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Abstract
Let J1 > J2 > . . . be the ranked jumps of a gamma process τα on the time interval [0, α],
such that τα = ∑∞

k=1 Jk . In this paper, we design an algorithm that samples from the random
vector (J1, . . . , JN ,

∑∞
k=N+1 Jk). Our algorithm provides an analog to the well-established

inverse Lévy measure (ILM) algorithm by replacing the numerical inversion of exponential
integral with an acceptance-rejection step. This research is motivated by the construction of
Dirichlet process prior in Bayesian nonparametric statistics. The prior assigns weight to each
atom according to a GEM distribution, and the simulation algorithm enables us to sample
from the N largest random weights of the prior. Then we extend the simulation algorithm
to a generalised gamma process. The simulation problem of inhomogeneous processes will
also be considered. Numerical implementations are provided to illustrate the effectiveness
of our algorithms.
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1 Introduction

Consider a subordinator τα,σ with the Lévy-Khintchine representation
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E(exp(−βτα,σ )) = exp

(

−α

∫ ∞

0
(1 − e−βw)w−σ−1e−wdw

)

.

When α > 0 and σ = 0, the subordinator τα := τα,0 is a gamma process; while for α > 0
and 0 < σ < 1, τα,σ is a generalised gamma process. From the basic properties of Poisson
random measure (see, for example, Section 2.2 of Kyprianou 2006) we know both processes
are pure-jump with infinite activity. Thus, they can be written as τα,σ = ∑∞

k=1 Jk , where
J1 > J2 > · · · > 0 are the ranked jumps of τα,σ on the time interval [0, α]. In this paper, we
design an acceptance-rejection algorithm that samples from the N largest jumps, J1, . . . , JN ,
and the sum of the smaller jumps,

∑∞
k=N+1 Jk , of the subordinator simultaneously.

This research is motivated by the simulation problem of a Poisson-Dirichlet distribution,
which is a random probability measure on the set of decreasing positive sequences with sum
1. The definition is given as follows.

Definition 1 (Poisson-Dirichlet distribution) For α > 0, suppose that independent random
variables Vi are such that Vi has Beta(1, α) distribution. Let

π̃1 = V1, π̃k = Vk

k−1∏

i=1

(1 − Vi ), for k = 2, 3, . . . .

Define the Griffiths-Engen-McCloskey distribution with parameter α, abbreviated GEM(α)

to be the resultant distribution (π̃1, π̃2, . . . ). Moreover, define (π1, π2, . . . ) to be their sorted
values such thatπ1 > π2 > . . . . Then (π1, π2, . . . ) follows the Poisson-Dirichlet distribution
with parameter α, abbreviated PD(α).

Results of Perman et al. (1992) show that the sequence {π̃k}∞k=1 is a size-biased permutation
of {πk}∞k=1, i.e., the same sequence presented in a random order (πσ1 , πσ2 , . . . ), where P

(σ1 = i) = πi , and for k distinct i1, . . . , ik ,

P(σk = ik | σ1 = i1, . . . , σk−1 = ik−1) = πik

1 − (πi1 + · · · + πik−1)
.

An index i with bigger ‘size’ πi tends to appear earlier in the permutation, hence the name
size-biased. On the other hand, we revert to the PD(α) distribution by sorting the random
weights of GEM(α) in descending order.

The application of PD(α) distribution appears in many fields, for example, to study the
asymptotic distribution of the prime factorization of a randomly drawn integer in number the-
ory, see Donnelly and Grimmett (1993), Tenenbaum (1995), Billingsley (1972) and Vershik
(1986); to model the asymptotic distribution of the ranked relative cycle lengths in a random
permutation in combinatorics, see Arratia et al. (2003), Aldous (1985), Hansen (1994) and
Schmidt and Vershik (1977); to describe the limiting distribution of several sequences of
discrete stochastic models of the infinitely-many-neutral-alleles type in population genetics,
see Ewens (1990), Watterson (1976) and Kingman (1980); and in particular, to construct
the Dirichlet process prior in Bayesian nonparametric statistics, see Ferguson (1973). As we
will see in Sect. 2, the construction of Bayesian nonparametric priors also leads us to the
simulation problem of a generalised gamma process.

Despite its huge variety of applications, the exact simulation algorithm for PD(α) is less
frequently examined. Wolpert and Ickstadt (1998b) introduced the inverse Lévy measure
(ILM) algorithm that samples from the largest jumps of a gamma process and use them to
approximate the Ferguson-Klass representation (Ferguson and Klass 1972) of a Poisson-
Dirichlet distribution. Zarepour and Labadi (2012) suggested to approximate the distribution
of the largest jumps by a gamma density. Due to the difficulty in simulation, these methods
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ignore the infinite number of smaller jumps of the gamma process in the Ferguson-Klass
representation. However, a recent research Dassios et al. (2019) proposed an exact simulation
algorithm for the truncated gamma process. The algorithm can be used to sample from the
sumof the smaller jumps. In this paper, wewill combine thesemethods together and design an
exact simulation algorithm for the N largest components of a Poisson-Dirichlet distribution.

In the meanwhile, a trivial simulation algorithm for PD(α) is immediately obtained from
Definition 1.

Theorem 1 (Trivial algorithm) This algorithm generates an approximation for the N largest
components of a PD(α) distribution.

1. Initialise α and N, select a positive integer m >> N (for example m = 10N).
2. For each i = 1, . . . ,m, generate a beta random number Vi ← Beta(1, α).
3. For each i = 1, . . . ,m, set π̃i ← (1 − V1) . . . (1 − Vi−1)Vi .
4. Sort {π̃i }i=1,...,m in descending order and let π1 > π2 > · · · > πm be the ranked values

of {π̃i }i=1,...,m.
5. Truncate the sequence {πi }i=1,...,m at the first N components, output (π1, π2, . . . , πN ).

In Step 2 and 3 of Algorithm 1, we follow the stick-breaking construction of the GEM
distribution and sample from its firstm components. Asm → ∞, these components become
an exact sample of the GEM distribution, and Step 4 returns an exact sample of the Poisson-
Dirichlet distribution. However, it is impossible to take m to be infinity in practice, so
Algorithm 1 is only an approximation for the PD(α) distribution.

The rest of the paper is organised as follows. In Sect. 2, we provide some preliminary
results for our simulation algorithms and explain their potential applications in Bayesian
nonparametric statistics. In Sect. 3, we derive the joint density of the N largest jumps of the
gamma and generalised gamma processes, then develop the acceptance-rejection algorithm
that samples from these jumps. Section4 presents the numerical implementations of these
algorithms. Section5 gives some concluding remarks.

2 Preliminary Results

In this section, we illustrate the connection between the (generalised) gamma process and
Bayesian nonparametric statistics, and provide some preliminary results that will be used
later. The concept of Dirichlet process was first introduced by Ferguson (1973); since then
it turns out to be a most notable prior in Bayesian nonparametric statistics. From Theorem 2
of Ferguson (1973), we know that a Dirichlet process can be written as

G =
∞∑

k=1

πkδφk ,

where {πk}∞k=1 follows the PD(α) distribution, {φk}∞k=1 is a sequence of i.i.d. randomvariables
with the common distribution G0, and δφk is a point mass at φk . In Bayesian nonparametric
statistics, the latent parameter φk is randomly chosen with probability πk , i.e., according to
the PD(α) distribution.

On the other hand, let {Jk}∞k=1 be the ranked jumps of a gamma process τα on the time
interval [0, α]. From Section 4 of Ferguson (1973), we know that the normalised jumps of
τα has the same law as the Poisson-Dirichlet distribution, i.e.,
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(J1/τα, J2/τα, J3/τα, . . . )
law= (π1, π2, π3, . . . ).

Then we deduce that to sample from the N largest components of the PD(α) distribution, it
is sufficient to simulate the random vector (J1, . . . , JN , τα), and that is exactly the target of
our algorithm.

To simplify the procedure, we define a partial sum τ N−
α := ∑∞

k=N+1 Jk , then our task
is equivalent to sampling from (J1, . . . , JN , τ N−

α ) because we can revert to τα easily by
calculating

∑N
k=1 Jk + τ N−

α . But the partial sum is extremely useful because once we have
sampled from (J1, . . . , JN ), the conditional Lévy-Khintchine representation of τ N−

α is

E

(
exp(−βτ N−

α ) | J1, . . . , JN
)

= exp

(

−α

∫ JN

0
(1 − e−βw)w−1e−wdw

)

.

It follows that τ N−
α is a truncated gamma process, and its exact simulation algorithm has

been developed in Dassios et al. (2019). Finally, we can derive the N largest components and
the sum of smaller components of PD(α) from

πi
law= Ji

∑N
k=1 Jk + τ N−

α

, i = 1, . . . , N , and
∞∑

k=N+1

πk
law= τ N−

α
∑N

k=1 Jk + τ N−
α

. (1)

Another popular prior inBayesian nonparametric statistics is the generalisedDirichlet process
prior. It was first introduced by Hougaard (1986) and Brix (1999), and further studied in
Epifani et al. (2003), James et al. (2005), Lijoi et al. (2007) and Ayed et al. (2019). Let
{Jk}∞k=1 be the ranked jumps of a generalised gamma process τα,σ on the time interval [0, α],
then we can express the normalised jump sizes of τα,σ as

(
J1/τα,σ , J2/τα,σ , J3/τα,σ , . . .

)
.

This is again a random probability measure on the set of decreasing positive sequences
with sum 1. We denote by pk := Jk/τα,σ the k-th component of this distribution, then the
generalised Dirichlet process prior can be written as G = ∑∞

k=1 pkδφk .
Our target is to sample from the N largest random weights, (p1, . . . , pN ), of the

generalised Dirichlet process prior. To this end, we first sample from the N largest
jumps (J1, . . . , JN ) of the generalised gamma process, then simulate the partial sum τ N−

α,σ

:= ∑∞
k=N+1 Jk , whose conditional Lévy-Khintchine representation is

E

(
exp(−βτ N−

α,σ ) | J1, . . . , JN
)

= exp

(

−α

∫ JN

0
(1 − e−βw)w−σ−1e−wdw

)

.

This turns out to be the Lévy-Khintchine representation of a truncated tempered stable pro-
cess, and the exact simulation algorithm can be found in Dassios et al. (2020). Finally, we
can use the decomposition (1) to derive the N largest components and the sum of smaller
components of the generalised Dirichlet process.

3 Simulation Algorithms

In this section, we review the inverse Lévy measure (ILM) algorithm for the gamma and
generalised processes, then introduce the acceptance-rejection (AR) algorithm for these pro-
cesses. We will also extend these algorithms to inhomogeneous processes.
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3.1 ILM Algorithm

The ILM algorithm is a straightforwardmethod that samples from the ranked jumps of a Lévy
process. We briefly explain the key ideas here and refer the readers to Wolpert and Ickstadt
(1998a) andWolpert and Ickstadt (1998b) for more details. Consider the largest jump J1 of a
generalised gamma process τα,σ . From the basic properties of Poisson random measure, we
know

P(J1 ≤ x1) = P(Pois(αv(x1,∞)) = 0)

= exp(−αv(x1,∞)) = exp

(

−α

∫ ∞

x1
w−σ−1e−wdw

)

,
(2)

where v(·) denotes the Lévy measure. Then we can sample from J1 via the inverse transform
method. Let U1 ∼ U (0, 1) be an uniform random number, then the solution to the equa-
tion U1 = exp(−α

∫ ∞
x1

w−σ−1e−wdw) provides a sample of J1. Conditioning on Jk−1,
we can sample from Jk iteratively by setting Uk ∼ U (0, 1) and solving the equation
Uk = exp(−α

∫ Jk−1
xk

w−σ−1e−wdw), for xk ∈ (0, Jk−1). This method is easy to imple-
ment, but since the explicit inversion of incomplete gamma integral is unknown, a numerical
inversion is required in every iteration. Note that by taking σ = 0, we get the ILM algorithm
for a gamma process, and the numerical inversion of an exponential integral is required.

3.2 AR Algorithm for Gamma Process

Next, we derive the joint density of the N largest jumps of a gamma process and develop an
acceptance-rejection algorithm to sample from these jumps. Since the size of the (k + 1)-th
largest jump depends on the size of the k-th largest jump, i.e., Jk+1 ∈ (0, Jk), it is more
convenient to work on the ratio between two consecutive jumps. To this end, we define
Rk := Jk+1/Jk , k = 1, 2, . . . , and study the joint density of (J1, R1, . . . , RN−1).

Theorem 2 Denote by J1, . . . , JN the N largest jumps of a gamma process τα . Let Rk

:= Jk+1/Jk be the ratio between the (k + 1)-th and k-th largest jumps, then the joint density
of (J1, R1, . . . , RN−1) is

P(J1 ∈ dx1, R1 ∈ dr1, . . . , RN−1 ∈ drn−1)

= exp

(

−α

∫ ∞

x1r1...rn−1

w−1e−wdw

)

αN (x1r1 . . . rN−1)
−1

× e−x1(1+r1+···+r1r2...rN−1)drN−1 . . . dr1dx1,

where x1 ∈ (0,∞) and rk ∈ (0, 1), for k = 1, . . . , N − 1.

Proof It follows from Eq. (2) that J1 has the density

P(J1 ∈ dx1) = exp

(

−α

∫ ∞

x1
w−1e−wdw

)

αx−1
1 e−x1dx1,

where x1 ∈ (0,∞). The same argument gives that
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P(Jk ∈ dxk | Jk−1 = xk−1) = exp

(

−α

∫ xk−1

xk
w−1e−wdw

)

αx−1
k e−xk dxk,

where xk ∈ (0, xk−1). Then we obtain the joint density of (J1, . . . , JN ) in terms of the
product of the density functions above,

P(J1 ∈ dx1, . . . , JN ∈ dxN )

= exp

(

−α

∫ ∞

xN
w−1e−wdw

)

αN (x1 . . . xN )−1e−(x1+···+xN )dxN . . . dx1,

where x1 > x2 > · · · > xN > 0. Finally, we make the change of variables xk = x1
∏k−1

i=1 ri ,
for k = 2, . . . , N , and the theorem is proved. �

Next, we design an acceptance-rejection algorithm to sample from the random vec-
tor (J1, . . . , JN , τ N−

α ). It is Algorithm 3.2 of Dassios et al. (2019) which we refer to as
Algori thmTG(·, ·).

Theorem 3 The acceptance-rejection algorithm for (J1, . . . , JN , τ N−
α ).

1. Numerically maximising

exp(−α
∫ ∞
x1r1...rN−1

w−1e−wdw)e−x1(1+r1+···+r1r2...rN−1)

1
	(α)0.99α xα

1 e
−(x1/0.99)α−1(r1 . . . rN−1)α

with respect to x1 ∈ (0,∞) and rk ∈ (0, 1), for k = 1, . . . , N − 1. Record the maximum
value Cα,N .

2. Sample fromagammadistribution X1←Gamma(α, 0.99), and for each k=1, . . . , N−1,
sample from an uniform distribution Uk ← U(0, 1), then set Rk ← U 1/α

k .
3. Sample from an uniform distribution U ← U(0, 1), if

U ≤ exp(−α
∫ ∞
X1R1...RN−1

w−1e−wdw)e−X1(1+R1+···+R1R2...RN−1)

C 1
	(α)0.99α Xα

1 e
−(X1/0.99)α−1(R1 . . . RN−1)α

,

accept the candidates (X1, R1, . . . , RN−1) and go to Step 4; otherwise, go to Step 2.
4. Set J1 ← X1, and for each k = 2, . . . , N, set Jk ← J1

∏k−1
i=1 Ri .

5. Set τ N−
α ← JN × AlgorithmTG(α, JN ).

6. Output (J1, . . . , JN , τ N−
α ).

Proof We apply the acceptance-rejection method to sample from the joint density of
(J1, R1, . . . , RN−1) in Theorem 2 with the envelope

1

	(α)bα
xα−1
1 e−x1/b exp

(

−α

∫ x1

x1r1...rN−1

w−1dw

)

αN−1(r1 . . . rN−1)
−1

= 1

	(α)bα
xα−1
1 e−x1/bαN−1(r1 . . . rN−1)

α−1.
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The first part of the envelope is a gamma density, whose curve should be similar to the
density funciton of J1. To this end, we set its shape parameter to be α and scale parameter
as close as possible to 1 from below, for example b = 0.99. The second part can be viewed
as the product of N − 1 number of Beta(α, 1) density functions αrα−1

k 1{0<rk<1}. Then we
can sample from Rk using the inverse transform. Finally, the remaining term τ N−

α has the
conditional Laplace transform

E

(
exp(−βτ N−

α ) | J1, . . . , JN
)

= exp

(

−α

∫ JN

0
(1 − e−β y)w−1e−wdw

)

= exp

(

−α

∫ 1

0
(1 − e−β JNw)w−1e−JNwdw

)

,

hence τ N−
α

d= JN Z JN (α), where Zμ(t) is a truncated gamma process with Lévy measure
w−1e−μw1{0<w<1}dw at time t , and the exact simulation algorithm can be found in Dassios
et al. (2019). �

When α is large, the maximum of the ratio between the target density and envelope in
Step 1 could be large, making the AR algorithm less efficient or even unfeasible. Next, we
design an alternative algorithm that works better for large α.

Theorem 4 Alternative acceptance-rejection algorithm for (J1, . . . , JN , τ N−
α ).

1. Numerically maximising

exp(− ∫ ∞
x1

w−1e−wdw)x−1
1 e−x1

(1/b)e−x1/b

and
exp(−α

∫ ∞
x1

w−1e−wdw)αx−1
1 e−x1

exp(− ∫ ∞
x1

w−1e−wdw)x−1
1 e−x1

with respect to x1 ∈ (0,∞), record the maximum values as C1,1 and C1,2 respectively.
2. Sample from an exponential distribution X1 ← Exp(b).
3. Sample from uniform distributions V1,1 ← U [0, 1] and V1,2 ← U [0, 1], if both

V1,1 ≤ exp(− ∫ ∞
X1

w−1e−wdw)X−1
1 e−X1

C1,1(1/b)e−X1/b

and

V1,2 ≤ α

C1,2
exp

(

(1 − α)

∫ ∞

X1

w−1e−wdw

)

are true, accept X1 and continue; otherwise, go to Step 2.
4. For k = 2, . . . , N, do

(a) Numerically maximising

exp(− ∫ Xk−1
xk

w−1e−wdw)x−1
k e−xk

1/Xk−1

and
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exp(−α
∫ Xk−1
xk

w−1e−wdw)αx−1
k e−xk

exp(− ∫ Xk−1
xk

w−1e−wdw)x−1
k e−xk

with respect to xk ∈ (0,Xk−1), record the maximum values as Ck,1 and Ck,2 respec-
tively.

(b) Sample from an uniform distribution Xk ← U (0, Xk−1).
(c) Sample from uniform distributions Vk,1 ← U (0, 1) and Vk,2 ← U (0, 1), if

both

Vk,1 ≤ exp(− ∫ Xk−1
Xk

w−1e−wdw)X−1
k e−Xk

Ck,1(1/Xk−1)

and

Vk,2 ≤ α

Ck,2
exp

(

(1 − α)

∫ Xk−1

Xk

w−1e−wdw

)

are true, accept Xk and continue; otherwise, go to Step 4(b).

5. Denote by �α	 the largest integer smaller than α. For each i = 1, . . . , �α	, sample from
a truncated gamma process with time parameter 1,

Zi ← XN × AlgorithmTG(1, XN ),

then sample from a truncated gamma process with time parameter α − �α	,

Z�α	+1 ← XN × AlgorithmTG(α − �α	, XN ),

and set τ N−
α ← Z1 + · · · + Z�α	 + Z�α	+1.

6. Set J1 ← X1, . . . , JN ← XN , then output (J1, . . . , JN , τ N−
α ).

Proof To sample from the density of the largest jump J1, we use a two-step acceptance-
rejection method. The first step is to maximise

exp(− ∫ ∞
x1

w−1e−wdw)x−1
1 e−x1

(1/b)e−x1/b

for x1 ∈ (0,∞), then we can sample from the density in the numerator with an exponential
envelope. The second step is to maximise

exp(−α
∫ ∞
x1

w−1e−wdw)αx−1
1 e−x1

exp(− ∫ ∞
x1

w−1e−wdw)x−1
1 e−x1

for x1 ∈ (0,∞). When α > 1, the maximum is approximately α. We can then sample from
the density in the denominator via the first step, and use it as the envelope to sample from
the target density in the numerator, which is the density of J1. The same method applies to
the k-th largest jump Jk conditional on Jk−1 = xk−1.

When α is large, the exact simulation algorithm for truncated gamma process could be
slow, but we can improve its performance by rewriting the Lévy-Khintchine representation
of τ N−

α as
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E

(
exp(−βτ N−

α ) | J1, . . . , JN
)

= exp

(

−(�α	 + (α − �α	))
∫ 1

0
(1 − e−β JNw)w−1e−JNwdw

)

.

Then we can simulate �α	 number of independent truncated gamma processes, each at time
1; and a truncated gamma process at time α − �α	. Their summation is a sample of the
truncated gamma process at time α. �

3.3 AR Algorithm for Generalised Gamma Process

This section contains the similar results as before but for a generalised gamma process.

Theorem 5 Denote by (J1, . . . , JN ) the N largest jumps of a generalised gamma process
τα,σ . Let Rk := Jk+1/Jk be the ratio between the (k + 1)-th and k-th largest jumps, then the
joint density of (J1, R1, . . . , RN−1) is

P(J1 ∈ dx1, R1 ∈ dr1, . . . , RN−1 ∈ drn−1)

= exp

(

−α

∫ ∞

x1r1...rN−1

w−σ−1e−wdw

)

αN x−Nσ−1
1 r−(N−1)σ−1

1 . . . r−σ−1
N−1

× e−x1(1+r1+r1r2+···+r1r2...rN−1)drN−1 . . . dr1dx1,

where x1 ∈ (0,∞) and rk ∈ (0, 1), for k = 1, . . . , N − 1.

Proof This is a repeat of the proof of Theorem 2 with a different Lévy measure, we omit
the details. �

Next, we design an acceptance-rejection algorithm to sample from (J1, . . . , JN , τ N−
α,σ ). It

is Algorithm 4.4 of Dassios et al. (2020) which we refer to as Algori thmT T S(·, ·, ·).
Theorem 6 The acceptance-rejection algorithm for (J1, . . . , JN , τ N−

α,σ ).

1. Numerically maximising

exp(−α
∫ ∞
x1r1...rN−1

w−σ−1e−wdw)e−x1(1+r1+···+r1r2...rN−1)

exp(−α(x1r1 . . . rN−1)−σ /σ )

with respect to x1 ∈ (0,∞) and rk ∈ (0, 1), for k = 1, . . . , N − 1. Record the maximum
value Cα,σ,N .

2. Sample from an uniform distribution U ← U(0, 1), then set

X1 ← (−σ ln(U )/α)−1/σ ,

and for each k = 1, . . . , N − 1, sample from an uniform distribution Uk ← U(0, 1),
then set

Rk ← (1 − σ ln(Uk)(X1R1 . . . Rk−1)
σ /α)−1/σ .

3. Sample from an uniform distribution V ← U(0, 1), if

V ≤
exp(−α

∫ ∞
X1R1...RN−1

w−σ−1e−wdw)e−X1(1+R1+···+R1R2...RN−1)

Cα,σ,N exp(−α(X1R1 . . . RN−1)−σ /σ )
,
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accept the candidates (X1, R1, . . . , RN−1) and go to Step 4; otherwise, go to Step 2.
4. Set J1 ← X1, and for k = 2, . . . , N, set Jk ← J1

∏k−1
i=1 Ri .

5. Set τ N−
α,σ ← JN × AlgorithmTTS

(
σ, JN , α J−σ

N

)
.

6. Output (J1, . . . , JN , τ N−
α,σ ).

Proof We apply the acceptance-rejection method to sample from the joint density of (J1,
R1, . . . , RN−1) in Theorem 5 with the envelope

exp

(

−α

∫ ∞

x1r1...rN−1

w−σ−1dw

)

αN x−Nσ−1
1 r−(N−1)σ−1

1 . . . r−σ−1
N−1

= exp(−αx−σ
1 /σ)αx−σ−1

1

×
N−1∏

k=1

exp
(
α(x1r1 . . . rk−1)

−σ (1 − r−σ
k )/σ

)
α(x1r1 . . . rk−1)

−σ r−σ−1
k .

The envelope can be divided into several independent components and each of them can be
sampled from using the inverse transform. For the first part, we set

U = exp(−αx−σ
1 /σ),

and solve for
X1 = (−σ ln(U )/α)−1/σ .

While for each component in the product term, we set

U = exp
(
α(x1r1 . . . rk−1)

−σ (1 − r−σ
k )/σ

)
,

and solve for
Rk = (1 − σ ln(U )(X1R1 . . . Rk−1)

σ /α)−1/σ .

Finally, we know the remaining term τ N−
α,σ has the conditional Laplace transform

E

(
exp(−βτ N−

α,σ ) | J1, . . . , JN
)

= exp

(

−α

∫ JN

0
(1 − e−βw)w−σ−1e−wdw

)

= exp

(

−α J−σ
N

∫ 1

0
(1 − e−β JNw)w−σ−1e−JNwdw

)

,

hence τ N−
α,σ

d= JN Zσ,JN (α J−σ
N ), where Zσ,μ(t) is a truncated tempered stable process with

the Lévy measurew−σ−1e−μw1{0<w<1}dw at time t , and the exact simulation algorithm can
be found in Dassios et al. (2020). �

For the same reason as before, we provide an alternative algorithm for the generalised
gamma process.

Theorem 7 Alternative AR algorithm for (J1, . . . , JN , τ N−
α,σ ).

1. Numerically maximising

123

64 Page 10 of 21



Methodology and Computing in Applied Probability (2023) 25:64

exp(− ∫ ∞
x1

w−σ−1e−wdw)x−σ−1
1 e−x1

(1/b)e−x1/b

and
exp(−α

∫ ∞
x1

w−σ−1e−wdw)αx−σ−1
1 e−x1

exp(− ∫ ∞
x1

w−σ−1e−wdw)x−σ−1
1 e−x1

with respect to x1 ∈ (0,∞), record the maximum values as C1,1 and C1,2 respectively.
2. Sample from an exponential distribution X1 ← Exp(b).
3. Sample from uniform distributions V1,1 ← U (0, 1) and V1,2 ← U (0, 1), if both

V1,1 ≤ exp(− ∫ ∞
X1

w−σ−1e−wdw)X−σ−1
1 e−X1

C1,1(1/b)e−X1/b

and

V1,2 ≤ exp(−α
∫ ∞
x1

w−σ−1e−wdw)αx−σ−1
1 e−x1

C1,2 exp(−
∫ ∞
x1

w−σ−1e−wdw)x−σ−1
1 e−x1

are true, accept X1 and continue; otherwise, go to Step 2.
4. For k = 2, . . . , N, do

(a) Numerically maximising

exp(− ∫ Xk−1
xk

w−σ−1e−wdw)x−σ−1
k e−xk

1/Xk−1

and
exp(−α

∫ Xk−1
xk

w−σ−1e−wdw)αx−σ−1
k e−xk

exp(− ∫ Xk−1
xk

w−σ−1e−wdw)x−σ−1
k e−xk

with respect to xk ∈ (0, Xk−1), record the maximum values as Ck,1 and Ck,2 respec-
tively.

(b) Sample from an uniform distribution Xk ← U (0, Xk−1).
(c) Sample from uniform distributions Vk,1 ← U (0, 1) and Vk,2 ← U (0, 1), if both

Vk,1 ≤ exp(− ∫ Xk−1
Xk

w−σ−1e−wdw)X−σ−1
k e−Xk

Ck,1(1/Xk−1)

and

Vk,2 ≤ exp(−α
∫ Xk−1
Xk

w−σ−1e−wdw)αX−σ−1
k e−Xk

Ck,2 exp(−
∫ Xk−1
Xk

w−σ−1e−wdw)X−σ−1
k e−Xk

are true, accept Xk and continue; otherwise, go to Step 4(b).

5. For each i = 1, . . . , �αX−σ
N 	, sample from a truncated tempered stable process with

time parameter 1,
Zi ← XN × AlgorithmTTS(σ, XN , 1),

then sample from a truncated tempered stable process with time parameter αX−σ
N−�αX−σ

N 	,
Z�αX−σ

N 	+1 ← XN × AlgorithmTTS(σ, XN , αX−σ
N − �αX−σ

N 	),
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and set τ N−
α,σ ← Z1 + · · · + Z�αX−σ

N 	 + Z�αX−σ
N 	+1.

6. Set J1 ← X1, . . . , JN ← XN , then output (J1, . . . , JN , τ N−
α,σ ).

Proof This is similar to the proof of Algorithm 4, we omit the details. �

3.4 Inhomogeneous Processes

In Corollary 1 of Wolpert and Ickstadt (1998b), the ILM algorithm was extended to inhomo-
geneous processes. Consider an inhomogeneous generalised gamma process τα,σ,
 with the
Lévy-Khintchine representation

E
(
exp(−βτα,σ,
)

) = exp

(

−
∫

S
α(s)

∫ ∞

0
(1 − e−βw)w−σ(s)−1e−wdw
(ds)

)

,

whereα(s) ≥ 0 and σ(s) ≥ 0 aremeasurable functions on a spaceS, and
(ds) is a probabil-
itymeasure onS. Thenwe can sample from the jumps of τσ,α,
 using the following algorithm.
For k = 1, . . . , N , we generate independent samples sk from 
(ds) and construct the event
times of a Poisson process by setting Tk := ∑k

i=1 ei , where ei are i.i.d. exponential random
variables with mean 1. Then we solve the equation Tk = ∫ ∞

Jk
α(sk)w−σ(sk )−1e−wdw to find

out Jk , for k = 1, . . . , N . The inhomogeneous generalised gamma process is approximated
by τα,σ,
 ← ∑N

k=1 Jk .
To recast the algorithm in terms of the acceptance-rejection method, we notice that Corol-

lary 2 of Wolpert and Ickstadt (1998a) provided the joint density of the jump sizes and
locations {(Jk, sk)}Nk=1 as follows,

exp

(

−α(sN )

∫ ∞

JN
w−σ(sN )−1e−wdw

) N∏

k=1

(
α(sk)J

−σ(sk )−1
k e−Jk

)
, (3)

with respect to the product measure
∏N

k=1 d Jk
(dsk) and the constraint

α(sk)
∫ ∞

Jk
w−σ(sk )−1e−wdw < α(sk+1)

∫ ∞

Jk+1

w−σ(sk+1)−1e−wdw, (4)

for every k < N .
If the hyperparameters are fixed, i.e., α(·) ≡ α and σ(·) ≡ σ , Eqs. (3) and (4) reduce

to the joint density of the N largest jumps of a generalised gamma process, see Theorem 5.
However, with the hyperparameters depending on the jump locations, it is hard to develop
an acceptance-rejection method directly from (3), especially when the ranges of variables in
(4) are not explicit.

To sample from the jumps of the inhomogeneous generalised gamma process via the AR
algorithm, we attempt the following procedure. For every k = 1, . . . , N , we draw a jump
location sk from
(ds), then use the AR algorithm in Sect. 3.3 to sample from the k-th largest
jump of a homogeneous generalised gamma processwith the Lévy-Khintchine representation

exp

(

−α(sk)
∫ ∞

0
(1 − e−βw)w−σ(sk )−1e−wdw

)

,

and take it as a jump of the inhomogeneous generalised gamma process. The numerical
illustration of this algorithm is given in the next section.
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4 Numerical Implementation

In this section, we present some numerical results for the algorithms introduced in Sect. 3.
The experiments are conducted on an Intel Core i9–10900 CPU@ 2.80GHz processor, 64.0
GB RAM,Windows 10, 64-bit system and performed in Matlab R2023a. Parallel computing
is not used throughout the section.

4.1 JumpMean

We first use theARalgorithms to sample from the five largest jumps of a (generalised) gamma
process and compare their sample averages to the true means. To this end, we calculate the
mean of these jumps as follows.

Proposition 1 (Mean) The mean of the k-th largest jump of a gamma process is

E(Jk) =
∫ ∞

0

∫ 1

0
. . .

∫ 1

0
exp

(

−α

∫ ∞

x1r1...rk−1

w−1e−wdw

)

× αke−x1(1+r1+···+r1...rk−1)drk−1 . . . dr1dx1,

and that of a generalised gamma process is

E(Jk) =
∫ ∞

0

∫ 1

0
. . .

∫ 1

0
exp

(

−α

∫ ∞

x1r1...rk−1

w−σ−1e−wdw

)

× αk x−kσ
1 r−(k−1)σ

1 . . . r−σ
k−1e

−x1(1+r1+···+r1...rk−1)drk−1 . . . dr1dx1.

Proof These are direct consequences of Theorems 2 and 5. �
Both expectations can be estimated by Monte Carlo method with an exponential variate

for x1 and an uniform variate for each ri , i = 1, . . . , k − 1. We record the numerical results
in Table 1 and 2. From the tables we can see that the AR algorithms can sample from the
jumps exactly. Moreover, when the acceptance rate is high, the AR algorithm would be more
efficient than the ILM algorithm. But in general, the ILM algorithm is faster.

Moreover, using the connection between the gamma process and Poisson-Dirichlet dis-
tribution in Eq. (1), we can sample from the N largest components of a PD(α) distribution
exactly.We compare the results to the approximation obtained fromAlgorithm 1. The numer-
ical results are recorded in Table 3.

4.2 Jump Covariance

Next, we study the true and empirical covariance between the jumps. The following propo-
sition implies a Monte Carlo method that estimates the true covariance. For simplicity, we
assume that m ≥ n and focus on the product term Jm Jn only.

Proposition 2 (Covariance) Assume that m ≥ n ≥ 1, then for a gamma process, the expec-
tation of the product Jm Jn is

E(Jm Jn) =
∫ ∞

0

∫ 1

0
. . .

∫ 1

0
(x1r1 . . . rn−1) exp

(

−α

∫ ∞

x1r1...rm−1

w−1e−wdw

)

× αme−x1(1+r1+···+r1...rm−1)drm−1 . . . dr1dx1 ,

and that of a generalised gamma process is
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Table 4 Covariance between the
jumps of the gamma process,
α = 1, sample size is 104

J1 J2 J3 J4 J5

J1 (0.8529, (0.2293, (0.0901, (0.0399, (0.0186,

0.8727) 0.2335) 0.0917) 0.0409) 0.0190)

J2 (0.1130, (0.0423, (0.0183, (0.0085,

0.1145) 0.0429) 0.0187) 0.0086)

J3 (0.0246, (0.0104, (0.0048,

0.0250) 0.0107) 0.0048)

J4 (0.0064, (0.0029,

0.0067) 0.0030)

J5 (0.0018,

0.0019)

E(Jm Jn) =
∫ ∞

0

∫ 1

0
. . .

∫ 1

0
(x1r1 . . . rn−1) exp

(

−α

∫ ∞

x1r1...rm−1

w−σ−1e−wdw

)

× αmx−mα
1 r−(m−1)α

1 . . . r−α
m−1e

−x1(1+r1+···+r1...rm−1)drm−1 . . . dr1dx1 .

Proof These are direct consequences of Theorems 2 and 5. �

Then we run the AR algorithms and record the empirical covariance in Tables 4 and 5.
The data are presented in the format (a, b), where a represents the true covariance obtained
from Proposition 9 and b represents the sample average of Jm Jn .

4.3 Functional Mean

We can also compare the true and empirical Laplace transforms of the gamma and gener-
alised gamma processes. From the Lévy-Khintchine representations, we derive their Laplace
transforms explicitly to be E(exp(−βτα)) = (β + 1)−α and E(exp(−βτα,σ )) = exp(−α	

(1−σ)((β +1)σ −1)/σ ) respectively. On the other hand, we sample from τα and τα,σ using
the AR algorithms and calculate the sample average of exp(−βτα) and exp(−βτα,σ ) with
some specific β.

Table 5 Covariance between the
jumps of the generalised gamma
process, α = 1, σ = 0.5, sample
size is 104

J1 J2 J3 J4 J5

J1 (0.6780, (0.2343, (0.1282, (0.0825, (0.0582,

0.6774) 0.2344) 0.1282) 0.0824) 0.0580)

J2 (0.1227, (0.0641, (0.0406, (0.0282,

0.1229) 0.0644) 0.0405) 0.0281)

J3 (0.0416, (0.0258, (0.0178,

0.0418) 0.0258) 0.0177)

J4 (0.0183, (0.0125,

0.0183) 0.0124)

J5 (0.0094,

0.0093)
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(a) (b)

Fig. 1 True and empirical Laplace transforms, sample size is 104

In Fig. 1a and b, we plot the true Laplace transform curve in solid line andmark the sample
average by a star. The figures show that the AR algorithms are accurate in estimating the
Laplace transforms of the gamma and generalised gamma processes.

4.4 Posterior Distribution of the Functional Mean

To illustrate the performance of the AR algorithms in Bayesian nonparametric statistics,
we provide another example based on the posterior distribution of the functional mean of
a Dirichlet process. For ease of comparison, we consider the same model settings as in
Example 1 of Muliere and Tardella (1998), where the target was to study the performance of
the ε-Dirichlet process.

Assume that we have observed two samples x1 = 0.1 and x2 = 0.05 from a Dirichlet
process G with concentration parameter α and reference distribution U (0, 1), it is well-
known (see, for example, Ferguson 1973) that the posterior distribution of G given x1 and x2
is another Dirichlet process with concentration parameter α + 2 and reference distribution
(αU (0, 1) + δx1 + δx2)/(α + 2). Since the posterior is built based on a Dirichlet process, we
can sample from its largest components via the representations in Eq. (1).

In Table 6, we use the ILM and AR algorithms to sample from the functional mean of
the posterior. We also present the existing results in Muliere and Tardella (1998). From the
table we can see that both the ILM and AR algorithms work well in estimating the posterior
functional mean.

Table 6 Posterior distribution of the functional mean of a Dirichlet process, sample size is 104

Total mass Truth ILM AR2 ε-Dirichlet ε-Dirichlet MS(1996) M. Chain
N = 100 N = 100 ε = 0.1 ε = 10−6

1 0.2166 0.2156 0.2157 0.2203 0.2173 0.2156 0.2152

2 0.2875 0.2851 0.2879 0.2825 0.2876 0.2888 0.2862

100 0.4916 0.4913 0.4910 0.4916 0.4914 0.4918 0.4891
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Table 7 Inhomogeneous generalised gamma process with α(s) = −0.5s+0.6, σ(s) = 0.2 sin(πs)+0.4 and

(s) = 0.4s + 0.8, 0 < s < 1. Jump sizes of the generalised gamma process, N = 100, sample size is 104

Algorithm J1 J2 J3 J4 J5 . . . JN Total (τσ,α,
)

IML 0.3064 0.1035 0.0527 0.0321 0.0219 . . . 0.0001 0.6264

AR2(GGP) 0.3066 0.1045 0.0529 0.0319 0.0216 . . . 0.0001 0.6242

4.5 Inhomogeneous Generalised Gamma Process

Finally,we illustrate the numerical results for the inhomogeneous generalisedgammaprocess.
We set α(s) = −0.5s+0.6, σ(s) = 0.2 sin(πs)+0.4 and
(s) = 0.4s+0.8, for 0 < s < 1,
and sample 100 jumps from the inhomogeneous generalised gamma process. Due to the size
of the data, we only present the first 5 jumps in Table 7. We also use the sum of the jumps to
approximate the inhomogeneous generalised gamma process; they are compared to the true
expectation given by E(τσ,α,
) = ∫ 1

0 α(s)	(1 − σ(s))
(ds) = 0.6393.

5 Concluding Remarks

In this research, we design an acceptance-rejection algorithm that samples from the N largest
jumps of gamma and generalised gamma processes. The effectiveness of our algorithms is
demonstrated by the empiricalmean, covariance and functionalmean of the jumps.Moreover,
we use the normalised jumps of a gamma process to construct the N largest components of a
Poisson-Dirichlet distribution and provide an application in estimating the posterior function
mean of a Dirichlet process. We also extend the simulation algorithm to inhomogeneous
generalised gamma process. In general, the AR algorithm does not overperform the ILM
algorithm in terms of efficiency, but it provides another simulation approach where the
numerical inversion of exponential or gamma integral is replaced by an acceptance-rejection
step. Specific applications are still to be found in which the AR algorithm is of benefit.

From the Bayesian nonparametrics’ point of view, our algorithms provide a truncation
method for the Dirichlet and generalised Dirichlet process priors. Moreover, since our con-
struction is based on a decreasing sequence of random weights, it has the lowest truncation
error comparing to other methods, see Campbell et al. (2019) for more details. Apart from
that, our algorithms sample from the actual jump sizes Jk , not only their weights πk = Jk/τα .
The actual jump sizes are essential in some statistical models. For example, in the Caron-Fox
network model (see Caron and Fox 2017), the jump sizes are used to construct an atomic
random measure

∑∞
k=1 Jkδφk , which describes the sociability parameters of the nodes in a

network. The actual jump sizes are important because it was assumed that the total number of
links in the network follows a Poisson distribution with mean (

∑∞
k=1 Jk)

2, which clearly can
not be obtained from the relative weights of the jumps. It would be interesting to investigate
the properties of the network model when its nodes are sorted in descending order according
to their sociability parameters; we will study this topic in a future work.
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