant 𝐾𝛽 > 0 such that

𝛽2(𝑡, 𝑆𝑡) ≤ 2𝛼2(𝑡, 𝑆𝑡)𝑔
2(𝑡, 𝑆𝑡) + 2𝑆2𝑡 𝑔

2
𝑠 (𝑡, 𝑆𝑡) ≤ 𝐾𝛽(1 + 𝑆

2𝜉
𝑡 ) for all 𝑡 ∈ [0, 𝑇]. (74)

Using these inequalities, Assumption 2.1 and and Lemma 3.1, we can see that, for example,

𝔼
ℙ
[
∫

𝑡

0

𝜎2(𝑢, 𝑆𝑢)𝛼
2(𝑢, 𝑆𝑢)𝑋

⋆
𝑢
2
d𝑢

]
≤ 𝜅𝐾2

𝛼 ∫
𝑡

0

𝔼
ℙ[
𝑋⋆
𝑢
2]
d𝑢 for all 𝑡 ∈ [0, 𝑇]

and

𝔼
ℙ

[(
∫

𝑡

0

𝜎(𝑢, 𝑆𝑢)𝜗(𝑢, 𝑆𝑢)𝛽(𝑢, 𝑆𝑢) d𝑢

)2
]
≤ 𝑇 𝔼

ℙ
[
∫

𝑡

0

𝜎2(𝑢, 𝑆𝑢)𝜗
2(𝑢, 𝑆𝑢)𝛽

2(𝑢, 𝑆𝑢) d𝑢

]

≤ 𝜅2𝐾𝛽𝑇

(
𝑡 + ∫

𝑡

0

𝔼
ℙ
[
𝑆
2𝜉
𝑢

]
d𝑢

)
≤ 𝐶1(1 + 𝑠2𝜉) for all 𝑡 ∈ [0, 𝑇],

where 𝐶1 > 0 is a constant. In view of these inequalities and similar ones for the other terms, we
can see that Equation (72) implies that there exists 𝐶2 = 𝐶2(𝑇, 𝑥, 𝑠) > 0 such that

𝔼
ℙ[
𝑋⋆
𝑡

2] ≤ 𝐶2 + 𝐶2 ∫
𝑡

0

𝔼
ℙ[
𝑋⋆
𝑢
2]
d𝑢.

It follows that

𝔼
ℙ[
𝑋⋆
𝑡

2] ≤ 𝐶2𝑒
𝐶2𝑡 for all 𝑡 ∈ [0, 𝑇],

thanks to Grönwall’s inequality. Combining this result with Equations (73) and (74), we obtain

𝔼
ℙ
[
∫

𝑇

0

𝜋⋆
𝑡

2
d𝑡

]
≤ 2𝔼

ℙ
[
∫

𝑇

0

(
𝛼2(𝑡, 𝑆𝑡)𝑋

⋆
𝑡

2
+ 𝛽2(𝑡, 𝑆𝑡)

)
d𝑡

]
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22 KLADÍVKO and ZERVOS

≤ 2∫
𝑇

0

(
𝐾2
𝛼𝐶2𝑒

𝐶2𝑡 + 𝐾𝛽

(
1 + 𝔼

ℙ[
𝑆
2𝜉
𝑡

]))
d𝑡 < ∞,

and the admissibility of 𝜋⋆ follows.
Finally, it is straightforward to check that the portfolio strategy 𝜋⋆ defined by Equations (64)–

(66) is such that Equation (69) as well as Equation (70) hold true with equality, which combined
with the inequality (71), implies that 𝜋⋆ is optimal and that Equation (67) indeed holds true.

Remark 4.2. Back to the original optimization problem given by Equation (6), we can see that the
previous theorem implies that themean–variance hedging value of the claimwe have considered,
namely, the portfolio’s initial endowment 𝑥mvh that minimizes 𝑣(𝑇, 𝑥, 𝑠), is given by

𝑥mvh = 𝑔(0, 𝑠).

We can express this value as the claim’s expected with respect to amartingalemeasure discounted
payoff. To this end, we consider the exponential martingale (𝐿𝑡, 𝑡 ∈ [0, 𝑇]) that solves the SDE

d𝐿𝑡 =
(
1∕𝑓(𝑡, 𝑆𝑡) − 1

)
𝐿𝑡− d𝑀𝑡 − 𝜗(𝑡, 𝑆𝑡)𝐿𝑡 d𝑊𝑡,

where𝑀 is the (𝑡)-martingale defined by Equation (16), and is given by

𝐿𝑡 = exp

(
− 𝟏{𝜂≤𝑡} ln 𝑓(𝜂, 𝑆𝜂) − ∫

𝑡∧𝜂

0

𝓁(𝑢, 𝑆𝑢)
(
1∕𝑓(𝑢, 𝑆𝑢) − 1

)
d𝑢

−
1

2 ∫
𝑡

0

𝜗2(𝑢, 𝑆𝑢) d𝑢 − ∫
𝑡

0

𝜗(𝑢, 𝑆𝑢) d𝑊𝑢

)
, for 𝑡 ∈ [0, 𝑇].

If we denote by ℚ the probability measure on (Ω,𝑇) that has Radon–Nikodym derivative with
respect to ℙ given by dℚ

dℙ
|𝑇 = 𝐿𝑇 , then Girsanov’s theorem implies that the process

(
𝑊̃𝑡, 𝑡 ∈

[0, 𝑇]
)
is a standard Brownian motion underℚ, while the process

(
𝑀̃𝑡, 𝑡 ∈ [0, 𝑇]

)
is a martingale

underℚ, where

𝑊̃𝑡 = ∫
𝑡

0

𝜗(𝑢, 𝑆𝑢) d𝑢 +𝑊𝑡 and 𝑀̃𝑡 = 𝟏{𝜂≤𝑡} − ∫
𝑡∧𝜂

0

𝓁(𝑢, 𝑆𝑢)

𝑓(𝑢, 𝑆𝑢)
d𝑢

(see also Remark 2.5). Furthermore, the price process of the risky asset satisfies the SDE

d𝑆𝑡 = 𝑟(𝑡)𝑆𝑡 d𝑡 + 𝜎(𝑡, 𝑆𝑡)𝑆𝑡 d𝑊̃𝑡, 𝑆0 = 𝑠 > 0, (75)

in the time interval [0, 𝑇], while the conditional distribution of 𝜂 is given by

ℚ(𝜂 > 𝑡 ∣ 𝑡) = exp

(
−∫

𝑡

0

𝓁(𝑢, 𝑆𝑢)

𝑓(𝑢, 𝑆𝑢)
d𝑢

)
, for 𝑡 ∈ [0, 𝑇].

In viewof these observations and the Feynman–Kac formula (see also Equations 59–60),we obtain
the expression

𝑥mvh ≡ 𝑔(0, 𝑠) = 𝔼
ℚ
[
∫

𝑇

0

exp

(
−∫

𝑡

0

(
𝑟(𝑢) +

𝓁(𝑢, 𝑆𝑢)

𝑓(𝑢, 𝑆𝑢)

)
d𝑢

)
𝓁(𝑡, 𝑆𝑡)𝐹E(𝑡, 𝑆𝑡)

𝑓(𝑡, 𝑆𝑡)
d𝑡
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KLADÍVKO and ZERVOS 23

+ exp

(
−∫

𝑇

0

(
𝑟(𝑢) +

𝓁(𝑢, 𝑆𝑢)

𝑓(𝑢, 𝑆𝑢)

)
d𝑢

)
𝐹T(𝑆𝑇)

]
= 𝔼

ℚ
[
𝑒− ∫ 𝜂∧𝑇

0
𝑟(𝑢) d𝑢

(
𝐹E(𝜂, 𝑆𝜂)𝟏{𝜂<𝑇} + 𝐹T(𝑆𝑇)𝟏{𝜂≥𝑇}

)]
, (76)

as claimed at the beginning of the remark. We call ℚ “mean–variance hedging martingale
measure” in what follows.

Remark 4.3. As we have discussed in Remark 2.5, the minimal martingale measure ℚ1, which
identifies with theminimum entropymartingale measure as well as the variance-optimal martin-
gale measure in the context that we consider here, has Radon–Nikodym derivative with respect
to ℙ that is given by

dℚ1

dℙ

||||𝑇 = 𝐿1𝑇 ≡ exp

(
−
1

2 ∫
𝑇

0

𝜗2(𝑢, 𝑆𝑢) d𝑢 − ∫
𝑇

0

𝜗(𝑢, 𝑆𝑢) d𝑊𝑢

)
. (77)

For 𝛾 being as in Remark 2.5, the mean–variance hedging martingale measure ℚ, which we
identified in the previous remark, corresponds to the choice

𝛾𝑢 =
1

𝑓(𝑢, 𝑆𝑢)
,

while ℚ1 corresponds to the choice 𝛾 = 1. If 𝜗 ≡ (𝜇 − 𝑟)∕𝜎 = 0, then both of these measures are
the same as the physical probability measure ℙ because the constant function 𝑓 = 1 satisfies the
PDE (26). On the other hand, if 𝜗2 > 0, then the measures ℚ, ℚ1, and ℙ are all different. In par-
ticular, the measuresℚ andℚ1 are different because the mean–variance hedging is implemented
in the random time interval [0, 𝜂 ∧ 𝑇] rather than in the deterministic time interval [0, 𝑇].
To appreciate the last observation, recall the definition (12) of the random time 𝜂 and consider

a so-called “survival claim” that pays 𝑍𝟏{𝜂≥𝑇} at its maturity time 𝑇, where the “promised payoff”
𝑍 is any 𝑇-measurable random variable satisfying suitable integrability conditions. Minimizing
the performance index

𝐽𝑇,𝑥,𝑠(𝜋) = 𝔼
ℙ

[(
𝑒− ∫ 𝑇

0
𝑟(𝑢) d𝑢(𝑋𝑥,𝜋

𝑇 − 𝑍𝟏{𝜂≥𝑇}
))2

]
(78)

over all admissible portfolio processes 𝜋 and all portfolio initial endowments 𝑥 gives rise to a
mean–variance problem that can be solved as follows. In view of Equations (12) and (15), we can
see that

𝔼
ℙ[
𝑋𝑥,𝜋
𝑇 𝑍𝟏{𝜂≥𝑇}

]
= 𝔼

ℙ[
𝑋𝑥,𝜋
𝑇 𝑍𝐷𝑇

]
and 𝔼

ℙ[
𝑍2𝟏{𝜂≥𝑇}

]
= 𝔼

ℙ[
𝑍2𝐷𝑇

]
,

where 𝐷𝑇 = exp
(
− ∫ 𝑇

0
𝓁(𝑢, 𝑆𝑢) d𝑢

)
. Therefore,

𝐽𝑇,𝑥,𝑠(𝜋) = 𝑒−2 ∫
𝑇

0
𝑟(𝑢) d𝑢

(
𝔼
ℙ
[(
𝑋𝑥,𝜋
𝑇 − 𝑍𝐷𝑇

)2]
+ 𝔼

ℙ
[
𝑍2𝐷𝑇(1 − 𝐷𝑇)

])
.
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24 KLADÍVKO and ZERVOS

Now, there exists a self-financing portfolio strategy that starts with an initial investment

𝑥mvh = 𝔼
ℚ1

[
𝑒− ∫ 𝑇

0
𝑟(𝑢) d𝑢𝑍𝐷𝑇

]
and perfectly replicates 𝑍𝐷𝑇 because this random variable is 𝑇-measurable. It follows that the
mean–variance hedging value of the survival claim that pays 𝑍𝟏{𝜂≥𝑇} at its maturity time 𝑇 > 0 is
equal to 𝑥mvh. Furthermore, in view of Equation (17) with 𝛾 = 1, we can see that

𝑥mvh = 𝔼
ℚ1

[
𝑒− ∫ 𝑇

0
𝑟(𝑢) d𝑢𝑍𝟏{𝜂≥𝑇}

]
= 𝔼

ℚ1

[
exp

(
−∫

𝑇

0

(
𝑟(𝑢) + 𝓁(𝑢, 𝑆𝑢)

)
d𝑢

)
𝑍

]
, (79)

which expresses the claim’s mean–variance hedging value as its expected with respect to the
minimal martingale measure discounted payoff.
The expression (79) for the mean–variance hedging value of a survival claim that is associated

with the performance index (78) can be found in Bielecki et al. (2004, Proposition 29), who also
consider claims with more general payoff structures. The same result has been established in a
more general setting by Biagini and Cretarola (2007, Section 6). In this research direction, Choulli
et al. (2020, 2021) study a general model of defaultable and life-insurance securities.
Minimizing the performance index

𝔼
ℙ

[(
𝑒− ∫ 𝜂∧𝑇

0
𝑟(𝑢) d𝑢(𝑋𝑥,𝜋

𝜂∧𝑇 − 𝑍𝟏{𝜂≥𝑇}
))2

]
over all admissible portfolio processes 𝜋 and all portfolio initial endowments 𝑥 gives rise to a
mean–variance hedging problem that is in line with the problem we study in this paper. If we
focus on survival claims rather than on claims with more general payoff structures, then this
performance index is plainlymore suitable than the one in Equation (78), particularly, if the claim
is long-dated. Indeed, on the event {𝜂 < 𝑇}, the claim pays nothing. Therefore, it is pointless to
continue hedging beyond time 𝜂.
Intuition suggests that mean–variance hedging of a survival claim over the random time inter-

val [0, 𝜂 ∧ 𝑇] rather than over the time interval [0, 𝑇] should be associated with an optimal initial
endowment 𝑥mvh that is strictly less than 𝑥mvh. In the special case that arises when 𝑍 = 𝐹𝑇(𝑆𝑇),
the results that we have obtained show that this is indeed the case when 𝜗2 > 0. Recalling that
the dynamics of the risky asset price process 𝑆 are given by Equation (75) under the martingale
measureℚ, whichwe introduced in the previous remark, as well as under theminimalmartingale
measureℚ1, we can see that

𝑥mvh = 𝔼
ℚ
[
exp

(
−∫

𝑇

0

(
𝑟(𝑢) +

𝓁(𝑢, 𝑆𝑢)

𝑓(𝑢, 𝑆𝑢)

)
d𝑢

)
𝐹T(𝑆𝑇)

]

< 𝔼
ℚ
[
exp

(
−∫

𝑇

0

(
𝑟(𝑢) + 𝓁(𝑢, 𝑆𝑢)

)
d𝑢

)
𝐹T(𝑆𝑇)

]

= 𝔼
ℚ1

[
exp

(
−∫

𝑇

0

(
𝑟(𝑢) + 𝓁(𝑢, 𝑆𝑢)

)
d𝑢

)
𝐹T(𝑆𝑇)

]
= 𝑥mvh,
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KLADÍVKO and ZERVOS 25

thanks to the expressions (76) and (79), as well as to the strict upper bound of 𝑓 in Equation (33).

Remark 4.4. Suppose that 𝜗 ≡ (𝜇 − 𝑟)∕𝜎 = 0. As we have noted at the beginning of the previous
remark, the constant function 𝑓 = 1 satisfies the PDE (26) and the physical probability measure
ℙ identifies with the minimal martingale measureℚ1 as well as the martingale measureℚ intro-
duced in Remark 4.3. It is worth noting that this special case is closely related with the family of
models studied by Choulli et al. (2020, 2021).

Remark 4.5 (The infinite time horizon case). In many cases, randomly exercised American type
claims, such as ESOs, are very long-dated. It is, therefore, of interest to consider the form that the
solution to the problemwe have studied takes as 𝑇 → ∞. For the purposes of this remark, suppose
that 𝑟, 𝜇, 𝜎, and 𝓁 are constants. Also, suppose that 𝐹E satisfies the polynomial growth condition
(14) in Assumption 2.3 but does not depend explicitly on time (we do not need any differentiability
properties of 𝐹E here). For the problem to be well-posed, we assume further that

𝓁 + 𝜗2 >

(
𝑟 +

1

2
𝜎2𝜉

)
(𝜉 − 1) and 𝓁 > 2𝑟(𝜉 − 1) + 2𝜎𝜗𝜉 + 𝜎2𝜉(2𝜉 − 1), (80)

where 𝜉 is as in Assumption 2.3. Note that, if 𝜉 = 1, then these inequalities are equivalent to the
simpler

𝓁 > 2

(
𝜇 − 𝑟 +

1

2
𝜎2

)
. (81)

In this context, the solution to the control problem becomes stationary, namely, it does not depend
on time. In particular, the value function 𝑣∞ identifies with the function 𝑤∞ defined by

𝑤∞(𝑥, 𝑠) = 𝑓∞(𝑠)
(
𝑥 − 𝑔∞(𝑠)

)2
+ ℎ∞(𝑠),

and the optimal portfolio strategy is given by

𝜋⋆
𝑡 = −

𝜎𝑆𝑡𝑓
′
∞(𝑆𝑡) + 𝜗𝑓∞(𝑆𝑡)

𝜎𝑓∞(𝑆𝑡)

(
𝑋⋆
𝑡 − 𝑔∞(𝑆𝑡)

)
+ 𝑆𝑡𝑔

′
∞(𝑆𝑡),

where𝑋⋆ is the associated solution to Equation (8), and the functions 𝑓∞, 𝑔∞, and ℎ∞ are suitable
solutions to the ODEs

1

2
𝜎2𝑠2𝑓′′

∞(𝑠) + 𝜇𝑠𝑓′
∞(𝑠) − 𝓁𝑓∞(𝑠) + 𝓁 −

(
𝜎𝑠𝑓′

∞(𝑠) + 𝜗𝑓∞(𝑠)
)2

𝑓∞(𝑠)
= 0, (82)

1

2
𝜎2𝑠2𝑔′′∞(𝑠) + 𝑟𝑠𝑔′∞(𝑠) −

(
𝑟 +

𝓁

𝑓∞(𝑠)

)
𝑔∞(𝑠) +

𝓁𝐹E(𝑠)

𝑓∞(𝑠)
= 0, (83)

1

2
𝜎2𝑠2ℎ′′∞(𝑠) + 𝜇𝑠ℎ′∞(𝑠) −

(
2𝑟 + 𝓁

)
ℎ∞(𝑠) + 𝓁

(
𝐹E(𝑠) − 𝑔∞(𝑠)

)2
= 0. (84)

It is straightforward to verify that the solution to Equation (26) that satisfies the corresponding
boundary condition in Equation (29) is given by

𝑓(𝑡, 𝑠) =
𝓁

𝓁 + 𝜗2
+

𝜗2

𝓁 + 𝜗2
𝑒−(𝓁+𝜗

2)(𝑇−𝑡). (85)
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26 KLADÍVKO and ZERVOS

In view of this observation, we can see that the constant function given by 𝑓∞(𝑠) =
𝓁

𝓁+𝜗2
, for 𝑠 > 0,

trivially satisfies Equation (82). Furthermore, Equations (63) and (76) suggest that the functions
given by

𝑔∞(𝑠) = (𝓁 + 𝜗2) 𝔼
ℚ
[
∫

∞

0

𝑒−(𝑟+𝓁+𝜗
2)𝑡𝐹E(𝑆𝑡) d𝑡

]
and ℎ∞(𝑠) = 𝓁𝔼

ℙ
[
∫

∞

0

𝑒−(2𝑟+𝓁)𝑡
(
𝐹E(𝑆𝑡) − 𝑔∞(𝑆𝑡)

)2
d𝑡

]
should satisfy the ODEs (83) and (84). Note that the polynomial growth condition (14) in Assump-
tion 2.3 that 𝐹E satisfies and the conditions in (80) are sufficient for these functions to be
real-valued because

𝑔∞(𝑠) ≤ (𝓁 + 𝜗2)𝜅 ∫
∞

0

𝑒−(𝑟+𝓁+𝜗
2)𝑡
(
1 + 𝔼

ℚ[
𝑆
𝜉
𝑡

])
d𝑡

= (𝓁 + 𝜗2)𝜅 ∫
∞

0

𝑒−(𝑟+𝓁+𝜗
2)𝑡

(
1 + 𝑠𝜉𝑒

(
1

2
𝜎2𝜉(𝜉−1)+𝑟𝜉

)
𝑡
)
d𝑡

≤ 𝐾𝑔∞(1 + 𝑠𝜉),

where 𝐾𝑔∞ is a constant, and

ℎ∞(𝑠) ≤ 4𝓁
(
𝜅2 + 𝐾2

𝑔∞

)
∫

∞

0

𝑒−(2𝑟+𝓁)𝑡
(
1 + 𝔼

ℙ[
𝑆
2𝜉
𝑡

])
d𝑡

= 4𝓁
(
𝜅2 + 𝐾2

𝑔∞

)
∫

∞

0

𝑒−(2𝑟+𝓁)𝑡
(
1 + 𝑠2𝜉𝑒(𝜎

2𝜉(2𝜉−1)+2(𝜎𝜗+𝑟)𝜉)𝑡
)
d𝑡

< ∞.

In view of standard analytic expressions of resolvents (e.g., seeKnudsen et al., 1998, Proposition 4.1
or Lamberton & Zervos, 2013, Theorem 4.2), these functions admit the analytic expressions

𝑔∞(𝑠) =
𝓁 + 𝜗2

𝜎2(𝑛𝑔 − 𝑚𝑔)

(
𝑠𝑚𝑔 ∫

𝑠

0

𝑢−𝑚𝑔−1𝐹E(𝑢) 𝑑𝑢 + 𝑠𝑛𝑔 ∫
∞

𝑠

𝑢−𝑛𝑔−1𝐹E(𝑢) d𝑢

)

and ℎ∞(𝑠) =
𝓁

𝜎2(𝑛ℎ − 𝑚ℎ)

(
𝑠𝑚ℎ ∫

𝑠

0

𝑢−𝑚ℎ−1
(
𝐹E(𝑢) − 𝑔∞(𝑢)

)2
d𝑢

+ 𝑠𝑛ℎ ∫
∞

𝑠

𝑢−𝑛ℎ−1
(
𝐹E(𝑢) − 𝑔∞(𝑢)

)2
d𝑢

)
,

where the constants𝑚𝑔 < 0 < 𝑛𝑔 and𝑚ℎ < 0 < 𝑛ℎ are defined by

𝑚𝑔, 𝑛𝑔 = −
𝑟 −

1

2
𝜎2

𝜎2
∓

√√√√√√⎛⎜⎜⎝
𝑟 −

1

2
𝜎2

𝜎2

⎞⎟⎟⎠
2

+
2

𝜎2

(
𝑟 +

𝓁2

𝓁 + 𝜗2

)
,
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KLADÍVKO and ZERVOS 27

𝑚ℎ, 𝑛ℎ = −
𝜇 −

1

2
𝜎2

𝜎2
∓

√√√√√√⎛⎜⎜⎝
𝜇 −

1

2
𝜎2

𝜎2

⎞⎟⎟⎠
2

+
2(2𝑟 + 𝓁)

𝜎2
.

We can check that these functions indeed satisfy the ODEs (83) and (84) by direct substitution.
Furthermore, we can use these expressions to calculate 𝑔∞ and ℎ∞ in closed analytic form for a
wide range of choices for 𝐹E.

5 NUMERICAL INVESTIGATION

We now present a numerical investigation of the theory we have developed focusing on ESOs
because there is a rather large body of relevant literature, particularly, on the more applied side.
ESOs are options granted by a firm to its employees as a form of benefit in addition to salary. They
are typically long-dated options with maturities up to several years. Also, they typically have a
vesting period of up to several years, during which, they cannot be exercised. After the expiry of
their vesting period, they are of American type. Typical examples of ESO payoff functions include
the one of a call option with strike 𝐾, in which case, 𝐹(𝑠) = (𝑠 − 𝐾)+, as well as the payoff of
a capped call option that pays out no more than the double of its strike, in which case, 𝐹(𝑠) =(
𝑠 ∧ (2𝐾) − 𝐾

)+
.

If ESO holders have their jobs terminated (voluntarily or because of being fired), they forfeit
their unvested ESOs, while they have a short time (typically, up to a few months) to exercise
their vested ESOs. As a result, the possibility of job termination injects additional uncertainty
into the structure of an ESO, which is referred to as the “job termination risk.” On the other
hand, ESOs are not allowed to be sold by their holders. Furthermore, ESO holders face restric-
tions in trading their employers’ stocks. Therefore, they cannot hedge the initial values of their
granted ESOs or use them as loss protections for speculation on their underlying stock price
declines. These trading restrictions make ESO holders, whomay be in a need for liquidity or want
to diversify their portfolios, to exercise ESOs earlier than dictated by risk-neutrality. The early
exercise behavior that is explained by these considerations has been documented in the empiri-
cal literature (e.g., see Huddart & Lang, 1996) and has been theoretically investigated by means
of expected utility maximization techniques (e.g., see Leung & Sircar, 2009, or Carpenter et al.,
2010).
To account for the early exercise behavior discussed in the previous paragraph, Jennergren and

Näslund (1993) proposed the modeling of an ESO’s exercise time 𝜂 ∧ 𝑇 by letting 𝜂 be the first
jump of a Poisson process that is independent of the underlying stock price. This early research
paper gave rise to the intensity-based framework for the modeling and valuation of ESOs, which
has attracted most significant interest in the literature (e.g., see Carpenter, 1998; Carr & Linetsky,
2000; Sircar & Xiong, 2007; and Szimayer, 2004). In this framework, an ESO’s payoff is given by
Equations (3) and (4) in the introduction of this paper.
An intensity-based model for an ESO is associated with market incompleteness because the

ESO’s exercise time 𝜂 ∧ 𝑇 is a random time rather than a stopping time. In this context, Jennergren
and Näslund (1993) and Carr and Linetsky (2000) propose the valuation of such an ESO using
the minimal martingale measure ℚ1 as in Equation (5) in the introduction by appealing to the
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28 KLADÍVKO and ZERVOS

idea that a large number of ESOs written by a firm “diversifies away” an individual ESO’s early
exercise risk.
In the rest of this section, we consider the numerical solution of the stochastic control problem

associated with Equation (6) by solving its discrete time counterpart that arises if we approxi-
mate the geometric Brownian motion 𝑆 by a binomial tree with 1000 time steps. To this end,
we use the same parametrization as in Section 5 of Carr and Linetsky (2000). In particular, we
consider an ESO granted at the money (𝑆0 = 𝐾 = 100), with a ten year maturity (𝑇 = 10) and
with payoff function 𝐹(𝑠) = max(𝑠 − 𝐾, 0). Contrary to Carr and Linetsky (2000), who consider
immediate vesting, we assume a vesting period of 3 years (𝑇v = 3). The intensity function 𝓁 is
given by

𝓁(𝑡, 𝑠) = 𝓁f + 𝓁e(ln 𝑠 − ln𝐾)+𝟏{𝑇v≤𝑡}, for 𝑡 ∈ [0, 𝑇] and 𝑠 > 0,

and for 𝓁f = 𝓁e = 10%. The constants 𝓁f and 𝓁e account for the ESO holder’s job termination risk
and the fact that the ESO holder’s desire to exercise increases as the option’smoneyness increases,
respectively. We assume that the risk-free rate is 5% and the stock price volatility is 30%. Further-
more, we consider four values of the drift rate, specifically 15, −5, 25, and −15%. Note that we
have selected two pairs of a positive and a negative drift rate. In each of the two pairs, the drift
rates have the same distance from the risk-free rate, namely, 10 and 20%, respectively. In the next
subsection, we observe that the distance of the drift rate from the risk-free rate may have a rather
noticeable effect on the ESO’s mean–variance hedging initial endowment.

5.1 The mean–variance frontier

We have numerically solved the recursive equations arising from the discrete time approximation
of the stochastic control problemwehave considered in the previous sections. For each initial port-
folio endowment 𝑥, we have, thus, computed the expected squared hedging error at the random
time of the ESO’s liquidation over all self-financing portfolio strategies with initial endowment 𝑥.
The red curves in Figures 1 and 2, which we call “mean-variance frontiers,” are plots of the square
root of this error, to which we refer as the “root mean squared hedging error” (RMSHE), against
the value of the initial endowment 𝑥. The ESO’s mean–variance initial endowment 𝑥mvh at time 0
corresponds to the apex of each curve.
We have also used backward induction to compute the risk-neutral initial endowment 𝑥rn pro-

posed by Carr and Linetsky (2000), as well as the super-replication endowment 𝑥sr. In each of
these two cases, we have computed the corresponding RMSHEs using Monte Carlo simulation
along the lines described in the next subsection, and we have located the associated points in
Figures 1 and 2.
As expected, the ESO’s risk-neutral and super-replication values 𝑥rn and 𝑥sr do not depend on

the drift rate. On the other hand, the ESO’s mean–variance initial endowment 𝑥mvh is sensitive
to the value of the market price of risk. The absolute value of the difference between the drift
rate and the risk-free rate is 10% in Figure 1, whereas it is 20% in Figure 2. This increase of the
distance of the drift rate from the risk-free rate leads to a substantial decrease of themean–variance
initial endowment.
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KLADÍVKO and ZERVOS 29

F IGURE 1 Mean–variance frontier, initial endowments, and root mean squared hedging errors for drift
rates of 15 and −5%. [Color figure can be viewed at wileyonlinelibrary.com]

F IGURE 2 Mean–variance frontier, initial endowments, and root mean squared hedging errors for drift
rates of 25 and −15%. [Color figure can be viewed at wileyonlinelibrary.com]

5.2 Distribution of the hedging errors

In the case of mean–variance hedging, we have considered the mean–variance optimal portfolio
strategy that starts with initial capital 𝑥mvh. In the cases of risk-neutral and super-replication
hedging, we have considered the standard Black and Scholes delta hedging strategy. The risk-
neutral strategy starts with initial endowment 𝑥rn and hedges the American option that yields the
payoff 𝐹(𝑆𝜂) if exercised at a random time 𝜂 ∈ [𝑇v, 𝑇]. On the other hand, the super-replicating
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30 KLADÍVKO and ZERVOS

TABLE 1 Mean hedging errors (MHE), root mean squared hedging errors (RMSHE), and 1, 5, 10, 50, 90, 95,
99% percentiles of the hedging errors.

Endowment MHE RMSHE 1% 5% 10% 50% 90% 95% 99%
Drift rate set to 15%
𝑥mvh = 25.1 0.0 30.2 −63.4 −34.4 −24.6 −5.4 32.2 50.4 108.0
𝑥rn = 33.0 0.0 33.2 −47.1 −34.5 −29.0 −9.3 41.2 60.2 117.4
𝑥sr = 52.6 24.8 41.9 0.0 0.0 0.0 15.4 64.4 88.9 157.0
Drift rate set to −5%
𝑥mvh = 25.7 0.0 17.2 −48.0 −24.1 −14.9 −1.6 21.2 29.1 50.6
𝑥rn = 33.0 0.0 19.5 −31.6 −23.0 −18.7 −4.9 27.7 37.4 63.5
𝑥sr = 52.6 14.6 26.6 0.0 0.0 0.0 2.3 45.9 59.3 93.1
Drift rate set to 25%
𝑥mvh = 8.0 0.0 32.3 −79.7 −34.2 −20.0 −1.4 18.2 40.4 119.1
𝑥rn = 33.0 0.0 43.6 −58.2 −42.4 −35.4 −13.7 52.2 80.5 161.7
𝑥sr = 52.6 30.5 53.1 0.0 0.0 0.0 17.4 78.8 113.9 208.6
Drift rate set to −15%
𝑥mvh = 10.1 0.0 7.9 −26.4 −4.6 −2.4 −0.1 5.7 9.5 16.7
𝑥rn = 33.0 0.0 15.1 −25.0 −16.9 −12.9 −4.1 22.2 31.9 49.6
𝑥sr = 52.6 10.6 21.4 0.0 0.0 0.0 0.1 38.3 51.6 75.5

strategy ignores the possibility of the option’s early liquidation and hedges the option as if it were
a European one.
In each of the three cases, we have used Monte Carlo simulation to compute the associated

discounted to time 0 hedging errors, namely, the differences of the portfolios’ values and the ESO’s
payoff at the ESO’s random liquidation time. We have derived empirical distributions of these
hedging errors by simulating 50 million sample paths of the stock price process (each sample
path consisting of 1000 time steps) and 50 million realizations of the random time 𝜂.4
We plot the empirical distributions of the hedging errors for 𝜇 = 15% and 𝜇 = −5% in Figure 3.

The corresponding plots for 𝜇 = 25% and 𝜇 = −15% are shown in Figure 4. Furthermore, we
report the portfolios’ initial endowments used, namely, the values of 𝑥mvh, 𝑥rn, and 𝑥sr, as well as
the corresponding mean hedging error (MHE), RMSHE, and selected percentiles of the hedging
errors in Table 1.
We note that a negative value of the hedging error means that the portfolio’s value has not

covered the ESO’s payoff. As expected, the super-replication strategy never leads to a negative
hedging error. The “hump” that appears in the frequency of positive hedging errors is due to the
fact that, if the ESO liquidation occurs during the vesting period, then the ESO forfeits without
yielding a payoff. Indeed, if the vesting period is changed from 3 years to immediate vesting, then
the bimodality of the hedging error distribution disappears.

5.3 Convergence for long time horizons

To illustrate the convergence of the mean–variance valuation scheme as time to horizon becomes
large, we have considered the ESO described at the beginning of the section but with a 20-year
maturity (𝑇 = 20) and with immediate vesting. We have also assumed that 𝓁f = 20%, 𝓁e = 0, 𝜇 =
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F IGURE 5 Illustration of convergence for long time horizons. [Color figure can be viewed at
wileyonlinelibrary.com]

10%, 𝜎 = 30%, and 𝑟 = 5%. Such choices put us in the context of Equation (81) in Remark 4.5. In
Figure 5, we plot the functions 𝑓, 𝑔, and ℎ as computed using the binomial tree model. In the
first chart of the figure, we also plot the function 𝑓 arising in the context of the continuous time
model, which is given by Equation (85). We also plot the level given by the functions 𝑓∞, 𝑔∞,
and ℎ∞ evaluated at the initial stock price 𝑆0 = 100 using the closed form formulas derived in
Remark 4.5.

ACKNOWLEDGMENTS
We are grateful to Tahir Choulli and Monique Jeanblanc for several helpful discussions and
suggestions. We are also grateful to two anonymous referees whose comments led to a substan-
tial enhancement of the paper. Kamil Kladívko would like to thank the Norwegian School of
Economics, the Norske Bank fond til økonomisk forskning, and Professor Wilhelm Keilhaus’s
minnefond for supporting his research stay at the LSE.

DATA AVAILAB IL ITY STATEMENT
No data used.

ORCID
KamilKladívko https://orcid.org/0000-0001-9024-3054
Mihail Zervos https://orcid.org/0000-0001-5194-6881

ENDNOTES
1Note that the definition of 𝜗 and the bounds in Equations (9) and (10) imply that the function (𝑡, 𝑠) ↦ ||𝜇(𝑡, 𝑠)|| +
𝑠||𝜇𝑠(𝑡, 𝑠)|| is also bounded by a constant.

2Without loss of generality, we use the same symbol 𝜅 here as well as in Assumption 2.1.
3The representation (55) implies that, if 𝜗 = 0, then

𝜑(𝑡, 𝑧) = 𝑒−2𝜅(𝑇−𝑡) ⇒ 𝑓(𝑡, 𝑠) =
1

𝑒2𝜅(𝑇−𝑡)𝜑(𝑡, ln 𝑠)
= 1,

which is a result that can be alternatively verified by a straightforward substitution in the PDE (26).
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4With this number of samples, the simulated mean squared hedging error of the mean–variance hedging strategy
matches its theoretically computed one up to the second decimal point.
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