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Given a spectrally negative Lévy process X drifting to infinity, (inspired
on the early ideas of Shiryaev (2002)) we are interested in finding a stopping
time that minimises the Lp distance (p > 1) with g, the last time X is nega-
tive. The solution is substantially more difficult compared to the case p= 1,
for which it was shown by Baurdoux and Pedraza (2020) that it is optimal
to stop as soon as X exceeds a constant barrier. In the case of p > 1 treated
here, we prove that solving this optimal prediction problem is equivalent to
solving an optimal stopping problem in terms of a two-dimensional strong
Markov process that incorporates the length of the current positive excursion
away from 0. We show that an optimal stopping time is now given by the first
time that X exceeds a non-increasing and non-negative curve depending on
the length of the current positive excursion away from 0. We further charac-
terise the optimal boundary and the value function as the unique solution of
a non-linear system of integral equations within a subclass of functions. As
examples, the case of a Brownian motion with drift and a Brownian motion
with drift perturbed by a Poisson process with exponential jumps are consid-
ered.
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1. Introduction. In recent years, last passage times have received considerable attention
in the literature. For instance, in risk theory, the capital of an insurance company over time is
modelled by a stochastic process X = {Xt, t≥ 0}. In the classical risk theory, X is modelled
by the Cramér–Lundberg process, defined as a compound Poisson process with drift. This
model assumes that a premium is collected continuously at rate c > 0. In contrast, the claims
arrive according to a Poisson process, with the claims sizes being independent and identically
distributed. In more recent literature, X is considered to be a more general Lévy process (see
e.g. Huzak et al. (2004) or Klüppelberg, Kyprianou and Maller (2004)) with the motivation
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that the surplus of the company is the superposition of several independent small and large
claims, and that some uncertainty should be added in the premium income. A critical quantity
of interest is the moment of ruin, which is classically defined as the first passage time below
zero.

Gerber (1990) and Chiu and Yin (2005) propose the following extension by considering
that X represents the capital of an individual company portfolio. After the moment of ruin,
the company may have funds to endure a negative surplus of this portfolio for some time
(possibly with the influx of capital from other portfolios) with the hope of having a positive
surplus in the long term. Then, the last passage time below level zero is regarded as the last
recovery time, so after that, there will no longer be ruin. Note that prior knowledge of this
last passage time may have important implications in the risk management of the company
(or even a start-up company). Indeed, when launching a new product or portfolio, the insur-
ance company naturally expects losses in the first few months (or even years), aiming that the
project is profitable in the long term. Hence, after the last moment of ruin has occurred, fewer
funds are needed on their reserves, and they can be destined for other projects or portfolios
within the company. In Chiu and Yin (2005), the Laplace transform of the last passage time
is derived in this framework.

Secondly, Paroissin and Rabehasaina (2013) consider spectrally positive Lévy processes
as a degradation model. In particular, the ageing of a device is modelled by a process
D = {Dt, t ≥ 0}, given by a subordinator perturbed by a Brownian motion. In this frame-
work, large values of D represent a significant deterioration of the device, so the effect of the
subordinator means constant degradation, whilst the Brownian motion component represents
minor repairs made to the device. In a traditional setting, the failure time of a device is the
first time the model hits a specific critical level b. However, another approach has been used
in the literature. For example, Barker and Newby (2009) considered the failure time as the
last time the process is below b. After the last passage time, the process can never go back to
this level, meaning that the device is “beyond repair”.

Thirdly, Egami and Kevkhishvili (2020) studied the last passage time of a general time-
homogeneous transient diffusion with applications to credit risk management. They proposed
the leverage process (the ratio of a company asset process over its debt) as a geometric Brow-
nian motion over a process that grows at a risk-free rate. It is shown there that the last passage
time of the leverage ratio is equivalent to a last passage time of a Brownian motion with drift.
In this setting, the last passage represents the situation where the company cannot recover to
normal business conditions after this time has occurred.

An important feature of last passage times is that they are random times that are not stop-
ping times. In the recent literature, the problem of finding a stopping time that approximates
last passage times has been solved. There are, for example, various papers in which the ap-
proximation is in L1 sense. To mention a few: du Toit, Peskir and Shiryaev (2008) predicted
the last zero of a Brownian motion with drift in a finite horizon setting; du Toit and Peskir
(2008) predicted the time of the ultimate maximum at time t= 1 for a Brownian motion with
drift is attained; Shiryaev (2009) focused on the last time of the attainment of the ultimate
maximum of a Brownian motion and proceeded to show that it is equivalent to predicting the
last zero of the process in this setting; Glover, Hulley and Peskir (2013) predicted the time in
which a transient diffusion attains its ultimate minimum; Glover and Hulley (2014) predicted
the last passage time of a level z > 0 for an arbitrary non-negative time-homogeneous tran-
sient diffusion; Baurdoux and van Schaik (2014) predicted the time at which a Lévy process
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attains its ultimate supremum and Baurdoux, Kyprianou and Ott (2016) predicted when a
positive self-similar Markov process attain its path-wise global supremum or infimum before
hitting zero for the first time and Baurdoux and Pedraza (2020) predicted the last zero of a
spectrally negative Lévy process.

Note that in Shiryaev (2002), the author states some general optimal prediction problems
that are natural for the “technical analysis” of financial data. In particular, among other prob-
lems, it is proposed to predict the time in which a process attains its maximum (over a finite
interval) in an Lp sense. However, no solution to the problem is provided. Moreover, to the
best of our knowledge, optimal prediction problems for last passage times have been only
solved in an L1 sense. Hence, inspired by this, we consider the problem of predicting the last
zero of a spectrally negative Lévy process (drifting to infinity) in an Lp sense, i.e. we are
interested in solving

inf
τ∈T

E(|τ − g|p),

where g = sup{t≥ 0 :Xt ≤ 0} is the last time a spectrally negative Lévy process drifting to
infinity is below the level zero and p > 1. The case when p= 1 was solved in Baurdoux and
Pedraza (2020) for the spectrally negative case. An optimal stopping time, in this case, is the
first time the process crosses above a fixed level a∗ ≥ 0, which is characterised in terms of
the distribution function of the infimum of the process. The case p > 1 is substantially more
complex, as an optimal stopping time now depends on the length of the current excursion
above the level zero given by Ut = t − sup{0 ≤ s ≤ t : Xs ≤ 0}. The process (U,X) is a
Markov process taking values in E = [(0,∞)× (0,∞)]∪ [{0} × (−∞,0)].

We show that an optimal stopping time (when p > 1) is given by τD = inf{t > 0 :
(Ut,Xt) ∈ D} = inf{t ≥ 0 : Xt ≥ b(Ut)}, where b is a non-negative, non-increasing and
continuous curve. That is, it is not optimal to stop when (U,X) is in the (continuation) set
C :=E \D whilst we should stop as soon as the process enters the (stopping) set D (see Fig-
ure 1). In other words, given the strong dependence of U on X , the latter has the following
interpretation in terms of the sample paths of X : It is optimal to stop when X is sufficiently
large or has stayed for a sufficiently large amount of time above zero, whereas we will never
stop when X is in the negative half-line (see Figure 1).
In the figure below we include a plot of a sample path of Xt and b(Ut), where we calculated
numerically the function b for the Brownian motion with drift case (see Section 6.1 and Fig-
ure 3).

The paper is organised as follows. Section 2 gives a short overview of the main results
and notation on the fluctuation theory of spectrally negative Lévy processes. In Section 3,
we formulate the optimal prediction problem, and we show that it is equivalent to an optimal
stopping problem whose solution is described in Theorem 3.3. Since the proof of Theorem
3.3 is rather long, we dedicate Section 4 for that purpose. In particular, we show that an
optimal stopping time is given by the first time X exceeds a boundary b, which depends
on the length of the current excursion above zero. We derive various properties of b. For
example, in Lemma 4.15, we show that b is continuous and in Lemma 4.17, we show that
smooth fit holds at the boundary. The main result of this paper is Theorem 4.18, which proof
is devoted to Section 5, providing a characterisation of b and the value function of the optimal
stopping problem. In Section 6, we provide two numerical examples: Firstly, when X is
a Brownian motion with drift, and secondly, when X is a Brownian motion perturbed by
a compound Poisson process with exponential jumps. Finally, some of the more technical
proofs are deferred to the Appendices A and B.
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FIG 1. Stopping and continuation set in the (U,X) plane

FIG 2. Black line: t 7→Xt; Blue line: t 7→ b(Ut).

2. Preliminaries. A Lévy process X = {Xt, t ≥ 0} is an almost surely càdlàg process
that has independent and stationary increments such that P(X0 = 0) = 1. We take it to be
defined on a filtered probability space (Ω,F ,F,P) where F = {Ft, t ≥ 0} is the filtration
generated by X which is naturally enlarged (see Definition 1.3.38 of Bichteler (2002)). From
the stationary and independent increments property, the law of X is characterised by the dis-
tribution of X1. We hence define the characteristic exponent of X , Ψ(θ) :=− log(E(eiθX1)),
θ ∈R. The Lévy–Khintchine formula guarantees the existence of constants, µ ∈R, σ ≥ 0 and
a measure Π concentrated in R \ {0} with the property that

∫
R(1 ∧ x

2)Π(dx) <∞ (called
the Lévy measure) such that for any θ ∈R,
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Ψ(θ) = iµθ+
1

2
σ2θ2 −

∫
R
(eiθy − 1− iθyI{|y|<1})Π(dy).

We now state some properties and facts about Lévy processes. The reader can refer, for ex-
ample, to Bertoin (1998), Sato (1999) and Kyprianou (2014) for more details. Every Lévy
process X is also a strong Markov F-adapted process. For all x ∈R, denote Px as the law of
X when started at the point x ∈ R, that is, Ex(·) = E(·|X0 = x). Due to the spatial homo-
geneity of Lévy processes, the law of X under Px is the same as that of X + x under P.

From the Lévy–Itô decomposition we can write for any t≥ 0,

Xt = σBt − µt+

∫ t

0

∫
(−∞,∞)\(−1,1)

xN(ds,dx) +
∫ t

0

∫
(−1,1)

x(N(ds,dx)− dsΠ(dx)),

where B is a standard Brownian motion and N is an independent Poisson random measure
on R+ × R with intensity dt×Π(dx). Note that the Poisson random measure N describes
the jumps of the process X .

In the following sections, we often use the so-called compensation formula for Poisson
random measures (see e.g. Theorem 4.4 in Kyprianou (2014)). Let ξ : [0,∞) × R × Ω 7→
[0,∞) a measurable function such that: for each t≥ 0, the random variable ξ(t, x) is B(R)×
Ft-measurable, where B(R) is the Borel sigma algebra on R; for each x ∈ R, the stochastic
process {ξ(t, x), t≥ 0} is almost surely left continuous. Then we have that

E
(∫ t

0

∫
R
ξ(s,x)N(ds,dx)

)
= E

(∫ t

0

∫
R
ξ(s,x)Π(dx)ds

)
.(1)

The processX is a spectrally negative Lévy process if it has no positive jumps (Π(0,∞) =
0) with no monotone paths. We now state some important properties and fluctuation identities
of spectrally negative Lévy processes, which will be useful to us later in this paper. We refer
to Bertoin (1998), Chapter VII or Chapter 8 in Kyprianou (2014) for details.

Due to the absence of positive jumps, we can define the Laplace transform of X1. We
denote ψ(β) as the Laplace exponent of the process, that is, ψ(β) = log(E(eβX1)) for β ≥ 0.
For such β we have that

ψ(β) =−µβ +
1

2
σ2β2 +

∫
(−∞,0)

(eβy − 1− βyI{y>−1})Π(dy).

The function ψ is infinitely often differentiable and strictly convex function on (0,∞) with
ψ(∞) = ∞. In particular, ψ′(0+) = E(X1) ∈ [−∞,∞) determines the behaviour of X at
infinity. When ψ′(0+) > 0 the process X drifts to infinity, i.e., limt→∞Xt = ∞; when
ψ′(0+) < 0, X drifts to minus infinity and the condition ψ′(0+) = 0 implies that X os-
cillates, that is, limsupt→∞Xt = − lim inft→∞Xt =∞. We denote by Φ the right-inverse
of ψ, i.e.

Φ(q) = sup{β ≥ 0 : ψ(β) = q}, q ≥ 0.

In the particular case that X drifts to infinity, we have that ψ′(0+)> 0 which implies that ψ
is strictly increasing and then Φ is the usual inverse with Φ(0) = 0.
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It turns out that the path variation of Lévy processes is characterised by its Lévy triplet.
Indeed, for each t > 0, the paths of X have finite variation on (0, t], if and only if σ = 0
and

∫
(−1,0) |x|Π(dx)<∞. Since the path variation of X does not depend on t > 0, we just

simply say that X is of (in)finite variation.

Denote by τ+a the first passage time above the level a > 0,

τ+a = inf{t > 0 :Xt > a}.
The Laplace transform of τ+a is given by

E(e−qτ+
a I{τ+

a <∞}) = e−Φ(q)a, a > 0.(2)

An important family of functions for spectrally negative Lévy processes consists of the
scale functions, usually denoted by W (q) and Z(q). For all q ≥ 0, the scale function W (q) :
R 7→R+ is such that W (q)(x) = 0 for all x < 0 and it is characterised on the interval [0,∞)
as the strictly increasing and continuous function with Laplace transform given by∫ ∞

0
e−βxW (q)(x)dx=

1

ψ(β)− q
, for β >Φ(q).

The function Z(q) is defined for all q ≥ 0 by

Z(q)(x) := 1+ q

∫ x

0
W (q)(y)dy, for x ∈R.

For the case q = 0 we simply denote W =W (0). When X has paths of infinite variation,
W (q) is continuous on R and W (q)(0) = 0 for all q ≥ 0, otherwise W (q)(0) = 1/d for all
q ≥ 0, where

d :=−µ−
∫
(−1,0)

xΠ(dx).

Note that since processes with monotone paths are excluded from the definition of spectrally
negative processes, we necessarily have that d > 0 when X is of bounded variation.

For all q ≥ 0, W (q) has left and right derivatives. Moreover, when X is of infinite variation
we have that W (q) ∈ C1((0,∞)) with right-derivative at zero given by W (q)′(0) = 2/σ2.
When X is of finite variation W (q) ∈C1((0,∞)) when Π has no atoms. Henceforth, we will
assume that when X is of finite variation, the Lévy measure Π has no atoms. Furthermore,
for each x≥ 0 and q ≥ 0, W (q) has the following representation

W (q)(x) =

∞∑
k=0

qkW ∗(k+1)(x),(3)

where W ∗(k+1) is the (k + 1)-th convolution of W with itself. Various fluctuation identities
for spectrally negative Lévy processes have been found in terms of the scale functions. Here
we list some that will be useful in later sections. Denote by τ−x the first passage time below
the level x≤ 0, i.e.,

τ−x = inf{t > 0 :Xt < x}.
For any q ≥ 0 and x≤ a we have

Ex

(
e−qτ+

a I{τ−
0 >τ+

a }

)
=
W (q)(x)

W (q)(a)
.(4)



Lp OPTIMAL PREDICTION OF THE LAST ZERO 7

For any x ∈R and q ≥ 0,

Ex(e
−qτ−

0 I{τ−
0 <∞}) = Z(q)(x)− q

Φ(q)
W (q)(x),(5)

where we understand q/Φ(q) in the limiting sense when q = 0. Since X has only negative
jumps, we have that it only creeps upwards, that is,

P(Xτ+
x
= x, τ+x <∞) = 1(6)

for any x > 0. Moreover, X creeps downwards if and only if σ > 0 with probability given by

Px(Xτ−
0
= 0, τ−0 <∞) =

σ2

2

(
W ′(x)−Φ(0)W (x)

)
(7)

for any x > 0.

Denote by Xt = inf0≤s≤tXs and Xt = sup0≤s≤tXs the running infimum and running
maximum of the process X up to time t > 0, respectively. For q ≥ 0, let eq be an exponen-
tial random variable with mean 1/q independent of X , where we understand that eq = ∞
almost surely when q = 0. Then Xeq

is exponentially distributed with parameter Φ(q) and
the Laplace transform of Xeq

is given by

E(eβXeq ) =
q

Φ(q)

Φ(q)− β

q−ψ(β)
, β ≥ 0.(8)

Denote by σ−x the first time the process X is below or equal to the level x, i.e.,

σ−x = inf{t > 0 :Xt ≤ x}.(9)

It is easy to show that the mapping x 7→ σ−x is non-increasing, right-continuous with left
limits. The left limit is given by limh↓0 σ

−
x−h = τ−x for all x ∈R. Moreover, since

E(e−qσ−
x I{σ−

x <∞}) = P(eq > σ−x ) = P(Xeq
≤−x)

for all x≤ 0, and the fact that the random variable Xeq
is continuous on (−∞,0), we have

that the stopping times σ−x and τ−x have the same distribution, for any x > 0. When X is
of infinite variation, X enters instantly to the set (−∞,0) whilst in the finite variation case,
there is a positive time before the process enters it. That implies that in the infinite variation
case, τ−0 = σ−0 = 0 almost surely. Note that in the finite variation case, since the time t= 0
is excluded from the definition of σ−0 , from the fact that 0 is irregular for (−∞,0] (see dis-
cussion in Kyprianou (2014) on p. 157) and due to equation (7) we have that σ−0 = τ−0 > 0 a.s.

Let q > 0 and a ∈R. The q-potential measure of X killed on exiting [0, a],∫ ∞

0
e−qtPx(Xt ∈ dy, t < τ+a ∧ τ−0 )dt

is absolutely continuous with respect to Lebesgue measure and it has a density given by

W (q)(x)W (q)(a− y)

W (q)(a)
−W (q)(x− y), x, y ∈ [0, a].(10)

Similarly, the q-potential measure ofX killed on exiting (−∞, a] and the q-potential measure
of X are absolutely continuous with respect to Lebesgue measure with a density given by

e−Φ(q)(a−x)W (q)(a− y)−W (q)(x− y), x, y ≤ a,(11)
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and

Φ′(q)e−Φ(q)(y−x) −W (q)(x− y), x, y ∈R,(12)

respectively. In the case when X drifts to infinity these expression are also valid for q = 0.

For any t≥ 0 and x ∈R, we denote by g(x)t the last time that the process is below x before
time t, i.e.,

g
(x)
t = sup{0≤ s≤ t :Xs ≤ x},(13)

with the convention sup∅ = 0. We simply denote gt := g
(0)
t for all t ≥ 0. Note that when

P(Xt ≥ 0) = ρ for some ρ ∈ (0,1), then gt/t follows the generalised arcsine law with param-
eter ρ, see Theorem 13 in Bertoin (1998). The last-hitting time of zero is of key importance
in the study of Azéma’s martingale (see Azéma and Yor (1989)). We also define, for each
t≥ 0, U (x)

t as the time spent by X above the level x before time t since the last visit to the
interval (−∞, x], i.e.,

U
(x)
t := t− g

(x)
t , t≥ 0.

It turns out that for our optimal prediction problem

inf
τ∈T

E(|τ − g|p),

for p > 1, the process Ut = U
(0)
t plays a vital role. It can be readily seen that for all x ∈ R,

the process {U (x)
t , t≥ 0} is not a Markov process. We now list a number of results from Bau-

rdoux and Pedraza (2022) concerning U = {Ut, t ≥ 0}. The strong Markov property holds
for the two dimensional process (U,X) = {(Ut,Xt), t ≥ 0} with respect to the filtration
{Ft, t≥ 0} and state space given by

E = {(u,x) : u > 0 and x > 0} ∪ {(u,x) : u= 0 and x≤ 0}.

Then, there exists a family of probability measures {Pu,x, (u,x) ∈E} such that for any A ∈
B(E), Borel set of E, we have that Pu,x((Uτ+s,Xτ+s) ∈ A|Fτ ) = PUτ ,Xτ

((Us,Xs) ∈ A).
For each (u,x) ∈E, Pu,x can be written in terms of Px via

Eu,x(h(Us,Xs)) := Ex(h(u+ s,Xs)I{σ−
0 >s}) +Ex(h(Us,Xs)I{σ−

0 ≤s}),(14)

for any positive measurable function h. Note that the stochastic process (U,X) is a semi-
martingale so that Itô formula is known (see e.g. Theorem IV.71 in Protter (2005)). However,
given the strong dependence between U and X , we can give a more explicit formula in terms
of the dynamics of X (see Theorem 3.3 in Baurdoux and Pedraza (2022)). Let F :E 7→R a
continuous function that satisfies:

i) The mapping x 7→ F (0, x) is C1 on (−∞,0) such that, when X is of infinite variation,
the second derivative ∂2

∂x2F (0, x) exists and is continuous on (−∞,0);
ii) The mapping (u,x) 7→ F (u,x) is C1,1 on (0,∞)× (0,∞) such that, whenX is of infinite

variation, the second derivative ∂2

∂x2F (u,x) exists and is continuous on (0,∞), for all
u≥ 0;

iii) In the case that σ > 0, F is such that limh↓0F (u,h) = F (0,0) for all u > 0 and

∂

∂x
F (0,0+) =

∂

∂x
F (0,0−).(15)
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Then we have the following version of Itô formula

F (Ut,Xt)

= F (U0,X0) +

∫ t

0

∂

∂u
F (Us,Xs)I{Xs>0}ds

+

∫ t

0

∂

∂x
F (Us−,Xs−)dXs +

1

2
σ2
∫ t

0

∂2

∂x2
F (Us,Xs)ds

+

∫
[0,t]

∫
(−∞,0)

(
F (Us,Xs− + y)− F (Us−,Xs−)− y

∂

∂x
F (Us−,Xs−)

)
N(ds,dy)

(16)

Moreover, if in addition F is a bounded function, the infinitesimal generator AU,X of the
process (U,X) is given by

AU,X(F )(u,x)

=
∂

∂u
F (u,x)I{x>0} − µ

∂

∂x
F (u,x) +

1

2
σ2

∂2

∂x2
F (u,x)

+

∫
(−∞,0)

(
F (u,x+ y)− F (u,x)− yI{y>−1}

∂

∂x
F (u,x)

)
I{x+y>0}Π(dy)

+

∫
(−∞,0)

(
F (0, x+ y)− F (0, x)− yI{y>−1}

∂

∂x
F (0, x)

)
I{x≤0}Π(dy)

+

∫
(−∞,0)

(
F (0, x+ y)− F (u,x)− yI{y>−1}

∂

∂x
F (u,x)

)
I{0<x<−y}Π(dy)

=
∂

∂u
F̃ (u,x)− µ

∂

∂x
F̃ (u,x) +

1

2
σ2

∂2

∂x2
F̃ (u,x)

+

∫
(−∞,0)

(
F̃ (u,x+ y)− F̃ (u,x)− yI{y>−1}

∂

∂x
F̃ (u,x)

)
Π(dy),(17)

where F̃ is a function that extends F to the set R+ ×R given by

F̃ (u,x) =

F (u,x), for u > 0 and x > 0,
F (0, x), for u≥ 0 and x≤ 0,
F (0,0), for u= 0 and x > 0.

(18)

In addition, we provide a formula to calculate an integral involving the process {(Ut,Xt), t≥
0} with respect to time in terms of the excursions of X above and below zero (see The-
orem 3.6 in Baurdoux and Pedraza (2022)). Let K : E 7→ R be a left-continuous func-
tion in each argument. Assume that there exists a non-negative function C : R+ × R 7→ R
such that u 7→ C(u,x) is a monotone function for all x ∈ R, |K(u,x)| ≤ C(u,x) and
Eu,x

(∫∞
0 e−qrC(Ur,Xr + y)dr

)
<∞ for all (u,x) ∈E and y ∈R. Then we have that

E
(∫ ∞

0
e−qrK(Ur,Xr)dr

)
= lim

ε↓0

Eε

(
I{τ−

0 <∞}e
−qτ−

0 K−(Xτ−
0
− ε)

)
+K+(0, ε)

ψ′(Φ(q))W (q)(ε)
,(19)
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where K+ and K− are given by

K+(u,x) = Ex

(∫ τ−
0

0
e−qrK(u+ r,Xr)dr

)
,

K−(x) = Ex

(∫ τ+
0

0
e−qrK(0,Xr)dr

)
,

for all (u,x) ∈ E. As a direct application of the aforementioned formula, we can calculate
a density of the q-potential measure of (U,X) (see Corollary 3.10 in Baurdoux and Pedraza
(2022)). For any v, y > 0 we have that∫ ∞

0
e−qrP(Ur ∈ dv,Xr ∈ dy)dr =Φ′(q)

y

v
e−qvP(Xv ∈ dy)dv(20)

=Φ′(q)e−qvP(τ+y ∈ dv)dy,

where the last equality follows from Kendall’s identity (see e.g. Exercise 6.10 in Kyprianou
(2014)).

We conclude this section by collecting some additional results about the last passage time

g = g∞ = sup{t≥ 0 :Xt ≤ 0}.(21)

The Laplace transform of g was found in Chiu and Yin (2005) as

Ex(e
−qg) = eΦ(q)xΦ′(q)ψ′(0+) +ψ′(0+)(W (x)−W (q)(x)), q ≥ 0.(22)

The distribution function of g under Px is found by observing that

Px(g ≤ γ) = Px(Xu+γ > 0 for all u ∈ (0,∞))

= Ex(Px(Xu+γ > 0 for all u ∈ (0,∞)|Fγ))

= Ex(PXγ
(σ−0 =∞))

= Ex(PXγ
(τ−0 =∞))

= Ex(ψ
′(0+)W (Xγ)),(23)

where we used the tower property of conditional expectation in the second equality, the
Markov property of Lévy processes in the third and that σ−0 and τ−0 have the same distri-
bution (see discussion below equation (9)). Note that the law of g under Px may have an
atom at zero given by

Px(g = 0) = Px(σ
−
0 =∞) = Px(τ

−
0 =∞) = ψ′(0+)W (x).

For our optimal prediction problem, we require the p-th moment of g to be finite. The
following result is from Doney and Maller (2004) (see Theorem 1, Theorem 4, Theorem 5
and Remark (ii)).

LEMMA 2.1. Let X be a spectrally negative Lévy process drifting to infinity. Then, for a
fixed p > 0, the following are equivalent:

1. Ex(g
p)<∞ for some (hence every) x≤ 0;

2.
∫
(−∞,−1) |x|

1+pΠ(dx)<∞;
3. E((−Xp

∞))<∞;
4. Ex((τ

+
0 )p+1)<∞ for some (hence every) x≤ 0;
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5. Ex((τ
−
0 )pI{τ−

0 <∞})<∞ for some (hence every) x≥ 0.

The next lemma states that when τ+0 has finite p-th moment under Px, then the function
Ex((τ

+
0 )p) has a polynomial bound in x. It will be of use later to deduce a lower bound for

the value function of our optimal prediction problem. Its proof can be found in Appendix A.

LEMMA 2.2. Let p > 0 and suppose Ex((τ
+
0 )p+1)<∞ for some x≤ 0. Then, for each

0≤ r ≤ p, there exist non-negative constants Ar and Cr such that

Ex((τ
+
0 )r)≤Ar +Cr|x|r and Ex(g

r)≤ 2r[E(gr) +Ar] + 2rCr|x|r, x≤ 0.

Here ⌊p⌋ denotes the integer part of p.

The following lemma shows some properties of the function x 7→ Ex(g
p). The proof is

included in Appendix A.

LEMMA 2.3. Let p > 0 and assume that
∫
(−∞,−1) |x|

p+1Π(dx)<∞. Then x 7→ Ex(g
p)

is a non-increasing, non-negative and continuous function. Moreover,

lim
x→−∞

Ex(g
p) =∞ and lim

x→∞
Ex(g

p) = 0.

We state a basic inequality which is used throughout the paper.

LEMMA 2.4. Let q > 0. Then we have that (a + b)q ≤ 2q(aq + bq) for any a > 0 and
b > 0.

PROOF. Since the function x 7→ xq is increasing on (0,∞), we have that

(a+ b)q ≤ (2max{a, b})q ≤ (2max{a, b})q + (2min{a, b})q = 2q(aq + bq).

The proof is complete.

We conclude this section with a technical result extracted from Baurdoux and van Schaik
(2014) (see Lemma 5) that will be useful later.

LEMMA 2.5. Let X be any Lévy process drifting to −∞. Denote T+(0) = inf{t ≥ 0 :
Xt ≥ 0}. Consider, for a > 0 and b < 0, the optimal stopping problem

P (x) = inf
τ∈T

Ex[aτ + I{τ≥T+(0)}b], for x ∈R.

Then there is an x0 ∈ (−∞,0) so that P (x) = 0 for all x≤ x0.

3. Optimal prediction problem. Denote by V∗ the value of the optimal prediction prob-
lem, i.e.,

V∗ = inf
τ∈T

E(|τ − g|p),(24)

where T is the set of all stopping times with respect to F, p > 1 and g is the last zero of X
given in (21). Since g is only F measurable standard techniques of optimal stopping times
are not directly applicable. However, there is an equivalence between the optimal prediction
problem (24) and an optimal stopping problem. The next lemma, inspired by the work of
Urusov (2005), states such equivalence.
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LEMMA 3.1. Let p > 1 and letX be a spectrally negative Lévy process drifting to infinity
such that

∫
(−∞,−1) |x|

p+1Π(dx)<∞. Consider the optimal stopping problem

V = inf
τ∈T

E
(∫ τ

0
G(s− gs,Xs)ds

)
,(25)

where the function G is given by

G(u,x) = up−1ψ′(0+)W (x)−Ex(g
p−1)

for u ≥ 0 and x ∈ R. Then we have that V∗ = pV + E(gp) and a stopping time minimises
(24) if and only if it minimises (25).

PROOF. Let τ ∈ T . Then the following equality holds

|τ − g|p =
∫ τ

0
ϱ(s− g)ds+ gp,(26)

where the function ϱ is defined by

ϱ(x) = p

[
(−x)p

x
I{x<0} + xp−1I{x≥0}

]
.

Taking expectations in equation (26), using Fubini’s theorem and the tower property for con-
ditional expectations we obtain

E(|τ − g|p) =
∫ ∞

0
E
(
ϱ(s− g)I{s≤τ}ds

)
+E(gp)

=

∫ ∞

0
E
[
I{s≤τ}E (ϱ(s− g)|Fs)ds

]
+E(gp)

= E
(∫ τ

0
E (ϱ(s− g)|Fs)ds

)
+E(gp).

To evaluate the conditional expectation inside the last integral, note that for all t≥ 0 we can
write the time g as

g = gt ∨ sup{s ∈ (t,∞) :Xs ≤ 0},

recalling that gt = g
(0)
t defined in (13). Hence, using the Markov property for Lévy processes

and the fact that gs is Fs measurable we have that

E(ϱ(s− g)|Fs) = E (ϱ (s− [gs ∨ sup{r ∈ (s,∞) :Xr ≤ 0}]) |Fs)

= ϱ(s− gs)E(I{Xr>0 for all r∈(s,∞)}|Fs)

+E(ϱ(s− sup{r ∈ (s,∞) :Xr ≤ 0})I{Xr≤0 for some r∈(s,∞)}|Fs)

= ϱ(s− gs)PXs
(g = 0) +EXs

(ϱ(−g)I{g>0})

= p(s− gs)
p−1ψ′(0+)W (Xs)− pEXs

(gp−1).

Then we have that

E(|τ − g|p) = pE
(∫ τ

0
G(s− gs,Xs)ds

)
+E(gp).



Lp OPTIMAL PREDICTION OF THE LAST ZERO 13

REMARK 3.2. A close inspection of the proof of Lemma 3.1 tells us that the function
ϱ corresponds to the right derivative of the function f(x) = |x|p. Therefore, using similar
arguments we can actually extend the result to any convex function d :R+×R+ 7→R+. That
is, under the assumption that E(d(0, g))<∞, the optimal prediction problem

Vd = inf
τ∈T

E(d(τ, g))

is equivalent to the optimal stopping problem

inf
τ∈T

E
[∫ τ

0
Gd(gs, s,Xs)ds

]
,

whereGd(γ, t, x) = ϱd(s, γ)ψ
′(0+)W (x)+Ex(ϱd(s, g+s)I{g>0}) and ϱd is the right deriva-

tive with respect the first argument of d.

The next theorem states the solution to the optimal prediction problem. Note that its proof
is rather lengthy so the next section is entirely dedicated to that purpose.

THEOREM 3.3. Let p > 1 and let X be a spectrally negative Lévy process drifting to
infinity such that Π has no atoms and that

∫
(−∞,−1) |x|

p+1Π(dx) <∞. Then there exists
a non-decreasing and continuous function b : (0,∞) 7→ [0,∞) such that b(u) ≥ h(u) :=
inf{x ∈R :G(u,x)≥ 0} for all u≥ 0, limu↓0 b(u) =∞, limu→∞ b(u) = 0 and the infimum
in (25) (and hence in (24)) is attained by

τD = inf{t > 0 :Xt ≥ b(Ut)}.(27)

Moreover, the function b is uniquely characterised as in Theorem 4.18.

4. Solution to the optimal stopping problem. Throughout this section we are going to
assume that p > 1 and that X is a spectrally negative Lévy process drifting to infinity such
that Π has no atoms and

∫
(−∞,−1) |x|

p+1Π(dx)<∞. To solve the optimal stopping problem
(25) using the general theory of optimal stopping (see e.g. Peskir and Shiryaev (2006)), we
have to extend it to an optimal stopping problem driven by a strong Markov process. For
every (u,x) ∈E, we define the optimal stopping problem

V (u,x) = inf
τ∈T

Eu,x

[∫ τ

0
G(Us,Xs)ds

]
,(28)

where the function G is given by G(u,x) = up−1ψ′(0+)W (x) − Ex(g
p−1) for any u ≥ 0

and x ∈ R. Therefore we have that V∗ = pV (0,0) + E(gp). Note that using the definition of
Eu,x we have that (28) takes the form

V (u,x) = inf
τ∈T

Ex

(∫ τ

0

{
G(u+ s,Xs)I{σ−

0 >s} +G(Us,Xs)I{σ−
0 ≤s}

}
ds
)
.(29)

As a consequence of Lemma 2.3 we have the following behaviour of the function G.
For all x ∈ R, the function u 7→ G(u,x) is non-decreasing. In particular, when x < 0, u 7→
G(u,x) =−Ex(g

p−1) is a strictly negative constant. For fixed u≥ 0, x 7→G(u,x) is a non-
decreasing right-continuous function which is continuous everywhere apart from possibly at
x= 0 (since W is discontinuous at zero when X is of finite variation) such that for all u≥ 0,

lim
x→−∞

G(u,x) =−∞ and lim
x→∞

G(u,x) = up−1 ≥ 0.
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Moreover, we have that limu→∞G(u,x) =∞ and G(0, x) =−Ex(g
p−1)< 0 for all x≥ 0.

Recall that for any u≥ 0,

h(u) = inf{x ∈R :G(u,x)≥ 0}.(30)

From the description ofG above we have that h is a non-negative and non-increasing function
such that h(u)<∞ for all u ∈ (0,∞), h(0) =∞ and limu→∞ h(u) = 0. Moreover, since W
is strictly increasing on (0,∞), the function

T (x) :=
Ex(g

p−1)

ψ′(0+)W (x)

is continuous and strictly decreasing on [0,∞). Then, there exists an inverse function T−1

which is continuous and strictly decreasing on (0, u∗h] with

u∗h :=
E(gp−1)

ψ′(0+)W (0)
,(31)

where we understand 1/0 =∞ when X is of infinite variation. Hence, we can write

h(u) =

{
T−1(up−1), u < (u∗h)

1

p−1 ,

0, u≥ (u∗h)
1

p−1 .

Therefore, since T−1(u∗h−) = 0, we conclude that h is a continuous function on [0,∞). From
the definition of h we clearly have that G(u,x)≥ 0 if and only if x≥ h(u).

The facts above give us some intuition about the optimal stopping rule for the optimal
stopping problem (28). Since we are dealing with a minimisation problem, before stopping,
we want the process (U,X) to be in the set in which G is negative as much as possible. Then,
the fact that G(Ut,Xt) is strictly negative when Xt < h(Ut) suggests that it is never optimal
to stop on this region. When Xt > h(Ut), we have that G(Ut,Xt)≥ 0 but with strictly posi-
tive probability (U,X) can enter the set in which G is negative. Moreover, t 7→ Ut is strictly
increasing when X is in the positive half line so that t 7→ h(Ut) gets closer to zero when
the current excursion away from (−∞,0] is sufficiently large. Then, G(Ut,Xt) ≥ 0 even
when Xt is relatively close to zero. That suggests that stopping is optimal when the current
excursion away from (−∞,0] is large, or X takes sufficiently large values. Then we infer the
existence of a non-negative curve b≥ h such that it is optimal to stop when X crosses above
b(Ut). We will formally show in the next Lemmas the existence of such a boundary.

Note that if there exists a stopping time τ for which the expectation of the right-hand side
of (28) is minus infinity, then V would also be minus infinity. The following Lemma provides
the finiteness of a lower bound of V that will ensure that V only takes finite values. Its proof
is included in Appendix A.

LEMMA 4.1. We have that

0≤ Ex

(∫ ∞

0
EXs

(gp−1)ds
)
<∞ for all x ∈R.

We now prove the finiteness of the function V .

LEMMA 4.2. For every (u,x) ∈ E we have that V (u,x) ∈ (−∞,0]. In particular,
V (u,x)< 0 for (u,x) ∈B := {(u,x) ∈E : x < h(u)}, where h is defined in (30).
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PROOF. By taking the stopping time τ = 0 we deduce that for all (u,x) ∈E, V (u,x)≤ 0.
In order to check that V (u,x)>−∞ we use that G(u,x)≥−Ex(g

p−1) to get

V (u,x) = inf
τ∈T

Eu,x

[∫ τ

0
G(Us,Xs)ds

]
≥− sup

τ∈T
Ex

[∫ τ

0
EXs

(gp−1)ds
]
,

for all (u,x) ∈E. Hence by Lemma 4.1 we have that

V (u,x)≥−Ex

[∫ ∞

0
EXs

(gp−1)ds
]
>−∞(32)

for all (u,x) ∈E. Using standard arguments we can prove that V (u,x)< 0 when (u,x) ∈B.
Indeed, from the definition of h, we have that if (u,x) ∈B thenG(u,x)< 0. Take (u,x) ∈B
and consider the stopping time

τB := inf{t≥ 0 : (Ut,Xt) ∈E \B}.

Note that under the measure Pu,x we have τB > 0. Then, for all s < τB we have that
(Us,Xs) ∈B which implies that G(Us,Xs)< 0. Hence, by the definition of V , we see that

V (u,x)≤ Eu,x

[∫ τB

0
G(Us,Xs)ds

]
< 0.

REMARK 4.3. Note that we have that h(0) =∞, which implies that (0,0) ∈B and then,
from the Lemma above, V (0,0) < 0. Moreover, from Lemma 3.1 we have that pV (0,0) +
E(gp−1) = V∗ ≥ 0 which implies that

−E(gp−1)

p
≤ V (0,0)< 0.

Now we prove some basic properties of V .

LEMMA 4.4. We have the following monotonicity property of V . For all (u,x), (v, y) ∈
E such that u≤ v and x≤ y we have that V (u,x)≤ V (v, y).

PROOF. From equation (29) we have that

V (u,x) = inf
τ∈T

Ex

(∫ τ

0

{
G(u+ s,Xs)I{σ−

0 >s} +G(Us,Xs)I{σ−
0 ≤s}

}
ds
)

= inf
τ∈T

E
(∫ τ

0

{
G(u+ s,Xs + x)I{σ−

−x>s} +G(U (−x)
s ,Xs + x)I{σ−

−x≤s}

}
ds
)
,

where σ−−x = inf{t ≥ 0 : Xt ≤ −x} and U
(−x)
s = s − sup{0 ≤ t ≤ s : Xt ≤ −x}. Recall

that for all s ≥ 0, x 7→ U
(−x)
s and x 7→ σ−−x are non-decreasing and that the function G is

non-decreasing in each argument. Define the function

G∗(u,x) :=G(u+ s,Xs + x)I{σ−
−x>s} +G(U (−x)

s ,Xs + x)I{σ−
−x≤s}.

We show by cases that the function G∗ is non-decreasing in each argument. Take x≤ y and
0≤ u≤ v. First, we suppose that ω ∈ {σ−−x > s} ⊂ {σ−−y > s}. Since G is non-decreasing in
each argument we then have

G∗(u,x)(ω) =G(u+ s,Xs(ω) + x)≤G(v+ s,Xs(ω) + y) =G∗(v, y)(ω).
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Similarly, if ω ∈ {σ−−x ≤ s} ∩ {σ−−y ≤ s} we have that

G∗(u,x)(ω) =G(U (−x)
s (ω),Xs(ω) + x)≤G(U (−y)

s (ω),Xs(ω) + y) =G∗(v, y)(ω).

Lastly, take ω ∈ {σ−−x ≤ s} ∩ {σ−−y > s}. Then using the fact that U (−x)
s = s− g

(−x)
s ≤ s≤

v+ s and the monotonicity of G we get

G∗(u,x)(ω) =G(U (−x)
s (ω),Xs(ω) + x)≤G(v+ s,Xs(ω) + y) =G∗(v, y)(ω).

All this together implies that the function G∗(u,x) is non-decreasing in each argument for
all u≥ 0 and x ∈R, in particular for all (u,x) ∈E. Hence, the claim on V holds.

In the following Lemma, we give an expression for V (0, x) when x < 0, in terms of
V (0,0), and we use it to give a lower bound for V .

LEMMA 4.5. For any x≤ 0 we have that

V (0, x) = Ex

(∫ τ+
0

0
G(0,Xs)ds

)
+ V (0,0)

=−
∫ −x

0

∫ ∞

0
E−u−z(g

p−1)W ′(u)dudz + V (0,0).(33)

Moreover, for all (u,x) ∈E we have that there exist non-negative constants A′
p−1 and C ′

p−1

such that

V (u,x)≥−A′
p−1 −C ′

p−1|x|p + V (0,0).(34)

PROOF. Let x < 0, using the Markov property and a dynamic programming argument we
can write for all x < 0,

V (0, x) = inf
τ∈T

Ex

(∫ τ∧τ+
0

0
G(0,Xs)ds+ I{τ+

0 <τ}

∫ τ

τ+
0

G(Us,Xs)ds

)

= inf
τ∈T

Ex

(∫ τ∧τ+
0

0
G(0,Xs)ds+ I{τ+

0 <τ}V (0,0)

)

= Ex

(∫ τ+
0

0
G(0,Xs)ds

)
+ V (0,0),

where the last equality follows since G(0, x)≤ 0 for all x≤ 0 and V (0,0)≤ 0, and hence the
infimum is attained for any τ ≥ τ+0 . Using the fact that G(0, x) =−Ex(g

p−1), for all x < 0,
and Fubini’s theorem we get that

V (0, x) =−Ex

(∫ τ+
0

0
EXs

(gp−1)ds

)
+ V (0,0)

=−
∫
(−∞,0)

Ez(g
p−1)

∫ ∞

0
Px(Xs ∈ dz, s < τ+0 )ds+ V (0,0).



Lp OPTIMAL PREDICTION OF THE LAST ZERO 17

Using the 0-potential measure of X killed on exiting the interval (−∞,0] (see equation (11))
and Fubini’s theorem, we obtain that

V (0, x) =−
∫ ∞

0
E−z(g

p−1)[W (z)−W (x+ z)]dz + V (0,0)

=−
∫ ∞

0
E−z(g

p−1)

∫ z

x+z
W ′(u)dudz + V (0,0)

=−
∫ ∞

0
W ′(u)du

∫ u−x

u
E−z(g

p−1)dz + V (0,0)

=−
∫ −x

0

∫ ∞

0
E−u−z(g

p−1)W ′(u)dudz + V (0,0).

From equation (33) and the fact that x 7→ Ex(g
p−1) is non-increasing and bounded from

above by a polynomial (see Lemmas 2.2 and 2.3) we have the inequalities for x < 0,

V (0, x)≥ x

∫ ∞

0
Ex−u(g

p−1)W ′(u)du+ V (0,0)

≥ 1

ψ′(0+)
2p−1[E(gp−1) +Ap−1]x+

1

ψ′(0+)
2p−1Cp−1xE(|x+X∞|p−1)

+ V (0,0)

≥ 1

ψ′(0+)
2p−1[E(gp−1) +Ap−1 + 2p−1Cp−1E((−X∞)p−1)]x

− 1

ψ′(0+)
2p−1Cp−1|x|p + V (0,0),

where we used that P(−X∞ ∈ du) = ψ′(0+)W ′(u)du. Hence (34) follows for x < 0. The
general statement holds since V is non-decreasing in each argument.

Define the setD := {(u,x) ∈E : V (u,x) = 0}. From Lemma 4.2 we know that V (u,x)<
0 for all (u,x) ∈E such that x < h(u). Hence if (u,x) ∈D we have that x≥ h(u)≥ 0. We
then define the function b : (0,∞) 7→R by

b(u) = inf{x > 0 : V (u,x) = 0},
where inf ∅ = ∞ and inf(0,∞) = 0. Then it directly follows that b(u) ≥ h(u) ≥ 0 for all
u > 0. Moreover, since h(0) = ∞ we have that limu↓0 b(u) = ∞. Furthermore, since V is
monotone in each argument we deduce that u 7→ b(u) is non-increasing and V (u,x) = 0 for
all x > b(u). We then have the following Lemma.

LEMMA 4.6. The function b :R+ 7→R is non-increasing with 0≤ h(u)≤ b(u). We have
that limu↓0 b(u) =∞ and b(u)<∞ for all u > 0.

PROOF. We show that for each u > 0, b(u) <∞. Fix u > 0 and take x > y > 0. By a
dynamic programming argument we obtain that

V (u,x)

= inf
τ∈T

Eu,x

(∫ τ∧σ−
y

0
G(u+ s,Xs)ds+ I{σ−

y <τ}V (Uσ−
y
,Xσ−

y
)

)

≥ inf
τ∈T

Ex

(∫ τ∧σ−
y

0
G(u+ s,Xs)ds+ I{σ−

y <τ}V (0,0) + I{σ−
y <τ,X

σ
−
y
≤0}V (0,Xσ−

y
)

)
,
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where the inequality follows since V is non-positive and non-decreasing. By the compensa-
tion formula for Poisson random measures (see (1)), we have that for any stopping time τ
(we assume without loss of generality that τ <∞ a.s.),

Ex

(
I{σ−

y <τ,X
σ
−
y
<0}V (0,Xσ−

y
)

)

= Ex

(∫ ∞

0

∫
(−∞,0)

V (0,Xs− + z)I{Xs−+z≤0}I{s≤τ∧σ−
y }N(ds,dz)

)

= Ex

(∫ τ∧σ−
y

0

∫
(−∞,0)

V (0,Xs + z)I{Xs+z≤0}Π(dz)ds

)
.

Hence, from the equation above, since G and V are non-decreasing in each argument, V ≤ 0
and Xs > y for all s < σ−y we have that

V (u,x)≥ inf
τ∈T

Ex

(
(τ ∧ σ−y )

[
G(u, y) +

∫
(−∞,−y)

V (0, z)Π(dz)

]
+ I{σ−

y <τ}V (0,0)

)
.

Note that from equation (34) and Lemma 2.1, the integral with respect to Π(dz) above is finite
so we can choose y sufficiently large such that a :=G(u, y) +

∫
(−∞,−y) V (0, z)Π(dz) ≥ 0.

Take any stopping time τ ∈ T , since τ ∧ σ−y is also a stopping time we have that

inf
τ∈T

Ex

(
aτ + I{τ≥σ−

y }V (0,0)
)

≤ Ex

(
a(τ ∧ σ−y ) + I{τ∧σ−

y ≥σ−
y }V (0,0)

)
≤ Ex

(
a(τ ∧ σ−y ) + I{τ>σ−

y }V (0,0)
)
,

where the last inequality follows since V (0,0)≤ 0. Hence, we deduce that for x > y > 0 and
u > 0 sufficiently large,

V (u,x)≥ inf
τ∈T

Ex

(
a(τ ∧ σ−y ) + I{σ−

y <τ}V (0,0)
)

≥ inf
τ∈T

Ex

(
aτ + I{τ≥σ−

y }V (0,0)
)
.

Then from Lemma 2.5 we have that (since V (0,0) ≤ 0 and −X drifts to −∞) there
exists a value x0(u)< 0 such that the right-hand side of the equation above vanishes for all
y− x≤ x0(u). Hence, we have that V (u,x) = 0 for all x≥ y− x0(u) and then b(u)<∞.

Let (u,x) ∈E. We define, under the measure Pu,x, the stopping times

τD = inf{t≥ 0 : (Ut,Xt) ∈D}= inf{t≥ 0 :Xt ≥ b(Ut)},
τv,yb = inf{t > 0 :Xt + y ≥ b(v+ t)}, v > 0 and y ∈R,(35)

and for any x ∈R, under the measure Px, the stopping time

τ g,yb = inf{t > 0 :Xt + y ≥ b(U
(−y)
t )}, y ∈R.(36)

Note that for any y ∈R and v > 0, the stopping time τv,yb does not depend on the process U
and hence for any measurable function f , we have that Eu,x(f(τ

v,y
b )) = Ex(f(τ

v,y
b )). Hence,

for any (u,x) ∈E and any measurable function f , it can be seen that

Eu,x(f(τD)) = Ex(f(τ
u,0
b )I{τu,0

b ≤σ−
0 }) +Ex(f(τ

g,0
b )I{τu,0

b >σ−
0 }).
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Now we introduce a technical lemma that ensures that the stopping time τD has moments of
order p. The proof can be found in Appendix A.

LEMMA 4.7. For all (u,x) ∈E we have that

Eu,x((τD)
p)<∞.

Now we are ready to show (using the general theory of optimal stopping) that τD is an
optimal stopping time for (28).

LEMMA 4.8. An optimal stopping time for (28) is given by τD , the first entrance of
(U,X) to the closed set D, i.e.,

τD = inf{t≥ 0 : (Ut,Xt) ∈D}.

Then the function V takes the form

V (u,x) = Eu,x

(∫ τD

0
G(Us,Xs)ds

)
, (u,x) ∈E.

PROOF. Note that it follows from Lemma 4.7 that Pu,x(τD <∞) = 1 for all (u,x) ∈ E.
Then, using a dynamic programming argument, we deduce that

V (u,x) = inf
τ∈T

Eu,x

(∫ τ∧τD

0
G(Us,Xs)ds+ I{τD<τ}V (UτD ,XτD)

)
= inf

τ∈T
Eu,x

(∫ τ∧τD

0
G(Us,Xs)ds

)
,

where in the last equality we used that V (u,x) = 0 on D.

Since W (x)≤ 1/ψ′(0+) for all x ∈R, we have that |G(u,x)| ≤ up−1 +Ex(g
p−1). Then,

for any (u,x) ∈E, we deduce that

Eu,x

[
sup
t≥0

∣∣∣∣∫ t∧τD

0
G(Us,Xs)

∣∣∣∣ds]
≤ Eu,x

[∫ τD

0
[(Us)

p−1 +EXs
(gp−1)ds

]
≤ Eu,x

(∫ τD

0
(u+ s)p−1ds

)
+Eu,x

(∫ τD

0
EXs

(gp−1)ds
)

≤ 2p−1[up−1 +
1

p
Eu,x[(τD)

p]] +Ex

(∫ ∞

0
EXs

(gp−1)ds
)

<∞,

where in the second inequality we used that Us ≤ u+ s for all s≥ 0, under the measure Pu,x,
and on the last equality follows from Lemmas 4.1 and 4.7.

From equation (33) we have that V (0, x) is continuous on (−∞,0) and left continuous
at 0 (and hence upper semi-continuous on (−∞,0)). Next, we show that V is upper semi-
continuous on ([0,∞)× [0,∞))∩E. Note that since V is non-decreasing in each argument,



20

we have that for any u > 0 and x > 0 or u= 0= x,

limsup
E∋(v,y)→(u,x)

V (v, y) = lim
ε↓0

[sup{V (v, y) : (v, y) ∈B((u,x), ε)∩E}]

≤ lim
ε↓0

V (u+ ε,x+ ε),

where B((u,x), ε) is the ball with center (u,x) with radius ε. Hence, it suffices to show that

lim
ε↓0

V (u+ ε,x+ ε)≤ V (u,x)

for all (u,x) ∈ ([0,∞)× [0,∞))∩E. Take δ > 0 and define the stopping time

τδ(x) := inf{t≥ δ :Xt ≥ b(δ) + x}= inf{t≥ 0 :Xt+δ ≥ b(δ) + x}+ δ.

Note that, by conditioning at the filtration at time δ and from Lemmas 2.2 and 2.4, for any
x ∈R,

Ex(τδ(0)
p) = Ex(EXδ

[(τ+b(δ) + δ)p])≤ 2p(Ap + δ) + 2pCpE(|Xδ + x− b(δ)|p)<∞,

where Ap and Cp are non-negative constants and the last inequality follows from The-
orem 3.8 in Kyprianou (2014) (since xp ∨ 1 is sub-multiplicative), and by assumption∫
(−∞,−1) |y|

p+1Π(dy) <∞. Using once again a dynamic programming argument we have
that for any u > 0 and x > 0,

V (u,x)

= inf
τ∈T

Eu,x

(∫ τ∧σ−
0 ∧τδ(0)

0
G(Us,Xs)ds+ I{σ−

0 <τ}I{σ−
0 <τδ(0)}V (0,Xσ−

0
)

+ I{τδ(0)<τ}I{τδ(0)<σ−
0 }V (Uτδ(0),Xτδ(0))

)

= inf
τ∈T

E
(∫ τ∧σ−

−x∧τδ(−x)

0
G(u+ s,Xs + x)ds+ I{σ−

−x<τ}I{σ−
−x<τδ(−x)}V (0,Xσ−

−x
+ x)

)
,

(37)

where in the last equality we used that, on the event {τδ(0)< σ−0 }, we have (Uτδ(0),Xτδ(0)) =
(u+ τδ(0),Xτδ(0)) ∈D due to the fact that u+ τδ(0)≥ u+ δ ≥ δ and then Xτδ(0) ≥ b(δ)≥
b(u+ τδ(0)). Recall that G(u,x)≤ up−1 and note that for any τ ∈ T ,

E

(∫ τ∧σ−
−x∧τδ(−x)

0
(u+ s)p−1ds

)
≤ 1

p
[E((τδ(−x) + u)p − up]<∞.

Hence, by Fatou’s Lemma, we see that for any (u,x) ∈ ([0,∞)× [0,∞))∩E and τ ∈ T ,

lim
ε↓0

V (u+ ε,x+ ε)

≤ limsup
ε↓0

E
(∫ τ∧σ−

−x−ε∧τδ(−x−ε)

0
G(u+ ε+ s,Xs + x+ ε)ds

+ I{σ−
−x+ε<τ}I{σ−

−x−ε<τδ(−x−ε)}V (0,Xσ−
−x−ε

+ x+ ε)

)
≤ E

(∫ τ

0
limsup

ε↓0
G(u+ ε+ s,Xs + x+ ε)I{s<σ−

−x−ε}I{s<τδ(−x−ε)}ds
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+ limsup
ε↓0

I{σ−
−x−ε<τ}I{σ−

−x−ε−τδ(−x−ε)<0}V (0,Xσ−
−x−ε

+ x+ ε)

)
.

It is easy to show that for any x ∈R, we have τδ(−x− ε) ↑ τδ(−x) and σ−−x−ε ↓ τ−−x = σ−−x

a.s., whenever ε ↓ 0 (so that σ−−x−ε − τδ(−x− ε) ↓ σ−−x − τδ(−x) a.s.). Hence, by continuity
of y 7→ V (0, y), right-continuity of X and of the mappings u,x 7→G(u,x) and y 7→ I{y<T},
for any T ∈R, we have that

lim
ε↓0

V (u+ ε,x+ ε)

≤ E
(∫ τ∧σ−

−x∧τδ(−x)

0
G(u+ s,Xs + x)ds+ I{σ−

−x<τ}I{σ−
−x<τδ(−x)}V (0,Xσ−

−x
+ x)

)
.

Thus, taking infimum over all τ ∈ T in the equation above and from (37) we deduce that

lim
ε↓0

V (u+ ε,x+ ε)≤ V (u,x)

for any (u,x) ∈ ([0,∞) × [0,∞)) ∩ E. Therefore, we conclude that V is upper semi-
continuous, and from general results of optimal stopping (see e.g. Corollary 2.9 in Peskir
and Shiryaev (2006)), we deduce that τD is an optimal stopping time for V . The proof is
complete.

Using the fact that τD is optimal, we can then give a representation of V in terms of the
measure P and the stopping times τu,xb and τ g,xb , defined in (35) and (36), respectively. For
any (u,x) ∈E we can write

V (u,x) = Eu,x

(∫ τD

0
G(Us,Xs)ds

)

= E

(∫ σ−
−x∧τ

u,x
b

0
G(u+ s,Xs + x)ds+ I{σ−

−x≤τu,x
b }

∫ τg,x
b

σ−
−x

G(U (−x)
s ,Xs + x)ds

)

= E

(∫ σ−
−x∧τ

u,x
b

0
G(u+ s,Xs + x)ds+ I{σ−

−x≤τu,x
b }V (0,Xσ−

−x
+ x)

)
.(38)

Note that in the last equality, we no longer have explicitly the process {U (−x)
t , t ≥ 0}.

This alternative representation of V in terms of the original measure P will be useful to prove
further properties of b and V .
The next lemma describes the limit behaviour of the function b.

LEMMA 4.9. We have that

lim
u→∞

b(u) = 0.

PROOF. Note that, since the curve b is non-increasing and it is bounded from below by
limu→∞ h(u) = 0, the limit b∗ := limu→∞ b(u) exists and b∗ ≥ 0. We prove by contradiction
that b∗ = 0. Suppose b∗ > 0 and define the stopping time

σ∗ = inf{t≥ 0 :Xt /∈ (0, b∗)}.
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Take u > 0 and x ∈ (0, b∗). From the fact that b(u) ≥ b∗ > 0 we have that σ∗ ≤ τD ∧ σ−0
under Pu,x. Then we have that

V (u,x) = Eu,x

(∫ τD

0
G(Us,Xs)ds

)
= Ex

(∫ σ∗

0
G(u+ s,Xs)ds

)
+Eu,x (V (Uσ∗ ,Xσ∗))

= Ex

(∫ σ∗

0
G(u+ s,Xs)ds

)
+Ex

(
V (u+ σ∗,Xσ∗)I{Xσ∗>0}

)
+Ex

(
V (0,Xσ∗)I{Xσ∗≤0}

)
,(39)

where in the last equality we used the Markov property of the two-dimensional pro-
cess {(Ut,Xt), t ≥ 0}. For a fixed x ∈ R, the function u 7→ V (u,x) is non-decreasing
and bounded from above by zero, thus we have that limu→∞ V (u,x) exists and −∞ <
limu→∞ V (u,x)≤ 0 for all x ∈R. By the dominated convergence theorem, we also conclude
that −∞ < limu→∞Ex

(
V (u+ σ∗,Xσ∗)I{Xσ∗>0}

)
≤ 0. Moreover, using Fatou’s lemma

(take G(u + s,Xs) − G(0,0) ≥ 0 for all s < σ∗ and note that E(σ∗) < E(τD) <∞) and
the fact that limu→∞G(u,x) =∞ we deduce that

lim inf
u→∞

Ex

(∫ σ∗

0
G(u+ s,Xs)ds

)
≥ Ex

(∫ σ∗

0
lim inf
u→∞

G(u+ s,Xs)ds
)
=∞.

Hence, taking u→∞ in (39) we get that

lim
u→∞

V (u,x) =∞.

Which yields the desired contradiction. Therefore, we conclude that b∗ = 0.

In the following, we proceed to analyse the continuity properties of b and V . Note that, by
using standard arguments (from the fact that D is a closed set), we can show that the function
b is right continuous. It turns out that b is continuous, the proof of this fact makes use of a
variational inequality and will be proved later.

Now we are ready to show the continuity of the value function V . The proof is rather long
and technical so is included in Appendix A.

LEMMA 4.10. The function V is continuous on E. Moreover, in the case that X is of
infinite variation we have that

lim
h↓0

V (u,h) = V (0,0)

for all u > 0.

We know thatD is a closed set, so b is a right-continuous function. To show left continuity,
we use a variational inequality that is satisfied by the value function V . We will dedicate the
upcoming paragraphs to introducing that.

It is well known that for every optimal stopping problem, there is an associated free
boundary problem, which is stated in terms of the infinitesimal generator (see e.g. Peskir
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and Shiryaev (2006), Chapter III). In this case, provided that the value function is smooth
enough, we have that V solves the Dirichlet/Poisson problem. That is,

AU,X(V ) =
∂

∂u
Ṽ +AX(Ṽ ) =−G in E \D,

where AU,X corresponds to the infinitesimal generator of the process (U,X) given in (17)
and AX is the infinitesimal generator of X given by

AX(Ṽ ) =−µ ∂

∂x
Ṽ (u,x) +

1

2
σ2

∂2

∂x2
F̃ (u,x)

+

∫
(−∞,0)

(
Ṽ (u,x+ y)− Ṽ (u,x)− yI{y>−1}

∂

∂x
Ṽ (u,x)

)
Π(dy),

whilst Ṽ is the extension of V to the set R+ ×R given by

Ṽ (u,x) =

V (u,x), for u > 0 and x > 0,
V (0, x), for u≥ 0 and x≤ 0,
V (0,0), for u= 0 and x > 0.

(40)

However, in our setting, it turns out to be challenging to show the smoothness of the func-
tion V . Indeed, from Garroni and Menaldi (2002) it could be checked that when the dif-
fusion component is non-degenerate (that is σ > 0), the function V is C1,2 on the set
C+ = {(u,x) ∈ E : 0 < x < b(u)} (cf. Bayraktar and Xing (2012)). However, for the case
σ = 0 differentiability of V might fail, even in the finite variation case (see e.g. Cont and
Voltchkova (2005)). It turns out that Lamberton and Mikou (2008) showed that we could
state an analogous (in)equality in the sense of distributions.

In Appendix B we recall some facts and notation from the theory of distributions (see also
Friedlander et al. (1998) or Rudin (1991) for further details). Since V is continuous on E we
have that Ṽ is a locally integrable function in R+ ×R (note that Ṽ may be discontinuous at
points of the form (u,0) for u > 0 when X is of finite variation) so we can define Ṽ as a
distribution in any open set O ⊂R+ ×R via the functional

φ 7→ ⟨Ṽ ,φ⟩=
∫
R+

∫
R
Ṽ (u,x)φ(u,x)dxdu,

where φ is taken from the set of test functions with compact support in O. The derivatives of
the distribution Ṽ are defined as

φ 7→ ⟨ ∂i+j

∂ui∂xj
Ṽ ,φ⟩= (−1)i+j

∫
R+

∫
R
Ṽ (u,x)

∂i+j

∂ui∂xj
φ(u,x)dxdu.

Moreover, provided that the function (u,x) 7→
∫
(−∞,−1) Ṽ (u,x + y)Π(dy) is locally inte-

grable in R+ ×R, the functional BX(Ṽ ) defined by

φ 7→ ⟨BX(Ṽ ),φ⟩=
∫
R+

∫
R
Ṽ (u,x)B∗

X(φ)(u,x)dxdu,

defines a distribution on O (see Lemma B.4), where

B∗
X(φ)(u,x) =

∫
(−∞,0)

[φ(u,x− y)−φ(u,x) + y
∂

∂x
φ(u,x)I{y>−1}]Π(dy).

We have the following Lemma that ensures that the integrability conditions for Ṽ are satisfied
so then BX(Ṽ ) is indeed a distribution.
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LEMMA 4.11. The function

(u,x) 7→
∫
(−∞,−1)

Ṽ (u,x+ y)Π(dy)

is locally integrable in R+ ×R.

PROOF. First note that from equation (34) we have that for any x≤ 0,∫
(−∞,−1)

V (0, x+ y)Π(dy)≥−A′
p−1Π(−∞,−1]−C ′

p−1

∫
(−∞,−1)

|x+ y|pΠ(dy)

+ V (0,0)Π(−∞,−1)

>−∞,

where we used the fact that Π(−∞,−1) <∞ and Lemma 2.1. Moreover, since V is non-
decreasing in each argument we have that for any u > 0 and x > 0 that∫

(−∞,−1)
Ṽ (u,x+ y)Π(dy)≥

∫
(−∞,−1)

V (0, y)Π(dy)>−∞.

Hence we conclude that
∫
(−∞,−1) Ṽ (u,x + y)Π(dy) > −∞ for any (u,x) ∈ R+ × R.

Since V is continuous on E and the definition of Ṽ we have that the mapping (u,x) 7→∫
(−∞,−1) Ṽ (u,x+ y)Π(dy) is locally integrable.

Hence, we can define the operator AX in the sense of distributions by

AX(Ṽ ) =−µ ∂

∂x
Ṽ +

1

2
σ2

∂2

∂x2
Ṽ +BX(Ṽ ).

The next lemma is an extension of Proposition 2.5 (see also Theorem 2.8) in Lamberton and
Mikou (2008).

LEMMA 4.12. The distribution ∂
∂u Ṽ + AX(Ṽ ) + G is a non-negative distribution on

(0,∞) × (0,∞). Moreover, we have ∂
∂u Ṽ + AX(Ṽ ) + G = 0 on the set C+ := {(u,x) ∈

(0,∞)× (0,∞) : 0< x < b(u)} and AX(V (0, ·)) +G(0, ·) = 0 on (−∞,0) in the sense of
distributions.

PROOF. From the general theory of optimal stopping we have that (see Peskir and
Shiryaev (2006), Theorem 2.4) for every (u,x) ∈ E, the stochastic process {Zt, t ≥ 0} is
a sub-martingale under the measure Pu,x, where

Zt = V (Ut,Xt) +

∫ t

0
G(Us,Xs)ds.

Moreover, we have that the stopped process {Zt∧τD , t ≥ 0} is a martingale under Pu,x for
all (u,x) ∈E. Then, from Doob’s stopping time theorem, we have that for every (u,x) ∈E,
the process {Zt∧σ−

0
, t≥ 0} is a sub-martingale and {Zt∧τD∧σ−

0
, t≥ 0} is a martingale under

Pu,x. From the fact that Ut = 0 if and only if Xt ≤ 0 we have that, under Pu,x,

Zt∧σ−
0
= V (Ut∧σ−

0
,Xt∧σ−

0
) +

∫ t∧σ−
0

0
G(Us,Xs)ds

= V (u+ t,Xt)I{t<σ−
0 } + V (0,Xσ−

0
)I{σ−

0 ≤t} +

∫ t∧σ−
0

0
G(u+ s,Xs)ds
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= Ṽ (u+ t,Xt)I{t<σ−
0 } + Ṽ (u+ σ−0 ,Xσ−

0
)I{σ−

0 ≤t} +

∫ t∧σ−
0

0
G(u+ s,Xs)ds

= Ṽ (u+ t∧ σ−0 ,Xt∧σ−
0
) +

∫ t∧σ−
0

0
G(u+ s,Xs)ds

for every u > 0 and x > 0. Hence, using an analogous argument as in Proposition 2.5 in
Lamberton and Mikou (2008) (see also Proposition B.6), we have that ∂

∂u Ṽ +AX(Ṽ ) +G
is a non-negative distribution on (0,∞)× (0,∞). Similarly, we have that for any u > 0 and
x > 0 such that x < b(u),

Zt∧σ−
0 ∧τD = Ṽ (u+ t∧ σ−0 ∧ τD,Xt∧σ−

0 ∧τD) +

∫ t∧σ−
0 ∧τD

0
G(u+ s,Xs)ds.

Therefore, from Proposition B.6, we have that ∂
∂u Ṽ +AX(Ṽ ) +G= 0 on C+ in the sense

of distributions. Lastly, since b is non-negative, we have that τ+0 ≤ τD . Hence, under the
measure P0,x, for any x < 0, we have that {Zt∧τ+

0
, t ≥ 0} is a martingale. Moreover, since

Xt ≤ 0 for all t < τ+0 we have that

Zt∧τ+
0
= V (0,Xt∧τ+

0
) +

∫ t∧τ+
0

0
G(0,Xs)ds.

Then, as in Proposition 2.5 in Lamberton and Mikou (2008), from Proposition B.6 we deduce
that AX(V (0, ·)) +G(0, ·) = 0 in the sense of distributions on the set (−∞,0).

REMARK 4.13. i) In Lamberton and Mikou (2008) the definition of the infinitesimal
generator in the sense of distributions assumes that the value function is a bounded Borel
measurable function. In our setting such condition can be relaxed by the fact that (u,x) 7→∫
(−∞,−1) |Ṽ (u,x+ y)|Π(dy) is a locally integrable function on R+ ×R.

ii) We note that similar as in (17) the infinitesimal generator of (U,X) can be defined as
AU,X(V ) := ∂/∂uṼ +AX(Ṽ ) in the sense of distributions, where AX corresponds to the
infinitesimal generator of X (seen as a distribution).

Let int(D) be the interior of the set D. For (u,x) ∈ int(D) we define the function

Λ(u,x) :=

∫
(−∞,0)

Ṽ (u,x+ y)Π(dy) +G(u,x).

The next lemma states some basic properties of the function Λ.

LEMMA 4.14. The function Λ is such that 0 < Λ(u,x) <∞ for all (u,x) ∈ int(D).
Moreover, it is strictly increasing in each argument and continuous in the interior of the set
D. Furthermore, Λ= ∂

∂u Ṽ +AX(Ṽ ) +G on int(D) in the sense of distributions.

PROOF. It follows from Lemma 4.11 and the fact that V vanishes in D that |Λ(u,x)|<∞
for all (u,x) ∈ E. The fact that Λ is continuous on D follows from the continuity of V and
G, the dominated convergence theorem and the fact that Π has no atoms. Moreover, Λ is
strictly increasing in each argument on D since V is non-decreasing in each argument and G
is strictly increasing in each argument on D. Then, we show that ∂/∂uṼ +AX(Ṽ )+G=Λ
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on in the interior of D. Let φ be a C∞ function with compact support on the interior of D.
We have that

⟨ ∂
∂u
Ṽ +AX(Ṽ ) +G,φ⟩

=

∫ ∞

0

∫ ∞

−∞
Ṽ (u,x)[µ

∂

∂x
φ(u,x) +

1

2
σ2

∂2

∂x2
φ(u,x) +B∗

X(φ)(u,x)]dxdu

+

∫ ∞

0

∫ ∞

−∞
G(u,x)φ(u,x)dxdu

=

∫ ∞

0

∫ b(u)

−∞
Ṽ (u,x)[µ

∂

∂x
φ(u,x) +

1

2
σ2

∂2

∂x2
φ(u,x) +B∗

X(φ)(u,x)]dxdu

+

∫ ∞

0

∫ ∞

b(u)
Ṽ (u,x)[µ

∂

∂x
φ(u,x) +

1

2
σ2

∂2

∂x2
φ(u,x) +B∗

X(φ)(u,x)]dxdu

+

∫ ∞

0

∫ b(u)

−∞
G(u,x)φ(u,x)dxdu+

∫ ∞

0

∫ ∞

b(u)
G(u,x)φ(u,x)dxdu

=

∫ ∞

0

∫ b(u)

−∞
Ṽ (u,x)

∫
(−∞,0)

φ(u,x− y)Π(dy)dxdu

+

∫ ∞

0

∫ ∞

b(u)
G(u,x)φ(u,x)dxdu,

where the last equality follows since V (u,x) = 0 for all x≥ b(u), and since φ has support on
the interior of D, so that, for any x≤ b(u) we have φ(u,x) = ∂

∂xφ(u,x) =
∂2

∂x2φ(u,x) = 0
and

B∗
X(φ)(u,x) =

∫
(−∞,0)

[φ(u,x− y)−φ(u,x) + y
∂

∂x
φ(u,x)I{y>−1}]Π(dy)

=

∫
(−∞,0)

φ(u,x− y)Π(dy).

Moreover, by the change of variable z = x− y, we see that for any u > 0,∫ b(u)

−∞
Ṽ (u,x)

∫
(−∞,0)

φ(u,x− y)Π(dy)dx=
∫ ∞

−∞

∫
(−∞,0)

Ṽ (u,x)φ(u,x− y)Π(dy)dx

=

∫ ∞

−∞

∫
(−∞,0)

Ṽ (u, z + y)φ(u, z)Π(dy)dz

=

∫ ∞

b(u)
φ(u, z)

∫
(−∞,0)

Ṽ (u, z + y)Π(dy)dz,

where we used again that V vanishes on D and φ has support on the interior of D. Thus, we
obtain that

⟨ ∂
∂u
Ṽ +AX(Ṽ ) +G,φ⟩=

∫ ∞

0

∫ ∞

b(u)
φ(u, z)

∫
(−∞,0)

Ṽ (u, z + y)Π(dy)dzdu

+

∫ ∞

0

∫ ∞

b(u)
G(u, z)φ(u,x)dzdu

=

∫ ∞

0

∫ ∞

b(u)
Λ(u,x)φ(u, z)dzdu
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= ⟨Λ,φ⟩.

Then we have that ∂
∂u Ṽ +AX(Ṽ ) +G=Λ on in the interior of D. Moreover from Lemma

4.12 and continuity of Λ we conclude that Λ(u,x)≥ 0 for all (u,x) ∈ int(D). In particular,
is strictly positive in the interior of D since it is strictly increasing in that set.

It turns out that the function b is continuous, its proof is analogous to the one presented in
Lamberton and Mikou (2008) (see Theorem 4.2) in the American option setting.

LEMMA 4.15. The function b is continuous.

PROOF. We already know, from the fact that D is closed, that b is right-continuous.
We then show the left continuity of b. We proceed by contradiction. Suppose there is
a point u∗ > 0 such that b(u∗−) := limh↓0 b(u∗ − h) > b(u∗). Then, since b is non-
decreasing, we have for all (u,x) ∈ (0, u∗) × (b(u∗), b(u∗−)) that V (u,x) < 0. Thus,
(0, u∗)×(b(u∗), b(u∗−))⊂C+. From Lemma 4.12 we obtain that ∂

∂u Ṽ +AX(Ṽ )+G= 0 in
(0, u∗)× (b(u∗), b(u∗−)). Hence, for any non-negative C∞ function φ with compact support
in (0, u∗)× (b(u∗), b(u∗−)), we have that

⟨AX(Ṽ ) +G,φ⟩=−⟨ ∂
∂u
Ṽ ,φ⟩

=

∫
R

∫
(0,∞)

Ṽ (u,x)
∂

∂u
φ(u,x)dudx

=−
∫
R

∫
(0,∞)

Ṽ (du,x)φ(u,x)dx

≤ 0,

where we used the fact that for each x > 0, u 7→ Ṽ (u,x) = V (u,x) is non-decreasing. Hence,
we conclude that AX(Ṽ ) + G is a non-positive distribution on (0, u∗) × (b(u∗), b(u∗−)).
Thus, by continuity of Ṽ = V and G on (0,∞)× (0,∞), we have for any u ∈ (0, u∗) and
any non-negative test function ψ with compact support in (b(u∗), b(u∗−)) that∫

R

{
Ṽ (u,x)

[
−µ ∂

∂x
ψ(x) +

1

2
σ2

∂2

∂x2
ψ(x) +B∗

X(ψ)(x)

]
+G(u,x)ψ(x)

}
dx≤ 0,

whereB∗
X(ψ)(x) =

∫
(−∞,0)(ψ(x−y)−ψ(x)+y

d
dxψ(x)I{|y|≤1})Π(dy). Taking u ↑ u∗ in the

equation above, using the fact that Ṽ (u∗, x) = 0 for all x≥ b(u∗), and since ψ has compact
support in (b(u∗), b(u∗−)) we get that

0≥ lim
u↑u∗

∫
R

{
Ṽ (u,x)

[
−µ ∂

∂x
ψ(x) +

1

2
σ2

∂2

∂x2
ψ(x) +B∗

X(ψ)(x)

]
+G(u,x)ψ(x)

}
dx

=

∫ b(u∗)

−∞
Ṽ (u∗, x)

∫
(−∞,0)

ψ(x− y)Π(dy)dx+
∫ b(u∗−)

b(u∗)
G(u∗, x)ψ(x)dx

=

∫ b(u∗−)

b(u∗)
ψ(x)

∫
(−∞,0)

Ṽ (u∗, x+ y)Π(dy)dx+
∫ b(u∗−)

b(u∗)
G(u∗, x)ψ(x)dx

=

∫ b(u∗−)

b(u∗)
ψ(x)Λ(u∗, x)dx

> 0,
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where the strict inequality follows from the fact that Λ is strictly positive in each argument
in D (see Lemma 4.14). Hence we have got a contradiction and b(u−) = b(u) for all u > 0.
Therefore b is a continuous function.

From Lemma 4.9 we know that b(u) converges to zero when u tends to infinity. Moreover,
from the discussion about h after equation (30), we know that in case that X is of finite
variation, there exists a value u∗h <∞ for which h(u) = 0 for all u ≥ u∗h. That suggests a
similar behaviour for b. The next lemma addresses that conjecture.

LEMMA 4.16. Define ub = inf{u > 0 : b(u) = 0}. If X is of infinite variation or finite
variation and infinite activity (that is Π(−∞,0) = ∞) we have that ub = ∞. Otherwise,
ub = u∗, where u∗ is the unique solution to

G(u,0) +

∫
(−∞,0)

V (0, y)Π(dy) = 0.(41)

PROOF. From the fact that h(u)> 0 for all u > 0 when X is of infinite variation and the
inequality b(u) ≥ h(u), we have that the assertion is true for this case. Suppose that X has
finite variation with infinite activity, that is, Π(−∞,0) =∞, and assume that ub <∞. Then,
since b is non-increasing, we have that b(u) = 0 for all u > ub and thus V (u,x) = 0 for all
x > 0 and u > ub. From Lemma 4.14 we deduce that

G(u,x) +

∫
(−∞,−x)

V (0, x+ y)Π(dy)≥ 0

for all x > 0 and for all u > ub. Taking x ↓ 0 in the equation above and using the expression
for V (0, z) (when z < 0) given in (33) we have that for any u > ub,

0≤G(u,0)− lim
x↓0

∫
(−∞,0)

∫ −x+y

0

∫ ∞

0
E−u−z(g

p−1)W ′(u)dudzΠ(dy)

+ lim
x↓0

V (0,0)Π(−∞,−x)

=−∞

which is a contradiction and then ub = ∞. Next, assume that X has finite variation with
Π(−∞,0) <∞. Assume that b(u∗) > 0, then V (u∗, x) < 0 for x ∈ (0, b(u∗)). Moreover,
since V ≤ 0 and using the compensation formula for Poisson random measures (see (1)) we
have that for all u > 0 and x < b(u),

Eu,x(V (0,Xτ−
0
)I{τ−

0 <τD})

= Eu,x

(∫
[0,∞)

∫
(−∞,0)

V (0,Xs− + y)I{Xs−>0,Xs−+y<0}I{s≤τD}N(ds,dy)

)

= Eu,x

(∫ ∞

0

∫
(−∞,0)

V (0,Xs + y)I{Xs−>0}I{Xs+y<0}I{s≤τD}Π(dy)ds

)

= Eu,x

(∫ τ−
0 ∧τD

0

∫
(−∞,0)

V (0,Xs + y)I{Xs+y<0}Π(dy)ds

)
.
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Then, from the Markov property we have that for any 0≤ x < b(u∗),

V (u∗, x) = Eu∗,x

(∫ τD∧τ−
0

0
G(u∗ + s,Xs)ds

)
+Eu∗,x(V (0,Xτ−

0
)I{τ−

0 <τD})

= Eu∗,x

(∫ τD∧τ−
0

0

[
G(u∗ + s,Xs) +

∫
(−∞,0)

V (0,Xs + y)I{Xs+y<0}Π(dy)

]
ds

)
> 0,

where the strict inequality follows from the fact that that X is of finite variation and then
τD ∧ τ−0 > 0, the definition of u∗ and the fact that G and V are non-decreasing in each
argument. Then, we are contradicting the fact that V (u∗, x)< 0 and we conclude that b(u∗) =
0 so that ub ≤ u∗. Moreover, from Lemma 4.14 we know that for all u > ub,

G(u,x) +

∫
(−∞,−x)

V (0, x+ y)Π(dy)≥ 0 for all x > 0.

Taking x ↓ 0 we get that for all u ≥ ub, G(u,0) +
∫
(−∞,0) V (0, y)Π(dy) ≥ 0. The latter

implies that u∗ ≤ ub (since u 7→ G(u,0) is strictly increasing). Therefore we conclude that
u∗ = ub and the proof is complete.

As we mentioned before, proving the smoothness of V is challenging. However, it is pos-
sible to show that the derivatives of V at the boundary exist and are equal to zero. Recall
from Lemma 4.16 that when X is of infinite variation or finite variation with infinite activity
we have that b(u) > 0 for all u > 0. In the case that X is of finite variation we have that
b(u) > 0 only if u < ub where ub is the solution to (41). In such cases, we can guarantee
that the derivatives of V exist at the boundary and are equal to zero, which is proven in the
following Theorem. Since the proof is rather long and technical, it can be found in Appendix
A.

LEMMA 4.17. Suppose that u > 0 is such that b(u)> 0. Then the first partial derivatives
of V (u,x) exist at the point x= b(u) and

∂

∂x
V (u, b(u)) = 0 and

∂

∂u
V (u, b(u)) = 0.

Recall from equation (33) that when x < 0,

V (0, x) =−
∫ −x

0

∫ ∞

0
E−u−z(g

p−1)W ′(u)dudz + V (0,0).

Note that the first term on the right-hand side of the equation above does not depend on the
boundary b. Then, for x < 0, the value function V (0, x) is characterised by the value V (0,0).
Moreover, from Lemma 4.16 we know that when X is of finite variation with Π(−∞,0)<
∞, the value ub is the unique solution to

G(u,0)−
∫
(−∞,0)

∫ −y

0

∫ ∞

0
E−v−z(g

p−1)W ′(v)dvdzΠ(dy) + V (0,0)Π(−∞,0) = 0,

otherwise, ub =∞. Then ifX is of finite variation with finite activity, ub is also characterised
by the value V (0,0), where we know from Remark 4.3 that

−E(gp−1)

p
≤ V (0,0)< 0.
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The next theorem gives a characterisation of the value function V on the set (0,∞) ×
(0,∞), the boundary b and the values V (0,0) and ub as unique solutions of a system of non-
linear integral equations within a class of functions. The method of proof is deeply inspired
by the ideas of du Toit, Peskir and Shiryaev (2008). However, the presence of jumps adds an
important level of difficulty. In particular, when Π ̸= 0, the inequality (see Lemma 4.14)

Λ(u,x) =G(u,x) +

∫
(−∞,0)

Ṽ (u,x+ y)Π(dy)> 0,

for all (u,x) ∈ int(D), is a necessary condition for the stochastic process {V (Ut,Xt) +∫ t
0 G(Us,Xs)ds, t≥ 0} to be a submartingale.

THEOREM 4.18. Let p > 1 and X be a spectrally negative Lévy process drifting to infin-
ity such that its Lévy measure Π has no atoms and

∫
(−∞,−1) |x|

p+1Π(dx)<∞. For all u > 0

and x > 0, the function V can be written as

V (u,x)

= V (0,0)
σ2

2
W ′(x)

−Ex

(∫ τ−
0

0

∫
(−∞,0)

V (u+ s,Xs + y)I{0<Xs+y<b(u+s)}Π(dy)I{Xs>b(u+s)}ds

)

+Ex

(∫ τ−
0

0

[
G(u+ s,Xs) +

∫
(−∞,−Xs)

V (0,Xs + y)Π(dy)

]
I{Xs<b(u+s)}ds

)
,

(42)

the value V (0,0) satisfies

V (0,0) =− 1

ψ′(0+)

∫ ∞

0
E−z(g

p−1)[1−ψ′(0+)W (z)]dz

+
1

ψ′(0+)
E
(∫ ∞

0
G(s,Xs)

Xs

s
I{0<Xs<b(s)}ds

)

− 1

ψ′(0+)
E

(∫ ∞

0

∫
(−∞,0)

V (s,Xs + y)I{0<Xs+y<b(s)}Π(dy)
Xs

s
I{Xs>b(s)}ds

)

− 1

ψ′(0+)
E

(∫ ∞

0

∫
(−∞,0)

V (0,Xs + y)I{Xs+y≤0}Π(dy)
Xs

s
I{Xs>b(s)}ds

)
,

(43)

whilst the curve b satisfies the equation

0 = V (0,0)
σ2

2
W ′(b(u))

−Eb(u)

(∫ τ−
0

0

∫
(−∞,0)

V (u+ s,Xs + y)I{0<Xs+y<b(u+s)}Π(dy)I{Xs>b(u+s)}ds

)

+Eb(u)

(∫ τ−
0

0

[
G(u+ s,Xs) +

∫
(−∞,−Xs)

V (0,Xs + y)Π(dy)

]
I{Xs<b(u+s)}ds

)(44)
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for all u < ub, where for x≤ 0, the function V (0, x) depends on V (0,0) via (33). For u≥ ub,
we have b(u) = 0, where ub =∞ in the case X is of infinite variation or finite variation with
Π(−∞,0) =∞. Otherwise, ub is the unique solution to

G(u,0)−
∫
(−∞,0)

∫ −y

0

∫ ∞

0
E−u−z(g

p−1)W ′(u)dudzΠ(dy) + V (0,0)Π(−∞,0) = 0.

(45)

Moreover, in the case that there is a Brownian motion component (i.e. σ > 0) we have that
(43) is equivalent to

∂

∂x
V+(0,0) =

∂

∂x
V−(0,0),(46)

where ∂
∂xV+(u,0) and ∂

∂xV−(0,0) are the right and left derivatives of x 7→ V (u,x) and
x 7→ V (0, x) at zero, respectively and ∂

∂xV+(0,0) = limu↓0
∂
∂xV+(u,0).

Furthermore, the quadruplet (V, b,V (0,0), ub) is uniquely characterised by the equations
above, where V is considered in the class of non-positive continuous functions such that

∫
(−x−b(u),−x)

V (u, b(u) + x+ y)Π(dy)

+

∫
(−∞,−x−b(u)]

V (0, b(u) + x+ y)Π(dy) +G(u,x+ b(u))≥ 0(47)

for all u < ub and x > 0 and b is considered in the class of non-increasing functions with
b≥ h whereas −1

pE(g
p)≤ V (0,0)< 0.

Since the proof of Theorem 4.18 is rather long, we break it into a series of Lemmas. The
next section is entirely dedicated to that purpose.

5. Proof of Theorem 4.18. First, we show that the relevant quantities are integrable. The
proof of the Lemma is long, and then it is included in Appendix A.

LEMMA 5.1. We have that for all (u,x) ∈E,

Eu,x

(∫ ∞

0
|G(Us,Xs)|I{Xs<b(Us)}ds

)
<∞,(48)

Eu,x

(∫ ∞

0

∫
(−∞,0)

Ṽ (Us,Xs + y)Π(dy)I{Xs>b(Us)}

)
>−∞.(49)

Moreover, we have that

lim
u,x→∞

Eu,x

(∫ ∞

0

∫
(−∞,0)

Ṽ (Us,Xs + y)Π(dy)I{Xs>b(Us)}

)
= 0.(50)

Furthermore, when X is of finite variation with finite activity (that is, Π(−∞,0)<∞)) we
have that

lim
u,x→∞

Eu,x

(∫ ∞

0
G(Us,Xs)I{Xs<b(Us)}ds

)
= 0.(51)
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Next, we show that V satisfies the alternative representation mentioned in the infinite
variation case or finite variation case with infinite activity.

LEMMA 5.2. Suppose that X is of infinite variation of finite variation with infinite activ-
ity. Then we have that V and b satisfy equations (42) and (44).

PROOF. Recall that V is continuous on E and, when X is of infinite variation, we have
that for any u > 0, limx↓0 V (u,x) = V (0,0) (see Lemma 4.10), implying that Ṽ is con-
tinuous on R+ × R. We follow an analogous argument as Lamberton and Mikou (2013)
(see Theorem 3.2). Let ρ be a positive C∞ function with support in [0,1] × [0,1] and∫∞
0

∫∞
0 ρ(v, y)dvdy = 1. For n≥ 1, define ρn(v, y) = n2ρ(nv,ny), then ρn is C∞ and has

compact support in [0,1/n]× [0,1/n]. The function defined by Ṽn(u,x) := (Ṽ ∗ρn)(u,x) =∫∞
0

∫∞
0 Ṽ (u− v,x− y)ρn(v, y)dvdy is a C1,2(R+×R) function such that the derivatives of

Ṽn and the function (u,x) 7→
∫
(−∞,−1) Ṽn(u,x+ y)Π(dy) are bounded in the set R+ ×R+.

Moreover, we have that Ṽn ↑ Ṽ on E when n→∞.
Similar as in Lamberton and Mikou (2008) (see proof of Proposition 2.5), due to equation

(99), we have that for all (u,x) ∈ [(1/n,∞)× (1/n,∞)]∩C+,

∂

∂u
Ṽn(u,x) +AX(Ṽn)(u,x) =−(G ∗ ρn)(u,x),(52)

where AX is the infinitesimal generator of the process X . On the other hand, since V van-
ishes on D, we have that Ṽn(u,x) = 0 for (u,x) ∈D and n sufficiently large. Hence, since
Π has no atoms, we deduce that for any (u,x) ∈E and n sufficiently large,

∂

∂u
Ṽn(u,x) +AX(Ṽn)(u,x)

=

∫
(−∞,0)

Ṽn(u,x+ y)Π(dy)

=

∫
(−x,0)

Ṽn(u,x+ y)Π(dy) +
∫
(−∞,−x)

Ṽn(0, x+ y)Π(dy).

Therefore, by continuity of V on E and the dominated convergence theorem, we see that

lim
n→∞

[
∂

∂u
Ṽn(u,x) +AX(Ṽn)(u,x)

]
=

∫
(−∞,0)

Ṽ (u,x+ y)Π(dy)

for any (u,x) ∈D.

Next, let u > 0 and x > 0 fixed, and take n > 0 and k > 0 such that u > 1/n > 0 and
x > k ≥ 1/n > 0. We apply Itô formula to Ṽn(u+ t∧ τ−k−x,Xt∧τ−

k−x
+ x) to get

Ṽn(u+ t∧ τ−k−x,Xt∧τ−
k−x

+ x)

= Ṽn(u,x) +Mt +

∫ t∧τ−
k−x

0

[
∂

∂u
Ṽn(u+ s,Xs + x) +AX(Ṽn)(u+ s,Xs + x)

]
ds,

where {Mt, t≥ 0} is a zero mean martingale. Taking expectations and from (52) we get that

Ex

(
Ṽn(u+ t∧ τ−k ,Xt∧τ−

k
)
)
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= Ṽn(u,x) +Ex

(∫ t∧τ−
k

0

[
∂

∂u
Ṽn(u+ s,Xs) +AX(Ṽn)(u+ s,Xs)

]
ds

)

= Ṽn(u,x)−Ex

(∫ t∧τ−
k

0
(G ∗ ρn)(u+ s,Xs)I{Xs<b(u+s)}ds

)

+Ex

(∫ t∧τ−
k

0

[
∂

∂u
Ṽn(u+ s,Xs) +AX(Ṽn)(u+ s,Xs)

]
I{Xs>b(u+s)}ds

)
,

where we used the fact that b is finite for all u > 0, and that Px(Xs = b(u+ s)) = 0 for all
s > 0 and x ∈ R when X is of infinite variation or finite variation with infinite activity (see
Sato (1999), Theorem 27.4). Since Xt ≥X∞ for all t > 0 and V is non-decreasing in each
argument we have that

0≥ Ex

(
Ṽn(u+ t∧ τ−k ,Xt∧τ−

k
)
)
≥−A′

p−1 −C ′
p−1Ex−1((−X∞)p) + V (0,0)>−∞,

where the second inequality follows from equation (34) and the last quantity is finite by
Lemma 2.1. Therefore, by the dominated convergence theorem and letting n, t→ ∞ and
k ↓ 0, we deduce that

Ex

(
Ṽ (u+ τ−0 ,Xτ−

0
)
)
= V (u,x)−Ex

(∫ τ−
0

0
G(u+ s,Xs)I{Xs<b(u+s)}ds

)

+Ex

(∫ τ−
0

0

∫
(−∞,0)

Ṽ (u+ s,Xs + y)Π(dy)I{Xs>b(u+s)}ds

)
(53)

for all u > 0 and x > 0. Note that, since b(u) <∞ for all u > 0 and limu→∞ b(u) = 0, we
have that limu,x→∞ Ṽ (u,x) = limu,x→∞ V (u,x) = 0. Hence, since Ṽ (u, y) = V (0, y) for
any u≥ 0 and y ≤ 0, and X drifts to infinity we get that

Ex

(
Ṽ (u+ τ−0 ,Xτ−

0
)
)

= Ex

(
V (0,Xτ−

0
)I{τ−

0 <∞}

)
= V (0,0)Px(Xτ−

0
= 0, τ−0 <∞) +Ex

(
V (0,Xτ−

0
)I{X

τ
−
0
<0}

)
= V (0,0)

σ2

2
W ′(x) +Ex

(∫ ∞

0

∫
(−∞,0)

V (0,Xs− + y)I{Xs−+y<0}I{Xs−≥0}N(ds,dy)

)

= V (0,0)
σ2

2
W ′(x) +Ex

(∫ τ−
0

0

∫
(−∞,0)

V (0,Xs + y)I{Xs+y<0}dsΠ(dy)

)
,

where in the second last equality, we used the probability of creeping given in (7) (note that
Φ(0) = 0 since X drifts to infinity) and in the last equality, the compensation formula for
Poisson random measures. Then, from above and equation (53) we see that for any u > 0 and
x > 0,

V (u,x)

= Ex

(
Ṽ (u+ τ−0 ,Xτ−

0
)
)
+Ex

(∫ τ−
0

0
G(u+ s,Xs)I{Xs<b(u+s)}ds

)
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−Ex

(∫ τ−
0

0

∫
(−∞,0)

Ṽ (u+ x,Xs + y)Π(dy)I{Xs>b(u+s)}ds

)

= V (0,0)
σ2

2
W ′(x)

−Ex

(∫ τ−
0

0

∫
(−∞,0)

V (u+ s,Xs + y)I{0<Xs+y<b(u+s)}Π(dy)I{Xs>b(u+s)}ds

)

+Ex

(∫ τ−
0

0

[
G(u+ s,Xs) +

∫
(−∞,−Xs)

V (0,Xs + y)Π(dy)

]
I{Xs<b(u+s)}ds

)
,

where in the last equality we used that V (u + s,Xs + y) = 0 when Xs + y ≥ b(u + s).
Moreover, we have that (44) follows directly from the equation above since V (u, b(u)) = 0
for all u > 0.

We define an auxiliary function. For all (u,x) ∈E, let

R(u,x) = Eu,x

(∫ ∞

0
G(Us,Xs)I{Xs<b(Us)}ds

)

−Eu,x

(∫ ∞

0

∫
(−∞,0)

Ṽ (Us,Xs + y)Π(dy)I{Xs>b(Us)}ds

)
.(54)

Note from Lemma 5.1 that R is a well-defined function. The following Lemma shows that R
coincides with V .

LEMMA 5.3. For any (u,x) ∈E we have that

V (u,x) = Eu,x

(∫ ∞

0
G(Us,Xs)I{Xs<b(Us)}ds

)

−Eu,x

(∫ ∞

0

∫
(−∞,0)

Ṽ (Us,Xs + y)Π(dy)I{Xs>b(Us)}ds

)
.(55)

PROOF. First, we assume thatX is of infinite variation or finite variation with Π(−∞,0) =
∞. Let (u,x) ∈E, from the Markov property applied to the stopping time τ+0 , the fact that b
is non-negative and equation (33), we get that for all x < 0,

R(0, x) = Ex

(∫ τ+
0

0
G(0,Xs)ds

)
+R(0,0) = V (0, x) +R(0,0)− V (0,0).

Similarly, using the Markov property at time τ−0 , we get that for any u > 0 and x > 0,

R(u,x) = Ex(R(0,Xτ−
0
)I{τ−

0 <∞}) +Ex

(∫ τ−
0

0
G(u+ s,Xs)I{Xs<b(u+s)}ds

)

−Ex

(∫ τ−
0

0

∫
(−∞,0)

Ṽ (u+ s,Xs + y)Π(dy)I{Xs>b(u+s)}ds

)
= V (u,x) +Ex([R(0,Xτ−

0
)− V (0,Xτ−

0
)]I{τ−

0 <∞})

= V (u,x) + [R(0,0)− V (0,0)]Px(τ
−
0 <∞),(56)
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where the second equality follows from equation (53) and the last from the expression for
R(0, x) deduced above. Then, applying the strong Markov property at time τD to the defini-
tion of R (see (54)), and the fact that for any s < τD we have that Xs < b(Us), we get that
for any (u,x) ∈E such that x < b(u),

R(u,x) = Eu,x

(∫ τD

0
G(Us,Xs)ds

)
+Eu,x(R(UτD ,XτD))

= V (u,x) +Eu,x(R(UτD ,XτD)),

where we used that τD is optimal for V . Since we are considering the infinite variation case or
the finite variation case with infinite activity we have that b(u)> 0 for all u > 0 (see Lemma
4.16), so then XτD > 0 and UτD > 0. Hence, from equation (56) and the equation above we
deduce that for any (u,x) ∈E such that x < b(u),

R(u,x) = V (u,x) + [R(0,0)− V (0,0)]Eu,x(PXτD
(τ−0 <∞)),

where we used that (UτD ,XτD) ∈D and that V vanishes on D. In particular, taking u = 0
and x= 0 in the equation above and rearranging the terms, we conclude that

0 = [R(0,0)− V (0,0)]E(PXτD
(τ−0 =∞)).

Since b(u)> 0 for all u > 0 and Px(τ
−
0 =∞)> 0 for all x > 0, the equation above implies

that R(0,0) = V (0,0), and then V (u,x) =R(u,x) in this case. For the finite variation with
finite activity case, consider the sequence of stopping times,

τ
(1)
b = inf{t≥ 0 :Xt ≥ b(Ut)},

and for k = 1,2, . . .,

σ
(k)
b = inf{t≥ τ

(k)
b :Xt < b(Ut)},

τ
(k+1)
b = inf{t≥ σ

(k)
b :Xt ≥ b(Ut)}.

Since X is of finite variation we have that τ (k)b < σ
(k)
b < τ

(k+1)
b for all k ≥ 1. Let u > 0 and

x≥ b(u), by the Markov property applied to time τ (2)b we get that

R(u,x) =−Eu,x

(∫ σ
(1)
b

0

∫
(−∞,0)

Ṽ (Us,Xs + y)Π(dy)ds

)

+Eu,x

(
I{σ(1)

b <∞}

∫ τ
(2)
b

σ
(1)
b

G(Us,Xs)ds

)
+Eu,x(R(Uτ

(2)
b
,Xτ

(2)
b
)I{τ (2)

b <∞})

=−Eu,x

(∫ σ
(1)
b

0

∫
(−∞,0)

Ṽ (Us,Xs + y)Π(dy)ds

)

+Eu,x

(
I{σ(1)

b <∞}V (Uσ
(1)
b
,Xσ

(1)
b
)
)
+Eu,x(R(Uτ

(2)
b
,Xτ

(2)
b
)I{τ (2)

b <∞})

= Eu,x(R(Uτ
(2)
b
,Xτ

(2)
b
)I{τ (2)

b <∞}),

where in the second inequality, we used the Markov property at time σ(1)b , the definition
of V in terms of the stopping time τD and in the last equality, we used the compensation
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formula for Poisson random measures. Using an induction argument we can verify that for
all x≥ b(u) and n≥ 1,

R(u,x) = Eu,x(R(Uτ
(n)
b
,Xτ

(n)
b

)I{τ (n)
b <∞}).

It can be shown that for any (u,x) ∈ E, limn→∞ τ
(n)
b =∞ Pu,x-a.s. Hence, by the dom-

inated convergence theorem, the fact that limu,x→∞R(u,x) = 0 (see (50) and (51)), that
limt→∞Ut = t− gt ≥ limt→∞ t− g =∞ and that X drifts to infinity we get that

R(u,x) = lim
n→∞

Eu,x(R(Uτ
(n)
b
,Xτ

(n)
b

)I{τ (n)
b <∞}) = 0

for all u > 0 and x ≥ b(u). Next, take x < b(u), applying the strong Markov property and
using that τ (1)b is optimal for V we get that

R(u,x) = Eu,x

(∫ τ
(1)
b

0
G(Us,Xs)ds

)
+Eu,x(R(Uτ

(1)
b
,Xτ

(1)
b
)) = V (u,x).

Hence, we conclude that for all (u,x) ∈E,

V (u,x) =R(u,x).

The proof is now complete.

Now we are ready to show that in either case regarding the variation of X , the equations
stated in Theorem 4.18 hold.

LEMMA 5.4. The quadruplet (V, b,V (0,0), ub) satisfy equations (42)-(45) and equation
(47).

PROOF. We know from Lemma 5.2 that equations (42) and (44) hold in the infinite vari-
ation case or in the finite variation case with finite activity. Then suppose that X is of finite
variation and Π(−∞,0) <∞. The strong Markov property applied at time τ−0 in (55) im-
plies that (53) also holds in this case. Then, proceeding as in Lemma 5.2 (see argument below
equation (53)) we see that (42) and (44) also hold in the finite variation case with finite activ-
ity. Moreover, the assertions about ub and equation (45) follow from Lemma 4.16, the lower
bound for V (0,0) follows from Remark 4.3 and (47) holds due to Lemma 4.14.

We now proceed to show that (43) is satisfied for V (0,0). Taking u = x = 0 in (55) and
using Fubini’s theorem we have that

V (0,0) = E
(∫ ∞

0
G(Us,Xs)I{Xs<b(Us)}ds

)

−E

(∫ ∞

0

∫
(−∞,0)

Ṽ (Us,Xs + y)Π(dy)I{Xs>b(Us)}ds

)

= E
(∫ ∞

0
G(0,Xs)I{Xs≤0}ds

)
+E

(∫ ∞

0
G(Us,Xs)I{0<Xs<b(Us)}ds

)

−E

(∫ ∞

0

∫
(−∞,0)

Ṽ (Us,Xs + y)Π(dy)I{Xs>b(Us)}ds

)

=

∫
(−∞,0]

G(0, z)

∫ ∞

0
P(Xs ∈ dz)ds
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+

∫
(0,∞)

∫
(0,b(u))

G(u, z)

∫ ∞

0
P(Us ∈ du,Xs ∈ dz)ds

−
∫
(0,∞)

∫
(b(u),∞)

∫
(−∞,0)

Ṽ (u, z + y)Π(dy)
∫ ∞

0
P(Us ∈ du,Xs ∈ dz)ds,

where in the second equality we used the fact that b is non-negative and that Us = 0 if and
only if Xs ≤ 0. From the fact that G(0, z) =−Ez(g

p−1) for any z < 0 and the formulas for
the 0-potential density of X and (U,X) (see equations (12) and (20)), respectively, we obtain
that

V (0,0) =− 1

ψ′(0+)

∫ ∞

0
E−z(g

p−1)[1−ψ′(0+)W (z)]dz

+
1

ψ′(0+)

∫ ∞

0

∫
(0,b(s))

G(s, z)
z

s
P(Xs ∈ dz)ds

− 1

ψ′(0+)

∫ ∞

0

∫
(b(s),∞)

∫
(−∞,0)

Ṽ (s, z + y)Π(dy)
z

s
P(Xs ∈ dz)ds

=− 1

ψ′(0+)

∫ ∞

0
E−z(g

p−1)[1−ψ′(0+)W (z)]dz

+
1

ψ′(0+)
E
(∫ ∞

0
G(s,Xs)

Xs

s
I{0<Xs<b(s)}ds

)

− 1

ψ′(0+)
E

(∫ ∞

0

∫
(−∞,0)

Ṽ (s,Xs + y)Π(dy)
Xs

s
I{Xs>b(s)}ds

)
.

Then, equation (43) holds by recalling that Ṽ (u,x) = V (u,x) when u > 0 and x > 0, and
Ṽ (u,x) = V (0, x) when x≤ 0 for any u≥ 0.

We finish the first part of the proof by showing that the derivative of V at (0,0) exists
when there is a Brownian motion component.

LEMMA 5.5. The function V satisfies equation (46) when σ > 0.

PROOF. We first note that the strict inequalities in the indicator functions in Equation (55)
can be changed to inequalities when x= u= 0. Indeed, due to (20) and Fubini’s theorem we
have

E
(∫ ∞

0
G(Us,Xs)I{0<Xs<b(Us)}ds

)
=

∫
(0,∞)

∫
(0,∞)

G(v, y)I{0<y<b(v)}

∫ ∞

0
P(Us ∈ dv,Xs ∈ dy)ds

=

∫
(0,∞)

∫ b(v)

0
G(v, y)Φ′(0)P(τ+y ∈ dv)dy

=

∫
(0,∞)

∫
(0,∞)

G(v, y)I{0<y≤b(v)}

∫ ∞

0
P(Us ∈ dv,Xs ∈ dy)ds

= E
(∫ ∞

0
G(Us,Xs)I{0<Xs≤b(Us)}ds

)
.
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Similarly, we have that

E

(∫ ∞

0

∫
(−∞,0)

Ṽ (Us,Xs + y)Π(dy)I{Xs>b(Us)}ds

)

= E

(∫ ∞

0

∫
(−∞,0)

Ṽ (Us,Xs + y)Π(dy)I{Xs≥b(Us)}ds

)
.

Hence, from equation (55) and the dominated convergence theorem (see Lemma 5.1) we
obtain that

V (0,0) = E
(∫ ∞

0
G(Us,Xs)I{Xs<b(Us)}ds

)

−E

(∫ ∞

0

∫
(−∞,0)

Ṽ (Us,Xs + y)Π(dy)I{Xs≥b(Us)}ds

)

= lim
δ↓0

E
(∫ ∞

0
G(Us + δ,Xs)I{Xs<b(Us+δ)}ds

)

− lim
δ↓0

E

(∫ ∞

0

∫
(−∞,0)

Ṽ (Us + δ,Xs + y)Π(dy)I{Xs≥b(Us+δ)}ds

)
,

where we used that G and V are continuous (since σ > 0 and then W is continuous on R),
that the mappings s 7→ I{x≥s} and s 7→ I{x<s} are left-continuous and that b(Us + δ) ↑ b(Us)
when δ ↓ 0, for any s ≥ 0. Then, using once again (20), Fubini’s theorem and the equation
above we can easily see that

V (0,0) = lim
δ↓0

E
(∫ ∞

0
[K1(Us + δ,Xs) +K2(Us + δ,Xs)]ds

)
,

where for any (u,x) ∈E,

K1(u,x) :=G(u,x)I{x≤b(u)},

K2(u,x) :=−
∫
(−∞,0)

Ṽ (u,x+ y)Π(dy)I{x>b(u)}.

Therefore, from Lemma A.3 we deduce that

V (0,0) = lim
δ↓0

lim
ε↓0

Eε

(
I{τ−

0 <∞}K
−(δ,Xτ−

0
− ε)

)
+K+(δ, ε)

ψ′(0+)W (ε)
,

where for all δ > 0 and x≤ 0,

K−(δ,x) = Ex

(∫ τ+
0

0
[K1(δ,Xr) +K2(δ,Xr)]dr

)
and for all δ,x > 0,

K+(δ,x) = Ex

(∫ τ−
0

0
[K1(δ+ s,Xr) +K2(δ+ s,Xr)]dr

)
.

Using the fact that b is non-negative and W (x) = 0 for all x < 0 (and then G(δ,x) =G(0, x)
for all x < 0), we have that for all x < 0,

K−(δ,x) = Ex

(∫ τ+
0

0
G(δ,Xs)ds

)
= V (0, x)− V (0,0),
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where the last equality follows from the expression of V in terms of the stopping time τD .
Moreover, from equation (53), we deduce that

K+(δ, ε) = V (δ, ε)−Eε(V (0,Xτ−
0
)I{τ−

0 <∞}),

for all δ > 0 and x > 0. Hence, by substituting the expressions for K+ and K−, rearranging
the terms and by dominated convergence theorem we see that

V (0,0) = lim
δ↓0

lim
ε↓0

E(V (0,Xτ−
−ε
)I{τ−

−ε<∞})−E(V (0,Xτ−
−ε

+ ε)I{τ−
−ε<∞})

ψ′(0+)W (ε)

+ lim
δ↓0

lim
ε↓0

V (δ, ε)− V (0,0)Pε(τ
−
0 <∞)

ψ′(0+)W (ε)

= lim
ε↓0

E(V (0,Xτ−
−ε
)I{τ−

−ε<∞})−E(V (0,Xτ−
−ε

+ ε)I{τ−
−ε<∞})

ψ′(0+)W (ε)

+
σ2

2ψ′(0+)

∂

∂x
V+(0,0) + V (0,0),

where in the last equality we used that Pε(τ
−
0 <∞) = 1− ψ′(0+)W (ε) (see equation (5))

and the fact that W ′(0) = 2/σ2. Therefore, from Lemma A.4 we see that

lim
ε↓0

E(V (0,Xτ−
−ε
)I{τ−

−ε<∞})−E(V (0,Xτ−
−ε

+ ε)I{τ−
−ε<∞})

ψ′(0+)W (ε)
=− σ2

2ψ′(0+)

∂

∂x
V−(0,0).

Then, we deduce that

V (0,0) =
σ2

2ψ′(0+)

[
− ∂

∂x
V−(0,0) +

∂

∂x
V+(0,0)

]
+ V (0,0),

and we conclude that (46) holds. The proof is now complete.

Next, we show the uniqueness claim. Suppose that there exist continuous functions H and
c on E and R+, respectively, and real numbers H0 < 0 and uH > 0 such that the conclusions
of the theorem hold. Specifically, suppose that H is a non-positive continuous real valued
function on E, c is a continuous real valued function on (0,∞) such that c ≥ h ≥ 0 and
H0 ∈ (−1

pE(g
p),0) such that equations (42)-(44) hold. That is, we assume that H , H0 and c

are solutions to the equations

H(u,x)

=H0
σ2

2
W ′(x)

−Ex

(∫ τ−
0

0

∫
(−∞,0)

H(u+ s,Xs + y)I{0<Xs+y<c(u+s)}Π(dy)I{Xs>c(u+s)}ds

)

+Ex

(∫ τ−
0

0

[
G(u+ s,Xs) +

∫
(−∞,−Xs)

H(0,Xs + y)Π(dy)

]
I{Xs<c(u+s)}ds

)
,

(57)

for u > 0 and x > 0,

H0 =− 1

ψ′(0+)

∫ ∞

0
E−z(g

p−1)[1−ψ′(0+)W (z)]dz

(58)



40

+
1

ψ′(0+)
E
(∫ ∞

0
G(s,Xs)

Xs

s
I{0<Xs<c(s)}ds

)

− 1

ψ′(0+)
E

(∫ ∞

0

∫
(−∞,0)

H(s,Xs + y)I{0<Xs+y<c(s)}Π(dy)
Xs

s
I{Xs>c(s)}ds

)

− 1

ψ′(0+)
E

(∫ ∞

0

∫
(−∞,0)

H(0,Xs + y)I{Xs+y≤0)}Π(dy)
Xs

s
I{Xs>c(s)}ds

)
,

(59)

and

0 =H0
σ2

2
W ′(c(u))

−Ec(u)

(∫ τ−
0

0

∫
(−∞,0)

H(u+ s,Xs + y)I{0<Xs+y<c(u+s)}Π(dy)I{Xs>c(u+s)}ds

)

+Ec(u)

(∫ τ−
0

0

[
G(u+ s,Xs) +

∫
(−∞,−Xs)

H(0,Xs + y)Π(dy)

]
I{Xs<c(u+s)}ds

)
,

(60)

for u < uH , where for any x≤ 0,

H(0, x) =−
∫ −x

0

∫ ∞

0
E−u−z(g

p−1)W ′(u)dudz +H0.(61)

The value uH is such that uH =∞ when X is of infinite variation or X is of finite variation
with infinite activity. Otherwise, let uH be the solution of

G(u,0)−
∫
(−∞,0)

∫ −y

0

∫ ∞

0
E−u−z(g

p−1)W ′(u)dudzΠ(dy) +H0Π(−∞,0) = 0.(62)

Moreover, assume that c(u)> 0 for all u < uH and c(u) = 0 for all u≥ uH , and that∫
(−∞,−x)

H̃(u,x+ c(u) + y)Π(dy) +G(u, c(u) + x)≥ 0(63)

for all u < uH and x > 0, where H̃ is the extension of H to the set R+ ×R as in (18). That
is,

H̃(u,x) =

H(u,x), for u > 0 and x > 0,
H(0, x), for u≥ 0 and x≤ 0,
H(0,0), for u= 0 and x > 0.

(64)

Note that, using the same arguments as the ones used in Lemma 5.2 (see argument below
Equation (53)), we can see that (57) and (60) are equivalent to

H(u,x) = Ex(H(0,Xτ−
0
)I{τ−

0 <∞}) +Ex

(∫ τ−
0

0
G(u+ s,Xs)I{Xs<c(u+s)}ds

)

−Ex

(∫ τ−
0

0

∫
(−∞,0)

H̃(u+ s,Xs + y)I{Xs+y<c(u+s)}Π(dy)I{Xs>c(u+s)}ds

)
(65)
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for all (u,x) ∈E, and

Ec(u)(H(0,Xτ−
0
)I{τ−

0 <∞}) +Ec(u)

(∫ τ−
0

0
G(u+ s,Xs)I{Xs<c(u+s)}ds

)

= Ec(u)

(∫ τ−
0

0

∫
(−∞,0)

H̃(u+ s,Xs + y)I{Xs+y<c(u+s)}Π(dy)I{Xs>c(u+s)}ds

)
(66)

for any u < uH . Following a similar proof than du Toit and Peskir (2008) we show that c= b,
which implies that H = V , H0 = V (0,0) and uH = ub.

First, we show that H has an alternative representation.

LEMMA 5.6. For all (u,x) ∈E we have that

H(u,x) = Eu,x

(∫ ∞

0
G(Us,Xs)I{Xs<c(Us)}ds

)

−Eu,x

(∫ ∞

0

∫
(−∞,0)

H̃(Us,Xs + y)I{Xs+y<c(Us)}Π(dy)I{Xs>c(Us)}ds

)
.(67)

Moreover, the same conclusion holds if, in the case that σ > 0, instead of (58) we assume
that

∂

∂x
H+(0,0) =

∂

∂x
H−(0,0),(68)

where ∂
∂xH+(u,0) and ∂

∂xH−(0,0) are the right and left derivatives of x 7→ H(u,x) and
x 7→H(0, x) at zero, respectively and ∂

∂xH+(0,0) = limu↓0
∂
∂xH+(u,0).

PROOF. Define for all (u,x) ∈E the function

K(u,x) = Eu,x

(∫ ∞

0
G(Us,Xs)I{Xs<c(Us)}ds

)

−Eu,x

(∫ ∞

0

∫
(−∞,0)

H̃(Us,Xs + y)I{Xs+y<c(Us)}Π(dy)I{Xs>c(Us)}ds

)
.

In a analogous way as in Lemma 5.4, from (12) and (20), we have that for any spectrally
negative Lévy process X ,

K(0,0) = E
(∫ ∞

0
G(Us,Xs)I{Xs<c(Us)}ds

)

−Eu,x

(∫ ∞

0

∫
(−∞,0)

H̃(Us,Xs + y)I{Xs+y<c(Us)}Π(dy)I{Xs>c(Us)}ds

)

=
1

ψ′(0+)

∫ ∞

0
E−z(g

p−1)[1−ψ′(0+)W (z)]dz

+
1

ψ′(0+)
E
(∫ ∞

0
G(s,Xs)

Xs

s
I{0<Xs<c(s)}ds

)
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− 1

ψ′(0+)
E

(∫ ∞

0

∫
(−∞,0)

H̃(s,Xs + y)I{Xs+y<c(s)}Π(dy)
Xs

s
I{Xs>c(s)}ds

)
=H0

=H(0,0).

Moreover, by the Markov property, the fact that X creeps upwards, c is a non-negative curve
and the definition of H(0, x), for x < 0 (see (61)), we have that for u= 0 and x < 0,

K(0, x) = Ex

(∫ τ+
0

0
G(Us,Xs)ds

)
+K(0,0) =H(0, x).(69)

Then, taking u > 0 and x > 0, by the strong Markov property at time τ−0 and equation (65),

K(u,x) = Ex(K(0,Xτ−
0
)I{τ−

0 <∞}) +Ex

(∫ τ−
0

0
G(u+ s,Xs)I{Xs<c(u+s)}ds

)

−Ex

(∫ τ−
0

0

∫
(−∞,0)

H̃(u+ s,Xs + y)I{Xs+y<c(u+s)}Π(dy)I{Xs>c(u+s)}ds

)
=H(u,x).

If, in the case that σ > 0, we assume that H and c satisfy equations (61), (65), (66) and (68).
From formula (19) (in a similar way as in the proof of Lemma 5.4) we obtain that

K(0,0) =
σ2

2ψ′(0+)

[
− ∂

∂x
H−(0,0) +

∂

∂x
H+(0,0)

]
+H(0,0)

=H(0,0).

The rest of the proof remains unchanged.

Define the set Dc = {(u,x) ∈ E : x ≥ c(u)}. We show in the following lemma that H
vanishes in Dc so that Dc corresponds to the “stopping set” of H .

LEMMA 5.7. We have that H(u,x) = 0 for all (u, t) ∈Dc.

PROOF. Note that, from equations (65) and (66), we know that H(u, c(u)) = 0 for all
u ∈ (0, uH). Let (u,x) ∈Dc such that x > c(u) and define σc as the first time that (U,X)
exits Dc, that is,

σc = inf{s≥ 0 :Xs < c(Us)}.
From the fact that Xr ≥ c(Ur) for all r < σc, the Markov property and representation (67) of
H we can see that

H(u,x) = Eu,x(H(Uσc
,Xσc

)I{σc<∞}) +Eu,x

(∫ σc

0
G(Us,Xs)I{Xs<c(Us)}ds

)

−Eu,x

(∫ σc

0

∫
(−∞,0)

H̃(Us,Xs + y)I{Xs+y<c(Us)}Π(dy)I{Xs>c(Us)}ds

)
= Eu,x(H(Uσc

,Xσc
)I{σc<∞,Xσc<c(Us)})

−Eu,x

(∫ σc

0

∫
(−∞,0)

H̃(Us,Xs + y)I{Xs+y<c(Us)}Π(dy)ds

)
,
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where the last equality follows from the fact that Px(Xσc
= c(u+ σc))> 0 only when σ > 0

and then H(u, c(u)) = 0 for all u > 0 (since uH = ∞ in this case). Then, since H ≤ 0,
applying the compensation formula for Poisson random measures and the fact that σc ≤ τ−0
(since c(u)≥ 0 for all u > 0), we get

Eu,x(H(Uσc
,Xσc

)I{σc<∞}I{Xσc<c(Us)})

= Ex

(∫ ∞

0

∫
(−∞,0)

I{Xr≥c(u+r) for all r<s}I{Xs−+y<c(u+s)}H̃(u+ s,Xs− + y)N(ds,dy)

)

= Ex

(∫ ∞

0

∫
(−∞,0)

I{Xr≥c(u+r) for all r<s}I{Xs−+y<c(u+s)}H̃(u+ s,Xs− + y)Π(dy)ds

)

= Eu,x

(∫ σc

0

∫
(−∞,0)

H̃(Us,Xs + y)I{Xs+y<c(Us)}Π(dy)ds

)
.

Hence, we have that H(u,x) = 0 for all (u,x) ∈Dc as claimed.

The following Lemma states that H dominates the value function V .

LEMMA 5.8. We have that H(u,x)≥ V (u,x) for all (u,x) ∈E.

PROOF. If (u,x) ∈Dc we have the inequality

H(u,x) = 0≥ V (u,x).

Now we show that the inequality also holds in E \Dc. Consider the stopping time

τc = inf{s≥ 0 :Xs ≥ c(Us)}.

Then, using the Markov property and equation (67), we get that for all (u,x) ∈ E with x <
c(u),

H(u,x) = Eu,x (H(Uτc ,Xτc)) +Eu,x

(∫ τc

0
G(Us,Xs)I{Xs<c(Us)}ds

)

−Eu,x

(∫ τc

0

∫
(−∞,0)

H̃(Us,Xs + y)Π(dy)I{Xs>c(Us)}ds

)

= Eu,x (H(Uτc , c(Uτc))) +Eu,x

(∫ τc

0
G(Us,Xs)ds

)
,

where in the second equality we used the fact X creeps upwards and τc <∞. Note that,
since for any t > 0, Xt > 0 if and only if Ut > 0 and c(u)> 0 for all u < uH , we have that
Uτc < uH so then c(Uτc)> 0, and hence H(Uτc , c(Uτc)) = 0. Therefore

H(u,x) = Eu,x

(∫ τc

0
G(Us,Xs)ds

)
≥ V (u,x),

where the inequality follows from the definition of V as per (28).

It turns out that the fact that H dominates V implies that b dominates the curve c. This
fact is shown in the following Lemma.
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LEMMA 5.9. We have that b(u)≥ c(u) for all u > 0.

PROOF. Note that in the case that X is of finite variation with Π(−∞,0)<∞, we have
that c(u) = 0 ≤ b(u) for all u > uH . We proceed by contradiction. Suppose that there ex-
ists u0 > 0 such that b(u0) < c(u0). Then, in the case that X is of finite variation with
Π(−∞,0)<∞, it holds that u0 < uH . Take x > c(u0) and consider the stopping time

σb = inf{s > 0 :Xs < b(Us)}.

Then, from the Markov property and the representation of H given in (67), we have that

H(u0, x) = Eu0,x

(
H(Uσ−

b
,Xσ−

b
)
)
+Eu0,x

(∫ σ−
b

0
G(Us,Xs)I{Xs<c(Us)}ds

)

−Eu0,x

(∫ σ−
b

0

∫
(−∞,0)

H̃(Us,Xs + y)Π(dy)I{Xs>c(Us)}ds

)
.

Moreover, since V (u,x) = 0 for (u,x) ∈D and 0≥H ≥ V , we have that

Eu0,x

(
H(Uσ−

b
,Xσ−

b
)
)
= Eu0,x

(
H(Uσ−

b
,Xσ−

b
)I{X

σ
−
b
<b(U

σ
−
b
)}

)
= Eu0,x

(∫ σ−
b

0

∫
(−∞,0)

H̃(Us,Xs + y)I{Xs+y≤b(Us)}Π(dy)ds

)

= Eu0,x

(∫ σ−
b

0

∫
(−∞,0)

H̃(Us,Xs + y)Π(dy)ds

)
,

where the second equality follows from the compensation formula for Poisson random mea-
sures. Hence, combining the two equations above and from the fact that x > c(u0), then
H(u0, x) = 0, we get

0 = Eu0,x

(∫ σ−
b

0

[
G(Us,Xs) +

∫
(−∞,0)

H̃(Us,Xs + y)Π(dy)

]
I{Xs<c(Us)}ds

)
.

Due to the continuity of b and c, there exists a value u1 sufficiently small such that c(v) >
b(v) for all v ∈ [u0, u0 + u1). Thus, from Lemma 4.14, the fact that u 7→G(u,x) is strictly
increasing when x > 0 and the inequality H ≥ V (see Lemma 5.8), we have that for all u > 0
and x > b(u),

G(u,x) +

∫
(−∞,0)

H̃(u,x+ y)Π(dy)≥G(u,x) +

∫
(−∞,0)

Ṽ (u,x+ y)Π(dy)> 0,

where the strict inequality follows from Lemma 4.14. Note that taking x sufficiently large we
have that, under the measure Pu0,x, X spends a positive amount of time between the curves
b(u) and c(u) for u ∈ [u0, u0 + u1] with positive probability. Thus, since σc < τ−0 the above
facts imply that

0 = Eu0,x

(∫ σ−
b

0

[
G(Us,Xs) +

∫
(−∞,0)

H̃(Us,Xs + y)Π(dy)

]
I{Xs<c(Us)}ds

)
> 0.

We have got a contradiction and then we have that c(u)≤ b(u) for all u > 0.
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Note that (63) and the definition of uH given in (62) imply the inequality G(u,x) +∫
(−∞,0) H̃(u,x+ y)Π(dy)≥ 0 for all u > 0 and x > c(u). It can be shown that such inequal-

ity guarantees that the process {H(Ut,Xt)+
∫ t
0 G(Us,Xs)ds, t≥ 0} is a Pu,x-submartingale,

for all (u,x) ∈E. We finish the proof by showing that indeed c corresponds to b.

LEMMA 5.10. We have that c(u) = b(u) for all u > 0 and V (u,x) = H(u,x) for all
(u,x) ∈E.

PROOF. Suppose that there exists u > 0 such that c(u)< b(u) and take x ∈ (c(u), b(u)).
Then, by the Markov property and representation (67) we have that

H(u,x) = Eu,x (H(UτD ,XτD)) +Eu,x

(∫ τD

0
G(Us,Xs)I{Xs<c(Us)}ds

)

−Eu,x

(∫ τD

0

∫
(−∞,0)

H̃(Us,Xs + y)Π(dy)I{Xs>c(Us)}ds

)
,(70)

where τD = inf{t > 0 :Xt ≥ b(Ut)}. On the other hand, we have that

V (u,x) = Eu,x

(∫ τD

0
G(Us,Xs)ds

)
.

Since XτD = b(UτD)≥ c(UτD) under Pu,x, we deduce from Lemma 5.7 that H(UτD ,XτD) =
0. Hence, using the inequality H ≥ V (see Lemma 5.8) in (70), we obtain that

0≥ Eu,x

(∫ τD

0

[
G(Us,Xs) +

∫
(−∞,0)

H̃(Us,Xs + y)Π(dy)

]
I{Xs>c(Us)}ds

)
> 0,

where the strict inequality follows by the inequality (63) and the continuity of b and c. This
contradiction allows us to conclude that c(u) = b(u) for all u > 0. Lastly, recall from the
proof of Lemma 5.8 that H(u,x) = 0 = V (u,x) for all x > c(u) = b(u), and

H(u,x) = Eu,x

(∫ τc

0
G(Us,Xs)ds

)
= Eu,x

(∫ τD

0
G(Us,Xs)ds

)
= V (u,x)

for all (u,x) ∈E such that x < c(u) = b(u). The proof is now complete.

REMARK 5.11. A close inspection of the proof tells us that the assumption H ≤ 0 can
be dropped when Π≡ 0.

6. Examples.

6.1. Brownian Motion with drift example. Suppose that Xt is given by

Xt = µt+ σBt,

where µ > 0, σ > 0 and B = {Bt, t≥ 0} is a standard Brownian motion. Here, we consider
the case p= 2. Then, for any (u,x) ∈E we have,

G(u,x) = uψ′(0+)W (x)−Ex(g).
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It is well known that for β ≥ 0 and q ≥ 0,

ψ(β) =
σ2

2
β2 + µβ and Φ(q) =

1

σ2

[√
µ2 + 2σ2q− µ

]
.

Thus, ψ′(0+) = µ, Φ′(0) = 1
µ , Φ′′(0) = −σ2

µ3 and Φ′′′(0) = 3σ4/µ5. The scale function is
(see e.g. Kuznetsov, Kyprianou and Rivero (2013), on p. 102) given by

W (x) =
1

µ
(1− exp(−2µx/σ2)), x≥ 0.

An easy calculation shows that W ∗(2) is given by

W ∗(2)(x) =
1

µ2
x[1 + exp(−2µ/σ2x)]− σ2

µ2
1

µ
(1− exp(−2µ/σ2x)), x≥ 0.

For all x ∈R, the value Ex(g) can be calculated from (22) via differentiation to have

Ex(g) =−ψ′(0+)[Φ′′(0+) + xΦ′(0)2] +ψ′(0+)W ∗2(x)

=

{
σ2

µ2 − x
µ , x < 0,

σ2

µ2 exp(−2µ/σ2x) + x
µ exp(−2µ/σ2x), x≥ 0.

and E(g2) = Φ′′′(0)ψ′(0+) = 3(σ/µ)4. Moreover, it is well known that Xr ∼ N(µr,σ2r)
for any r ≥ 0 and

Px(Xr ∈ dz,Xr ≤ 0) = e−
2µ

σ2 x
1√
σ2r

ϕ

(
z + x− µr√

σ2r

)
dz,

for any r ≥ 0, x ≥ 0 and z ≥ 0, where ϕ is the density of a standard normal distribution.
Hence we have that for any x≥ 0 and z ≥ 0,

Px(Xr ∈ dz,Xr ≥ 0) =
1√
σ2r

[
ϕ

(
z − x− µr√

σ2r

)
− e−

2µ

σ2 xϕ

(
z + x− µr√

σ2r

)]
dz.

Then, we calculate for any u > 0 and x > 0,

Ex

(∫ τ−
0

0
G(u+ r,Xr)I{Xr<b(r+u)}dr

)

=

∫ ∞

0

∫ b(r+u)

0
[(r+ u)ψ′(0+)W (z)−Ez(g)]Px(Xr ∈ dz,Xr ≥ 0)dr

=

∫ ∞

0

{
H(r,u,x, b(r+ u))− e−2µ/σ2xH(r,u,−x, b(r+ u))

}
dr,

where a lengthy but straightforward calculation gives

H(r, t, x, b) =

∫ b

0
[(r+ t)ψ′(0+)W (z)−Ez(g)]

1√
σ2r

ϕ

(
z − x− µr√

σ2r

)
dz

= (r+ t)

[
Ψ

(
b− x− µr

σ
√
r

)
−Ψ

(
−x− µr

σ
√
r

)]
−
[
x

µ
+ t+

σ2

µ2

]
e−2µ/σ2x

[
Ψ

(
b− x+ µr

σ
√
r

)
−Ψ

(
−x+ µr

σ
√
r

)]
+
σ
√
r

µ
e−2µ/σ2x

[
ϕ

(
b− x+ µr

σ
√
r

)
− ϕ

(
−x+ µr

σ
√
r

)]
.



Lp OPTIMAL PREDICTION OF THE LAST ZERO 47

From formula (33) we can deduce that

V (0, x) =−
∫ −x

0

∫ ∞

0
E−u−z(g)W

′(u)dudz + V (0,0)

=
3σ2

2µ3
x− 1

2µ2
x2 + V (0,0).

Then,

∂

∂x
V−(0,0) =

3σ2

2µ3
.

From Theorem 4.18 we have that for u > 0 and x > 0,

V (u,x) = V (0,0) exp(−2µx/σ2)

+

∫ ∞

0

{
H(r,u,x, b(r+ u))− e−2µ/σ2xH(r,u,−x, b(r+ u))

}
dr.

Therefore, the curve b(u) and V (0,0) satisfy the equations

0 = V (0,0) exp(−2µb(u)/σ2)

+

∫ ∞

0

{
H(r,u,x, b(r+ u))− e−2µ/σ2xH(r,u,−x, b(r+ u))

}
dr,

0 =
3σ2

2µ3
− ∂

∂x
V+(0,0),

for all u > 0, where

−3

2

σ4

µ4
≤ V (0,0)< 0.

Note that ∂
∂xV+(0,0) can be estimated via [V (h0, h0)−V (0,0)]/h0 for h0 sufficiently small.

We can approximate the integrals above by Riemann sums to implement a numerical ap-
proximation of b and V . Take u > 0 and x > 0, by the dominated convergence theorem (see
equations (48) and (49)) we have that

V (u,x) = V (0,0) exp(−2µx/σ2)

+ lim
T→∞

∫ T−u

0

{
H(r,u,x, b(r+ u))− e−2µ/σ2xH(r,u,−x, b(r+ u))

}
dr

= V (0,0) exp(−2µx/σ2)

+ lim
T→∞

∫ T

u

{
H(r− u,u,x, b(r))− e−2µ/σ2xH(r− u,u,−x, b(r))

}
dr

= V (0,0) exp(−2µx/σ2)

+ lim
T→∞

lim
n→∞

n−1∑
i=k

{
H((i− k+ 1)hn, u, x, b(ihn))

− e−2µ/σ2xH((i− k+ 1)hn, u,−x, b(ihn))
}
hn,

where for T > 0 and n ∈ Z+ fixed, we define hn := T/n, the value k is an integer
such that u ∈ [khn, (k + 1)hn), and we used that for each T − u > 0, the functions
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r 7→H(r,u,x, b(r+u)) and r 7→H(r,u,−x, b(r+u)) are Riemann integrable on [0, T −u].

Hence, take n ∈ Z+ and T > 0 sufficiently large such that hn = T/n is small. For each
k ∈ {0,1,2, . . . , n}, we define uk = khn. Then, from the equation above and continuity of
V , we can approximate V (u,x), for any x > 0 and u ∈ [uk, uk+1), by

Vh(uk, x) = V (0,0) exp(−2µx/σ2)

+

n−1∑
i=k

[H(ui−k+1, uk, x, b(ui))− e−2µ/σ2xH(ui−k+1, uk,−x, b(ui))]hn.(71)

In particular, taking x= b(uk) we have that

0≈ V (0,0) exp(−2µb(uk)/σ
2)

+

n−1∑
i=k

[H(ui−k+1, uk, b(uk), b(ui))− e−2µ/σ2b(uk)H(ui−k+1, uk,−b(uk), b(ui))]hn.

Moreover, from the definition of the right-derivative, we have

0≈ 3σ2

2µ3
− V (hn, hn)− V (0,0)

hn
≈ 3σ2

2µ3
− Vh(hn, hn)− V (0,0)

hn
,(72)

where Vh is given in (71). Note that Vh also depends on V (0,0) and on the values {b(ti), i=
k, . . . , n − 1}. Then, for each k ∈ {1,2, . . . , n − 1}, equation (72) can be interpreted as a
non-linear equation that depends on V (0,0) and {b(ui), i= k, . . . , n− 1}. We then propose
the following algorithm:

1. Take n ∈ Z+ and T > 0 sufficiently large such that hn = T/n is small. For each k ∈
{0,1,2, . . . , n}, define uk = khn.

2. Take a value V0 ∈ [−3
2
σ4

µ4 ,0).
3. Let bn−1 > 0 be the solution to the equation

0 = V0 exp(−2µbn−1/σ
2)

+ [H(u1, un−1, bn−1, bn−1)− e−2µ/σ2bn−1H(u1, un−1,−bn−1, bn−1)]hn.

4. For 1≤ k ≤ n− 2, let bk > 0 be the solution to the equation

0 = V0 exp(−2µbk/σ
2)

+

n−1∑
i=k

[H(ui−k+1, uk, bk, bi)− e−2µ/σ2bkH(ui−k+1, uk,−bk, bi)]hn.

Note that in this step we calculate backwards the values {bk, k = 1,2, . . . , n− 2}.
5. Calculate the quantity

RV0 =
3σ2

2µ3
+
V0
hn

− 1

hn
exp(−2µhn/σ

2)

− 1

hn

n−1∑
i=1

[H(ui, u1, hn, bi)− e−2µ/σ2hnH(ui, u1,−hn, bi)]hn.

If the value of RV0 ≈ 0 then stop the algorithm, otherwise, go back to step 2 with a differ-
ent choice of V0.
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FIG 3. Numeric calculation of the optimal boundary and value function V for the Brownian motion with drift
case.

The sequence {bk, k = 1, . . . , n − 1} is a numerical approximation of the sequence
{b(tk), k = 1, . . . , n − 1}, whereas V0 is an approximation of V (0,0). Note that our algo-
rithm is a simple method to approximate the curve b and to illustrate how Theorem 4.18 can
be used for that purpose. Note that better methods are needed to achieve higher precision and
shorter computation time. We show in Figure 3 a numerical calculation of the optimal bound-
ary and the value function using the method above. The case considered is when µ= 1/2 and
σ = 1.
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6.2. Brownian motion with exponential jumps example. Consider the case p = 2 and
when X is a Brownian motion with drift and exponential jumps, i.e., X = {Xt, t≥ 0} with

Xt = µt+ σBt −
Nt∑
i=1

Yi, t≥ 0,

where σ > 0, µ > 0, B = {Bt, t≥ 0} is a standard Brownian motion, N = {Nt, t≥ 0} is an
independent Poisson process with rate λ > 0 and {Yi, i ≥ 1} is a sequence of independent
exponential distributed random variables with parameter ρ > 0 independent of B and N . We
further assume that µρ > λ soX drifts to infinity. The Laplace exponent is given by for β ≥ 0
by

ψ(β) = µβ +
σ2

2
β2 − λβ

ρ+ β
.

In this case the Lévy measure is given by Π(dx) = λρeρxdx, for all x < 0. An easy calcula-
tion leads to ψ′(0+) = µ− λ/ρ. Using the identity ψ(Φ(q)) = q, for any q ≥ 0, we deduce
that

Φ′(0+) =
ρ

µρ− λ
,

Φ′′(0+) =−σ
2ρ3 + 2λρ

[µρ− λ]3
,

Φ′′′(0+) = 3
ρ[σ2ρ2 + 2λ]2

[µρ− λ]5
+

6λρ

[µρ− λ]4
.

It is know that (see e.g. Kuznetsov, Kyprianou and Rivero (2013), on p. 101) the scale
function W is given by

W (x) =
1

ψ′(0+)
+

eζ1x

ψ′(ζ1)
+

eζ2x

ψ′(ζ2)

for x≥ 0, where

ζ1 =
−
(
σ2

2 ρ+ µ
)
+

√(
σ2

2 ρ− µ
)2

+ 2σ2λ

σ2
,

ζ2 =
−
(
σ2

2 ρ+ µ
)
−
√(

σ2

2 ρ− µ
)2

+ 2σ2λ

σ2
.

By differentiating (22) with respect to q we obtain that

Ex(g) =−ψ′(0+)[Φ′′(0) + xΦ′(0)2] +ψ′(0+)W ∗2(x)

=

{
σ2ρ2+2λ
[µρ−λ]2

− ρ
µρ−λx, x < 0,

σ2ρ2+2λ
[µρ−λ]2

− ρ
µρ−λx+ (µ− λ/ρ)W ∗2(x), x≥ 0.

Moreover, taking x= 0 and differentiating twice (22) with respect to the variable q ≥ 0, we
see that

E(g2) = ψ′(0+)Φ′′′(0) = 3
[σ2ρ2 + 2λ]2

[µρ− λ]4
+

6λ

[µρ− λ]3
.
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For x < 0, the value function is then given by

V (0, x) =−
∫ −x

0

∫ ∞

0
E−u−z(g)W

′(u)dudz + V (0,0)

=

∫ −x

0

∫ ∞

0

[
Φ′′(0+) +Φ′(0)2(−u− z)

]
ψ′(0+)W ′(u)dudz + V (0,0)

=
[
Φ′′(0)(−x) +Φ′(0)2E(X∞)(−x)−Φ′(0)2x2/2

]
+ V (0,0),

where in the last equality we used that ψ(0+)W (x) = Px(τ
−
0 = ∞) = P(−X∞ ≤ x) and

hence ψ′(0+)W ′(u) is the density function of the random variable X∞. From (8) we know
that for any β ≥ 0,

E(eβX∞) = ψ′(0+)
β

ψ(β)
.

Hence, by differentiating and using the fact that Φ′(q) = 1/ψ′(Φ(q)), we can see that

E(X∞) =
Φ′′(0)

2Φ′(0)2
.

Hence,

V (0, x) =−
[
3

2
Φ′′(0)x+Φ′(0)2x2/2

]
+ V (0,0)

for any x < 0. Next, we calculate for any x > 0,∫
(−∞,−x)

V (0, x+ y)Π(dy)

=

∫ −x

−∞

[
−3

2
Φ′′(0)(x+ y)−Φ′(0)2(x+ y)2/2 + V (0,0)

]
λρeρydy

= λe−ρx

∫ 0

−∞

[
−3

2
Φ′′(0)y−Φ′(0)2y2/2 + V (0,0)

]
ρeρydy

= λe−ρx

[
3Φ′′(0)

2ρ
− Φ′(0)2

ρ2
+ V (0,0)

]
.

Similarly, we have that for all u > 0 and x > b(u),∫
(−∞,0)

V (u,x+ y)I{0<x+y<b(u)}Π(dy) = e−ρx

∫ b(u)

0
V (u, y)λρeρydy

= e−ρ(x−b(u))

∫
(−b(u),0)

V (u, y+ b(u))Π(dy).

Then, since G is non decreasing in each argument, condition (47) is satisfied if and only if∫
(−b(u),0)

V (u, y+ b(u))Π(dy)

+ λe−ρb(u)

[
3Φ′′(0)

2ρ
− Φ′(0)2

ρ2
+ V (0,0)

]
+G(u, b(u))≥ 0
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for all u > 0. On the other hand, for any u,x > 0, equation (42) reads as

V (u,x)

= V (0,0)
σ2

2
W ′(x)

−Ex

(∫ τ−
0

0
e−ρ(Xs−b(u+s))I{Xs>b(u+s)}

×
∫
(−b(u+s),0)

V (u+ s, y+ b(u+ s))Π(dy)ds
)

+Ex

(∫ τ−
0

0

[
G(u+ s,Xs) +

∫
(−∞,−Xs)

V (0,Xs + y)Π(dy)

]
I{Xs<b(u+s)}ds

)

= V (0,0)
σ2

2
W ′(x)

−
∫ ∞

0

∫
(−b(u+s),0)

V (u+ s, y+ b(u+ s))Π(dy)

×Ex

(
e−ρ(Xs−b(u+s))I{Xs>b(u+s),Xs≥0}

)
ds

+

∫ ∞

0
Ex

([
G(u+ s,Xs) +

∫
(−∞,−Xs)

V (0,Xs + y)Π(dy)

]
I{Xs<b(u+s),Xs≥0}ds

)

= V (0,0)
σ2

2
W ′(x)−

∫ ∞

0
V(u+ s, b(u+ s))F2(s,x, b(u+ s))ds

+

∫ ∞

0
F1(s,u,x, b(u+ s), V (0,0))ds,

where for any s,u,x, b > 0 we define

V(u, b) :=
∫
(−b,0)

V (u, y+ b)Π(dy),

F1(s,u,x, b,V0) := E
(
G(u+ s,Xs + x)I{Xs+x<b,Xs+x≥0}

)
+E

(
λe−ρ(Xs+x))

[
3Φ′′(0)

2ρ
− Φ′(0)2

ρ2
+ V0

]
I{Xs+x<b,Xs+x≥0}

)
,

F2(s,x, b) := E
(
e−ρ(Xs+x−b)I{Xs+x>b,Xs+x≥0}

)
.

In summary, we have that V , b and V (0,0) satisfy the equations

V (u,x) = V (0,0)
σ2

2
W ′(x) +

∫ ∞

0
F1(s,u,x, b(u+ s), V (0,0))ds

−
∫ ∞

0
V(u+ s, b(u+ s))F2(s,x, b(u+ s))ds,

0 = V (0,0)
σ2

2
W ′(b(u)) +

∫ ∞

0
F1(s,u, b(u), b(u+ s), V (0,0))ds

−
∫ ∞

0
V(u+ s, b(u+ s))F2(s, b(u), b(u+ s))ds,
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0 =
3

2
Φ′′(0) +

∂

∂x
V+(0,0),

for all u,x > 0.

In a similar way as in the previous section, we can approximate the integrals above by
Riemann sums to implement a numerical approximation of b and V . Take u > 0 and x > 0,
by the dominated convergence theorem (see equations (48) and (49)) we have that

V (u,x) = V (0,0)
σ2

2
W ′(x) + lim

T→∞
lim
n→∞

n−1∑
i=k

F1((i− k+ 1)hn, u, x, b(ihn), V (0,0))hn

− lim
T→∞

lim
n→∞

n−1∑
i=k

V((i+ 1)hn, b((i+ 1)hn))

× F2((i− k+ 1)hn, x, b(ihn))hn,

where hn := T/n, for T > 0 and n ∈ Z+, the value k is an integer such that u ∈ [khn, (k +
1)hn), and we used that for each T − u > 0, the functions r 7→ F1(r,u,x, b(r+ u), V (0,0))
and r 7→ V(r+ u, b(r+ u))F2(r,x, b(r+ u)) are Riemann integrable on [0, T − u].

Let n ∈ Z+ and T > 0 sufficiently large such that hn = T/n is small, for each k ∈
{0,1,2, . . . , n}, we define uk = khn. Then, from the equation above and continuity of V ,
we can approximate V (u,x), for any x > 0 and u ∈ [uk, uk+1), by

Vh(uk, x) = V (0,0)
σ2

2
W ′(x) +

n−1∑
i=k

F1(ui−k+1, uk, x, b(ui), V (0,0))hn

−
n−1∑
i=k

V(ui+1, b(ui+1))F2(ui−k+1, x, b(ui))hn.(73)

In particular, taking x= b(uk) we have that

0≈ V (0,0)
σ2

2
W ′(b(uk)) +

n−1∑
i=k

F1(ui−k+1, uk, b(uk), b(ui), V (0,0))hn

−
n−1∑
i=k

V(ui+1, b(ui+1))F2(ui−k+1, b(uk), b(ui))hn.

Moreover, from the definition of the right derivative we have that

0≈ 3

2
Φ′′(0)− V (hn, hn)− V (0,0)

hn
≈ 3

2
Φ′′(0)− Vh(hn, hn)− V (0,0)

hn
,(74)

where Vh is given in (73). Note that, for each k ∈ {1,2, . . . , n − 1}, Vh(uk, x) depends on
V (0,0) and on the values {b(ti), i = k, . . . , n}. Then, equation (74) can be interpreted as a
non-linear equation that depends on V (0,0) and {b(ui), i= k, . . . , n}. The functions F1 and
F2 can be estimated by simulating the process {(Xt,Xt), t≥ 0)} (see e.g. Kuznetsov et al.
(2011), Theorem 4 and Remark 3). For V0 < 0, x ≥ 0, ak = (ai, i = k, . . . , n) with ai ≥ 0
and k ∈ {1,2, . . . , n}, we define the following auxiliary functions,

V 0
h (uk, x,ak, V0) = V0

σ2

2
W ′(x) +

n−1∑
i=k

F1(ui−k+1, uk, x, ai, V0)hn
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−
n−1∑
i=k

V0
h(ui+1,ai+1, V0)F2(ui−k+1, x, ai)hn,

V0
h(un,an, V0) = 0,

V0
h(uk,ak, V0) =

⌊ak/hn⌋∑
j=1

V 0
h (uk, jhn,ak, V0)λρe

ρjhnhn,

where ⌊·⌋ is the floor function. We then propose the following algorithm:

1. Take n ∈ Z+ and T > 0 sufficiently large such that hn = T/n is small. For each k ∈
{0,1,2, . . . , n}, define uk = khn.

2. Take a value V0 ∈ [−1
2E(g

2),0).
3. Define bn = 0 and V(un, bn) = 0. Let bn−1 > 0 be the solution to the equation

0 = V0
σ2

2
W ′(bn−1) + F1(u1, un−1, bn−1, bn−1)hn,

subject to V 0
h (un−1, jhn,bn−1, V0)≤ 0 for j = 1,2, . . . , ⌊bn−1/hn⌋ and that

V0
h(un−1,bn−1, V0) + λe−ρbn−1

[
3Φ′′(0)

2ρ
− Φ′(0)2

ρ2
+ V0

]
+G(un−1, bn−1)≥ 0,

where bn−1 = (bn−1, bn).
4. For 1≤ k ≤ n− 2, let bk > 0 be the solution to the equation

0 = V0
σ2

2
W ′(bk) +

n−1∑
i=k

F1(ui−k+1, uk, bk, bi, V0)hn

−
n−1∑
i=k

V(ui+1, b(ui+1))F2(ui−k+1, bk, bi)hn,

subject to V 0
h (uk, jhn,bk, V0)≤ 0 for j = 1,2, . . . , ⌊bk/hn⌋ and

Vh(uk,bk, V0) + λe−ρbk

[
3Φ′′(0)

2ρ
− Φ′(0)2

ρ2
+ V0

]
+G(uk, bk)≥ 0,

where bk = (bi, i = k, . . . , n). Note that in this step we calculate the values bn−2,
Vh(un−2,bn−2, V0), bn−3, Vh(un−3, bn−3, V0), . . . , b1,Vh(u1,b1, V0).

5. Calculate the quantity

RV0 =
3

2
Φ′′(0) +

V0
hn

− 1

hn
V 0
h (u1, hn,b1, V0).

If the value of RV0 ≈ 0 stop the algorithm, otherwise, go back to step 2 with a different
choice of V0.

The sequence {bk, k = 1, . . . , n − 1} is a numerical approximation of the sequence
{b(tk), k = 1, . . . , n − 1}, whereas V0 is an approximation of V (0,0). Note that our algo-
rithm is a simple method to approximate the curve b and to illustrate how Theorem 4.18 can
be used for that purpose. Note that better methods are needed to achieve higher precision
and shorter computation time. We show in Figure 4 a numerical calculation of the optimal
boundary and the value function using the parametrisation µ = 3, σ = 1, λ = 1 and ρ = 1.
The functions F1 and F2 above were estimated using Monte Carlo simulations accordingly
to the algorithm given in Kuznetsov et al. (2011).
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FIG 4. Numeric calculation of the optimal boundary and value function V for the Brownian motion with expo-
nential jumps case.

APPENDIX A: TECHNICAL PROOFS

In this Appendix, we include the most technical proofs of the results presented in Sections
2, 3, 4 and 5.

PROOF OF LEMMA 2.2. From equation (2) we know that

F (θ,x) := Ex(e
−θτ+

0 ) = eΦ(θ)x, x≤ 0.

Then using the formula of Faà di Bruno (see for example Spindler (2005)) we have that for
any n≥ 1,

∂n

∂θn
F (θ,x)

=

n∑
k=1

eΦ(θ)xxk
∑

k1+···+kn=k,
k1+···+nkn=n

n!

k1!k2! · · ·kn!

(
Φ′(θ)

1!

)k1
(
Φ′′(θ)

2!

)k2

· · ·
(
Φ(n)(θ)

n!

)kn

.

(75)

Then evaluating at zero the above equation, using Φ(0) = 0 and the fact that Φ(i)(0)<∞ for
i= 1, . . . , ⌊p⌋+ 1, we can find constants Ar,Cr ≥ 0 such that Ex((τ

+
0 )r)≤Ar +Cr|x|r for

any r ∈ {1, . . . , ⌊p⌋+ 1}. For any non integer r < ⌊p⌋+ 1 we can use Hölder’s inequality to
obtain

Ex((τ
+
0 )r)≤ [Ex((τ

+
0 )⌊r⌋+1)]

r

⌊r⌋+1 ≤ (A⌊r⌋+1 +C⌊r⌋+1|x|⌊r⌋+1)
r

⌊r⌋+1 .

The result follows from the inequality in Lemma 2.4. Now we show that the second inequality
holds. From the strong Markov property, we get that for any x < 0,

Ex(g
r)≤ 2rE(gr) + 2rEx((τ

+
0 )r)≤ 2r[E(gr) +Ar] + 2rCr|x|r.

The proof is now complete.
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PROOF OF LEMMA 2.3. It follows from the definition of g that x 7→ Ex(g
p) = E(g(−x))

is non-negative and non-increasing. In order to check continuity notice that by integration by
parts, we get

Ex(g
p) = p

∫ ∞

0
sp−1Px(g > s)ds

= p

∫ ∞

0
sp−1Ex(1−ψ′(0+)W (Xs))ds,

where the last equality follows from (23). Take x ∈ R and δ ∈ R. Then using the equation
above we have that

|Ex(g
p)−Ex+δ(g

p)| ≤ pψ′(0+)E
(∫ ∞

0
sp−1|W (Xs + x+ δ)−W (Xs + x)|ds

)
.(76)

First, suppose that X is of infinite variation and thus W is continuous on R. From the fact
that X drifts to ∞ we know that W (∞) = 1/ψ′(0+) and therefore it follows that sp−1(1−
ψ′(0+)W (Xs)) is integrable with respect to the product measure Px × λ([0,∞)), where
λ denotes Lebesgue measure. We can now invoke the dominated convergence theorem to
deduce that x 7→ Ex(g

p) is continuous.
Next, in the case that X is of finite variation we have that W has a discontinuity at zero.

However, the set {s≥ 0 :Xs = x} is almost surely countable and thus has Lebesgue measure
zero. We can again use the dominated convergence theorem to conclude that continuity also
holds in this case.

We prove now the asymptotic behaviour of Ex(g
p). Note that when x tends to −∞ the

random variable g(−x) →∞. Then using Fatou’s lemma

lim inf
x→−∞

Ex(g
p)≥ E(lim inf

x→−∞
(g(−x))p) =∞.

Therefore, limx→−∞Ex(g
p) =∞. On the other hand, note that for x > 0,

Px(g
p = 0) = Px(g = 0) = Px(τ

−
0 =∞) = ψ′(0+)W (x)

x→∞−−−→ 1.(77)

Hence we deduce that the sequence {(g(−n))p}n≥1 converges in probability to 0 (under the
measure P) when n tends to infinity. Moreover, since the sequence {E((g−n)p)}n≥1 is a
non-increasing sequence of positive numbers we get that

sup
n≥1

E((g−n)p)≤ E(gp)<∞,

where the last inequality holds due to Lemma 2.1 and by assumption. Then {(g(−n))p}n≥1 is
an uniformly integrable family of random variables. Then, together with the convergence in
probability, allows us to conclude that Ex(g

p)→ 0 when x→∞ as claimed.

PROOF OF LEMMA 4.1. First, notice that due to the spatial homogeneity of Lévy pro-
cesses and that x 7→ Ex(g

p−1) is non-increasing, it suffices to prove the assertion for x≤ 0.
Using Fubini’s theorem we have that for all x≤ 0,

Ex

(∫ ∞

0
EXs

(gp−1)ds
)
=

∫
(−∞,∞)

Ez(g
p−1)

∫ ∞

0
Px(Xs ∈ dz).
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Since X drifts to infinity we can use the density for the 0-potential measure of X without
killing (see equation (12)) to obtain

Ex

(∫ ∞

0
EXs

(gp−1)ds
)
=

∫ ∞

−∞
Ez(g

p−1)

[
1

ψ′(0+)
−W (x− z)

]
dz

=
1

ψ′(0+)

∫ x

−∞
Ez(g

p−1)
[
1−ψ′(0+)W (x− z)

]
dz

+
1

ψ′(0+)

∫ ∞

x
Ez(g

p−1)dz.(78)

Then, we prove that the above two integrals are finite for all x ≤ 0. From the fact that
z 7→ Ez(g

p−1) is continuous on R and W is continuous on (0,∞) we can assume with-
out of loss of generality that x= 0.

First, we show that the first integral on the right-hand side of (78) is finite. From Lemma
2.2 we have that∫ ∞

0
E−z(g

p−1)
[
1−ψ′(0+)W (z)

]
dz

≤ 2p−1E(−X∞)[E(gp−1) +Ap−1] +
2p−1

p
Cp−1E((−X∞)p),

where Ap−1 and Cp−1 are non-negative constants. In the equality above we relied on the fact
that z 7→ ψ(0+)W (z) corresponds to the distribution function of the random variable −X∞.
We conclude from Lemma 2.1 that∫ ∞

0
E−z(g

p−1)
[
1−ψ′(0+)W (z)

]
dz <∞.

Now we proceed to check the finiteness of the second integral in (78) when x= 0. Using the
strong Markov property we have that∫ ∞

0
Ez(g

p−1)dz

=

∫ ∞

0
Ez(g

p−1I{τ−
0 <∞})dz

≤ 2p−1

∫ ∞

0
Ez((τ

−
0 )p−1I{τ−

0 <∞})dz + 2p−1

∫ ∞

0
Ez(EX

τ
−
0

(gp−1)I{τ−
0 <∞})dz

≤ 2p−1

∫ ∞

0
Ez((τ

−
0 )p−1I{τ−

0 <∞})dz + 2p−1

∫ ∞

0
Ez(EX∞

(gp−1)I{X∞<0})dz,

where in the last inequality we used the fact that X∞ ≤ Xτ−
0

and that x 7→ Ex(g
p−1) is a

non-increasing function. Using Fubini’s theorem we have that∫ ∞

0
Ez(EX∞

(gp−1)I{X∞<0})dz =
∫ ∞

0

∫
(−∞,0)

Ey(g
p−1)Pz(X∞ ∈ dy)dz

=

∫
(−∞,0)

Ey(g
p−1)

∫ ∞

0
Pz(X∞ ∈ dy)dz
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=

∫ ∞

0
E−y(g

p−1)[1−ψ′(0+)W (y)]dy

<∞.

It thus only remains to show that∫ ∞

0
Ez((τ

−
0 )p−1I{τ−

0 <∞})dz <∞.

For this, define the function F1(q) :=
∫∞
0 Ez(e

−qτ−
0 I{τ−

0 <∞})dz. Differentiating equation (8)
with respect to β and evaluating at zero we obtain that

F1(q) =

∫ ∞

0
P(−Xeq

> z)dz = E(−Xeq
) =

1

Φ(q)
− ψ′(0+)

q
,

where eq is an independent exponential random variable with parameter q > 0. On the other
hand, define the function F2(q) =

∫∞
0 E−z(e

−qτ+
0 )[1− ψ′(0+)W (z)]dz. Using the expres-

sion for the Laplace transform of τ+0 in (2) and the definition of W , we have that

F2(q) =

∫ ∞

0
e−Φ(q)z[1−ψ′(0+)W (z)]dz =

1

Φ(q)
− ψ′(0+)

q
= F1(q).

The fact that F2 = F1 implies that, when α is a natural number, we can take derivatives of
order α (with the help of the dominated convergence theorem) at q = 0 and conclude that

∫ ∞

0
Ez((τ

−
0 )αI{τ−

0 <∞})dz <∞

if and only if ∫ ∞

0
E−z((τ

+
0 )α)[1−ψ′(0+)W (z)]dz <∞.

Furthermore, if α = k + λ, with k a positive integer and 0 < λ < 1, we can draw the same
conclusion using the Marchaud derivative (see e.g. Laue (1980)). Using Lemma 2.2 we have
that ∫ ∞

0
E−z((τ

+
0 )p−1)[1−ψ′(0+)W (z)]dz <∞.

and the proof is complete.

PROOF OF LEMMA 4.7. Let x≤ 0 and take δ > 0. Then

E0,x((τD)
p) = Ex((τ

g,0
b )p)≤ Ex((τ

g,0
b )pI{g+δ<τg,0

b }) +Ex((g+ δ)pI{g+δ>τg,0
b }).

Note that on the event {g+ δ < τ g,0b } we have

τ g,0b = inf{t > g+ δ :Xt ≥ b(Ut)}

= inf{t > 0 :Xt+g+δ ≥ b(t+ δ)}+ g+ δ

≤ inf{t > 0 :Xt+g+δ ≥ b(δ)}+ g+ δ,

where the second equality follows from the fact that after g, the process X never goes back
below zero, and the last inequality holds since b is non-increasing. Then, we have that
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Ex((τ
g,0
b )p)≤ Ex((inf{t > 0 :Xt+g+δ ≥ b(δ)}+ g+ δ)pI{g+δ<τg,0

b })

+Ex((g+ δ)pI{g+δ>τg,0
b })

≤ 2pEx((inf{t > 0 :Xt+g+δ ≥ b(δ)})p) + (2p + 1)Ex((g+ δ)p)

= 2pE((inf{t > 0 :Xt+g(−x)+δ + x≥ b(δ)})p) + (2p + 1)Ex((g+ δ)p),

where g(−x) = sup{t ≥ 0 : Xt ≤ −x}. From Bertoin (1998) (see Corollary VII.4.19) we
know that the law of the process {Xt+g(−x) − (−x), t≥ 0} is the same as that of P↑, where
P↑ = P↑

0 and P↑
x, for x ≥ 0, corresponds to the law of X starting at x conditioned to stay

positive. Moreover, from Proposition VII.3.14 in Bertoin (1998), we know that the canonical
process X is a Feller process for the family {P↑

x, x≥ 0}. Hence, using the Markov property
of X under {P↑

x, x≥ 0} and equation VII.3.(6) in Bertoin (1998) we get

Ex((τ
g,0
b )p)≤ 2pE((inf{t > 0 :Xt+g(−x)+δ + x≥ b(δ)})p) + (2p + 1)Ex((g+ δ)p)

= 2pE↑((inf{t > 0 :Xt+δ ≥ b(δ)})p) + (2p + 1)Ex((g+ δ)p)

≤ 2pE↑(E↑
Xδ

[(τ+b(δ))
p]) + (2p + 1)Ex((g+ δ)p)

= 2pE↑
(
W (b(δ))

W (Xδ)
EXδ

[(τ+b(δ))
pI{τ−

0 >τ+
b(δ)}

]

)
+ (2p + 1)Ex((g+ δ)p)

≤ 2pE[(τ+b(δ))
p]E↑

(
W (b(δ))

W (Xδ)

)
+ (2p + 1)Ex((g+ δ)p)

= 2pE[(τ+b(δ))
p]

∫
(0,∞)

W (b(δ))

W (z)
P↑(Xδ ∈ dz) + (2p + 1)Ex((g+ δ)p),

where the third inequality follows from the fact that Ex[(τ
+
a )p] ≤ E[(τ+a )p] for all 0 ≤ x ≤

a and Xδ > 0 under P↑. Thus, using that P↑(Xδ ∈ dz) = [zW (z)/δ]P(Xδ ∈ dz) (see e.g.
Corollary VII.3.16 in Bertoin (1998)) we have that

Ex((τ
g,0
b )p)≤ 2pE[(τ+b(δ))

p]

∫
(0,∞)

W (b(δ))

W (z)
P↑(Xδ ∈ dz) + (2p + 1)Ex((g+ δ)p)

= 2pE[(τ+b(δ))
p]
W (b(δ))

δ
E(X+

δ ) + 2p(2p + 1)δp + 2p(2p + 1)Ex((g)
p),(79)

where X+
δ is the positive part of Xδ . Thus from Lemma 2.1 we have that E0,x((τD)

p) =

Ex((τ
g,0
b )p) is finite for x≤ 0.

Next, we show that Eu,x((τD)
p)<∞ when u,x > 0. From the Markov property of Lévy

processes, we have that

Eu,x((τD)
p) = Ex((τ

u,0
b )pI{τu,0

b <σ−
0 }) +Ex((τ

g,0
b )pI{τu,0

b >σ−
0 })

≤ Ex((τ
+
b(u))

p) + 2pEx((σ
−
0 )

pI{σ−
0 <∞}) + 2pEx(I{σ−

0 <∞}EX
σ
−
0

[(τ g,0b )p]).

Using (79), the inequality |Xσ−
0
| ≤ |X∞| under the event {σ−0 <∞} and Lemmas 2.1 and

2.2 we deduce that Eu,x((τD)
p)<∞ and the proof is complete.
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Using that b is a right-continuous and a non-decreasing function, and that X creeps up-
wards, it can be shown that for any u≥ 0 and x ∈R,

lim
h→0

τu,x+h
b = τu,xb a.s. and lim

(h1,h2)→(0,0)+
τu+h1,x+h2

b = τu,xb a.s.

These facts will be useful in the proof of the continuity of the function V .

PROOF OF LEMMA 4.10. First, we show that the function u 7→ V (u,x) is continuous,
for all x > 0 fixed. Take u1, u2 > 0 and x > 0, then since the stopping time τ∗(u1,x)

:=

τu1,x
b I{τu1,x

b <σ−
−x} + τ g,xb I{τu1,x

b ≥σ−
−x} is optimal for V (u1, x) (under P) we have that

V (u1, x) = E

(∫ σ−
−x∧τ

u1,x

b

0
G(u1 + s,Xs + x)ds+ I{τu1,x

b ≥σ−
−x}V (0,Xσ−

−x
+ x)

)

= Ex

(∫ σ−
0 ∧τu1,0

b

0
G(u1 + s,Xs)ds+ I{τu1,0

b ≥σ−
0 }V (0,Xσ−

0
)

)
.

On the other hand, from (29) we get

V (u2, x)≤ E
(∫ τ∗

(u1,x)

0

{
G(u2 + s,Xs + x)I{σ−

−x>s} +G(U (−x)
s ,Xs + x)I{σ−

−x≤s}

}
ds
)

= Ex

(
I{τu1,0

b <σ−
0 }

∫ τ
u1,0

b

0

{
G(u2 + s,Xs)I{σ−

0 >s} +G(Us,Xs)I{σ−
0 ≤s}

}
ds

)

+Ex

(
I{τu1,0

b ≥σ−
0 }

∫ τg,0
b

0

{
G(u2 + s,Xs)I{σ−

0 >s} +G(Us,Xs)I{σ−
0 ≤s}

}
ds

)

= Ex

(∫ τ
u1,0

b ∧σ−
0

0
G(u2 + s,Xs)ds

)
+Ex

(
I{τu1,0

b ≥σ−
0 }

∫ τg,0
b

σ−
0

G(Us,Xs)ds

)

= Ex

(∫ τ
u1,0

b ∧σ−
0

0
G(u2 + s,Xs)ds

)
+Ex

(
I{τu1,0

b ≥σ−
0 }V (0,Xσ−

0
)
)
,

where in the first equality we used the definition of τ∗(u1,x)
given above, in the second equality

that τu1,0
b ≤ τ g,0b and the last equality follows from the strong Markov property applied at time

σ−0 . Hence, we have that for any x > 0 fixed and u1, u2 > 0,

|V (u2, x)− V (u1, x)| ≤ Ex

(∫ σ−
0 ∧τu1,0

b

0
|G(u2 + s,Xs)−G(u1 + s,Xs)|ds

)

≤ Ex

(∫ τ+
b(u1)

0
|G(u2 + s,Xs)−G(u1 + s,Xs)|ds

)

≤ E

(∫ τ+
b(u1)

0
|(u2 + s)p−1 − (u1 + s)p−1|ds

)

=
1

p
|E((τ+b(u1)

+ u2)
p)−E((τ+b(u1)

+ u1)
p)− [up2 − up1]|,

where τ+b(u1)
= inf{t≥ 0 :Xt > b(u1)}. Thus, letting u2 7→ u1, together with the dominated

convergence theorem and the fact that E((τ+a + u)p) < ∞, for all u,a ≥ 0, we get that
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u 7→ V (u,x) is continuous uniformly over all x > 0.

Next, we show that x 7→ V (u,x) is continuous. From equation (33) we easily deduce that
x 7→ V (0, x) is a continuous function on (−∞,0]. Then, suppose that u > 0 and x > 0. Recall
from equation (38) that we can write

V (u,x) = E

(∫ σ−
−x∧τ

u,x
b

0
G(u+ s,Xs + x)ds

)
+E(V (0,Xσ−

−x
+ x)I{σ−

−x≤τu,x
b }).

Note that for all s < τu,xb ∧σ−−x, it holds that 0<Xs+x≤ b(u+s)≤ b(u), and for all x ∈R
(see equation (34)), V (0,Xσ−

−x
+ x)I{σ−

−x≤τu,x
b } ≥ V (0,X∞ + x)≥−A′

p−1 −C ′
p−1|X∞ +

x|p + V (0,0), where the last expression is integrable from Lemma 2.1. Moreover, it can be
shown that limh→0 σ

−
x+h = σ−x a.s. and that limh→0 τ

u,x+h
b = τu,xb a.s., for any x ∈R. Then,

by the dominated convergence theorem, the fact that V is continuous on (−∞,0] and x 7→
G(u,x) is continuous on (0,∞) we conclude that, for each u > 0, the mapping x 7→ V (u,x)
is continuous on (0,∞). Note that when X is of infinite variation, limh↓0 σ

−
−h = τ−0 = 0 a.s.

and the previous argument also tells us that for all u > 0,

lim
h↓0

V (u,h) = V (0,0).

Note that the limit above implies that lim(u,x)→(0,0)+ V (u,x) = V (0,0) in the infinite varia-
tion case. Then we proceed to prove that this also holds when X is of finite variation. In this
case we know that τ−0 > 0 and then, due to the strong Markov property,

V (0,0) = E

(∫ τ0,0
b ∧τ−

0

0
G(s,Xs)ds

)
+E(I{τ−

0 <τ0,0
b }V (0,Xτ−

0
)),

where τ0,0b = inf{t > 0 : Xt ≥ b(s)}. Taking limits in (38), we have from the dominated
convergence theorem,

lim
(u,x)→(0,0)+

V (u,x) = lim
(u,x)→(0,0)+

E

(∫ σ−
−x∧τ

u,x
b

0
G(u+ s,Xs + x)ds

)
+ lim

(u,x)→(0,0)+
E(V (0,Xσ−

−x
+ x)I{σ−

−x≤τu,x
b })

= E

(∫ τ−
0 ∧τ0,0

b

0
G(s,Xs)ds

)
+E(I{τ−

0 <τ0,0
b }V (0,Xτ−

0
))

= V (0,0),

where we used that limx↓0 σ
−
−x = τ−0 and lim(u,x)→(0,0)+ τ

u,x
b = τ0,0b a.s. Therefore, V is

continuous on the set E.

Before proving Lemma 4.17 we first consider a technical lemma involving the derivative
of the potential measure killed on exiting [0, a]. More specifically, for fixed a > 0, x ∈ (0, a)
and r ∈N∪ {0} define the measure

Ur(a,x,dy) =
∫ ∞

0
trPx(Xt ∈ dy, t < σ−0 ∧ τ+a )dt.
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LEMMA A.1. Let q ∈N∪{0} such that
∫
(−∞,−1) |x|

qΠ(dx)<∞. Fix a > 0 and 0≤ x≤
a. We have that for all r ∈ {0,1, . . . , q}, the measure Ur(a,x,dy) is absolutely continuous
with respect to the Lebesgue measure. It has a density ur(a,x, y) given by

ur(a,x, y) = lim
q↓0

(−1)r
∂r

∂qr

[
W (q)(x)W (q)(a− y)

W (a)(a)
−W (q)(x− y)

]
,

for y ∈ (0, a]. Moreover, for a fixed a > 0, the functions x 7→ Ex((τ
+
a )rI{σ−

0 <τ+
a }) and x 7→

ur(a,x, y) have finite left derivatives on (0, a] for all y ∈ (0, a) and r ∈ {0,1, . . . , q}.

PROOF. Let a > 0 and x ∈ (0, a). First, we show that for all r ∈ {0,1, . . . , q}, the mea-
sure Ur(a,x,dy) is absolutely continuous with respect to the Lebesgue measure. Take any
measurable set A⊂ (0, a), thus by Fubini’s theorem,

∫
A
Ur(a,x,dy) =

∫ ∞

0
trPx(Xt ∈A, t < σ−0 ∧ τ+a )dt

= Ex

(∫ τ+
a ∧σ−

0

0
trI{Xt∈A}dt

)
.

From Lemma 2.1 we know that Ex((τ
+
a )r)<∞ for all r ∈ {0,1, . . . , q}. Then, by dominated

convergence theorem we have that∫
A
Ur(a,x,dy) = lim

q↓0
Ex

(∫ τ+
a ∧σ−

0

0
tre−qtI{Xt∈A}dt

)

=

∫
A
lim
q↓0

(−1)r
∂r

∂qr

[
W (q)(x)W (q)(a− y)

W (a)(a)
−W (q)(x− y)

]
dy,

where the last equality follows from (10). From the convolution representation of W (q) (see
equation (3)), the derivatives in the last equation above exist and indeed ur(a,x, y) is a den-
sity of Ur(a,x,dy) for all y ∈ (0, a). Now we proceed to show the differentiation statements.
Note that from equations (2) and (4) we have that

fx(q) := Ex(e
−qτ+

a I{σ−
0 <τ+

a }) = eΦ(q)(x−a) − W (q)(x)

W (q)(a)
,

for any x ∈ (0, a). Hence, we have that

Ex((τ
+
a )rI{σ−

0 <τ+
a }) = lim

q↓0
(−1)r

∂r

∂qr

[
eΦ(q)(x−a) − W (q)(x)

W (q)(a)

]
for any x ∈ (0, a). From (75) we know that the first term above is differentiable with respect
to the variable x (note that is also possible to calculate directly the derivatives of Φ(q) by
using the identity ψ(Φ(q)) = q and the chain rule). Moreover, from (3) we can see that for
any q ≥ 0, x≥ 0 and r ∈ {0,1,2, . . .},

lim
q↓0

∂r

∂qr
W (q)(x) = r!W ∗(r+1)(x).

Since W is C1((0,∞)) and has left and right derivatives at zero (see discussion above equa-
tion 3), we conclude that x 7→ Ex((τ

+
a )rI{σ−

0 <τ+
a }) has finite left derivatives on (0, a], for any

r ∈ {0,1, . . . , q}. A similar argument works for the function x 7→ ur(a,x, y).
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Before we prove Lemma 4.17 we show that V (0, x) is smooth on (−∞,0). This auxiliary
result will also be useful later for the proof of Lemma 5.5.

LEMMA A.2. We have that the function V (0, x) is continuously differentiable on
(−∞,0) and has left derivative at 0. Moreover, we have that ∂

∂xV (0, x) is non-increasing
and non-negative on (−∞,0), and for any x < 0,

∂

∂x
V (0, x) =

∫ ∞

0
Ex−u(g

p−1)W ′(u)du≤ αp−1 + γp−1|x|p−1,(80)

where αp−1 and γp−1 are non-negative constants.

PROOF. We start showing that the inequality in (80) holds. Indeed, using Lemma 2.2 and
the fact that P(−X∞ ∈ du) = ψ′(0+)W ′(u)du, we get that for all x < 0 and u≥ 0,∫ ∞

0
Ex−u(g

p−1)W ′(u)du

≤
∫ ∞

0
(2p−1[E(gp−1) +Ap−1] + 2p−1Cp−1|x− u|p−1)W ′(u)du

≤ 2p−1[E(gp−1) +Ap−1] + 4p−1Cp−1E((−X∞)p−1)

ψ′(0+)
+

4p−1Cp−1

ψ′(0+)
|x|p−1,

where the second inequality follows by using Lemma 2.4. Therefore, we conclude that the
inequality in (80) holds by noticing that E((−X∞)p−1)<∞ (see Lemma 2.1). Next, we can
easily deduce from the continuity of x 7→ Ex(g

p−1) (see Lemma 2.3) and the dominated con-
vergence theorem that the mapping x 7→

∫∞
0 Ex−u(g

p−1)W ′(u)du is continuous on (−∞,0].
Thus, from (33) we deduce that for any x < 0,

∂

∂x
V (0, x) =

∫ ∞

0
Ex−u(g

p−1)W ′(u)du.

Therefore, we conclude that x 7→ V (0, x) is continuously differentiable on (−∞,0) and has
left derivative at zero as claimed. Lastly, since x 7→ Ex(g

p−1) is non-increasing and non-
negative (see Lemma 2.3) and W ′(u)> 0 for all u > 0, we deduce that ∂

∂xV (0, x) is a non-
increasing and non-negative function. The proof is now complete.

We are now ready to prove that the partial derivatives of V at (u, b(u)) exist and are equal
to zero.

PROOF OF LEMMA 4.17. We first show that for all u > 0 such that b(u)> 0,

∂

∂u
V (u, b(u)) = 0.

From the proof of Lemma 4.10 we know that for any h > 0,

0≤ V (u, b(u))− V (u− h, b(u))

h
≤ Eb(u)

(∫ τ+
b(u−h)

0

[(u+ s)p−1 − (u− h+ s)p−1]

h
ds

)
.

The result then follows by taking h ↓ 0, from the fact that the function u 7→ up is differen-
tiable on [0,∞), the dominated convergence theorem and since b is continuous.
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Next, we proceed to show that the smooth fit condition on the spatial argument holds for
u < ub, that is,

∂

∂x
V (u, b(u)) = 0.

Let x > 0, u > 0 and 0 < ε < 1 such that x− ε > 0 and b(u) > 0. From equation (38) we
know that

V (u,x− ε) = E

(∫ τu,x−ε
b ∧σ−

ε−x

0
G(u+ s,Xs + x− ε)ds

)

+E

(
I{σ−

ε−x<τu,x−ε
b }

∫ τg,x−ε
b

σ−
ε−x

G(U (ε−x)
s ,Xs + x− ε)ds

)

= Ex

(∫ τu,−ε
b ∧σ−

ε

0
G(u+ s,Xs − ε)ds

)

+Ex

(
I{σ−

ε <τu,−ε
b }

∫ τg,−ε
b

σ−
ε

G(U (ε)
s ,Xs − ε)ds

)

= Ex

(∫ τu,−ε
b ∧σ−

ε

0
G(u+ s,Xs − ε)ds

)

+Ex

(
I{σ−

ε <τu,−ε
b }

∫ τg,−ε
b ∧σ−

0

σ−
ε

G(U (ε)
s ,Xs − ε)ds

)

+Ex

(
I{σ−

0 <τg,−ε
b }I{σ−

ε <τu,−ε
b }

∫ τg,−ε
b

σ−
0

G(U (ε)
s ,Xs − ε)ds

)
,

where in the last inequality we used that σε < σ−0 under the measure Px. On the other hand,
define the stopping time τ∗ := τu,−ε

b I{σ−
ε >τu,−ε

b } + τ g,−ε
b I{σ−

ε <τu,−ε
b }. From equation (29) we

have that

V (u,x)≤ Ex

(∫ τ∗∧σ−
0

0
G(u+ s,Xs)ds

)
+Ex

(
I{σ−

0 <τ∗}

∫ τ∗

σ−
0

G(Us,Xs)ds
)

= Ex

(∫ τu,−ε
b ∧σ−

ε

0
G(u+ s,Xs)ds

)

+Ex

(
I{σ−

ε <τu,−ε
b }

∫ τg,−ε
b ∧σ−

0

σ−
ε

G(u+ s,Xs)ds

)

+Ex

(
I{σ−

0 <τg,−ε
b }I{σ−

ε <τu,−ε
b }

∫ τg,−ε
b

σ−
0

G(Us,Xs)ds

)
,

where we again used that σ−ε ≤ σ−0 . Hence, for any u > 0, 0< x≤ b(u) and 0< ε < 1 such
that x− ε > 0,

0≤ V (u,x)− V (u,x− ε)

ε
≤R

(ε)
1 (u,x) +R

(ε)
2 (u,x) +R

(ε)
3 (u,x),

where
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R
(ε)
1 (u,x) :=

1

ε
Ex

(∫ τu,−ε
b ∧σ−

ε

0
[G(u+ s,Xs)−G(u+ s,Xs − ε)]ds

)
,

R
(ε)
2 (u,x) :=

1

ε
Ex

(
I{σ−

ε <τu,−ε
b }

∫ τg,−ε
b ∧σ−

0

σ−
ε

[G(u+ s,Xs)−G(U (ε)
s ,Xs − ε)]ds

)
,

R
(ε)
3 (u,x) :=

1

ε
Ex

(
I{σ−

0 <τg,−ε
b }I{σ−

ε <τu,−ε
b }

∫ τg,−ε
b

σ−
0

[G(Us,Xs)−G(U (ε)
s ,Xs − ε)]ds

)
.

We show that limε↓0R
(ε)
i (u, b(u)) = 0 for i= 1,2,3. From the fact that b is non-increasing

we have that τu,−ε
b ≤ τ+b(u)+ε. Then, for all u ∈ (0, ub) we have

0≤R
(ε)
1 (u, b(u))

≤ 1

ε
Eb(u)

(∫ τ+
b(u)+ε∧σ−

ε

0
(u+ s)p−1ψ′(0+)[W (Xs)−W (Xs − ε)]ds

)

− 1

ε
Eb(u)−ε

(∫ τ+
b(u)∧σ

−
0

0
[EXs+ε(g

p−1)−EXs
(gp−1)]ds

)

=
1

ε
Eb(u)

(∫ τ+
b(u)+ε∧σ−

ε

0
(u+ s)p−1ψ′(0+)[W (Xs)−W (Xs − ε)]ds

)

− 1

ε

∫
(0,b(u))

[Ez+ε(g
p−1)−Ez(g

p−1)]

∫ ∞

0
Pb(u)−ε(Xs ∈ dz, t < τ+b(u) ∧ σ

−
0 )ds.

Using the density of the 0-potential measure of X exiting the interval [0, b(u)] given in equa-
tion (10), we obtain that

0≤R
(ε)
1 (u, b(u))

≤ Eb(u)

(∫ τ+
b(u)+ε∧σ−

ε

0
(u+ s)p−1ψ′(0+)

W (Xs)−W (Xs − ε)

ε
ds

)

−
∫ b(u)−ε

0
[Ez+ε(g

p−1)−Ez(g
p−1)]

× 1

ε

[
W (b(u)− ε)W (b(u)− z)

W (b(u))
−W (b(u)− ε− z)

]
dz

− 1

ε

∫ b(u)

b(u)−ε
[Ez+ε(g

p−1)−Ez(g
p−1)]

[
W (b(u)− ε)W (b(u)− z)

W (b(u))

]
dz.

Note that for all s < τ+b(u)+ε ∧σ
−
ε , we have Xs ∈ (ε, b(u)+ ε). Then, using the fact that W ∈

C1((0,∞)), the function z 7→ Ez(g
p−1) is continuous, limε↓0 τ

+
b(u)+ε ∧ σ

−
ε = τ+b(u) ∧ σ

−
0 = 0

a.s., under Pb(u), and the dominated convergence theorem, we conclude that

lim
ε↓0

R
(ε)
1 (u, b(u)) = 0.
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Now we show that limε↓0R
(ε)
2 (u, b(u)) = 0. Take 0 < x ≤ b(u). Then, using the inequal-

ity G(u,x) ≤ up−1, the fact that for s < σ−0 , Xs > 0 (then −E−1(g
p−1) = G(0,−1) ≤

G(U
(ε)
s ,Xs − ε)) and the strong Markov property at time σ−ε , we get that

0≤R
(ε)
2 (u,x)

≤ 1

ε
Ex

(
I{σ−

ε <τu,−ε
b }[τ

g,−ε
b ∧ σ−0 − σ−ε ][(u+ τ g,−ε

b ∧ σ−0 )
p−1 +E−1(g

p−1)]
)

≤ 1

ε
Ex

(
I{σ−

ε <τ+
b(u)+ε}

f(σ−ε ,Xσ−
ε
)
)
,

where f is given for all t≥ 0 and x ∈R by

f(t, x) := [2p−1(u+ t)p−1 +E−1(g
p−1)]Ex(τ

g,−ε
b ∧ σ−0 ) + 2p−1Ex((τ

g,−ε
b ∧ σ−0 )

p)<∞,

where the last inequality follows due to Lemma 4.7. Note that Ex(τ
g,−ε
b ∧σ−0 ) = Ex((τ

g,−ε
b ∧

σ−0 )
p) = 0 for all x≤ 0. Thus, from (79) there exists M > 0 such that

max{Ex(τ
g,−ε
b ∧ σ−0 ),Ex((τ

g,−ε
b ∧ σ−0 )

p)} ≤M

for all x≤ ε. Hence, from the compensation formula for Poisson random measures, we get
that

0≤R(ε)
2 (u,x)

≤max{Eε(τ
g,−ε
b ∧ σ−0 ),Eε((τ

g,−ε
b ∧ σ−0 )

p)}

× 1

ε
Ex

(
I{σ−

ε <τ+
b(u)+ε}

[2p−1(u+ τ+b(u)+ε)
p−1 +E−1(g

p−1) + 2p−1]
)

+M
1

ε
Ex

(
I{σ−

ε <τ+
b(u)+ε}

[2p−1(u+ σ−ε )
p−1 +E−1(g

p−1) + 2p−1]I{0<X
σ
−
ε
<ε}

)
=max{Eε(τ

g,−ε
b ∧ σ−0 ),Eε((τ

g,−ε
b ∧ σ−0 )

p)}

× 1

ε
Ex

(
I{σ−

ε <τ+
b(u)+ε}

[2p−1(u+ τ+b(u)+ε)
p−1 +E−1(g

p−1) + 2p−1]
)

+M
1

ε
Ex−ε

(∫ τ+
b(u)∧σ

−
0

0

∫
(−∞,0)

[2p−1(u+ t)p−1 −G(0,−1) + 2p−1]

× I{−ε<Xt+y<0}Π(dy)dt
)

=max{Eε(τ
g,−ε
b ∧ σ−0 ),Eε((τ

g,−ε
b ∧ σ−0 )

p)}

× 1

ε
Ex

(
I{σ−

ε <τ+
b(u)+ε}

[2p−1(u+ τ+b(u)+ε)
p−1 +E−1(g

p−1) + 2p−1]
)

+

∫ b(u)

0

∫
(−ε−z,−z)

M

ε

∫ ∞

0
[2p−1(u+ t)p−1 +E−1(g

p−1) + 2p−1]

× Px−ε(Xt ∈ dz, t < τ+b(u) ∧ σ
−
0 )dtΠ(dy).

Letting x= b(u) and tending ε ↓ 0 we get from Lemma A.1 that

lim
ε↓0

R
(ε)
2 (u, b(u)) = 0.
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Lastly, using the Markov property at time σ−0 and the fact that τ g,0b ≤ τ g,−ε
b , we get that

0≤R
(ε)
3 (u,x)

=
1

ε
Ex

(
I{σ−

0 <τg,−ε
b }I{σ−

ε <τu,−ε
b }EX

σ
−
0

[∫ τg,−ε
b

0
[G(Us,Xs)−G(U (ε)

s ,Xs − ε)]ds

])

=
1

ε
Ex

(
I{σ−

0 <τg,−ε
b }I{σ−

ε <τu,−ε
b }[V (0,Xσ−

0
)− V (0,Xσ−

0
− ε)]

)
+

1

ε
Ex

(
I{σ−

0 <τg,−ε
b }I{σ−

ε <τu,−ε
b }EX

σ
−
0

[∫ τg,−ε
b

τg,0
b

G(Us,Xs)ds

])

≤ 1

ε
Ex

(
I{σ−

ε <τu,−ε
b }[V (0,Xσ−

0
)− V (0,Xσ−

0
− ε)]

)
+

1

ε
Ex

(
I{σ−

0 <τg,−ε
b }I{σ−

ε <τu,−ε
b }EX

σ
−
0

(
[τ g,−ε
b − τ g,0b ](τ g,−ε

b )p−1
))

,

where we used the fact that G(Us,Xs) ≤ sp−1 ≤ (τ g,−ε
b )p−1 for all s ∈ [τ g,0b , τ g,−ε

b ]. Thus,
since |Xσ−

0
| ≤ |X∞|, under the event {σ−0 <∞}, and Ex((−X∞)p−1) <∞ for all x ∈ R,

we deduce from Lemma A.2 that the mapping x 7→ Ex(
∂
∂xV (0,Xσ−

0
)I{σ−

0 <∞}) is locally
bounded. Hence, by the dominated convergence theorem and the right continuity of b, we
have that

lim
ε↓0

1

ε
Ex

(
I{σ−

ε <τu,−ε
b }[V (0,Xσ−

0
)− V (0,Xσ−

0
− ε)]

)
= Ex

(
I{σ−

0 <τu,0
b }

∂

∂x
V (0,Xσ−

0
)

)
.

In particular, when x= b(u), we have that equation above is equal to zero. On the other hand,
by conditioning on σ−ε we obtain that

1

ε
Ex

(
I{σ−

0 <τg,−ε
b }I{σ−

ε <τu,−ε
b }EX

σ
−
0

(
[τ g,−ε
b − τ g,0b ](τ g,−ε

b )p−1
))

=
1

ε
Ex

(
I{σ−

ε <τu,−ε
b }f2(ε,Xσ−

ε
)
)
,

where

0≤ f2(ε,x) = Ex

(
I{σ−

0 <τg,−ε
b }EX

σ
−
0

(
[τ g,−ε
b − τ g,0b ](τ g,−ε

b )p−1
))

.

We show that f2 is a finite function. Conditioning with respect to τ+0 and the strong Markov
property of Lévy processes we have for all y ≤ 0,

Ey

(
[τ g,−ε
b − τ g,0b ](τ g,−ε

b )p−1
)

≤ 2pE((τ g,−ε
b )p) + 2pEy((τ

+
0 )p)≤ 2pE((τ g,−ε

b )p) + 2pAp + 2pCp|y|p.

where the last inequality follows from Lemma 2.2. Hence, since |Xσ−
0
| ≤ |X∞| on the event

{σ−0 <∞}, we have that

f2(ε,x)≤
{
2pE((τ g,−ε

b )p) + 2pAp + 2pCpEx(|X∞|p), for x > 0,

2pE((τ g,−ε
b )p) + 2pAp + 2pCp|x|p, for x≤ 0.

(81)

From Lemmas 2.1 and 4.7 we conclude that f2(ε,x) is a finite function. Moreover, from the
fact that b is continuous and x 7→ U

(x)
t is right continuous, we can show that limε↓0 τ

g,ε
b = τ g,0b
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a.s., and then, by the dominated convergence theorem, limε↓0 f2(ε,x) = 0 for all x ∈ R.
Moreover, using the compensation formula for Poisson random measures, we get that
1

ε
Ex

(
I{σ−

ε <τu,−ε
b }f2(ε,Xσ−

ε
)
)

=
1

ε
Ex

(
I{σ−

ε <τ+
b(u)+ε}

f2(ε,Xσ−
ε
)
)

= f2(ε, ε)
Px(σ

−
ε < τ+b(u)+ε,Xσ−

ε
= ε)

ε

+
1

ε
Ex

(∫
[0,∞)

∫
(−∞,0)

f2(ε,Xt− + y)I{Xt−<b(u)+ε}I{Xt−>ε}I{Xt−+y≤ε}N(dt,dy)

)

≤ f2(ε, ε)
Px(σ

−
ε < τ+b(u)+ε)

ε

+
1

ε
Ex−ε

(∫ ∞

0

∫
(−∞,0)

f2(ε,Xt + ε+ y)I{t<τ+
b(u)∧σ

−
0 }I{Xt+y≤0}Π(dy)dt

)
.

From the 0-potential density of the process killed on exiting [0, b(u)] (see equation (10)) and
from equation (4) we obtain

1

ε
Ex

(
I{σ−

ε <τu,−ε
b }f2(ε,Xσ−

ε
)
)

≤ f2(ε, ε)
W (b(u))−W (x− ε)

εW (b(u))

+
1

ε

∫
(0,b(u))

∫
(−∞,0)

f2(ε, z + ε+ y)I{z+y≤0}Π(dy)

×
∫ ∞

0
Px−ε(Xt ∈ dz, t < τ+b(u) ∧ σ

−
0 )dt

= f2(ε, ε)
W (b(u))−W (x− ε)

εW (b(u))

+
1

ε

∫ (x−ε)∨0

0

[
W (x− ε)W (b(u)− z)

W (b(u))
−W (x− ε− z)

]
×
∫
(−∞,−z)

f2(ε, z + ε+ y)Π(dy)dz

+
1

ε

∫ b(u)

(x−ε)∨0

W (x− ε)W (b(u)− z)

W (b(u))

∫
(−∞,−z)

f2(ε, z + ε+ y)Π(dy)dz.

Note that since Π is finite on sets of the form (−∞,−δ), for all δ > 0, Lemma 2.1 and
equation (81), we have that the integrals above with respect to Π are finite and bounded.
Hence, taking x= b(u) and from the dominated convergence theorem we conclude that

lim
ε↓0

1

ε
Eb(u)

(
I{σ−

ε <τu,−ε
b }g(ε,Xσ−

ε
)
)
≤ 0.

Therefore, we also have that

lim
ε↓0

R3(ε)(u, b(u)) = 0.
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The conclusion of the lemma holds.

PROOF OF LEMMA 5.1. Let (u,x) ∈E, we first show that (48) is satisfied. Indeed, using
that |G(u,x)|< up−1 +Ex(g

p−1) and that Us ≤ u+ s (under Pu,x) we obtain that

Eu,x

(∫ ∞

0
|G(Us,Xs)|I{Xs<b(Us)}ds

)
≤ Eu,x

(∫ ∞

0
(u+ s)p−1I{Xs<b(Us)}ds

)
+Ex

(∫ ∞

0
EXs

(gp−1)ds
)
.(82)

From Lemma 4.1 we know that the second integral above is finite. Now we check that the
first integral above is also finite. Consider δ > 0 and let g(b(δ)) be the last time X is below
the level b(δ). Then, we have that g(b(δ)) ≥ g and Xs+g(b(δ))+δ ≥ b(δ)≥ b(Us) for all s≥ 0.
Hence, since b is non-increasing and p > 1 we get

Eu,x

(∫ ∞

0
(u+ s)p−1I{Xs<b(Us)}ds

)
= Eu,x

(∫ g(b(δ))+δ

0
(u+ s)p−1I{Xs<b(Us)}ds

)
≤ [Ex((g

(b(δ)) + δ+ u)p)− up](83)

<∞,

where the last expectation is finite by Lemma 2.1. Therefore, we conclude that (48) holds.
Moreover, assume that X is of finite variation with Π(−∞,0)<∞ and take u > ub. Then,
we have that b(u+ s) = 0 for all s≥ 0, and for any δ > 0 we have that

Eu,x

(∫ ∞

0
G(Us,Xs)I{Xs<b(Us)}ds

)
= Ex

(∫ ∞

σ−
0

G(Us,Xs)I{Xs<b(Us)}ds
)

≤ Ex

(∫ ∞

0
|G(Us,Xs)|I{Xs<b(Us)}ds

)
≤ Ex((g

(b(δ)) + δ)p) +Ex

(∫ ∞

0
EXs

(gp−1)ds
)
,

where the last inequality follows from equations (82) and (83). From the fact that x 7→ Ex(g
p)

is non increasing, that limx→∞Ex(g
p) = 0 (see Lemma 2.3) and the dominated convergence

theorem we then deduce that

lim
u,x→∞

Eu,x

(∫ ∞

0
G(Us,Xs)I{Xs<b(Us)}ds

)
≤ lim

x→∞
Ex((g

(b(δ)) + δ)p) + lim
x→∞

Ex

(∫ ∞

0
EXs

(gp−1)ds
)

= δ

for any δ > 0. Hence, by letting δ ↓ 0, we conclude that when X is of finite variation with
finite activity,

lim
u,x→∞

Eu,x

(∫ ∞

0
G(Us,Xs)I{Xs<b(Us)}ds

)
= 0.

Next, we prove that (49) also holds. Take (u,x) ∈E and letN > 0 be any positive number.
Then, we have that∫

(−∞,0)
Ṽ (u,x+ y)Π(dy)I{x>b(u)}
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=

∫
(−∞,0)

Ṽ (u,x+ y)Π(dy)I{u≤N}I{x>b(u)}

+

∫
(−∞,0)

Ṽ (u,x+ y)Π(dy)I{u>N}I{x>b(N)}

+

∫
(−∞,0)

Ṽ (u,x+ y)Π(dy)I{u>N}I{b(N)≥x>b(u)}.(84)

Using that
∫
(−∞,0) V (u,x+ y)Π(dy) +G(u,x)≥ 0 for all u > 0 and x > b(u) (see Lemma

4.14), that G(u,x)≤ up−1 for all (u,x) ∈E and that b is non increasing, we obtain the lower
bound ∫

(−∞,0)
Ṽ (u,x+ y)Π(dy)I{u≤N}I{x>b(u)} ≥−G(u,x)I{u≤N}I{x>b(u)}

≥−up−1I{u≤N}I{x>b(u)}

≥−Np−1I{u≤N}.(85)

Then, we have that for any (u,x) ∈E,

Eu,x

(∫ ∞

0

∫
(−∞,0)

Ṽ (Us,Xs + y)Π(dy)I{Us≤N}I{Xs>b(Us)}ds

)

≥−Np−1Eu,x

(∫ ∞

0
I{Us≤N}ds

)
≥−Np−1[Ex(g) +N ]

>−∞,(86)

where in the second last inequality we used the fact that Us >N for all s≥ g+N . Similarly,∫
(−∞,0)

Ṽ (u,x+ y)Π(dy)I{u>N}I{x>b(N)} ≥−up−1I{b(N)≥x>b(u)}

≥−up−1I{x≤b(N)}.(87)

Thus, we can see that for any (u,x) ∈E,

Eu,x

(∫ ∞

0

∫
(−∞,0)

Ṽ (Us,Xs + y)Π(dy)I{Us>N}I{b(N)≥Xs>b(Us)}ds

)

≥−Eu,x

(∫ g(b(N))

0
(u+ s)p−1I{Xs≤b(N)}ds

)

≥−1

p
Ex((u+ g(b(N)))p)

>−∞,(88)

where we used that Us ≤ u+ s and that g(b(N)) = sup{t≥ 0 :Xt ≤ b(N)} has moments of
order p (see Lemma 2.1). Moreover, since V is non-decreasing in each argument we have
that ∫

(−∞,0)
Ṽ (u,x+ y)Π(dy)I{u>N}I{x>b(N)} ≥

∫
(−∞,0)

Ṽ (N,x+ y)Π(dy)I{x>b(N)}.(89)
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Hence, since b is non-decreasing and by Fubini’s theorem deduce that

Eu,x

(∫ ∞

0

∫
(−∞,0)

Ṽ (Us,Xs + y)Π(dy)I{Us>N}I{Xs>b(N)}ds

)

≥ Ex

(∫ ∞

0

∫
(−∞,0)

Ṽ (N,Xs + y)Π(dy)I{Xs>b(N)}ds

)

=

∫
(b(N),∞)

∫
(−∞,0)

Ṽ (N,z + y)Π(dy)
∫ ∞

0
Px(Xs ∈ dz)ds

≥Φ′(0)

∫ ∞

b(N)

∫
(−∞,0)

Ṽ (N,z + y)Π(dy)dz,

where in the last inequality we used a density of the 0-potential measure of X without killing
(see (12)), that V ≤ 0 and that W is a non-negative function that vanishes on (−∞,0). From
Fubini’s theorem and since V is a non-decreasing function in each argument that vanishes on
D, we obtain that

Ex

(∫ ∞

0

∫
(−∞,0)

Ṽ (Us,Xs + y)Π(dy)I{Us>N}I{Xs>b(N)}ds

)

≥Φ′(0)

∫ b(N)+1

b(N)

∫
(−∞,0)

Ṽ (N,z + y)Π(dy)dz

+Φ′(0)

∫ ∞

b(N)+1

∫
(−∞,0)

Ṽ (N,z + y)Π(dy)dz

≥Φ′(0)

∫
(−∞,0)

Ṽ (N,b(N) + y)Π(dy)

+Φ′(0)

∫
(−∞,−1)

∫ b(N)−y

b(N)+1
Ṽ (N,z + y)dzΠ(dy)

≥Φ′(0)

∫
(−∞,0)

Ṽ (N,b(N) + y)Π(dy)−Φ′(0)

∫
(−∞,−1)

(y+ 1)Ṽ (0, y)Π(dy)

>−∞,(90)

where the finiteness of the last integrals follow from Lemmas 2.1 and 4.14 and equation (34).
Therefore, we have that (49) follows from equations (84)-(90). Moreover, from the dominated
convergence theorem we have that

lim
u,x→∞

Eu,x

(∫ ∞

0

∫
(−∞,0)

Ṽ (Us,Xs + y)Π(dy)I{Xs>b(Us)}

)

= lim
u,x→∞

E

(∫ ∞

0

∫
(−∞,0)

Ṽ (u+ s,Xs + x+ y)Π(dy)I{Xs+x>b(u+s)}I{s<σ−
−x}

)

+ lim
x→∞

E

(∫ ∞

0

∫
(−∞,0)

Ṽ (U (−x)
s ,Xs + x+ y)Π(dy)I{Xs+x>b(U

(−x)
s )}I{s≥σ−

−x}

)
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≥ E

(∫ ∞

0

∫
(−∞,0)

lim
u,x→∞

Ṽ (u+ s,Xs + x+ y)Π(dy)I{Xs+x>b(u+s)}

)

+E

(∫ ∞

0

∫
(−∞,0)

lim
x→∞

Ṽ (U (−x)
s ,Xs + x+ y)Π(dy)I{Xs+x>b(U

(−x)
s )}

)
.

Note that b is a decreasing function and then limu,x→∞ V (u,x) = 0 and limx→∞ V (u,x) =

0 for any u > 0. Moreover, for any s ≥ 0, x 7→ U
(−x)
s is increasing and bounded so then

limx→∞U
(−x)
s exists. Then we have that

lim
u,x→∞

Eu,x

(∫ ∞

0

∫
(−∞,0)

Ṽ (Us,Xs + y)Π(dy)I{Xs>b(Us)}

)
= 0

as claimed.

The next two Lemmas are auxiliary results for the proof of Lemma 5.5. For ease of nota-
tion, we define for any (u,x) ∈E,

K1(u,x) :=G(u,x)I{x≤b(u)},

K2(u,x) :=−
∫
(−∞,0)

Ṽ (u,x+ y)Π(dy)I{x>b(u)}.

The following result is an application of formula (19) to the functions K1 and K2.

LEMMA A.3. Assume that σ > 0. Then for any δ > 0 we have that

E
(∫ ∞

0
[K1(Us + δ,Xs) +K2(Us + δ,Xs)]ds

)

= lim
ε↓0

Eε

(
I{τ−

0 <∞}K
−(δ,Xτ−

0
− ε)

)
+K+(δ, ε)

ψ′(0+)W (ε)
,

where for all δ > 0 and x≤ 0,

K−(δ,x) = Ex

(∫ τ+
0

0
[K1(δ,Xr) +K2(δ,Xr)]dr

)
,

and for all δ,x > 0,

K+(δ,x) = Ex

(∫ τ−
0

0
[K1(δ+ s,Xr) +K2(δ+ s,Xr)]dr

)
.

PROOF. For N > 0 fixed and (u,x) ∈E, we define the functions

K3(u,x) :=−
∫
(−∞,0)

Ṽ (u,x+ y)Π(dy)I{u≤N}I{x>b(u)},

K4(u,x) :=−
∫
(−∞,0)

Ṽ (u,x+ y)Π(dy)I{u>N}I{x>b(N)},

K5(u,x) :=−
∫
(−∞,0)

Ṽ (u,x+ y)Π(dy)I{u>N}I{b(N)≥x>b(u)}.
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Then, it follows that for any δ > 0,

E
(∫ ∞

0
[K1(Us + δ,Xs) +K2(Us + δ,Xs)]ds

)

= E
(∫ ∞

0
K1(Us + δ,Xs)ds

)
+

5∑
i=3

E
(∫ ∞

0
Ki(Us + δ,Xs)ds

)
.

Since G, V and b are continuous functions and b is non-increasing, it is easy to see that Ki

is left-continuous in each argument, for each i ∈ {1,2,3,4,5}. Moreover, since |G(u,x)| ≤
up−1 + Ex(g

p−1) for all x ∈ R and u ≥ 0, and b is non-increasing, we have that |K1(u +
δ,x)| ≤ C1(u,x), where C1(u,x) := (u + δ)p−1I{x<b(δ)} + Ex(g

p−1). Note that for each
x ∈R, u 7→C1(u,x) is monotone and, for each (u,x) ∈E and y ∈R,

Eu,x

(∫ ∞

0
C1(Ur,Xr + y)dr

)
≤ Ex+y−b(δ)

(∫ ∞

0
(u+ r+ δ)p−1I{Xr<0}dr

)
+Ex+y

(∫ ∞

0
EXr

(gp−1)dr
)

= Ex+y−b(δ)

(∫ g

0
(u+ r+ δ)p−1dr

)
+Ex+y

(∫ ∞

0
EXr

(gp−1)dr
)

≤ Ex+y−b(δ) ((u+ g+ δ)p) +Ex+y

(∫ ∞

0
EXr

(gp−1)dr
)

<∞,

where in the first inequality we used that Ur ≤ u+ r for all r ≥ 0 (under the measure Pu,x)
and the last inequality follows from Lemmas 2.1 and 4.1. Similarly, from equations (85)-(90)
we see that for each i ∈ {3,4,5}, there exists a non-negative function Ci : R+ × R 7→ R
such that u 7→ Ci(u,x) is a monotone function for all x ∈ R, |Ki(u+ δ,x)| ≤ Ci(u,x) and
Eu,x

(∫∞
0 Ci(Ur,Xr + y)dr

)
<∞ for all (u,x) ∈E and y ∈R.

Hence, using formula (19), applied to the functions Ki, for i ∈ {1,3,4,5}, we get that

E
(∫ ∞

0
[K1(Us + δ,Xs) +K2(Us + δ,Xs)]ds

)

= lim
ε↓0

Eε

(
I{τ−

0 <∞}K
−(δ,Xτ−

0
− ε)

)
+K+(δ, ε)

ψ′(0+)W (ε)
,

as claimed.

The following result is also used in the proof of Lemma 5.5.

LEMMA A.4. Suppose that σ > 0. Then we have that

lim
ε↓0

E(V (0,Xτ−
−ε

+ ε)I{τ−
−ε<∞})−E(V (0,Xτ−

−ε
)I{τ−

−ε<∞})

ε
=

∂

∂x
V−(0,0).

PROOF. Recall from Lemma A.2 that V (0, x) is continuously differentiable on (−∞,0)
with

∂

∂x
V (0, x) =

∫ ∞

0
Ex−u(g

p−1)W ′(u)du
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for x < 0. Moreover, from the continuity of x 7→
∫∞
0 Ex−u(g

p−1)W ′(u)du, we see that

∂

∂x
V−(0,0) =

∫ ∞

0
Eu(g

p−1)W ′(u)du= lim
x↑0

∂

∂x
V (0, x).(91)

Hence, from (33) we have that for any ε > 0 and x≤−ε,

V (0, x+ ε)− V (0, x) =

∫ −x

−x−ε

∫ ∞

0
E−u−z(g

p−1)W ′(u)dudz

=

∫ 0

−ε

∫ ∞

0
E−u−z+x(g

p−1)W ′(u)dudz

=

∫ 0

−ε

∂

∂x
V (0, x− z)dz.

Thus, since ∂
∂xV (0, x) is non-increasing (see Lemma A.2) we see that

ε
∂

∂x
V (0, x+ ε)≤ V (0, x+ ε)− V (0, x)≤ ε

∂

∂x
V (0, x)

Hence, for any ε > 0 we obtain

E
(
∂

∂x
V (0,Xτ−

−ε
+ ε)I{τ−

−ε<∞}

)

≤
E(V (0,Xτ−

−ε
+ ε)I{τ−

−ε<∞})−E(V (0,Xτ−
−ε
)I{τ−

−ε<∞})

ε

≤ E
(
∂

∂x
V (0,Xτ−

−ε
)I{τ−

−ε<∞}

)
.(92)

Note that, under the event {τ−−ε <∞}, we have |Xτ−
−ε
| ≤ |X∞|. Then, from (80) we deduce

that

0≤ ∂

∂x
V (0,Xτ−

−ε
+ ε)I{τ−

−ε<∞} ≤
∂

∂x
V (0,Xτ−

−ε
)I{τ−

−ε<∞} ≤ αp−1 + γp−1|X∞|p−1.

Moreover, since E(|X∞|p−1)<∞ (see Lemma 2.1) we see that the random variables above
are bounded by an integrable random variable. Furthermore, it is easy to show that τ−−ε ↓
τ−0 = 0 a.s., when ε ↓ 0 (where the equality follows since X is of infinite variation), and,
since X is right-continuous, we have that limε↓0Xτ−

−ε
=X0 = 0 almost surely. Therefore, by

letting ε ↓ 0 in (92), the dominated convergence theorem and (91), we have that

lim
ε↓0

E(V (0,Xτ−
−ε

+ ε)I{τ−
−ε<∞})−E(V (0,Xτ−

−ε
)I{τ−

−ε<∞})

ε
=

∂

∂x
V−(0,0)

as claimed.

APPENDIX B: VARIATIONAL INEQUALITIES FOR SPECTRALLY NEGATIVE
LÉVY PROCESSES

In Lamberton and Mikou (2008) (see Section 2), variational inequalities in the sense of
distributions are studied for general Lévy processes, and such results are applied to charac-
terise the price of an American option. It turns out that, although there are many similarities
to our setting, their assumptions do not entirely fit our optimal stopping problem (cf. Propo-
sition 2.5 in Lamberton and Mikou (2008)), and their results are not directly applicable. This
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section is dedicated to relaxing the assumptions on Proposition 2.5 in Lamberton and Mikou
(2008) imposed to the value function. This extension is natural and most of the proofs remain
the same, but for completeness, some of them are included in this section.

Let X be a spectrally negative Lévy process with the following representation:

Xt =−µt+ σBt +

∫ t

0

∫
(−∞,−1)

xN(ds,dx) +
∫ t

0

∫
(−1,0)

x(N(ds,dx)− dsΠ(dx)),

where µ ∈R, σ ≥ 0, {Bt, t≥ 0} is a standard Brownian motion and N is a Poisson random
measure on R+ ×R{0} with intensity dt×Π(dy), where Π is a Lévy measure, i.e., Π satis-
fies

∫
R(1∧ |x|2)Π(dx)<∞.

Fix f ∈ C1,2
b (R+ × R), the set of all bounded C1,2(R+ × R) functions with bounded

derivatives. By applying Itô formula we obtain the following decomposition

f(t,Xt) = f(0,X0) +Mt +

∫ t

0
A(t,X)(f)(s,Xs)ds, t≥ 0,

whereM is a martingale starting at zero and A(t,X)(f) is the infinitesimal generator of (t,X),
applied to f , given by

A(t,X)(f)(t, x) =
∂

∂t
f(t, x)− µ

∂

∂x
f(t, x) +

1

2
σ2

∂2

∂x2
f(t, x) +BX(f)(t, x),

with

BX(f)(t, x) =

∫
(−∞,0)

(
f(t, x+ y)− f(t, x)− yI{y>−1}

∂

∂x
f(t, x)

)
Π(dy).

Note that for the derivatives in the operator A(t,X) to be defined it is only needed that f ∈
C1,2(R+×R). In the next Lemma, we show that BX can be defined in a subset B ⊂R+×R
provided some conditions are met in the set B.

LEMMA B.1. Let B ⊂ R+ ×R an open set. Assume that f is a C1,2(R+ ×R) function
and that ∫

(−∞,−1)
|f(t, x+ y)|Π(dy)<∞,

for all (x, y) ∈ B. We have that |BX(f)(t, x)| <∞ for all (t, x) ∈ B. Moreover if f , its
derivatives and (t, x) 7→

∫
(−∞,−1) |f(t, x+ y)|Π(dy) are bounded functions in B, we have

that, for any T > 0, BX(f) is bounded in B ∩ ([0, T ]×R) and continuous in B.

PROOF. Take (t, x) ∈ B. By Taylor’s theorem we know that for each y ∈ (−1,0), there
exists cy ∈ [x+ y,x]⊂ [x− 1, x] such that

f(t, x+ y)− f(t, x)− y
∂

∂x
f(t, x) = y2

1

2

∂2

∂x2
f(t, cy).

Hence, we have that for any (t, x) ∈B,

|BX(f)(t, x)|=

∣∣∣∣∣
∫
(−1,0)

(
f(t, x+ y)− f(t, x)− y

∂

∂x
f(t, x)

)
Π(dy)
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+

∫
(−∞,−1]

(f(t, x+ y)− f(t, x))Π(dy)

∣∣∣∣∣
≤
∫
(−1,0)

y2
1

2

∣∣∣∣ ∂2∂x2 f(t, cy)
∣∣∣∣Π(dy) + ∫

(−∞,−1]
|f(t, x+ y)− f(t, x)|Π(dy)

≤ sup
z∈[x−1,x]

1

2

∣∣∣∣ ∂2∂x2 f(t, z)
∣∣∣∣ ∫

(−1,0)
y2Π(dy) +

∫
(−∞,−1]

|f(t, x+ y)|Π(dy)

+ |f(t, x)|Π(−∞,−1]

<∞,

where we used that Π is finite on any set away from zero and that the derivatives of f are
continuous on B (then bounded on compact sets). The second assertion follows by the fact
that the second derivative is continuous and bounded on the compact set containing the set
B̃ = {(t, x − y) ∈ [0, T ] × R : (t, x) ∈ B, y ∈ (0,1) and (t, x − y) /∈ B}, and since f and
(t, x) 7→

∫
(−∞,−1) |f(t, x+ y)|Π(dy) are bounded in B. The continuity of BX(f) in B fol-

lows from the fact that f is C1,2 and the dominated convergence theorem.

Consider the stopping time τB as the first time the process (t,X) exits the open set B, i.e.,

τ
(s,x)
B = inf{t≥ 0 : (s+ t,Xt + x) /∈B}.

LEMMA B.2. Let B ⊂ R+ ×R an open set. Assume that f is a C1,2(R+ ×R) function
such that f , its derivatives and (t, x) 7→

∫
(−∞,−1) |f(t, x+y)|Π(dy) are bounded inB. Then,

for any t≥ 0, we have the following decomposition

f(s+ t∧ τ (s,x)B ,Xt∧τ (s,x)
B

+ x) = f(s,x) +Mt +

∫ t∧τ (s,x)
B

0
A(t,X)(f)(u+ r,Xr + x)dr,

(93)

where {Mt, t≥ 0} is a zero mean P-martingale.

PROOF. Let (s,x) ∈ B and t ≥ 0. Since f is a C1,2(R+ × R) function we have by Itô
formula,

f(s+ t,Xt + x)− f(s,x) =M
(1)
t +M

(2)
t +

∫ t

0
A(t,X)(f)(s+ r,Xr + x)dr,

where

M
(1)
t = σ

∫ t

0

∂f

∂x
(s+ r,Xr− + x)dBr +

∫ t

0

∫
(−1,0)

y
∂f

∂x
(s+ r,Xr− + x)Ñ(dr,dx),

M
(2)
t =

∫ t

0

∫
(−∞,0)

[
f(s+ r,Xr− + x+ y)− f(s+ r,Xr− + x)

− yI{y>−1}
∂f

∂x
(s+ r,Xr− + x)

]
Ñ(dr,dy).

Note that for any r < τ
(s,x)
B we have (s+ r,Xr + x) ∈B. Hence, since ∂f

∂x is bounded in the
set B, we have that the stopped process {M (1)

t∧τ (s,x)
B

, t ≥ 0} is a martingale. Moreover, from
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Lemma B.1 we have that BX(f) is a bounded function on B ∩ ([0, t]×R). Hence, we have
that

E

(∫ t∧τ (s,x)
B

0
BX(f)(s+ r,Xr + x)dr

)
<∞

for all t≥ 0. Thus, the process {M (2)

t∧τ (s,x)
B

, t≥ 0} is also a martingale.

Let G be a continuous function. Define the process Z(s,x) = {Z(s,x)
t , t≥ 0}, where

Z
(s,x)
t = f(s+ t,Xt + x) +

∫ t

0
G(r+ s,Xr + x)dr, t≥ 0.

We have the following proposition.

PROPOSITION B.3. Let B ⊂ R+ × R an open set. Assume that f is a C1,2(R+ × R)
function such that f , its derivatives and (t, x) 7→

∫
(−∞,−1) |f(t, x+ y)|Π(dy) are bounded in

B, and G :R+×R 7→R is a continuous function bounded in B. Then, for all (s,x) ∈B, the
process {Z(s,x)

t∧τ (s,x)
B

, t≥ 0} is a submartingale if and only if A(t,X)(f) +G≥ 0 in B.

PROOF. Fix (s,x) ∈B. Suppose that {Z(s,x)

t∧τ (s,x)
B

, t≥ 0} is a submartingale. We prove that

A(t,X)(f)(s,x)+G(s,x)≥ 0. From the submartingale property, we have that for every t≥ 0,

E
[
1

t
(Z

(s,x)

t∧τ (s,x)
B

−Z
(s,x)
0 )

]
≥ 0

which implies that

E
[
1

t
[f(s+ t∧ τ (s,x)B ,Xt∧τ (s,x)

B
+ x)− f(s,x)]

]

+E

[
1

t

∫ t∧τ (s,x)
B

0
G(s+ r,Xr + x)dr

]
≥ 0.

By the decomposition (93) we then get,

E

[
1

t

∫ t∧τ (s,x)
B

0
A(t,X)(f)(s+ r,Xr + x)ds

]
+E

[
1

t

∫ t∧τ (s,x)
B

0
G(s+ r,Xr + x)dr

]
≥ 0.

Due to the right continuity of (t,X) and since B is open, we have τ (s,x)B > 0 almost surely.
Therefore, tending t to zero in the above inequality, by Fubini’s theorem and the fundamental
theorem of calculus (since r 7→Xr is right continuous) we deduce that

A(t,X)(f)(s,x) +G(s,x)≥ 0.

Next, suppose that A(t,X)(f)(s,x) +G(s,x) ≥ 0 for all (s,x) ∈ B. We show that, for any

(s,x) ∈B, the process {Z(s,x)

t∧τ (s,x)
B

, t≥ 0} is a submartingale. For any (s,x) ∈B and 0≤ r ≤ t,
we have that
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E(Z(s,x)

t∧τ (s,x)
B

|Fr) = E

[
f(s,x) +Mt∧τ (s,x)

B
+

∫ t∧τ (s,x)
B

0
A(t,X)(f)(v+ s,Xv + x)dv

∣∣∣∣Fr

]

+E

[∫ t∧τ (s,x)
B

0
G(v+ s,Xv + x)dv

∣∣∣∣Fr

]

= Z
(s,x)

r∧τ (s,x)
B

+E

[∫ t∧τ (s,x)
B

r∧τ (s,x)
B

A(t,X)(f)(v+ s,Xv + x)dv
∣∣∣∣Fr

]

+E

[∫ t∧τ (s,x)
B

r∧τ (s,x)
B

G(v+ s,Xv + x)dv
∣∣∣∣Fr

]

≥ Z
(s,x)

s∧τ (s,x)
B

,

where the last inequality follows from the fact that (v + s,Xv + x) ∈ B for all v ∈ (r ∧
τ
(s,x)
B , t ∧ τ (s,x)B ) and that A(t,X)(f)(s,x) +G(s,x) ≥ 0 in B. Therefore the process Z(s,x)

t∧τB
is a submartingale.

It turns out that the above proposition can be extended to a more general class of functions,
provided that the inequality A(t,X)(f)+G≥ 0 is taken in the sense of distributions. For this,
we recall some facts and notation from the theory of distributions (see e.g. Friedlander et al.
(1998) or Rudin (1991) for further details). We introduce the multi-index notation. A multi-
index is a n-tuplet α= (α1, . . . , αn) of non-negative integers with order |α|= α1+ · · ·+αn.
We set the notation

∂αf =
∂|α|

∂xα1

1 · · ·∂xαn
n
.

If O is an open subset of Rd, we denote by D(O) the set of test functions in O, i.e., the set
of all C∞ functions with compact support in O, and by D′(O) the space of distributions on
O. That is, D′(O) is the space of linear forms u in D(O) such that, for every compact set
K ⊂O, there is a real number C ≥ 0 and a non-negative integer N that satisfy

|⟨u,ψ⟩| ≤C
∑

|α|≤N

sup |∂αψ|

for all ψ ∈D(O), where ⟨u,φ⟩ denotes the evaluation of the distribution u on the test function
φ. Inspired by the integration by parts formula, the derivative of the distribution u is defined
by

⟨∂αu,φ⟩= (−1)|α|⟨u,∂αφ⟩, φ ∈D(O).

If u is a locally integrable function on O (u is a measurable function and
∫
K |u(x)|dx <∞

for any compact set K ⊂O), we can define the distribution

⟨u,φ⟩=
∫
u(x)φ(x)dx, φ ∈D(O),

which is usually identified only with the function u. Hence, if g is a locally integrable function
on (0,∞)×R, the differential operator, A0

(t,X)(g), given by

A0
(t,X)(g)(u,x) :=

∂

∂t
g(t, x)− µ

∂

∂x
g(t, x) +

1

2
σ2

∂2

∂x2
g(t, x)
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can be defined in the sense of distributions. Indeed, for any test function φ with compact
support in O ⊂R+ ×R, we define

⟨A0
(t,X)(g),φ⟩ :=

∫
R+

∫
R
g(t, x)

[
− ∂

∂t
φ(t, x) + µ

∂

∂x
φ(t, x) +

1

2
σ2

∂2

∂x2
φ(t, x)

]
dxdt.

(94)

Moreover, Lamberton and Mikou (2008) showed (see Proposition 2.1) that the operator de-
fined by

BX(g)(t, x) :=

∫
(−∞,0)

(g(t, x+ y)− g(t, x)− y
∂

∂x
g(t, x)I{y>−1})Π(dy)

can be also defined in the sense of distributions, when g is a bounded Borel measurable
function. For φ ∈D((0,∞)×R), consider the operator B∗

X given by

B∗
X(φ)(t, x) =

∫
(−∞,0)

[φ(t, x− y)−φ(t, x) + y
∂

∂x
φ(t, x)I{y>−1}]Π(dy),(95)

for any (t, x) ∈ (0,∞)×R. From Proposition 2.1 in Lamberton and Mikou (2008), we know
that B∗

X(φ) is continuous and integrable on (0,∞)×R and that the operator

⟨BX(g),φ⟩=
∫
R+

∫
R
g(u,x)B∗

X(φ)(u,x)dxdu(96)

defines a distribution. The following lemma shows that the boundedness condition imposed
on g can be relaxed.

LEMMA B.4. Let g be a locally integrable function in R+ ×R such that

(u,x) 7→
∫
(−∞,−1)

|g(u,x+ y)|Π(dy)(97)

is locally integrable. The linear operator BX(g) defined in (96) defines a distribution on any
open set O ⊂R+×R. Moreover, if in addition we suppose that g is a C1,2(R+×R) function
we have that ∫

R+

∫
R
BX(g)(t, x)φ(t, x)dxdt=

∫
R+

∫
R
g(t, x)B∗

X(φ)(t, x)dxdt

for any φ ∈D(R+ ×R).

PROOF. It is clear that the operator defined in (96) is linear. Take a test function φ with
support in a compact set H ×K ⊂R+ ×R. We have

|⟨BX(g),φ⟩| ≤
∫
R+

∫
R
|g(u,x)||B∗

X(φ)(u,x)|dxdu

≤
∫
H

∫
R
|g(u,x)|

∫
(−1,0)

|φ(u,x− y)−φ(u,x) + y
∂

∂x
φ(u,x)|Π(dy)dxdu

+

∫
H

∫
R
|g(u,x)|

∫
(−∞,−1)

|φ(u,x− y)−φ(u,x)|Π(dy)dxdu.

Note that if x /∈K + (−1,0] we have that x /∈K (if we assume that x ∈K then x= x+0 ∈
K + (−1,0], which is a contradiction) and x− y /∈K for all y ∈ (−1,0) (if z = x− y ∈K ,
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then x= z+y ∈K+(−1,0)⊂K+(−1,0] and we have got a contradiction), which implies
φ(u,x− y)−φ(u,x) + y ∂

∂xφ(u,x) = 0. Denote k∗ = infK , since x 7→ φ(u,x) has support
in K and using Taylor’s formula we obtain

|⟨BX(g),φ⟩|

≤
∫
H

∫
K+(−1,0]

|g(u,x)|
∫
(−1,0)

|φ(u,x− y)−φ(u,x) + y
∂

∂x
φ(u,x)|Π(dy)dxdu

+

∫
H

∫
K
|g(u,x)|

∫
(−∞,−1)

|φ(u,x− y)−φ(u,x)|Π(dy)dxdu

+

∫
H

∫ k∗

−∞
|g(u,x)|

∫
(−∞,−1)

|φ(u,x− y)|Π(dy)dxdu

≤ 1

2
sup | ∂

2

∂x2
φ|
∫
(−1,0)

y2Π(dy)
∫
H

∫
K+(−1,0]

|g(u,x)|dxdu

+ 2sup |φ|Π((−∞,−1))

∫
H

∫
K
|g(u,x)|dxdu

+ sup |φ|
∫
H

∫
K

∫
(−∞,−1)

|g(u,x+ y)|Π(dy)dxdu,

which proves the assertion, since Π is a Lévy measure and (u,x) 7→
∫
(−∞,−1) |g(u,x +

y)|Π(dy) is locally integrable by assumption. The last assertion follows the same argument
in Lamberton and Mikou (2008) (see Proposition 2.1), so the proof is omitted.

Therefore, if g is a locally integrable function in R+ ×R such that the function defined in
(97) is locally integrable, we can define the distribution A(t,X)(g) =A0

(t,X)(g) +BX(g) in
any open set O⊂R+ ×R.

Let u be a distribution and θ ∈D(R+ ×R). Then the function

(θ ∗ u)(t, x) = ⟨u(s, y), θ(t− s,x− y)⟩

is a member of C∞(R+ ×R) and defines a distribution given by

⟨θ ∗ u,ϕ⟩=
∫
R+

∫
R
⟨u(s, y), θ(t− s,x− y)⟩ϕ(t, x)dxdt,

for any ϕ ∈D(R+×R). It turns out that Proposition 2.3 in Lamberton and Mikou (2008) can
also be extended to this case. The proof remains the same so it is omitted.

PROPOSITION B.5. Let g be a Borel and locally integrable function in R+×R such that
the function

∫
(−∞,−1) |g(u,x+ y)|Π(dy) is locally integrable. We have that for every θ and

φ in D(R+ ×R),

⟨A(t,X)(g ∗ θ),φ⟩= ⟨A(t,X)(g),φ ∗ θ̌⟩= ⟨A(t,X)(g) ∗ θ,φ⟩,

where θ̌(u,x) = θ(−u,−x) for any (u,x) ∈R+ ×R.
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Let u be a distribution in O, we say that u is non-negative if for any non-negative test
function φ ∈D(O),

⟨u,φ⟩ ≥ 0.

The next result is an extension of Proposition 2.5 in Lamberton and Mikou (2008). The proof
is essentially the same but we include it for completeness.

PROPOSITION B.6. Let B be an open set in R+ × R. Suppose that f : R+ × R 7→ R,
G :R+ ×R 7→R and (u,x) 7→

∫
(−∞,−1) |f(u,x+ y)|Π(dy) are locally integrable functions

in R+ ×R and bounded in B. Assume that the process {Z(s,x)

t∧τ (s,x)
B

, t≥ 0} is a submartingale

for every (s,x) ∈B, where Z(s,x)
t = f(s+ t,Xt + x) +

∫ t
0 G(s+ r,Xr + x)dr and τ (s,x)B =

inf{t≥ 0 : (t+ s,Xt + x) /∈B}. Then, A(t,X)(f) +G is a non-negative distribution on B.

PROOF. Take z0 = (u0, x0) ∈ B and choose a > 0 such that B(z0,2a) ⊂ B, where
B(z0,2a) is the open ball with center z0 and radius 2a. We define the stopping time

τB = inf{t≥ 0 : there exists z ∈ B(z0, a) such that z + (t,Xt) /∈B}.

Note that for every (u,x) ∈ B(z0, a/2) and (v, y) ∈ B(0, a/2) we have that (u− v,x− y) ∈
B(z0, a) ⊂ B and then τB ≤ τ

(u−v,x−y)
B . Hence, the process {Z(u−v,x−y)

t∧τB , t ≥ 0} is a sub-
martingale, and then, for any t≥ 0,

f(u− v,x− y)

≤ E
(
f(u− v+ t∧ τB,Xt∧τB + x− y) +

∫ t∧τB

0
G(u− v+ r,Xr + x− y)dr

)
.

Next, we consider a sequence of even non-negative functions {ρn, n≥ 1} in C∞ such that,
for each n ≥ 1, the support of ρn is in B(0, a/(2n)) and

∫
R2 ρn(v, y)dvdy = 1. Then, by

integrating the equation above with respect to ρn(v, y) and Fubini’s theorem, we get that

(f ∗ ρn)(u,x)

≤ E ((f ∗ ρn)(u+ t∧ τB,Xt∧τB + x)) +E
(∫ t∧τB

0
(G ∗ ρn)(u+ r,Xr + x)dr

)
.(98)

Fix (u,x) ∈ B(z0, a/2). Note that, since f is bounded, we have that for all n≥ 1, the function
(s,w) 7→ f ∗ ρn(u + s,w + x) is C∞(R+ × R) and has bounded derivatives in the open
set B̃ = {(s,w) ∈ R+ × R : z + (s,w) ∈ B for all z ∈ B(z0, a)}. Moreover, since (u,x) 7→∫
(−∞,−1) |f(u,x+ y)|Π(dy) is bounded in B, the function (s,w) 7→

∫
(−∞,−1)(f ∗ ρn)(u+

s,w+ x+ y)Π(dy) is bounded in B̃. Thus, since τB is the first exit time of (s,Xs) from the
set B̃, we get from Lemma B.2 that

(f ∗ ρn)(u+ t∧ τB,Xt∧τB + x)

= (f ∗ ρn)(u,x) +M
(u,x)
t +

∫ t∧τB

0
A(t,X)(f ∗ ρn)(u+ s,Xs + x)ds,

where {M (u,x)
t , t≥ 0} is a martingale. Therefore equation (98) reads

E
(∫ t∧τB

0

[
A(t,X)(f ∗ ρn)(u+ r,Xr + x) + (G ∗ ρn)(u+ r,Xr + x)

]
dr
)
≥ 0.
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Note that τB > 0 a.s. (since B(0, a) ⊂ B̃), dividing by t > 0 the equation above and taking
t ↓ 0 we obtain that

A(t,X)(f ∗ ρn)(u,x) + (G ∗ ρn)(u,x)≥ 0(99)

for all n≥ 1 and (u,x) ∈ B(z0, a/2). That implies that for any non-negative test function ψ
in B(z0, a/2)

⟨A(t,x)(f ∗ ρn) +G ∗ ρn,ψ⟩ ≥ 0.

Then, from Proposition B.5 we conclude that A(t,X)(f) ∗ ρn +G ∗ ρn ≥ 0 in the sense of
distributions on B(z0, a/2). By letting n go to infinity, we conclude that A(t,X)(f) +G≥ 0
on B(z0, a/2) in the sense of distributions. Since z0 is any arbitrary point in B, using a
partition of unity argument, we conclude that A(t,X)(f)+G≥ 0 in the sense of distributions
on B.
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