
Finance and Stochastics (2023) 27:663–711
https://doi.org/10.1007/s00780-023-00504-2

Contagious McKean–Vlasov systems with heterogeneous
impact and exposure

Zachary Feinstein1 ·Andreas Søjmark2

Received: 2 November 2021 / Accepted: 23 January 2023 / Published online: 26 June 2023
© The Author(s) 2023

Abstract
We introduce a particular heterogeneous formulation of a class of contagious
McKean–Vlasov systems, whose inherent heterogeneity comes from asymmetric
interactions with a natural and highly tractable structure. It is shown that this for-
mulation characterises the limit points of a finite particle system, deriving from a
balance-sheet-based model of solvency contagion in interbank markets, where banks
have heterogeneous exposure to and impact on the distress within the system. We
also provide a simple result on global uniqueness for the full problem with common
noise under a smallness condition on the strength of interactions, and we show that
in the problem without common noise, there is a unique differentiable solution up to
an explosion time. Finally, we discuss an intuitive and consistent way of specifying
how the system should jump to resolve an instability when the contagious pressures
become too large. This is known to happen even in the homogeneous version of the
problem, where jumps are specified by a ‘physical’ notion of solution, but no such
notion currently exists for a heterogeneous formulation of the system.

Keywords Mean-field limit · Contagion · Heterogeneous network · Default
cascades · Dynamic interbank model · Systemic risk
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1 Introduction

This paper studies a family of contagious McKean–Vlasov problems, modelling large
clouds of stochastically evolving mean-field particles, for which contagion materi-
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alises through asymmetric interactions. More concretely, the different particles suffer
a negative impact on their ‘healthiness’ (measured by their distance from the ori-
gin) as the probability of absorption increases for the other particles to which they
are linked. Naturally, the degree to which the particles are affected depends on the
strength of the links.

The study of this problem is motivated by the macroscopic quantification of sys-
temic risk in large financial markets, when taking into account the heterogeneous
nature of how financial institutions have an effect on and are exposed to the distress
of other entities at the microscopic level. Specifically, in Feinstein and Søjmark [10],
the authors of the present paper have proposed a dynamic balance-sheet-based model
for solvency contagion in interbank markets building on the Gai–Kapadia approach
(see Gai and Kapadia [11]) to financial contagion. When passing from a finite setting
to a mean-field approximation, we show here that this model leads to precisely the
type of contagious McKean–Vlasov system with heterogeneity that we now describe.

For given parameters, to be specified below, the mean-field problem is formulated
as a coupled system of conditional McKean–Vlasov equations

⎧
⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎩

dX
u,v
t = bu,v(t)dt + σu,v(t)dW

u,v
t − dF

(∫ t

0
gu,v(s)dL

v
s

)

,

Lv
s =

∫

Rk×Rk

κ(û, v)P[t ≥ τû,v̂|B0]dπ(û, v̂),

τu,v = inf{t > 0 :Xu,v
t ≤ 0}, W

u,v
t = ρB0

t +
√

1 − ρ2B
u,v
t ,

(1.1)

where each Bu,v is a Brownian motion independent of the ‘common’ Brownian mo-
tion B0. We take the initial conditions to be independent of the Brownian motions,
and we require that solutions of (1.1) must satisfy Lv

0 = 0 for all v in the support of π .
Note that B0 serves as a ‘common factor’ in the sense that the dynamics of the en-

tire system are conditional upon its movements. In contrast, each Bu,v models instead
the random fluctuations that are specific to a given mean-field particle Xu,v . Notice
also that since L is required to be B0-measurable, computing t �→ P[t ≥ τu,v|B0]
only relies on Bu,v being a Brownian motion independent of B0. Any relationship
between the Bu,v is irrelevant for this, and solving the system for a different set of
particle-specific Brownian drivers Bu,v does not change L as long as they are all
independent of B0 and the initial conditions. When the exogenous correlation pa-
rameter ρ is zero, we see that the common factor B0 plays no role and L becomes
deterministic.

The key reason for our interest in (1.1) is that it has a quite general, but also highly
tractable, heterogeneous structure. This contrasts with the focus on purely symmetric
formulations of the McKean–Vlasov problem in most of the existing literature; see
e.g. Bayraktar et al. [3], Cuchiero et al. [6], Delarue et al. [7, 8], Delarue et al. [9],
Hambly et al. [15], Ledger and Søjmark [20, 21] and Nadtochiy and Shkolnikov
[22]. As regards the measure π in (1.1), this is taken to be a probability distribu-
tion on R

k × R
k specifying the density or discrete support of the ‘indexing’ vectors

(u, v) ∈ R
k × R

k . One should think of each Xu,v as a tagged ‘infinitesimal’ mean-
field particle within a heterogeneous ‘cloud’ or ‘continuum’ of such particles. In this
respect, the role of π is to model how these infinitesimal particles are distributed
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along a possible continuum of types, as specified by the ‘indexing’ vectors that de-
scribe how the particles interact through the interaction kernel κ .

Naturally, if π is supported on a finite set of indexing vectors, then (1.1) consists
in effect only of a finite number of mean-field particles, but one should still think of
it as there being an infinitude of identical particles for each ‘type’, where the values
that π assigns to the indexing vectors give the proportions of these types (see also
Remark 2.1 and the work of Nadtochiy and Shkolnikov [23]).

The strength with which a given ‘infinitesimal’ mean-field particle Xu,v feels the
impact of another one, say Xû,v̂ , is specified by the value κ(û, v) ≥ 0, modelling an
‘exposure’ of Xu,v

t to the probability of Xû,v̂ being absorbed by time t . This is the
nature of the contagious element in this system: a higher likelihood of absorption
for any given Xû,v̂ puts upward pressure on the likelihood of absorption for Xu,v

in proportion to κ(û, v) ≥ 0, and likewise throughout the system, in turn forming a
positive feedback loop. Notice that for a given particle Xu,v , the vector v influences
only its exposure to impacts from other particles, while the vector u influences only
how it impacts the other particles (but of course, the full exposure and impact depends
also on the indexing vectors of all the other particles). This decomposition highlights
why it is natural to work with a pair of indexing vectors, and we further exploit this
structure below.

While we did not specify it, for the above interpretation of the contagious element,
we were implicitly assuming that the functions t �→ gu,v(t) are all nonnegative and
that the map x �→ F(x) is both nonnegative and increasing. In that way, the effect of
an increasing probability of absorption is always to decrease the ‘healthiness’ of each
mean-field particle. The precise assumptions for the various parameters are presented
in the next subsection; see Assumptions 1.1–1.3.

1.1 A specific formulation and structural conditions

For notational simplicity, given a pair of random vectors (U,V ) valued in R
k ×R

k

and distributed according to π , we let S(U), S(V ) and S(U,V ) denote the support
of U , V and (U,V ), respectively. The heterogeneity of the interactions in (1.1) is
then structured according to the interaction kernel (u, v) �→ κ(u, v) with a continuous
nonnegative function κ : S(U)×S(V )→R+. We rely on this notation throughout the
paper. For the applications we are interested in, it is natural to take κ(u, v) := u · v
together with a distribution π such that u · v ≥ 0 for all u ∈ S(U) and v ∈ S(V ).
For concreteness, we thus restrict to this case throughout, but we note that our
arguments are performed in a way that easily extends to cover a general continuous
nonnegative interaction kernel κ .

Restricting to the case κ(u, v)= u · v, the system (1.1) can be rewritten as

⎧
⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎩

dX
u,v
t = bu,v(t)dt + σu,v(t)dW

u,v
t − dF

( k∑

h=1

vh

∫ t

0
gu,v(s)dLh

s

)

Lh
t =

∫

Rk×Rk

uhP[t ≥ τu,v|B0]dπ(u, v), h= 1, . . . , k,

τu,v = inf{t > 0 :Xu,v
t ≤ 0}, W

u,v
t = ρB0

t +
√

1 − ρ2B
u,v
t ,

(1.2)
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where we insist on Lh
0 = 0 for h = 1, . . . , k. A nice feature of this formulation

is the decomposition of Lv
t into a weighted sum of k contagion processes Lh

t

for h = 1, . . . , k, thereby organising the feedback felt by each particle according
to k distinct characteristics modelled by the dimension k of the indexing vectors
(u, v) ∈R

k ×R
k . More generally, (1.2) fixes a sensible choice of the interaction ker-

nel κ , thereby eliminating any further free parameters. Of course, we are still left
with a single free parameter k ∈ N, but this should rightly be seen as a scale for the
granularity of the analysis. We refer to Feinstein and Søjmark [10] for further details.

The relevant coefficients for the model of interbank contagion considered in [10]
are F(x)= log(1 + x) and gu,v(t)= cu,vψ(t, T ) for t ∈ [0, T ], where each cu,v > 0
is a positive constant and ψ( · , T ) : [0, T ] → R+ is a nonnegative continuous de-
creasing function, modelling the rate at which outstanding liabilities are gradually
settled over the period [0, T ]. There are also closely related applications in neuro-
science (see Delarue et al. [7, 8] and Inglis and Talay [18]), for which the relevant
choices are F(x)= x and gu,v(t)= cu,v for constants cu,v > 0, although we note that
one would also need to consider re-setting of the particles when they hit the origin in
this case. These considerations motivate the following assumptions.

Assumption 1.1 For a given probability distribution π on R
k × R

k determining the
network structure, we write (U,V ) ∼ π . We then assume that (i) the marginal sup-
ports S(U) and S(V ) are both compact, and (ii) we have u · v ≥ 0 for all u ∈ S(U)

and v ∈ S(V ). We write S(U,V ) for the joint support, which is also compact.

Assumption 1.2 The function x �→ F(x) is Lipschitz-continuous, nonnegative and
nondecreasing with F(0) = 0. Writing bu,v(s) = b(u, v, s), σu,v(s) = σ(u, v, s) and
gu,v(s) = g(u, v, s), these are deterministic continuous functions in (u, v, s). Each
s �→ gu,v(s) is nonnegative and nonincreasing. Finally, we impose the nondegen-
eracy conditions ρ ∈ [0,1) and c ≤ σu,v ≤ C, for given c,C > 0, uniformly in
(u, v) ∈ S(U,V ).

Assumption 1.3 Let P0( · |u,v) denote the law of Xu,v
0 . We assume there is a den-

sity p0( · |u,v) ∈ L∞(0,∞), so that dP0(x|u,v)= p0(x|u,v)dx, with the properties
p0(x|u,v)≤ C1x

β for all x near 0 and some β > 0, as well as ‖p0( · |u,v)‖∞ ≤ C2
and

∫∞
0 xdP0(x|u,v)≤ C3, uniformly in (u, v) ∈ S(U,V ), for given constants

C1,C2,C3 > 0.

In Sect. 2.2, we present some well-posedness results under these assumptions.
Thereafter, we introduce a finite interacting particle system in Sect. 2.3, which will
correspond to the coupled McKean–Vlasov system (1.2) in the mean-field limit. We
prove this under Assumption 2.4, which in particular ensures that the above Assump-
tions 1.1–1.3 are all satisfied in the limit.

1.2 A further look at applications and related literature

In many practical applications, heterogeneity plays a critical role—something that
becomes particularly pertinent when seeking to understand the outcomes of conta-
gion spreading through a complex system. In short, a homogeneous version of the



Heterogeneous contagious McKean–Vlasov systems 667

McKean–Vlasov problem would be at risk of oversimplifying the conclusions that
one can draw. At the same time, the streamlined analysis of a mean-field formulation
can be highly instructive, so it becomes important to look for ways of exploiting such
macroscopic ‘averaging’ while not throwing away all the microscopic heterogeneity.

For some concrete examples of how (1.2) can capture features of realistic core-
periphery networks in interbank markets, we refer to the discussion at the start of
Feinstein and Søjmark [10, Sect. 3.1] as well as [10, Online Supplement C]. Another
tractable special case is the multi-type system with homogeneity within each type,
considered by Nadtochiy and Skolnikov [23] (for details on this, see Remark 2.1).
In relation to this, it should be noted that [23] also studies a mean-field type game,
whereby jumps are ruled out due to the strategic possibility of disconnecting gradu-
ally from a given particle as it gets closer to absorption. We do not consider any game
components in this paper.

The formulation (1.2) can also be highly relevant for integrate-and-fire models in
mathematical neuroscience. For example, Gerstner et al. [12, Chap. 13.4] introduces
a multi-type mean-field model, while Grazieschi et al. [13] considers a random graph
model, where dependent random synaptic weights determine if the spiking of neuron
i impacts the voltage potential of another neuron j 
= i. Phrasing [13, Eq. (12)] in the
language of the particle system (2.8) in Sect. 2.3, this corresponds to having k = 1
and letting both vi := χi and ui := χi for a family (χi)i=1,...,n of i.i.d. Bernoulli
random variables, up to a scalar multiple. Thus the directed connection from i to j

is either active or inactive depending on the realisation of χiχj . It is conjectured in
[13] that the mean-field limit of this particle system should take a particular form (see
[13, Eq. (13)]), and we note that this conjecture is indeed confirmed by our conver-
gence result, saying that the limit is (1.2) with k = 1 and π = Law(χ,χ) on R × R

for a Bernoulli random variable χ with the same parameter as the χi ’s. As far as we
are aware, Inglis and Talay [18] were the first to study mean-field convergence for
integrate-and-fire model with excitatory feedback and asymmetric synaptic weights,
but the scaling is chosen in such a way that the mean-field limit becomes homoge-
neous.

Finally, we mention an interesting line of research on agent-based modelling for
macroeconomic business cycles by Gualdi et al. [14] and Sharma et al. [25]. Looking
at the average over a large class of agents, the authors derive a nonlinear PDE formu-
lation that is essentially the evolution equation for a homogeneous version of (1.2).
Our framework highlights a tractable route to rigorously incorporating heterogeneity
in these models, even after averaging, as the analysis takes place at the mean-field
level from the beginning.

1.3 Summary of themain technical contributions

The most important contribution of this paper is to give a rigorous justification of
the convergence discussed in Feinstein and Søjmark [10], connecting a finite particle
system to a suitable notion of solution for the mean-field problem (1.2). The pre-
cise statements are given in Sect. 2 below, while the proofs follow in Sects. 3–5. As
per Remark 2.1, our analysis also covers the mean-field problem of Nadtochiy and
Shkolnikov [23].
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Our main technical contributions concern the proof of Theorem 2.6, which pro-
vides the rigorous mean-field convergence result. Overall, the path we follow is sim-
ilar to Delarue et al. [8], Ledger and Søjmark [21] and Nadtochiy and Shkolnikov
[22], but new ideas are needed to deal with the heterogeneity and higher generality,
as we discuss in what follows.

Since (1.2) allows a continuum of types, it is not immediately clear that we can
hope to have solutions so that the processes Xu,v are measurable in the type vectors
(u, v). In relation to this, a first novel aspect compared to [8, 21, 22] is the identifica-
tion of a suitable notion of solution, given by the formulation (2.14) and (2.15). This
addresses the aforementioned issue by working instead with the laws of the processes
through a notion of random Markov kernels (see Definition 2.5). Here the random as-
pect must also address both the fact that the common factor produces conditional
limiting laws and the fact that the finite empirical measures need not become adapted
to the common factor in the limit; note that this last point is analogous to Ledger and
Søjmark [21].

Once we have a workable notion of solution, the second main difference from
[8, 21, 22] lies in how we set up the probabilistic framework for working with the
limit points in Sect. 3.3. This is ultimately what allows us to characterise the limit
points as solutions to the desired McKean–Vlasov system. The approach is inspired in
part by [21], but the precise constructions are closely tied in with the identification of
our new notion of solution, and the reliance of this on the concept of random Markov
kernels necessitates a more careful approach based on disintegration of measures.

The details of the constructions in Sect. 3.3 are crucial to the proof of the key
continuity result in Lemma 3.5, as well as the subsequent martingale arguments in
Propositions 3.7 and 3.8, which complete the proof of Theorem 2.6. The proofs of
these two propositions draw inspiration from Ledger and Søjmark [21], but the ar-
guments need to be tailored to the setting of Sect. 3.3 and, most importantly, we
need a more delicate use of Skorokhod’s representation theorem to exploit the form
of Lemma 3.5. In particular, the required continuity of the relevant functionals does
not hold in general almost surely for the limiting laws, but only when passing along
suitable sequences.

In terms of ensuring that limit points exist, the nonexchangeability of the par-
ticle system means that a little more care is needed in the arguments related to
M1-tightness in Lemma 3.1 and Proposition 3.2. However, this does not present sig-
nificant new challenges once it is observed that we can obtain good estimates for each
particle that are uniform across the type space.

Finally, we return to the key Lemma 3.5, where we confront the convergence of
the contagious component of the particle system. In an earlier version of this paper,
we relied on an adaptation of [21, Lemma 3.13], but a referee brought our attention
to an unfortunate lacuna in the proof of that lemma. We have resolved this through
Proposition 3.4 and its use in the proof of Lemma 3.5. In relation to the original
work of Delarue et al. [8], Proposition 3.4 plays a role akin to [8, Lemma 5.9] and
Lemma 3.5 then plays a role akin to [8, Lemma 5.6 and Proposition 5.8]. Already
because of the common Brownian motion, the proof of [8, Lemma 5.9] does not
apply to our setting. Nevertheless, inspired by their approach, we can instead average
over the laws of the particles (accounting also for the heterogeneity) and arrive at an
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almost sure continuity result for the first hitting time of zero as a function on the path
space with respect to the M1-topology. We then give a short self-contained proof of
the key Lemma 3.5, which is more streamlined than its analogues [8, Lemma 5.6 and
Proposition 5.8] in the sense that it follows more directly from the critical use of the
M1-topology in Proposition 3.4 rather than relying both on this and another technical
M1-argument as in [8, Proposition 5.8].

2 Well-posedness andmean-field convergence

As is known already from the homogeneous versions, we cannot in general expect
(1.2) to be well posed globally as a continuously evolving system; see e.g. Hambly
et al. [15, Theorem 1.1]. Due to the feedback effect from the gradual loss of mass,
the rate of change for the contagion processes t �→ Lh

t can explode in finite time, and
jumps in the loss of mass may materialise from within the system itself.

First we show that this need not always be the case, by presenting a simple unique-
ness result under a smallness condition on the interactions which guarantees that (1.2)
evolve continuously in time independently of the realisations of the common factor.
Moreover, we show that when restricting to the idiosyncratic setting of ρ = 0 where
the common factor B0 disappears, one can obtain a local result on uniqueness and
regularity up to an explosion time. Next, we introduce a finite particle system which
is a general formulation of the one coming from the interbank model in Feinstein and
Søjmark [10]. It is this particle system that underpins our interest in (1.2), and our
main result comes down to showing that in a suitable sense, there is weak conver-
gence to the heterogeneous McKean–Vlasov system (1.2) as the number of particles
tends to infinity.

Remark 2.1 Also motivated by the modelling of contagion in financial markets, Nad-
tochiy and Shkolnikov [23] were the first to study a multi-type system very close
to (1.2). Specifically, they use a generalised Schauder fixed point approach to show
existence of solutions for a coupled McKean–Vlasov system of the form

⎧
⎪⎨

⎪⎩

Xx
t =Xx

0 +Zx
t +C(x)

∫

X
G(P[τy > t])μ(x, dy),

τ x = inf{t ≥ 0 :Xx
t ≤ 0}, x ∈ X ,

(2.1)

where X is an abstract finite set and each Zx is an exogenous stochastic process
with suitable regularity properties. A typical example is dZx

t = bx(t)dt + σx(t)dW
x
t .

As per [23, Remark 2.5], their analysis also allows a common Brownian motion.
By the assumptions on G in [23], we can define a nondecreasing and nonnegative
function F̃ : [0,1] →R+ by F̃ (s) := −G(1−s) for s ∈ [0,1], with F̃ (0)= 0. Taking
k := |X |, it is then straightforward to define π as a convex combination of k point
masses on fixed nonnegative vectors (u1,v1), . . . , (uk,vk) in such a way that (2.1)
becomes equivalent to (1.2) with F = Id, gu,v ≡ 1 and

Lh
t =

∫

Rk×Rk

uh F̃ (P[t ≥ τu,v|B0])dπ(u, v), t ≥ 0, h= 1, . . . , k.
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Since π defined from (2.1) has finite support, (1.2) further simplifies to a system of

k representative processes Xuh,vh
t for h= 1, . . . , k in this case. We note that it would

not pose any problems to incorporate a function F̃ as above into our analysis (in
addition to F ), but we leave this out to avoid clouding the notation (noting also that
our main motivating applications do not call for it).

2.1 On the jumps of the heterogeneousMcKean–Vlasov system

It is known already for the simplest homogeneous version of (1.2) (as studied in
Delarue et al. [8], Hambly et al. [15] and Nadtochiy and Skolnikov [22]) that if the
feedback effect is strong enough, then solutions cannot be continuous globally in time
[15, Theorem 1.1] and one is furthermore left with a non-unique choice of the jump
times and jump sizes even when restricting to càdlàg solutions (see [15, Example 2.2]
for a stylised example).

For clarity, let us consider the multi-type version of (1.2) with F = Id and gu,v ≡ 1,
as just discussed in Remark 2.1 above (concerning (2.1), we also take F̃ := Id). Due
to the finite support of π , we can then let πh := π({(uh,vh)}) and observe that the
contagion processes simplify to

Lh
t = πhP[t ≥ τuh,vh |B0] for h= 1, . . . , k.

In the homogeneous problem, it is natural to let the jump times and jump sizes be
fixed by the so-called physical jump condition, first introduced in [8]. A possible
analogue of this for the multi-type system (2.1) was briefly discussed in Nadtochiy
and Shkolnikov [23]. The authors did not attempt to work with this condition, but
rather emphasised that it would appear less clear if there is a condition more natural
than others in the multi-type setting. After some straightforward manipulations of
[23, Eqs. (2.16) and (2.17)], the condition discussed in [23] can be seen to take the
simpler form


Lh
t = πhP

[
Xh
t− ∈ [0,Dt ], t ≤ τh

∣
∣B0], h= 1, . . . , k,

Dt := inf

{

z > 0 :
k∑

i=1

vij πiP
[
Xi
t− ∈ [0, z], t ≤ τi

∣
∣B0]< z, j = 1, . . . , k

}

, (2.2)

where we have set Xh := Xuh,vh and τh := τuh,vh for h = 1, . . . , k. If k = 1, this is
precisely the physical jump condition for the homogeneous problem. When k ≥ 2,
however, an issue presents itself, which highlights some of the new difficulties in the
multi-type setting. Indeed, (2.2) dictates that for each type h = 1, . . . , k, the jump
size of Lh at time t is equal to a multiple πh of the total mass given by the density
of Xh

t− on [0,Dt ]. At the same time, a careful inspection of the dynamics in (1.2)
reveals that such jump sizes, for each type, must cause mean-field particles of type
j to shift exactly the mass given by its density on [0,∑k

i=1 vij πi
Li
t ] through the

origin, meaning that it is this amount of mass that ends up being absorbed. However,
this does not agree with the previous observation, unless it happens that Dt equals∑k

i=1 vij πi
Li
t for all j = 1, . . . , k at the given time. Thus the jump condition (2.2)

is in general not consistent with the prescribed dynamics of the mean-field particles.
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Throughout the paper, we often refer to the total loss process

Lv
t :=

k∑

h=1

vhLh
t for all t ≥ 0, v ∈ S(V ), (2.3)

defined in agreement with the general formulation (1.1). With this notation, it was
suggested in Feinstein and Søjmark [10] that a sensible condition for the jump sizes
could amount to insisting that for every t ≥ 0, almost surely,

⎧
⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎩


Lh
t =�h(t,
L

( · )
t ), 
Lv

t = lim
ε↓0

lim
m→∞


(m,ε)
t,v ,



(m,ε)
t,v :=

k∑

h=1

vh�h(t; ε +

(m−1,ε)
t,( · ) ), 


(0,ε)
t,v :=

k∑

h=1

vh�h(t; ε),
(2.4)

where the maps �h for h= 1, . . . , k are defined by

�h(t;f ) :=
∫

Rk×Rk

uhP
[
X
u,v
t− ∈ [0,
u,v(t;f )], t ≤ τu,v

∣
∣B0]dπ(u, v), (2.5)


u,v(t;f ) := F

(∫ t−

0
gu,v(s)dL

v
s + gu,v(t)f (v)

)

− F

(∫ t−

0
gu,v(s)dL

v
s

)

, (2.6)

for all functions f : Rk → R+. This corresponds to shocking the system by a small
amount and tracking the contagious effects for infinitely many rounds (m→ ∞) be-
fore then sending the order of the shock to zero (ε ↓ 0). It was observed in [10, Propo-
sition 3.5] that any càdlàg solution (1.2) must satisfy 
Lv

t = ∑k
h=1 vh�h(t,
L

( · )
t )

for all v ∈ S(V ) at every t ≥ 0. Noting that 
(m,ε)
t,v is a bounded sequence increasing

in both m and ε, we can apply dominated convergence in (2.4) to see that the afore-
mentioned constraint is satisfied; so (2.4) is consistent with the dynamics in (1.2).

In Sect. 2.3, we work with a similar-looking condition (2.12) for the jump sizes of
the finite particle system. We suspect that (2.4) will be satisfied by the limit points of
this particle system. However, we have not yet been able to prove this. Compared to
the arguments in [8, 21], which show that limit points of the homogeneous particle
system must satisfy the physical jump condition mentioned above, it becomes harder
to work with notions of minimality for comparing solutions and it is complicated to
keep track of the influence of the heterogeneity.

In this paper, the only result we prove involving (2.4) is the last part of Theo-
rem 2.3 below. Other than that, any further analysis of jump size conditions is left
for future research along with the question of whether (2.5) is satisfied by the limits
points of the particle system.

2.2 Two results on uniqueness and regularity

In Feinstein and Søjmark [10, Theorem 3.4], a simple smallness condition for the
feedback was derived for a particular version of (1.2), ensuring continuity globally in
time for all realisations of the common noise B0. Here we show that this condition
naturally leads to pathwise global uniqueness of (1.2).
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Theorem 2.2 Let Assumptions 1.1 and 1.2 be satisfied. Moreover, suppose that all the
mean-field particles Xu,v have initial densities p0( · |u,v) satisfying the condition

‖p0( · |u,v)‖∞ < gu,v(0)‖F‖Lip
1

max{u · v̂ : v̂ ∈ S(V ) such that u · v̂ > 0} (2.7)

for all (u, v) ∈ S(U,V ), where 1/max∅ = +∞. Then each Xu,v must be continuous
in time, for any solution to (1.2), and there is uniqueness of solutions.

We note that (2.7) corresponds to Feinstein and Søjmark [10, (3.15)] except for an
explicit choice of gu,v in [10]. Thus the statement about continuity in time of each
Xu,v follows precisely as in [10, Theorem 3.4]. The uniqueness part of the theorem
is proved in Sect. 4, using the ideas from Ledger and Søjmark [20]. Unfortunately,
we are unable to say much about general uniqueness and regularity properties of
(1.2) in the absence of the above smallness condition (2.7). Nevertheless, we do have
the following local uniqueness and regularity result for the purely ‘idiosyncratic’
problem without the common noise.

Theorem 2.3 Let Assumptions 1.1–1.3 be in place. Then there exists a solution to
(1.2) on some interval [0, T�) for which the contagion processes L1, . . . ,Lk are con-
tinuously differentiable up to the explosion time

T� := sup

{

t > 0 :
k∑

h=1

‖∂tLh
( · )‖L2(0,t) <∞

}

> 0,

and for every t < T�, we have ∂sLh
s ≤Ks−(1−β)/2 on [0, t] for some constant K > 0,

for each h= 1, . . . , k. Moreover, if there is another càdlàg solution to (1.2) with jump
sizes smaller than or equal to those given by the cascade condition (2.4), then such a
solution must coincide with the above solution on [0, T�).

The proof of Theorem 2.3 is the subject of Sect. 5. It is proved by suitably adapting
the arguments from Hambly et al. [15]. For Theorem 2.3 to be truly interesting, one
would need to know that the cascade condition (2.4) is satisfied by the limit points
of the particle system presented in the next section. We believe this to be true, but
the question is left for future research. Likewise, this paper does not address whether
there exist solutions satisfying (2.4) beyond their first jump time.

2.3 The connection to a finite particle system

In this section, we introduce a general form of the particle system studied in Feinstein
and Søjmark [10]. For details on the motivating application to solvency contagion, we
refer to the balance-sheet-based formulation in [10, Sect. 2] and the reformulation as
a stochastic particle system in [10, Proposition 3.1]. Here we consider the general
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system of interacting real-valued càdlàg processes (Xi)i=1,...,n satisfying

⎧
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

dXi
t = bi(t)dt + σi(t)dW

i
t − dF

( k∑

h=1

vih

∫ t

0
gi(s)dLh;i,n

s

)

,

Lh;i,n
t = 1

n

n∑

j=1

1{j 
=i}ujh1{t≥τj }, τi = inf{t ≥ 0 :Xi
t ≤ 0},

W i
t = ρB0

t +
√

1 − ρ2Bi
t , Xi(0)= ϕ(ui, vi, ūi , v̄i , ξi),

(2.8)

where (Bi)i=0,...,n is a family of independent Brownian motions, the vectors
ūi , v̄i ∈R

k are given by

ūih := 1

n

n∑

j=1

1{j 
=i}ujh and v̄ih := 1

n

n∑

j=1

1{j 
=i}vjh,

and (ξi)i=1,...,n is a sequence of i.i.d. random variables with common law Pξ . As in

the mean-field problem, we require solutions to satisfy Lh;i,n
0 = 0 for all h= 1, . . . , k

and all i = 1, . . . , n. The coefficients bi , σi and gi are taken to be continuous func-
tions of the form

bi(t)= b(ui, vi, t), σi(t)= σ(ui, vi, t), gi(t)= g(ui, vi, ūi , v̄i , t),

with continuity in all variables. In order to have convergence of this system as n→∞,
the key requirement is that there is an underlying distribution π ∈ P(Rk × R

k) for
the indexing vectors such that we have weak convergence

1

n

n∑

i=1

d(δui ⊗ δvi )(u, v)−→ dπ(u, v) as n→ ∞ (2.9)

in P(Rk ×R
k), and in turn also weak convergence

1

n

n∑

i=1

d(δui ⊗ δvi ⊗ δXi
0
)(u, v, x)−→ dP0(x|u,v)dπ(u, v) as n→ ∞ (2.10)

in P(Rk ×R
k × (0,∞)), where P0( · |u,v) := Pξ ◦ ϕ̃−1

u,v for

ϕ̃u,v(x) := ϕ(u, v,E[U ],E[V ], x)

with the usual notation (U,V )∼ π . This holds e.g. when (ui, vi)i∈N are i.i.d. samples
from a desired distribution π , drawn independently of (ξi)i∈N, which is the setting of
the financial model in [10].
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The full set of assumptions for the particle system is collected in a single statement
below. As we detail in Lemma 3.3, these assumptions automatically ensure that the
limiting distribution π in (2.9) satisfies Assumption 1.1 from above.

Assumption 2.4 We assume the coefficients satisfy Assumption 1.2, where g is now
of the slightly more general form g(u, v, ū, v̄, t). Additionally, we assume that ϕ in
the definition of Xi

0 is a measurable function, and that σui,vi ( · ) ∈ Cβ([0, T ]) for some
β > 1/2 with the Hölder norms bounded uniformly in i = 1, . . . , n and n ≥ 1. Fur-
thermore, we assume there is a constant C > 0 so that |ui |+ |vi | ≤ C for i = 1, . . . , n
and n ≥ 1, and we assume ui · vj ≥ 0 for i, j = 1, . . . , n and n ≥ 1. Finally, we ask
that the weak convergence (2.9) and (2.10) holds with P0 satisfying Assumption 1.3.

After some inspection, the particle system (2.8) reveals itself to be non-unique
as it is, since the dynamics may allow different sets of absorbed particles whenever
a particle reaches the origin. Thus it becomes necessary to make a choice. In the
interbank model of [10], it was shown that a Tarski fixed point argument gives a
greatest and least càdlàg clearing capital solution to (2.8), and [10, Proposition 3.1]
established that selecting the greatest clearing capital solution of this system amounts
to letting the sets of absorbed particles be given by the discrete ‘cascade condition’
that we now describe.

By analogy with the total loss process (2.3), we also introduce a total loss process

(v, t) �→ L
v,n
t := 1

n

n∑

j=1

v · uj1{t≥τj } =
k∑

h=1

vh(Lh;i,n
t + uih1{t≥τ i })

for the finite particle system, and similarly to (2.5) and (2.6), we then define the maps

�n(t, f, v) :=
k∑

h=1

vh�
n
h(t;f ), �n

h(t, f ) :=
n∑

j=1

u
j
h1{Xj

t−∈[0,
n
j (t;f )],t≤τj },


n
j (t, f ) := F

(∫ t−

0
gj (s)dL

vj ,n
s + gj (t)f (v

j )

)

− F

(∫ t−

0
gj (s)dL

vj ,n
s

)

for h = 1, . . . , k and j = 1, . . . , n, where we stress that at any time t , the values of
�n(t, f, v) and 
n

j (t, f ) are completely specified in terms of the ‘left-limiting state’
of the particle system. That is, the maps are well defined at time t without any a priori
knowledge of which particles (if any) will be absorbed at time t . Armed with these
definitions, we declare that at any time t , the set of absorbed particles (possibly the
empty set) is given by

Dt := {i : τi = t} := {i :Xi
t− −
n(t;
L( · ),n

t ; i)≤ 0, τi ≥ t}, (2.11)

with corresponding jump sizes


Lh;i,n
t = 1

n

∑

j∈Dt

1{j 
=i}ujh =�n
h(t,
L

( · ),n
t )− uih1{i∈Dt },
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where the mapping v �→
L
v,n
t in (2.11) is determined by the cascade condition


L
v,n
t = lim

m→n


n,(m)
t,v for

{


n,(m)
t,v :=�n(t,


n,(m−1)
t,( · ) , v), m= 1, . . . , n,



n,(0)
t,v :=�(t;0, v).

(2.12)
Together, (2.11) and (2.12) specify the set of absorbed particles at any given time
and the corresponding jumps in the total feedback felt by the particles. Rephrasing
the main conclusion of Feinstein and Søjmark [10, Proposition 3.1], the two defin-
ing properties of this cascade condition for the contagion mechanism are that (i) the
specification of the set Dt of absorbed particles is consistent with the dynamics (2.8),
and (ii) it gives the càdlàg solution with the greatest values of (X1

t , . . . ,X
n
t ) in the

sense that any other consistent càdlàg specification of Dt would yield lower values
for at least one of the particles while not increasing the values of any of them. This is
what gives us the greatest clearing capital in the interbank system from [10].

To connect the particle system (2.8) with the coupled McKean–Vlasov problem
(1.2), we work with the empirical measures

Pn := 1

n

n∑

i=1

δui ⊗ δvi ⊗ δXi , n≥ 1, (2.13)

where the family (Xi)i=1,...,n is the unique strong solution to (2.8) equipped with the
cascade condition (2.11), (2.12). We stress that each Xi is viewed as a random vari-
able with values in the Skorokhod path space DR =DR([0, T ]) for a given terminal
time T > 0. When working to identify the limiting behaviour of (2.13) as n→ ∞, it
will be helpful to have a precise concept of a random Markov kernel, which we intro-
duce next. In terms of notation, we remark that as in (2.13), we use boldface notation
whenever we define a random probability measure.

Definition 2.5 By a Markov kernel P = (Px)x∈X on DR, for a given Polish space X ,
we understand a probability-measure-valued mapping x �→ Px ∈ P(DR) such that
x �→ Px[A] is Borel-measurable for any A ∈ B(DR). We say that P = (Px)x∈X is
a random Markov kernel on DR if the mapping x �→ Px assigns to each x ∈ X a
random probability measure Px : � → P(DR) on a fixed Polish background space
such that (x,ω) �→ Px(ω)[A] is Borel-measurable for all A ∈ B(DR).

We can now state our main result about the limit points of the empirical measures
(2.13) as we send the number of particles to infinity.

Theorem 2.6 Let (Pn)n≥1 be the sequence of empirical measures defined in (2.13)
and let Assumption 2.4 be satisfied. Then any subsequence of (Pn)n≥1 has a further
subsequence, still indexed by n, such that (Pn,B0) converges in law to a limit point
(P�,B0). For any such limiting pair, we can identify P� with a random Markov kernel
(P�u,v)(u,v)∈Rk×Rk on DR (in the sense of Definition 2.5) satisfying

∫

φ dP�u,v = E[φ(Xu,v;�)|P�,B0] for (u, v) ∈ R
k ×R

k, (2.14)



676 Z. Feinstein, A. Søjmark

for all Borel-measurable functions φ : DR → R, where the processes Xu,v;� are
càdlàg solutions to the coupled McKean–Vlasov system

⎧
⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎩

dX
u,v;�
t = bu,v(t)dt + σu,v(t)dW

u,v
t − dF

( k∑

h=1

vh

∫ t

0
gu,v(s)dLh;�

s

)

,

Lh;�
t =

∫

Rk×Rk

uhP[t ≥ τ �u,v|P�,B0]dπ(u, v), h= 1, . . . , k,

τ �u,v = inf{t > 0 :Xu,v;�
t ≤ 0}, W

u,v
t = ρB0

t +
√

1 − ρ2B
u,v
t .

(2.15)

Furthermore, there is independence of the pair (P�,B0), the particle-specific Brown-
ian motions Bu,v and the initial conditions Xu,v

0 .

The proof of Theorem 2.6 is the subject of Sect. 3. Here we only briefly discuss
the intuition behind the identification of P� as a random Markov kernel and what
the proof of Theorem 2.6 can then be boiled down to. Firstly, note that the empirical
measures Pn are random probability measures on R

k × R
k ×DR; so it is natural to

work with weak convergence on this space. Thus a given limit point (P�,B0) yields in
the first instance a random probability measure on R

k ×R
k ×DR. Nevertheless, due

to (2.9), we can consider P� as a random variable P� :�→ Pπ (DR), where the range
Pπ (DR) denotes the space of all Borel probability measures μ ∈ P(Rk ×R

k ×DR)

with fixed marginal μ ◦ p
−1
1,2 = π for p1,2(u, v,μ) = (u, v). This space Pπ (DR) can

then be seen to be isomorphic to the space of all Markov kernels (νu,v)(u,v)∈Rk×Rk

for DR under the identification

(νu,v)(u,v)∈Rk×Rk
∼= ν(dη) :=

∫

Rk×Rk

νu,v(dη)dπ(u, v).

For any limit point of the empirical measures, we thus have a random probability
measure P� : � → Pπ (DR) corresponding to a random Markov kernel for DR via
the identification

(
P�u,v(ω)

)

(u,v)∈Rk×Rk
∼= P�(ω),

which is to be understood ω by ω, where the key requirement is that the mapping
(u, v,ω) �→ P�u,v(ω)[A] must be measurable for every A ∈ B(DR).

In view of the above, checking that a limit point P� yields a solution to the desired
McKean–Vlasov system (2.15) amounts to checking that each P�u,v realises the condi-
tional law of Xu,v,� on the path space DR given the pair (B0,P�), which is precisely
(2.14). In particular, we are looking for the relations

∫

f (u, v)φ(η)dP�(u, v, η)=
∫

Rk×Rk

f (u, v)E[φ(Xu,v;�)|P�,B0]dπ(u, v)

=
∫

Rk×Rk

f (u, v)

∫

DR

φ(η)dP�u,v(η)dπ(u, v)
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for all Borel-measurable f : Rk × R
k → R and φ : DR → R. The proof of Theo-

rem 2.6 is implemented in this spirit, by constructing a random Markov kernel from
a given limiting pair (P�,B0) in a way that the above relations can be conveniently
verified (see in particular Proposition 3.8).

Remark 2.7 We note that the empirical measures Pn become independent of the id-
iosyncratic noise in the limit, but the theorem does not guarantee that the correspond-
ing limit points become strictly a function of the common noise, which explains the
appearance of P� on the right-hand side of (2.14) and (2.15). Nonetheless, (P�,B0)

being independent of the idiosyncratic noise means that this system is qualitatively
the same as (1.2). Analogously to Ledger and Søjmark [21], (2.14), (2.15) is a ‘re-
laxed’ solution of the heterogeneous system (1.2). This is similar to the weak solution
concepts for mean-field games introduced in Carmona et al. [5] and later considered
for general McKean–Vlasov SDEs in Hammersley et al. [17].

Whenever there is pathwise uniqueness of (2.15), we get a unique mean-field limit,
given by a pair (P�,B0) for which P� is in fact B0-measurable. In particular, we then
have full convergence of the particle system, and the additional appearance of P� in
the conditioning on the right-hand sides of (2.14) and (2.15) can be dropped. Since
we have established results on conditions for uniqueness with continuous dynamics,
we get the following result.

Theorem 2.8 Under the assumptions of Theorem 2.2, there is uniqueness of the limit
points in Theorem 2.6, and therefore (Pn,B0) converges in law to a unique limit
(P�,B0). Moreover, this limit is now characterised by a Brownian motion B0 and a
random Markov kernel (P�u,v)(u,v)∈Rk×Rk satisfying

∫

φ dP�u,v = E[φ(Xu,v)|B0]

for all Borel-measurable φ : DR → R, where the system (Xu,v)(u,v)∈Rk×Rk consti-
tutes the unique family of continuous processes obeying the dynamics (1.2) with B0

independent of each Bu,v .

Following the arguments in Ledger and Søjmark [20, Theorem 2.3], the proof of
Theorem 2.8 is a consequence of Theorem 2.6 together with the estimates in Sect. 4.

3 Limit points of the particle system

This section is dedicated to the proof of Theorem 2.6. Our first task is to establish a
suitable tightness result for the pairs (Pn,B0), which is done in Sect. 3.2, and then
we conclude in Sect. 3.3 that the resulting limit points (P�,B0) can be characterised
as solutions to (2.14), (2.15).

To implement these arguments, we follow the broad approach of Ledger and Søj-
mark [21], which in turn builds on several antecedent ideas from Delarue et al. [8].
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Since [21] deals with a symmetric particle system, substantial adjustments to the ar-
guments are needed, but the overall flavour remains that of identifying a limiting
martingale problem, as is typical for convergence results of this type. More generally,
we stress that our particle system is not exchangeable and the positive feedback from
defaults is of a rather singular nature; so the setting is quite different from the classical
frameworks for propagation of chaos. In particular, the singular interaction leads us
to work with Skorokhod’s M1-topology as in [8, 21, 22]. This is very different from
the related work by Inglis and Talay [18], discussed in the next subsection, where the
particles are smoothly interacting. For a careful introduction to the M1-topology, we
refer to the excellent monograph by Whitt [27, Sects. 3.3 and 12.3].

3.1 A different approach to the heterogeneity

As we mentioned in the introduction, the first paper to look at heterogeneity in particle
systems with a contagion mechanism similar to (2.8) is [18], and this remains to
the best of our knowledge the only paper to have examined the issue of mean-field
convergence for such particle systems.

The analysis in [18], however, differs quite substantially from ours, since the con-
tagion mechanism is smoothed out in time. So there are no explosion times nor jumps
to consider, neither in the approximating particle system nor in the mean-field limit;
see the dynamics in (3.1) below. Also, there is no common noise to deal with as the
system is driven by fully independent Brownian motions. Unsurprisingly, however,
there are certainly some similarities in the proofs of tightness and convergence, but
we need a different topology in order to have tightness, and, as we turn to next, the
heterogeneity in our system plays out very differently in the analysis.

Indeed, the ‘philosophy’ of how the heterogeneity is dealt with in [18] when pass-
ing to a mean-field limit is entirely different from ours. While our aspiration is to
see the heterogeneous structure reflected in the limiting problem, [18] is interested
in justifying how a homogeneous limiting problem can also serve as a reasonable
approximation to a large particle system with heterogeneous interactions. Slightly
simplified and reformulated for the positive half-line, the contagious particle system
in [18] takes the form

dXi
t = b(Xi

t )dt + σ(Xi
t )dB

i
t − d

∫ t

0
�(t − s)Li,n

s ds,

L
i,n
t := 1

Sni

n∑

j=1

Jij1{t≥τj }, (3.1)

with τi = inf{t > 0 :Xi
t ≤ 0} and Sni :=∑n

j=1 Jij for i = 1, . . . , n. Clearly, the asym-
metry of the so-named synaptic weights Jij means that each particle in (3.1) can feel
the contagion in a very different way. However, following on from the above, [18]
is interested in connecting the limiting behaviour of this heterogeneous system to a
single homogeneous McKean–Vlasov problem

dXt = b(Xt )dt + σ(Xt )dBt − d

∫ t

0
�(t − s)Lsds, Lt := P[t ≥ τ ], (3.2)
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where as usual τ = inf{t > 0 : Xt ≤ 0}. After some results on the well-posedness
of (3.2), [18] attacks the aforementioned idea by tracking the particle system (3.1)
through the particular families of weighted empirical measures

Pn
i := 1

Sni

n∑

j=1

Jij δXi , n≥ 1, for each i = 1, . . . , n.

The main result then says that provided we have

1

(Sni )
2

n∑

j=1

(Jij )
2 −→ 0 as n→ ∞, for all i = 1, . . . , n,

each (P n
i )n≥1 converges weakly to the law of the unique solution to (3.2), indepen-

dently of the index i and independently of any other aspects of the heterogeneity.
As a minor caveat, however, there seems to be a problem with the proof of [18,

Theorem 2.4] underlying the above convergence. Specifically, the first objective is to
verify that for any given i, the weighted empirical measures Pn

i converge to some P
as n → ∞, where P solves a suitable nonlinear martingale problem associated with
the desired McKean–Vlasov limit independently of i. On close inspection, a crucial
step in [18, Sect. 5.3] towards affirming the aforementioned result relies on having

φ(Xi
t )− φ(Xi

s)−
∫ t

s

L(r,P n
j )
φ(Xi)dr =

∫ t

s

σ (Xi
r )φ

′(Xi
r )dB

i
r

for i 
= j , for a suitable time- and measure-dependent differential operator L, yield-
ing the martingale problem. However, since L(·,P n

i )
can be seen to give the generator

of the ith particle and Pn
i can differ significantly from Pn

j depending on the structure
of the synaptic weights (Jij )i,j≤n, the above equality would not appear to hold in
general. It is not clear that this discrepancy can be fixed given just the assumptions
mentioned above, but one should certainly be able to handle it by placing additional
constraints on the Jij so that an error term can be singled out which becomes neg-
ligible in the limit. Alternatively, one could apply the methodology of the present
paper in order to arrive at a heterogeneous mean-field limit, using a kernel structure
Jij = κ(uj , vi) to capture the asymmetry of the synaptic weights.

3.2 Tightness for the finite particle systems

We wish to work with convergence in the Skorokhod space on compact time intervals
[0, T ]. This involves pointwise convergence at the initial time t = 0 with the limiting
system having zero loss at this time, as required by our notion of solution. To ensure
this, we establish uniform control over the smallness of the total feedback near the
initial time, which is the subject of the next lemma. Concerning the final time, we only
obtain convergence for continuity points of the limiting system. To establish tightness
without an analogue of the next lemma at the endpoint, we extend the particle system
continuously beyond its final time T as in Delarue et al. [7]. If one is not interested
in ensuring initial regularity, one could also consider continuously embedding the
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particle system in the larger time interval [−1, T ] as in the recent paper by Cuchiero
et al. [6], allowing more general initial conditions.

Lemma 3.1 Let Assumption 2.4 be satisfied and define

F
i,n
t := F

( k∑

h=1

vih

∫ t

0
gi(s)dLh;i,n

s

)

, i = 1, . . . , n, n≥ 1, (3.3)

for all t ≥ 0. For any ε > 0 and δ > 0, there is a small enough t = t (ε, δ) > 0
such that

lim sup
n→∞

max
i≤n P[F i,n

t ≥ δ]< ε. (3.4)

Proof Let ε, δ > 0 be given. Define for i ≤ n the positive constants

Mi := gi(0)‖F‖Lip max{ui · v : v ∈ S(V )}.
Then F i,n in (3.3) satisfies F i,n

s − F
i,n
s− ≤ Mi |Ds | at any time s ≥ 0, where |Ds | is

the number of particles absorbed at time s, given by the cascade condition (2.11),
(2.12). By Assumption 2.4, the set S(V ) is compact and the ui likewise belong to the
compact set S(U); so we can take M > 0 large enough such that Mi ≤M uniformly
in i ≤ n and n≥ 1. This yields a bound on the jumps of each particle, namely

0 ≤ −(Xi
s −Xi

s−)= F i,n
s − F

i,n
s− ≤ M

n
|Dt | (3.5)

for any s > 0. Next, we consider the number of particles starting within a distance
of δ from the origin, as given by

Nn
0,δ :=

n∑

j=1

1{Xj (0)∈(0,δ]},

and we then split the probability of interest (3.4) into

P[F i,n
t ≥ δ] = P

[
F i
t ≥ δ,Nn

0,δ ≤ �nδ/4M�]+ P
[
Nn

0,δ > �nδ/4M�]. (3.6)

By the weak convergence (2.10) as enforced by Assumption 2.4, we get

lim sup
n→∞

P
[
Nn

0,δ > �nδ/4M�]= 0, (3.7)

provided that
∫

Rk×Rk

∫ δ

0
p0(x|u,x)dxdπ(u, v) < δ/4M.

Using the bound on p0( · |u,v) from Assumption 1.3, we see that the left-hand side of
the above inequality is of order O(δ1+β) as δ ↓ 0, for some β > 0. However, decreas-
ing δ > 0 only increases the probability (3.4). Therefore, without loss of generality,
we can assume that (3.7) is satisfied for our fixed δ > 0.
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Now let ςi = inf{s > 0 : F i,n
s > δ/2}. For any i ≤ n, we claim that on each of the

events {F i,n
t ≥ δ,Nn

0,δ ≤ �nδ/4M�}, there must be at least �nδ/8M� of the more than

n− �nδ/4M� particles Xj with initial positions Xj(0) > δ which also satisfy

inf
s<ςi∧t

X
j
s −X

j

0 ≤ 5δ/8. (3.8)

Indeed, if there were strictly less than �nδ/8M� such particles (on any of the given
events), then there could be at most a total of

(�nδ/8M� − 1)+ k ≤ �nδ/8M� + �nδ/4M� ≤ 3nδ/8M

particles Xj with τj < ςi ∧ t or Xj
ςi∧t− = 0 (on that event), which by (3.5) can only

cause a downward jump of all other particles by at most 3δ/8. But this would be insuf-
ficient for any particle Xj with X

j

0 > δ that does not satisfy (3.8) to be absorbed be-

fore or at time ςi ∧ t . Thus again by (3.5), we should end up with F i,n
ςi∧t ≤ 3δ/8 ≤ δ/2,

and hence also F i,n
t ≤ 3δ/8, which contradicts F i,n

t ≥ δ. It follows that for each i ≤ n,
we must in particular have

P
[
F
i,n
t ≥ δ,Nn

0,δ ≤ �nδ/4M�]≤ P
[
N̂

i,n
t,δ ≥ �nδ/8M�],

where

N̂
i,n
t,δ :=

n∑

j=1

1{infs<ςi∧t X
j
s −X

j
0≤5δ/8}.

By definition of each ςi and Assumption 2.4, there is a uniform c > 0 such that
(3.8) implies

inf
s≤t Y

i
s − ct − sup

s≤t
|Zi

s | − 3δ/8 ≤ inf
s<ςi∧t

Xi
s −Xi

0 ≤ −δ/2

and hence

inf
s≤t Y

i
s ≤ ct + sup

s≤t
|Zi

s | − δ/8

for all i ≤ n, where Y i
s := ∫ s

0 σi(r)
√

1 − ρ2 dBi
r and Zi

s := ∫ s
0 σi(r)ρdB

0
r . Taking

t < δ2−5 and defining

Ñn
t,δ :=

n∑

j=1

1{infs≤t Y j
s ≤−δ2−4},

we thus have

P
[
N̂

i,n
t,δ ≥ �nδ/8M�]≤ P

[
Ñn
t,δ ≥ �nδ/8M�]+ P

[
sup
s≤t

|Zi
s | ≥ δ2−5

]
.
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Using the weak convergence (2.9) from Assumption 2.4 and the strong law of large
numbers for the independent Brownian motions Bi , we can deduce that

lim sup
n→∞

P[n−1Ñn
t,δ ≥ δ/8M] = 0,

provided that

∫

Rk×Rk

P

[

inf
s≤t

∫ s

0
σu,v(r)dBr ≤ δ2−4

]

dπ(u, v) < δ/8M,

where B is a standard Brownian motion. As σ is bounded uniformly in (u, v, r), this
can certainly be achieved by taking t small enough relative to δ. Moreover, taking t

small enough relative to δ also ensures that we can make

lim sup
n→∞

max
i≤n P

[
sup
s≤t

|Zi
s | ≥ δ2−5

]

as small as we like. Consequently, recalling (3.6) and (3.7), we can indeed find a
small enough t = t (δ, ε) > 0 such that

lim sup
n→∞

max
i≤n P[F i,n

t ≥ δ]< ε,

which completes the proof. �

As already mentioned in (2.13), given a family of solutions to the particle system
(2.8), on an arbitrary time interval [0, T ], we define the empirical measures

Pn := 1

n

n∑

i=1

δui ⊗ δvi ⊗ δXi for n≥ 1, (3.9)

where each Xi is a random variable with values in DR = DR([0, T ]) for the given
T > 0. Note that each Pn is then a random probability measure with values in
P(Rk ×R

k ×DR).
Our next result shows that these empirical measures are tight in a suitable sense.

The previous lemma serves as a crucial ingredient in the proof.

Proposition 3.2 Let T > 0 be given and consider the solutions ((Xi
t )t∈[0,T ])i=1,...,n

of (2.8), for all n ≥ 1, where we assume that Assumption 2.4 is satisfied. For an
arbitrary S > T , we extend the paths of Xi from [0, T ] to [0, S] by setting Xi

t :=Xi
T

for all t ∈ [T ,S]. Let Pn be the empirical measures defined as in (3.9), but with
each Xi taking values in DR = DR([0, S]), where we endow DR with Skorokhod’s
M1-topology (see e.g. Avram and Taqqu [2, Proposition 2] and Whitt [27, Sect. 12.3]).
Moreover, let P(Rk ×R

k ×DR) be endowed with the topology of weak convergence
of measures as induced by the M1-topology on DR. Then the empirical measures Pn

for n≥ 1 form a tight sequence of random variables with values in P(Rk×R
k×DR).
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Proof As in Avram and Taqqu [2, Sect. 2], we define

MXi
(t1, t, t2) :=

{
|Xi

t1
−Xi

t | ∧ |Xi
t2

−Xi
t |, Xi

t /∈ [Xi
t1
,Xi

t2
],

0, Xi
t ∈ [Xi

t1
,Xi

t2
],

and work with the oscillation function for the M1-topology given by

wδ,M1(X
i) := sup{MXi

(t1, t, t2) : 0 ≤ t1 < t < t2 ≤ T , t2 − t1 ≤ δ}.

Recalling the definition of F i,n
t in (3.3), it follows from Assumption 2.4 that the paths

t �→ F
i,n
t are increasing. Exploiting this fact, we can check that

MXi (t1, t, t2)≤ |(Xi
t1

+ F
i,n
t1
)− (Xi

t + F
i,n
t )| + |(Xi

t2
+ F

i,n
t2
)− (Xi

t + F
i,n
t )|,

and hence, using the bounds on the coefficients given by Assumption 2.4, the nice
continuous dynamics of

d(Xi
t + F

i,n
t )= bi(t)dt + ρσi(t)dB

0
t +

√

1 − ρ2 σi(t)dB
i
t

allow a simple application of Markov’s inequality and Burkholder–Davis–Gundy to
deduce

P[MXi (t1, t, t2)≥ ε] ≤ C0ε
−2|t2 − t1|2, 0 ≤ t1 ≤ t ≤ t2 ≤ T , ε > 0,

for a fixed constant C0 > 0 that is uniform in i ≤ n and n ≥ 1. Armed with this
estimate, it follows from [2, Theorem 1] that we get the bound

max
i=1,...,n

P[wδ,M1(X
i)≥ ε] ≤ C̃0ε

−2δ (3.10)

for all δ, ε > 0 and n≥ 1, for another fixed constant C̃0 > 0. Moreover, we can apply
Lemma 3.1 to deduce that

lim
δ↓0

lim sup
n→∞

max
i=1,...,n

P

[
sup

t1,t2∈[0,δ]
|Xi

t1
−Xi

t2
| ≥ ε

]
= 0, (3.11)

which is the key part of why we can get tightness for the M1-topology. At the other
endpoint, we automatically have

lim
δ↓0

sup
n≥1

max
i=1,...,n

P

[
sup

t1,t2∈[S−δ,S]
|Xi

t1
−Xi

t2
| ≥ ε

]
= 0, (3.12)

as the probability vanishes for all δ < T −S by our continuous extension Xi
t =Xi(T )

for t ∈ [T ,S]. Next, the dynamics of each Xi and Assumption 2.4 are easily seen to
imply the compact containment condition

lim sup
R→∞

sup
n≥1

max
i=1,...,n

P

[
sup

t∈[0,T ]
|Xi

t | ≥R
]

= 0. (3.13)
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By Assumption 2.4, there is a uniform constant c > 0 such that |Ui | + |Vi | ≤ c for all
i = 1, . . . , n and n≥ 1. If we consider any set K ∈ B(Rk ×R

k)⊗B(DR) of the form
K = B̄c(0)×A, where B̄c(0) is the closed ball of radius c > 0 around the origin in
R
k ×R

k , we thus have

E
[
Pn[Kc]]≤ E

[
Pn[Rk ×R

k ×Ac]]≤ max
i=1,...,n

P[Xi ∈Ac], (3.14)

and so it remains to identify a suitable set A which we can control uniformly in
i = 1, . . . , n as n→ ∞. To this end, let

A(δ,m) :=
{
η ∈DR : max

(
wδ,M1(η), sup

s,t∈[T−δ,T ]
|η(s)− η(t)|,

sup
s,t∈[0,δ]

|η(s)− η(t)|)<m−1
}
.

It follows from (3.10)–(3.12) that we can find δε,m > 0 such that

lim sup
n→∞

max
i=1,...,n

P[Xi ∈A(δε,m,m)
c] ≤ ε

2m
.

Using also (3.13) and setting

Kε,j := B̄c(0)× Āε,j , Aε,j :=
∞⋂

m=1

A(δε,m+2j ,m)∩
{
η : sup

s∈[0,T ]
|η(s)|<Rε

}

for a large enough Rε > 0, it follows from the above and (3.14) that

lim sup
n→∞

E
[
Pn[Kc

ε,j ]
]≤ lim sup

n→∞
max

i=1,...,n
P[Xi ∈Ac

ε,j ] ≤
∞∑

m=1

ε

2m+2j = ε

4j
(3.15)

for any ε > 0. By construction, each Aε,j is relatively compact in DR for the
M1-topology, as follows e.g. from the characterisation in Whitt [27, Theorem
12.12.2]; so each Kε,j is compact for the M1-topology. Moreover, (3.15) yields

lim sup
n→∞

P

[ ∞⋃

j=1

{Pn[Kc
ε,j ]> 2−j }

]

≤ lim sup
n→∞

∞∑

j=1

P
[
Pn[Kc

ε,j ]> 2−j
]

≤
∞∑

j=1

2j lim sup
n→∞

E
[
Pn[Kc

ε,j ]
]≤

∞∑

j=1

ε

2j
= ε.

It remains to note that the set
⋂∞

j=1{μ : μ(Kc
ε,j ) ≤ 2−j } is closed in P(DR) by

the Portmanteau theorem (under the topology of weak convergence of measures in-
duced by the M1-topology on DR) as each Kc

ε,j is open, and that it forms a tight
family of probability measures by construction, as each Kε,j is compact. Therefore,
Prokhorov’s theorem gives that the set is compact since P(DR) is a Polish space for
the topology we are working with. In turn, we can conclude that (Pn)n≥1 is indeed a
tight sequence of random probability measures when P(DR) is given the topology of
weak convergence induced from the M1-topology on DR. �
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3.3 Identifying a suitable probabilistic setup for themean-field limit

Recall that the empirical measures Pn are random variables taking values in the space
P(Rk ×R

k ×DR) of probability measures. For (u, v, η) ∈R
k ×R

k ×DR, we define
the coordinate projections

p1,h(u, v, η) := uh, p2,h(u, v, η) := vh, p3(u, v, η)(t) := η(t)

as well as

pt (u, v, η) := (
u,v,p3(u, v, η)(t)

)= (
u,v, η(t)

)
, p(1,2)(u, v, η) := (u, v).

Writing Pnt := Pn ◦p−1
t for t ≥ 0 and πn := Pn ◦p−1

(1,2), the conditions (2.9) and (2.10)
from Assumption 2.4 read as

dπn(u, v)−→ dπ(u, v) and dPn0(u, v, x)−→ dP0(x|u,v)dπ(u, v), (3.16)

where the mode of convergence is weak convergence of measures. Given this, we can
make the following simple observation, guaranteeing that the limiting distribution π

behaves as we should like it to behave.

Lemma 3.3 Let Assumption 2.4 be in place. Writing (U,V )∼ π , let S(U) and S(U)
denote the support of U and V , respectively. Then S(U) and S(V ) are both compact
in R

k , and we have that

u · v ≥ 0 for all u ∈ S(U) and v ∈ S(V ).

Proof First of all, the compactness follows by noting that (3.16) gives

P
[
√

|U |2 + |V |2 ≤ C
]≥ lim sup

n→∞
πn

[{(u, v) :
√

|u|2 + |v|2 ≤ C}]= 1

for a large enough C > 0, due to the Portmanteau theorem and Assumption 2.4. More-
over, again by Assumption 2.4, it holds for each n≥ 1 that

∫

Rk

πn[{u : u · v ≥ 0} ×R
k]dπn(v)= 1

n2

n∑

i,j=1

1{ui ·vj≥0} = 1.

Since the marginals are weakly convergent, by (3.16), we have weak convergence of
the product measures πn

1 ⊗πn
2 to π1 ⊗π2, and hence the Portmanteau theorem gives

∫

Rk

∫

Rk

1{u·v≥0}dπ1(u)dπ2(v)≥ lim sup
n→∞

∫

Rk

∫

Rk

1{u·v≥0}dπn
1 (u)dπ

n
2 (v)= 1

by the previous equality. In turn, for π1-a.e. v ∈R
k , it holds that u · v ≥ 0 for π2-a.e.

u ∈ R
k , which finishes the proof. �
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Throughout the rest of the paper, we fix a terminal time T > 0 and an arbitrary
S > T as in Proposition 3.2. Naturally, our arguments will apply for any T > 0.

Proposition 3.2 gives that any subsequence of (Pn,B0)n≥1 has a further subse-
quence that converges in law (by Prokhorov’s theorem) to a limit point (P�,B0),
whose law we denote by P

�
0. The limiting law P

�
0 is realised as a Borel probability

measure on the product-σ -algebra B(P(Rk ×R
k ×DR))⊗B(CR) such that the sec-

ond marginal of P
�
0 is the law of a standard Brownian motion B0 : � → CR with

CR = CR([0, S]), while the first marginal is the law of a random probability mea-
sure P� : � → P(Rk × R

k × DR) with DR = DR([0, S]). Moreover, as Assump-
tion 2.4 gives P

�(ω) ◦ p
−1
(1,2) = π for all ω ∈ �, we can write P� : � → Pπ (DR),

where Pπ (DR) denotes the subspace of all μ ∈ P(Rk×R
k×DR) with fixed marginal

μ ◦ p−1
(1,2) = π , as in the discussion after the statement of Theorem 2.6. Later, we use

this to identify P� with a random Markov kernel, as per Definition 2.5.
Throughout what follows, we fix a given limit point (P�,B0). For concrete-

ness, we take this limit point (P�,B0) to be defined on the canonical background
space (�0,B(�0),P

�
0), where we set �0 := Pπ (DR)× CR and as discussed above,

we let P�0 ∈ P(�0) denote the limiting law of the joint laws of (Pn,B0)n≥1 along
the given subsequence. Then we can simply write (P�,B0) as the identity map
(P�,B0)(μ,w)= (μ,w) on �0 and we have B(�0)= σ(P�,B0).

Given P
�
0, we can define a probability measure P

� on

B(Rk ×R
k)⊗B

(
Pπ (DR)×CR

)⊗B(DR)

by letting

P
�[O ×E ×A] :=

∫

E

μ[O ×A]dP�0(μ,w) (3.17)

for O ∈ B(Rk × R
k), E ∈ B(Pπ (DR)× CR) and A ∈ B(DR). Consider the disinte-

gration of P� with respect to the projection p̂1,2((u, v), (μ,w), η) := ((u, v), (μ,w)).
This yields a Markov kernel

(
(u, v), (μ,w)

) �→ P
μ,w
u,v ∈P(DR) (3.18)

such that

P
�[O ×E ×A] =

∫

O

∫

E

P
μ,w
u,v [A]dP�0(μ,w)dπ(u, v) (3.19)

for any O × E × A ∈ B(Rk × R
k) ⊗ B(Pπ × CR) ⊗ B(DR) by Tonelli’s theorem,

since

P
� ◦ p̂−1

1,2 = P
�
0 ⊗ π.

Indeed, we have μ[O ×DR] = π[O] for P�0-a.e. (μ,w) ∈E, and hence

P
� ◦ p̂−1

1,2[O ×E] = P
�[O ×E ×A] = π[O]P�0[E]
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for any given set O × E as above. From here, we define a family of probability
measures P�u,v on B(Pπ (DR)×CR)⊗B(DR) by

P
�
u,v[E ×A] :=

∫

E

P
μ,w
u,v [A]dP�0(μ,w), (u, v) ∈R

k ×R
k, (3.20)

where the joint measurability of each P
μ,w
u,v [A] ensures that

(u, v) �→ P
�
u,v ∈P(��) with �� :=�0 ×DR = Pπ (DR)×CR ×DR

is a Markov kernel. Notice also that the marginal of P�u,v on (�0,B(�0)) is always P�0
since for any E ∈ B(�0),

P
�
u,v[E ×DR] =

∫

E

P
μ,w
u,v [DR]dP�0(μ,w)= P

�
0(E).

The family of probability measures P�u,v will play a critical role in what follows.
On the background space (��,B(��)), we define the three random variables

P�(μ,w,η) := μ, B0(μ,w,η) :=w, Z(μ,w,η)= η.

By construction, for any (u, v) ∈ R
k ×R

k , we then have

P
�
u,v[Z ∈A, (P�,B0) ∈E1 ×E2] =

∫

E1×E2

P
μ,w
u,v [A]dP�0(μ,w)

and

P
�
u,v[P� ∈E1,B

0 ∈E2] = P
�
0[E1 ×E2]

for any A ∈ B(DR), E1 ∈ B(Pπ ) and E2 ∈ B(CR). Consequently, we have

P
�
u,v[Z ∈A|P�,B0] = P

P�,B0

u,v [A]
for all A ∈ B(DR), where the joint law of (P�,B0) is the same under every P

�
u,v .

Now consider the hitting-time map τ0 :DR →R given by

τ0(η) := inf{t ≥ 0 : ηs ≤ 0}. (3.21)

Then τ0(Z) :�� →R is the first hitting time of zero for the process Z defined above.
The above leads us to define candidates for the limiting feedback in our mean-field
problem, namely Lh;� :�0 →DR, for h= 1, . . . , k, given by

Lh;�
t :=

∫

Rk×Rk

uhP
�
u,v[t ≥ τ0(Z)|P�,B0]dπ(u, v)

=
∫

Rk×Rk

uhP
P�,B0

u,v [t ≥ τ0(Z)]dπ(u, v) for t ≥ 0 (3.22)

on the background space (�0,B(�0)). Naturally, we may also view these as stochas-
tic processes defined on (��,B(��)). In the next section, we confirm that these
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candidates are indeed inducing the limiting laws of the empirical feedback Lh,n

for h = 1, . . . , k when considered on the probability space (��,B(��),P
�
u,v), for

π -almost every pair of type vectors (u, v) ∈ R
k ×R

k . To this end, it will be useful to
consider the particular set of continuity times

T� :=
{

t ∈ [0, T ] :
∫

Rk×Rk

P
�
u,v

[

{Zt = Zt−} ∩
k⋂

h=1

{Lh;�
t = Lh;�

t− }
]

dπ(u, v)= 1

}

.

(3.23)

Observe that the complement of T� in [0, T ] is at most countably infinite. Indeed, the
assignment A �→ ∫

Rk×Rk P
�
u,v[A]dπ(u, v) yields a well-defined probability measure

on B(��), and since Z is càdlàg by definition, dominated convergence also shows
that each L� is càdlàg. Hence the claim follows from Billingsley [4, Sect. 13]. We
make abundant use of this fact in our convergence arguments.

Throughout what follows, we always take the Skorokhod space DR to be en-
dowed with Skorokhod’s M1-topology. Moreover, we let TM1

wk denote the topology
corresponding to weak convergence of measures in Pπ (DR) ∼= P(R × R ×DR) in-
duced by the M1-topology DR.

3.4 Convergence of the feedback along with the empirical measures

In this subsection, we study the feedback from defaults felt by each institution as the
number of institutions tends to infinity along a convergent subsequence of the em-
pirical measures. These results are essential to the motivating applications, and given
tightness of the system, they form the critical technical hurdles towards obtaining the
mean-field limit.

Proposition 3.4 As in Sect. 3.4, let P� be a given limit point in law of the empir-
ical measures Pn, and consider the resulting Markov kernel (P�u,v)(u,v)∈Rk×Rk on
DR defined in (3.20). For π -almost every (u, v) ∈ R

k × R
k , the hitting-time map

τ0 :DR →R from (3.21) is continuous in the M1-topology on DR at P�u,v-almost
every η ∈DR.

Proof Let Y i
t := ∫ t

0 σ(s)dW
i
s , where Wi

t = ρB0
t + √

1 − ρ2Bi
t . Then consider the

family of probability measures Qn on the Borel σ -algebra of (Rk ×R
k)×DR ×CR,

defined by

Q
n[O ×A×B] := 1

n

n∑

i=1

P[Xi ∈A,Y i ∈ B]1{(ui ,vi )∈O}, n≥ 1,

where we are averaging over the joint laws of each particle and its martingale part for
the particles within a given set of types O . As in the proof of Proposition 3.2, we can
show that (Qn)n≥1 is tight. Following the procedure in Sect. 3.3 and exploiting the
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continuity of the marginal projections, we can then deduce that there is a limit point
Q
� ∼= (Q�

u,v)(u,v)∈Rk×Rk in Pπ (DR ×CR) such that

∫

Rk×Rk

P
�
u,v[A]dπ(u, v)=

∫

Rk×Rk

Q
�
u,v[A×CR]dπ(u, v) (3.24)

for all A ∈ B(DR), which we utilise at the end of the proof. Moreover, we see that

Q
n[Rk ×R

k ×DR ×B] = P[Y 1 ∈ B] for all B ∈ B(CR)

gives the law of Brownian motion time-changed by t �→ σ(t) for all n ≥ 1. Noting
also that future increments of the Y i are independent of the filtration generated by all
the particles up to any given time, we can therefore let (Z�,Y �)(η,w) := (η,w) for
all (η,w) ∈DR×CR, and conclude from the weak convergence that Y � has the law of
a time-changed Brownian motion under Q�

u,v with respect to the filtration generated
by the pair (Z�,Y �). Let T := {t ≥ 0 : ∫

Rk×Rk Q
�
u,v[Z�

t = Zt−]dπ(u, v) = 1} and
consider the events

Eu,v :=
⋂

q≤r∈Q∩T

{

Z�
r −Z�

q ≤ Y �
r − Y �

q +
∫ q

r

bu,v(s)ds

}

in B(DR × CR). By the definition of T, continuity of (s, u, v) �→ bu,v(s) and
M1-continuity of the marginal projections at continuity points (see Whitt [27, The-
orem 12.4.1]) imply that (u, v, η,w) �→ 1{Eu,v}(η,w) is upper semicontinuous with
probability 1 under Q

� (for the product topology induced by the M1-topology on
DR and the uniform topology on CR). In turn, the weak convergence of Qn to Q

�

implies that
∫

Rk×Rk

Q
�
u,v[Eu,v]dπ(u, v)= Q

�[{(u, v, η,w) : (η,w) ∈Eu,v}]

≥ lim sup
n→∞

Q
n[{(u, v, η,w) : (η,w) ∈Eu,v}]

= lim sup
n→∞

1

n

n∑

i=1

P[(Xi, Y i) ∈Eui,vi ] = 1,

where the last two equalities simply follow from the definition of Qn and the def-
inition of the particle system. For the rest of the proof, fix an arbitrary pair (u, v)
such that Q�

u,v[Eu,v] = 1. By the previous observation, such pairs (u, v) have full
measure under π . By the right-continuity of Z� and the continuity of Y �, we can
then conclude that Q�

u,v-almost surely, the increment bounds in the definition of Eu,v

hold for all pairs of times. In particular, we know that Z� can only jump down-
wards, with probability 1 under Q�

u,v . Moreover, we know that the restarted process

Y
0,�
t := Y �

t+τ0(Z
�)−Y �

τ0(Z
�) defines a new time-changed Brownian motion under Q�

u,v ;
so it follows from the law of the iterated logarithm that we have

lim inf
t↓0

(Z�
t+τ0(Z

�) −Z�
τ0(Z

�))/h(t)≤ −1 (3.25)
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Q
�
u,v-almost surely with h(t) = c

√
t ln ln(1/t) for some constant c > 0 that only de-

pends on t �→ σ(t).
Now consider the set

E0 := {η ∈DR : τ0 is M1-continuous at η}
in DR. Clearly, if a path η comes with a (nonempty) right neighbourhood of τ0(η)

where it only takes nonnegative values, then there is an endless supply of uniformly
convergent sequences ηn → η such that τ0(ηn) does not converge to τ0(η) as n→ ∞,
and so η /∈E0. Conversely, one can easily deduce from the parametric representations
in the definition of M1-convergence that if a given path η assumes strictly nega-
tive values on any right neighbourhood of τ0(η), then all M1-convergent sequences
ηn → η must satisfy τ0(ηn) → τ0(η) as n → ∞, which implies η ∈ E0. Hence the
set E0 coincides with the event that Z� assumes strictly negative values on any right
neighbourhood of τ0(Z

�). We can readily express this event in terms of countable
unions and intersections of Borel sets, and so this event is an element of B(DR).
Moreover, it is immediate from (3.25) that this event has probability 1 under Q�

u,v .
Since we fixed an arbitrary vector (u, v) in a set of full measure under π , we can
conclude from (3.24) that

∫

Rk×Rk

P
�
u,v[E0]dπ(u, v)=

∫

Rk×Rk

Q
�
u,v[E0 ×CR]dπ(u, v)= 1,

and hence P
�
u,v[E0] = 1 for π -almost every (u, v) ∈ R

k × R
k . So the proof is com-

plete. �

The above proposition is interesting in its own right, but most importantly, it al-
lows us to take a generalised continuous mapping approach to the convergence of the
feedback, when seen as suitable functionals of the laws of the empirical measures.
The starting point is the following lemma.

Lemma 3.5 Suppose (Qn,Bn)→ (Q�,B�) a.s. in the product space
(
P(Rk ×R

k ×DR),T
M1
wk

)× (CR,‖ · ‖∞)

for a given probability space (�1,F1,P1), with (Qn,Bn) having the same law as
(Pn,B0) for all n ≥ 1 and the limit (Q�,B�) having the same law as (P�,B0). Let
(Un,V n)→ (U,V ) be an a.s. convergent sequence inRk×R

k on a probability space
(�2,F2,P2) for which the joint law of (Un,V n) is πn. Writing

L(μ)h :=
∫

Rk×Rk×DR

uh1{η : t≥τ0(η)}dμ(u, v, η) for h= 1, . . . , k (3.26)

for μ ∈ P(Rk × R
k × DR), there is an event E ∈ F1 with P1[E] = 1 such that for

every ω ∈E, we have in R the marginal convergence, as n→ ∞,

k∑

h=1

V n
h

∫ t

0
gUn,V n(s)dL

(
Qn(ω)

)h
s

−→
k∑

h=1

Vh

∫ t

0
gU,V (s)dL

(
Q�(ω)

)h
s

P2-a.s., whenever t is a continuity point of each s �→ L(Q�(ω))hs , h= 1, . . . , n.
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Proof By assumption, we can take an event E ∈ F1 with P1[E] = 1 on which there is
pointwise convergence (Qn(ω),Bn(ω))→ (Q�(ω),B�(ω)) for all ω ∈E. Moreover,
we have

E

[∫

Rk×Rk

Qn[{u : u · v̂ ≥ 0}]dπn(û, v̂)

]

=
∫

Rk×Rk

πn[{u : u · v̂ ≥ 0}]dπn(û, v̂)

= 1,

as in the proof of Lemma 3.3, and hence we can restrict the event E in such a way
that we still have P1[E] = 1, while also having that for all ω ∈E,

Qn(ω)[{u : u · V n ≥ 0}] = 1 for all n≥ 1, (3.27)

P2-almost surely. We can view Qn(ω) → Q�(ω) as convergence in law for suitable
random variables and hence apply Skorokhod’s representation theorem to yield

�
(
Qn(ω),V n, t

)=
k∑

h=1

V n
h E[Ûn

h 1{t≥τ0(Z
n)}]

with �(μ,v, t) :=
k∑

h=1

vhL(μ)ht (3.28)

for n ≥ 1, where Ûn → Û almost surely in R and Zn → Z almost surely in
(DR,M1). Additionally, (3.27) ensures that V n · Ûn ≥ 0, and we have that V n, Ûn

are bounded uniformly in n ≥ 1. In particular, each t �→ �(Qn(ω),V n, t) is of fi-
nite variation with total variation bounded by a constant uniformly in n ≥ 1 on any
compact time interval, which we use at the end of the proof.

Next, by the constructions in Sect. 3.3, it follows from Proposition 3.4 that

E
[
P�[τ0 is M1-continuous at Z]]= 1,

and Q� has the same law as P� by assumption. So we may further restrict E such
that taking an arbitrary ω ∈E in (3.28) implies τ0(Z

n)→ τ0(Z) almost surely, while
retaining P1[E] = 1 (the laws of Zn,Z are fixed by the realisations Qn(ω),Q�(ω)).
Consequently, we have 1{t≥τ0(Z

n)} → 1{t≥τ0(Z)} on an event of full probability minus
the event {τ0(Z) = t}, on the common probability space where these processes are
defined (given by Skorokhod’s representation). Now fix an arbitrary ω ∈ E and let t
be an arbitrary continuity point of s �→ L(Q�(ω))hs for each h= 1, . . . , n. Then (3.26)
and dominated convergence (along with right-continuity of each L(Q�(ω))h) imply

0 =�
(
Q�(ω),V, t

)−�
(
Q�(ω),V, t − )= E[v · Û1{τ0(Z)=t}]|v=V .

Fixing a realisation v of V , if v · Û is non-zero (hence strictly positive) on an event of
non-negligible probability (for P1), we must therefore have τ0(Z) 
= t on that event
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(up to a P1-nullset). Therefore, we can conclude from dominated convergence that

�
(
Qn(ω),V n, t

)=
k∑

h=1

V n
h E[Ûn

h 1{t≥τ0(Z
n)}]

−→
k∑

h=1

VhE[Ûh1{t≥τ0(Z)}] =�
(
Q�(ω),V, t

)
(3.29)

for our arbitrary ω ∈ E, P2-almost surely, for any common continuity point of
s �→ L(Q�(ω))hs for h = 1, . . . , n. Using integration by parts for Riemann–Stieltjes
integrals, we get

∫ t

0
gUn,V n(s)d�

(
Qn(ω),V n, s

)=
∫ t

0

(
gUn,V n(s)− gU,V (s)

)
d�

(
Qn(ω),V n, s

)

+ gU,V (t)�
(
Qn(ω),V n, t

)

−
∫ t

0
�
(
Qn(ω),V n, s

)
dgU,V (s). (3.30)

By Assumption 2.4, each function t �→ gu,v(t) is continuous and nondecreasing.
In particular, it is a standard fact of real analysis that the pointwise convergence
gUn,V n(s) → gU,V (s) is in fact uniform over s ∈ [0, t] (alternatively, in the spirit
of the present paper, one gets M1-relative compactness from the monotonicity, and
the a priori pointwise convergence to a continuous limit then yields the uniform
convergence to that limit). Since the total variation of s �→ �(Qn(ω),V n, s) on
[0, t] is bounded uniformly in n ≥ 1, the first term on the right-hand side of (3.30)
vanishes as n → ∞. By (3.29), the second term on the right-hand side tends to
gU,V (t)�(Q�(ω),V, t) whenever t is a continuity point. Finally, dgU,V (s) induces a
well-defined Lebesgue–Stieltjes measure, and we get pointwise convergence of the
integrands on a dense set of times s ∈ [0, t] by (3.29); so dominated convergence and
another integration by parts complete the proof. �

We use the previous lemma several times. A first application is the following con-
vergence result for the total feedback felt by each particle. This result is important
for practical implementations of the model, showing that after fixing a particular type
of bank from the true financial system, the actual feedback from defaults felt by
this bank can be approximated via only the k feedback processes for the mean-field
model.

Proposition 3.6 Let Assumption 2.4 be satisfied and fix any given pair of indexing
vectors (ui, vi). Let the limit point (P�,B0) be achieved along a subsequence (still
indexed by n). Let gu,v(s) := g(u, v,E[U ],E[V ], s). As n→ ∞, the total feedback

t �→
k∑

h=1

vih

∫ t

0
gi(s)dLh;i,n

s (3.31)
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felt by the ith particle converges in law at the process level on DR([0, T0]), for any
T0 ∈ T�, to

t �→
k∑

h=1

vih

∫ t

0
gui,vi (s)dLh;�

s , (3.32)

where L1,�, . . . ,Lk,� are defined by (3.22) on (�0,B(�0),P
�
0).

Proof First of all, Assumption 2.4 implies that the total feedback processes (3.31) are
nondecreasing on [0, T ] for each i = 1, . . . , n and n≥ 1. Due to Lemma 3.1, it is thus
straightforward to verify the conditions (3.10)–(3.13) for these processes in place of
the different particle trajectories t �→ Xi

t , and so the arguments of Proposition 3.2
yield tightness of (3.31) in DR([0, T0]), for any T0 ∈ T�, under the M1-topology.
Note that we can write

k∑

h=1

vih

∫ t

0
gi(s)dLh;i,n

s =
k∑

h=1

vih

∫ t

0
gi(s)dL(Pn)hs − 1

n
vi · uigi(τi)1{t≥τi },

where each L(μ) is defined as in (3.26). Sending n → ∞, the second term on the
right-hand side vanishes uniformly in i ≤ n and t ∈ [0, T ] by the assumptions on ui ,
vi and gi in Assumption 2.4, and so we only need to consider the convergence of
the first term. To this end, we can see from the definition of Pμ,wu,v in Sect. 3.3 that as
stochastic processes,

Lh;�
t =

∫

Rk×Rk

uhP
P�,B0

u,v [t ≥ τ0(Z)]dπ(u, v)

=
∫

Rk×Rk×DR

uh1{η : t≥τ0(η)}dP�(u, v, η)

almost surely for the probability space (�0,B(�0),P
�
0) from Sect. 3.3. That is, we

have in fact Lh;� = L(P�)h for each h= 1, . . . , k. From the definition of T� in (3.23)
and the relation between P

�
u,v and P

�
0 in (3.20), we can furthermore see that

T� ⊆ {t ∈ [0, T0] : P�0[L(P�)ht = L(P�)ht−, h= 1, . . . , k] = 1}.
Consequently, it holds for P�0-almost all ω ∈ �0 that every t ∈ T� is a common con-

tinuity point of the paths s �→ Lh;�
s (ω)= L(P�(ω))hs for h= 1, . . . , k. In turn, by first

applying Skorokhod’s representation theorem to the sequence (Pn,B0) converging
in law to (P�,B0), we are now in a position to apply Lemma 3.5 for every t ∈ T�

(noting that the proof of Lemma 3.5 also holds when we take (Un,V n)= (ui, vi),
since (3.27) is then still satisfied). This gives us that the finite-dimensional distri-
butions of any limit point of (3.31) agree with those of (3.32) for all finite sets of
times t1, . . . , tm ∈ T�. Since we also have M1-tightness in DR([0, T0]), the conclu-
sion follows (recalling that the Borel σ -algebra on DR([0, T0]) for the M1-topology
is generated by the finite-dimensional projections). �
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3.5 Martingale properties with respect to the limitingMarkov kernel

The previous subsections guide us towards certain martingale properties with respect
to the Markov kernel (P�u,v)(u,v)∈Rk×Rk . Using these, we shall be able to identify the
limiting mean-field problem.

Proposition 3.7 Let Assumption 2.4 be satisfied. For any given (u, v) ∈ R
k ×R

k , we
consider the probability spaces (��,B(��),P

�
u,v) with P

�
u,v given by (3.20). We then

define a càdlàg stochastic processMu,v :�� →DR by

M
u,v
t := Zt −Z0 −

∫ t

0
bu,v(s)ds − F

( k∑

h=1

vh

∫ t

0
gu,v(s)dLh;�

s

)

, (3.33)

where Lh;� is defined in (3.22). We write bu,v(t) = b(u, v, t), σu,v(t)= σ(u, v, t)

and gu,v(t) := g(u, v,E[U ],E[V ], t). Under P
�
u,v , for π -almost every pair

(u, v) ∈R
k ×R

k , Mu,v is a continuous martingale for its natural filtration on [0, T ]
with

〈Mu,v〉t =
∫ t

0
σ 2
u,v(s)ds and 〈Mu,v,B0〉t =

∫ t

0
ρσu,v(s)ds. (3.34)

Proof We begin by fixing a countable family (φj )j∈N of bounded continuous func-
tions φj : R → R such that Mu,v is a martingale under P�u,v provided we have the
identity

EP�u,v

[

M
u,v
t ′

m∏

i=1

φji (M
u,v
ti

)

]

= EP�u,v

[

M
u,v
t

m∏

i=1

φji (M
u,v
ti

)

]

(3.35)

for any choices of φj1 , . . . , φjm in (φj )j∈N and t1, . . . , tm ≤ t < t ′ in [0, T ], where
m≥ 1 is arbitrary. Since we also have right-continuity of the paths, to establish (3.35),
it suffices to consider the functionals

�
j1,...,jm
q,q ′;q1,...,qm

(η) := (
(η)(q ′))− (η)(q)

)
m∏

i=1

φji
(
η(qi)

)
, η ∈DR, (3.36)

for all rationals q, q ′, q1, . . . , qm ∈ T� ∩ Q with q1, . . . , qm ≤ q < q ′, and show that
for any such functional, we have

∫

Rk×Rk

f (u, v)EP�u,v

[
�
j1,...,jm
q,q ′;q1,...,qm

(Mu,v)
]
dπ(u, v)= 0 (3.37)

for all bounded continuous functions f :Rk ×R
k → R. Using the notation of (3.26),

consider also the functionals

�̂
j1,...,jm
q,q ′;q1,...,qm

(u, v, η,μ)

:=�
j1,...,jm
q,q ′;q1,...,qm

(

η· − η0 −
∫ ·

0
bu,v(s)ds − F

( k∑

h=1

vh

∫ ·

0
gu,v(s)dL(μ)hs

))

. (3.38)



Heterogeneous contagious McKean–Vlasov systems 695

By (3.17), (3.19) and (3.20), we can then confirm that the left-hand side of (3.37)
coincides with

EP
�
0

[∫

Rk×Rk×DR

f (u, v)�̂
j1,...,jm
q,q ′;q1,...,qm

(u, v, η,P�)dP�(u, v, η)
]

. (3.39)

Applying Skorokhod’s representation theorem, we can express this as

E

[∫

f (u, v)�̂
j1,...,jm
q,q ′;q1,...,qm

(u, v, η,Q�)dQ�(u, v, η)

]

, (3.40)

and we can then apply Skorokhod’s representation theorem again, for any given real-
isation of Q�, to be able to write

∫

f (u, v)�̂
j1,...,jm
q,q ′;q1,...,qm

(u, v, η,Q�)dQ�(u, v, η)

= E
[
f (U,V )�̂

j1,...,jm
q,q ′;q1,...,qm

(U,V,Z�,Q�)
]
, (3.41)

where there are also a sequence (Un,V n,Zn) converging to (U,V,Z�) almost surely
in R

k ×R
k ×DR, for some common probability space (�2,F2,P2), and a sequence

Qn → Q� almost surely in P(Rk × R
k ×DR), for some common probability space

(�1,F1,P1). The point is that each (Un,V n,Zn) is distributed according to Qn(ω1),
for a given ω1 ∈ �1, while Qn as a random variable has the same law as Pn. In
particular, we note that the expectation on the right-hand side in (3.41) does not act
on Q�, and that the sequence (Un,V n,Zn)→ (U,V,Z�) differs for each ω1 ∈�1.

It follows from the above that the sequences (Un,V n)n≥1 and (Qn)n≥1 satisfy the
assumptions of Lemma 3.5. Moreover, from the definition of T� in (3.23) and the
distributional properties of Q�, we can see that

E
[
Q�[{η ∈DR : η(t)= η(t−)}]1{L(Q�)ht =L(Q�)ht−,h=1,...,k}

]= 1

for all t ∈ T�. Therefore, every t ∈ T� satisfies that for P1-almost all ω1 ∈ �1, t is a
common continuity point of the paths L(Q(ω1))

h for h= 1, . . . , k, and it is P2-almost
surely a continuity point of Z� when the latter has the law Q�(ω1) ◦ p

−1
DR

on DR.
In particular, whenever t ∈ T�, we have Zn

t → Z�
t P2-almost surely, for P1-almost

every ω1 ∈ �1. Moreover, it also follows that we can apply Lemma 3.5 at any set of
times q, q ′, q1, . . . , qm ∈ T� for a P1-full subset of �1. Thus we can deduce from the
definition of �̂ in (3.38) that as n→ ∞,

�̂
j1,...,jm
q,q ′;q1,...,qm

(
Un,V n,Zn,Qn(ω1)

)−→ �̂
j1,...,jm
q,q ′;q1,...,qm

(
U,V,Z�,Q�(ω1)

)

P2-almost surely, for P1-almost every ω1 ∈�1. In turn, dominated convergence gives

E
[
f (U,V )�̂

j1,...,jm
q,q ′;q1,...,qm

(U,V,Z�,Q�)
]

= lim
n→∞E

[
f (Un,V n)�̂

j1,...,jm
q,q ′;q1,...,qm

(Un,V n,Zn,Qn)
]
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P1-almost surely. Recalling (3.39)–(3.41), and passing through our repeated use of
Skorokhod’s representation theorem, another application of dominated convergence
then shows that the left-hand side of (3.37) is in fact equal to the limit

lim
n→∞E

[∫

Rk×Rk×DR

f (u, v)�̂
j1,...,jm
q,q ′;q1,...,qm

(u, v, η,Pn)dPn(u, v, η)
]

.

Looking at (3.38), the definition of the empirical measures Pn immediately gives that
this limit is zero, and so we have established (3.37). Using a similar approach, we
can pass to the limit in Kolmogorov’s continuity criterion to verify that for π -almost
every (u, v) ∈ R

k × R
k , each martingale Mu,v has a continuous version under P�u,v ,

which completes the first part of the proof.
It remains to identify the quadratic variation of Mu,v as well as its quadratic co-

variation with the limiting common factor B0. To this end, we can argue exactly as
we did above in order to conclude from the limiting procedure that

∫

Rk×Rk

f (u, v)EP�u,v

[

�
j1,...,jm
q,q ′;q1,...,qm

(

(Mu,v· )2 −
∫ ·

0
σ 2
u,v(s)ds

)]

dπ(u, v)= 0

and
∫

Rk×Rk

f (u, v)EP�u,v

[

�
j1,...,jm
q,q ′;q1,...,qm

(

Mu,v· B0· −
∫ ·

0
ρσu,v(s)ds

)]

dπ(u, v)= 0

for all bounded continuous functions f : Rk × R
k and any choice of the count-

ably many functionals �j1,...,jm
q,q ′;q1,...,qm

defined in (3.36). We can thus deduce that for

π -almost every (u, v) ∈ R
k × R

k , the two processes (Mu,v· )2 − ∫ ·
0 σ

2
u,v(s)ds and

Mu,v· B0· − ∫ ·
0 ρσu,v(s)ds are also continuous martingales on [0, T ] under P�u,v , and

so we obtain the final conclusion (3.34). �

3.6 Characterising the limit points: Proof of Theorem 2.6

Based on the work in the previous subsections, we can now establish the following
result, which completes the proof of Theorem 2.6.

Proposition 3.8 Let (u, v) �→ P
�
u,v ∈ P(��) be the Markov kernel defined in (3.20)

from a given limit point (P�,B0). Then for π -almost every (u, v) ∈ R
k ×R

k , there is
a Brownian motion Bu,v on (��,B(��),P

�
u,v) such that (P�,B0), Bu,v and Z0 are

mutually independent on (��,B(��),P
�
u,v) with

Lh;�
s =

∫

Rk×Rk

uhP
�
u,v[t ≥ τ0(Z)|P�,B0]dπ(u, v),

where Z has dynamics

dZt = bu,v(t)dt + σu,v(t)d(ρB
0
t +

√

1 − ρ2B
u,v
t )− dF

( k∑

h=1

vh

∫ t

0
gu,v(s)dLh;�

s

)

under P�u,v and its starting point Z0 has density p0( · |u,v) under P�u,v .
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Proof Let Mu,v be given by (3.33), which is a continuous martingale under π -almost
every P

�
u,v by Proposition 3.7. By the construction of P�u,v , B0 is a Brownian mo-

tion on the probability space (��,B(��),P
�
u,v) for π -almost every (u, v) ∈ R

k ×R
k .

Thus we can define Z̃u,v :�� →DR by

Z̃
u,v
t :=M

u,v
t −

∫ t

0
ρσu,v(s)dB

0
s (3.42)

and note that this is a continuous martingale under P
�
u,v for π -almost every pair

(u, v) ∈R
k ×R

k . Defining also Bu,v :�� →DR by

B
u,v
t :=

∫ t

0

1

σu,v(s)
√

1 − ρ2
dZ̃u,v

s , (3.43)

we can then conclude from (3.34) in Proposition 3.7 and Assumption 2.4 that under
P
�
u,v , for π -almost every (u, v) ∈R

k ×R
k , the processes B0 and Bu,v are continuous

martingales on [0, T ] with

〈B0〉t = t, 〈Bu,v〉t = t, 〈Bu,v,B0〉t = 0

for all t ∈ [0, T ]. Therefore, Levy’s characterisation theorem gives that Bu,v and B0

are independent Brownian motions on (��,B(��)) under P�u,v for π -almost every
(u, v) ∈ R

k ×R
k .

Recalling the construction of the Markov kernel Pμ,wu,v from (3.18)–(3.20), we can
readily deduce from the weak convergence of Pn0 in (3.16) that for π -almost every
(u, v) ∈ R

k ×R
k ,

E
P
μ,w
u,v

[φ(Z0)] = EP�u,v
[φ(Z0)] =

∫

R

φ(x)p0(x|u,v)dx (3.44)

for P�0-almost all (μ,w) ∈Pπ (DR)×CR. Next, we define

�
j ;j1,...,jm
q,q ′;q1,...,qm

(η̃, η) := (
η̃(q ′)− η̃(q)

)
m∏

i=1

φji
(
η̃(qi)

)
φj
(
η(0)

)
. (3.45)

Then we can consider the functionals

�̂
j ;j1,...,jm
q,q ′;q1,...,qm

(u, v,μ,w,η)=�
j ;j1,...,jm
q,q ′;q1,...,qm

(
Z̃u,v(μ,w,η),Z(μ,w,η)

)
,

where we recall that Z(μ,w,η) = η. Similarly to (3.39) in the proof of Proposi-
tion 3.7, we can deduce from the constructions in Sect. 3.3 that the expression

∫ (∫

Rk×Rk

f (u, v)E
P
μ,w
u,v

[
�

j0,j1,...,jm
q,q ′;q1,...,qm

(
Z̃u,v(μ,w, · ),Z(μ,w, · ))]dπ(u, v)

)2

dP�0(μ,w) (3.46)
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coincides with

EP
�
0

[(∫

Rk×Rk×DR

f (u, v)�̂
j,j1,...,jm
q,q ′;q1,...,qm

(u, v,P�,B0, η)dP�(u, v, η)
)2 ]

.

By a repeated use of Skorokhod’s representation theorem, we can write this as

E

[(∫

Rk×Rk×DR

f (u, v)�̂
j,j1,...,jm
q,q ′;q1,...,qm

(u, v,Q�,B�, η)dQ�(u, v, η)

)2 ]

with
∫

f (u, v)�̂
j,j1,...,jm
q,q ′;q1,...,qm

(u, v,Q�,B�, η)dQ�(u, v, η)

= E
[
f (U,V )�̂

j,j1,...,jm
q,q ′;q1,...,qm

(U,V,Q�,B�,Z�)
]
, (3.47)

where (Q�,B�) and (U,V,Z�) are the limits of suitable almost surely converging se-
quences on two separate probability spaces (�1,F1,P1) and (�2,F2,P2). In partic-
ular, the expectation on the right-hand side in (3.47) does not act on the pair (Q�,B�).
At this point, the main difference from the arguments in Proposition 3.7 concerns how
to ascertain the P2-almost sure convergence

Z̃Un,V n(Qn(ω1),B
n(ω1),Z

n)−→ Z̃U,V (Q�(ω1),B
�(ω1),Z

�)

for P1-almost all ω1 ∈ �1. By the distribution of the (Un,V n) and Assumption 2.4,
we have that (almost surely) the sequence of functions σUn,V n has Hölder norms on
[0, T ] that are bounded uniformly in n ≥ 1, for some Hölder exponent β > 1/2. In
particular, Arzelà–Ascoli and the pointwise convergence give that σUn,V n converges
uniformly to σU,V on [0, T ] (almost surely). Furthermore, we have that Bn and B�

are Brownian motions with Bn converging uniformly to B� on [0, T ] (almost surely).
Therefore, standard properties of Young integrals give that (almost surely) we can
interpret the stochastic integral in (3.42) pathwise and we have

∫ t

0
ρσUn,V n(s)dBn

s (ω1)−→
∫ t

0
ρσU,V (s)dB

�
s (ω1)

uniformly on [0, T ] P2-almost surely, for P1-almost all ω1 ∈�1. From here, arguing
as in Proposition 3.7 via Lemma 3.5, we arrive at the conclusion that (3.46) must be
equal to the limit, as n→ ∞, of

E

[(∫

Rk×Rk×DR

f (u, v)�̂
j,j1,...,jm
q,q ′;q1,...,qm

(u, v,Pn,B0, η)dPn(u, v, η)
)2 ]

. (3.48)

By the independence of the Brownian motions Bi in the finite particle system and
their independence of Xi

0, we can easily check that (3.48) is of order 1/n as n→ ∞,
and so we conclude that (3.46) is zero. By the form of (3.45), we therefore obtain
that for P�0-almost all (μ,w) ∈ Pπ × CR, the process Z̃u,v(μ,w, · ) :DR →DR is
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a martingale under Pμ,wu,v and independent of the random variable Z0, for π -almost
every (u, v) ∈ R

k ×R
k .

We can repeat the above argument with (Z̃u,v· )2 − ∫ ·
0(1 − ρ2)σ 2

u,v(s)ds to deduce

that each process Z̃u,v(μ,w, · ) : DR → DR has
∫ ·

0(1 − ρ2)σ 2
u,v(s)ds as quadratic

variation. Similarly, another limiting argument gives continuity of the paths. It then
follows that the process Bu,v(μ,w, · ) :DR →DR is a Brownian motion under Pμ,wu,v

for P�0-almost all (μ,w) ∈Pπ (DR)×CR and independent of the random variable Z0,
for π -almost every (u, v) ∈ R

k ×R
k . Using this and (3.44), we in particular see that

∫

Rk×Rk

f (u, v)EP�u,v
[φ(Z0)ϕ(B

u,v)ψ(P�,B0)]dπ(u, v)

=
∫

Pπ (DR)×CR

ψ(μ,w)

∫

R×Rk

f (u, v)E
P
μ,w
u,v

[
φ(Z0)ϕ

(
Bu,v(μ,w, · ))]dπ(u, v)

dP�0(μ,w)

=
∫

Pπ (DR)×CR

ψ(μ,w)

∫

R×Rk

f (u, v)EP�u,v
[φ(Z0)]EP�u,v

[ϕ(Bu,v)]dπ(u, v)

dP�0(μ,w)

=
∫

R×Rk

f (u, v)EP�u,v
[φ(Z0)]EP�u,v

[ϕ(Bu,v)]EP�u,v
[ψ(P�,B0)]dπ(u, v)

for any continuous function f : R × R
k → R, and so we deduce that the random

variables (P�,B0), Bu,v and Z0 are mutually independent under Pu,v for π -almost
every (u, v) ∈ R

k ×R
k . Finally, by the definition of Bu,v in (3.43), we have that

dZt = bu,v(t)dt + σu,v(t)d(ρB
0
t +

√

1 − ρ2B
u,v
t )− dF

( k∑

h=1

vh

∫ t

0
gu,v(s)dLh;�

s

)

,

where B0 and Bu,v are standard Brownian motions under P�u,v for π -almost every
(u, v) ∈ R, by the above. Recalling from (3.22) that each Lh;� can be written as

Lh;�
t =

∫

Rk×Rk

uhP
�
u,v[t ≥ τ0(Z)|P�,B0]dπ(u, v) for t ≥ 0,

this completes the proof. �

4 The common noise system under the smallness condition

This section is dedicated to a short proof of Theorem 2.2. To this end, we assume
throughout that each initial density p0( · |u,v) ∈ L∞(0,∞) satisfies the bound

‖p0( · |u,v)‖∞ < gu,v(0)‖F‖Lip
1

max{u · v̂ : v̂ ∈ S(V ) such that u · v̂ > 0} (4.1)
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for all (u, v) ∈ S(U,V ). When (4.1) holds, it follows from the same arguments as in
Feinstein and Søjmark [10, Theorem 3.4] that any solution to (1.2) must be contin-
uous in time for all t ∈ [0,∞). Next, we show in Sects. 4.1 and 4.2 below that the
condition (4.1) also entails global uniqueness of (1.2), hence completing the proof of
Theorem 2.2.

The uniqueness of limit points in Theorem 2.8 follows by the same argument. One
simply needs to observe that all the steps in Sects. 4.1 and 4.2 also hold if we con-
dition on (P�,B0) in place of B0 throughout, exploiting that (P�,B0) is independent
of the particle-specific Brownian motions Bu,v . In this way, we get global continu-
ity in time and global uniqueness for any solution to the relaxed formulation (2.15).
Given the existence of relaxed solutions and their pathwise uniqueness, a Yamada–
Watanabe argument as in Ledger and Søjmark [20, Theorem 2.3] completes the proof
of Theorem 2.8.

4.1 Bounded densities for all times

We start by observing that there is for each X
u,v
t a (random) B0-conditional density

pt( · |u,v) ∈ L∞(0,∞) on the positive half-line subject to absorption at the origin.
That is, for each t ≥ 0 and (u, v) ∈ R

k ×R
k , we can define a random sub-probability

measure Pt (dx|u,v) on R by

Pt (dx|u,v) := P[Xu,v
t ∈ dx, t < τu,v|B0],

which is supported on the positive half-line and which we can show has an
L∞-density.

Let qt ( · |u,v) denote the probability density function of the random variable

Z
u,v
t :=

∫ t

0

√

1 − ρ2 σu,v(s)dB
u,v(s)

for each t ≥ 0 and (u, v) ∈ R
k ×R

k . If we now consider the random variables

Y
u,v
t :=

∫ t

0
bu,v(s)ds −

∫ t

0
ρσu,v(s)dB

0(s)− F

( k∑

h=1

vk

∫ t

0
gu,v(s)dLh;�

s

)

,

some simple manipulations using Tonelli’s theorem give for any Borel set A⊆ R that

Pt [A|B0] =
∫ ∞

0
P[Xu,v

t ∈A, t < τu,v|B0]p0(x|u,v)dx

≤
∫

R

∫

A

qt (x + y + Y
u,v
t |u,v)p0(x|u,v)dydx

=
∫

A

∫

R

qt (x + y + Y
u,v
t |u,v)p0(x|u,v)dxdy

≤ ‖p0( · |u,v)‖∞ Leb(A),
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where we have used that qt ( · |u,v) integrates to 1 on R. Thus Pt ( · |u,v) has a bound-
ed density pt ( · |u,v). Furthermore, we see that ‖pt( · |u,v)‖∞ ≤ ‖p0( · |u,v)‖∞ so
that the bound (4.1) continues to hold for all times t ≥ 0.

4.2 Global uniqueness under the smallness condition

To prove the uniqueness part of Theorem 2.2, we adapt the arguments from the proof
of Ledger and Søjmark [20, Theorem 2.3]. Let (X,L) and (X̄, L̄) be any two solu-
tions to (1.2) coupled through the same Brownian drivers B and B0. Let Lv and L̄

v

be the total loss processes, as defined in (2.3), for the two different solutions. Retrac-
ing the arguments of [20, Lemma 2.1] and applying Fubini’s theorem, we can deduce
that

Lv
s − L̄

v

s ≤ E

[ k∑

h=1

vh

∫

Rk×Rk

ûh

∫ I
û,v̂
s

Ī
û,v̂
s

p0(x|û, v̂)dxdπ(û, v̂)
∣
∣
∣
∣B

0
]

, (4.2)

where we have introduced the auxiliary processes

I
u,v
t := sup

s≤t

(

F
(∫ s

0
gu,v(r)dL

v
r

)
− Yu,v

s

)

,

Ī
u,v
t := sup

s≤t

(

F
(∫ s

0
gu,v(r)dL̄

v
r

)
− Yu,v

s

)

with

Yu,v
s :=

∫ s

0
bu,v(r)dr +

∫ s

0
σu,v(r)d(ρB

0
r +

√

1 − ρ2Bu,v
r ).

By symmetry, we can observe that L̄v
s − Lv

s satisfies a bound entirely analogous to
(4.2), only with Iu,vs and Ī u,vs interchanged in the range of integration. Consequently,
we in fact have

|Lv
s − L̄v

s | ≤ max

( k∑

h=1

vhE

[∫

Rk×Rk

ûh

∫ I
û,v̂
s

Ī
û,v̂
s

p0(x|û, v̂)dxdπ(û, v̂)
∣
∣
∣
∣B

0
]

k∑

h=1

vhE

[∫

Rk×Rk

ûh

∫ Ī
û,v̂
s

I
û,v̂
s

p0(x|û, v̂)dxdπ(û, v̂)
∣
∣
∣
∣B

0
])

(4.3)

for all s ≥ 0. Now, by repeating the first estimate from the proof of Lemma 5.1 in
Sect. 5 with L and L̄ in place of � and �̄, respectively, we obtain that

F

(∫ t

0
gu,v(s)dL

v
s

)

≥ F

(∫ t

0
gu,v(s)dL̄

v
s

)

− gu,v(0)‖F‖Lip‖L− L̄‖�t ,

where

‖L− L̄‖�t := sup
v∈S(V )

sup
s∈[0,t]

|Lv
s − L̄v

s |.
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In turn, relying on this inequality together with the estimate (4.3), we can retrace the
arguments of [20, Theorem 2.2] in order to arrive at

|Lv
s − L̄v

s | ≤ ‖F‖Lip‖L− L̄‖�s
k∑

h=1

vh

∫

Rk×Rk

gû,v̂(0)ûh‖p0( · |û, v̂)‖∞ dπ(û, v̂).

From here, it simply remains to observe that the bound (4.1) gives

sup
v∈S(V )

‖F‖Lip

k∑

h=1

vh

∫

Rk×Rk

gû,v̂(0)ûh‖p0( · |û, v̂)‖∞ dπ(û, v̂) < 1,

and hence for any s ≥ 0, we have

sup
s∈S(V )

|Lv
s − L̄v

s | ≤ (1 − δ)‖L− L̄‖�s

for some δ > 0. Naturally, this implies ‖L− L̄‖�s = 0 for all s ≥ 0, as we otherwise
have a contradiction, and so there is indeed uniqueness of solutions. �

5 The idiosyncratic system up to explosion

In this section, we give a succinct proof of Theorem 2.3, based on the arguments
from Hambly et al. [15]. Let us start by introducing the notation ‖f ‖t := ‖f ‖L∞(0,t)
and recalling the notation S(V ) for the support of the second marginal of π . With
this notation, consider the space of continuous maps v �→ �v = �v( · ) from S(V ) to
L∞(0, t), which we denote by

C�
0,t := C

(
S(V );L∞(0, t)

)
,

and let this space be equipped with the supremum norm

‖�‖�t := sup
v∈S(V )

‖�v‖t .

Since the domain S(V ) is a compact subset of R
k by Assumption 2.4, and noting

that the codomain L∞(0, t) is a Banach space, this norm makes C�
0,t a Banach space.

In the next subsection, we show that one can find a nice solution to the McKean–
Vlasov system (1.2) with ρ = 0 for which the contagion processes are continuously
differentiable in time up until an explosion time. This is achieved by a fixed point
argument for a mapping � : C�

0,t → C�
0,t (defined in (5.1) below) for a small enough

time t > 0. Throughout, we suppose that Assumptions 1.1–1.3 are satisfied.

5.1 Existence of differentiable contagion processes up to explosion

Given T > 0, we define the map � : C�
0,T �→ C�

0,T by

�[�]v(t) :=
k∑

h=1

vh

∫

Rk×Rk

∫ ∞

0
ûhP[t ≥ τ

x,�

û,v̂
]dP0(x|u,v)dπ(û, v̂) (5.1)
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for all t ∈ [0, T ] and v ∈ S(V ), where

τx,�u,v = inf{t > 0 :Xu,v;x,�
t ≤ 0},

X
u,v;x,�
t = x +

∫ t

0
bu,v(s)ds +

∫ t

0
σu,v(s)dB

u,v(s)− F

(∫ t

0
gu,v(s)d�

v(s)

)

. (5.2)

Note that as long as s �→ �v(s) is continuous or of finite variation, the integral of
each gu,v against �v in (5.2) is well defined, since each gu,v is both continuous and
of finite variation by Assumption 1.2 (see e.g. Stroock [26, Sect. 1.2]). Naturally, all
of the results that follow are stated for inputs such that the mapping � makes sense.

The cornerstone of our analysis is the next comparison argument. Later on, it leads
us to the fixed point argument for existence of regular solutions, and it then reappears
in the generic uniqueness argument of Sect. 5.2 where we complete the proof of the
full statement of Theorem 2.3.

Lemma 5.1 Fix any two �, �̄ ∈ C�
0,T such that s �→ �v(s) and s �→ �̄v(s) are increas-

ing with �v(0) = �̄v(0) = 0 for all v ∈ S(V ). Fix also t0 > 0 and suppose s �→ �v(s)

is continuous on [0, t0) for all v ∈ S(V ). Then we have

(
�[�]v(t)− �[�̄ ]v(t))+ ≤ C‖(�− �̄ )+‖�t

∫ t

0
(t − s)−

1
2 d�[�]v(s)

for all t < t0 and v ∈ S(V ), where C > 0 is a fixed constant independent of t0 and v.

Proof Fix t < t0. Recalling that �v(0)= 0, integration by parts for Riemann–Stieltjes
integrals (see e.g. Stroock [26, Sect. 1.2]) gives

∫ t

0
gu,v(s)d�

v(s)= gu,v(t)�
v(t)+

∫ t

0
�v(s)d(−gu,v)(s),

and likewise for �̄v . Using this and the assumptions on F , gu,v , � and �̄, we have

F

(∫ t

0
gu,v(s)d�

v(s)

)

− F

(∫ t

0
gu,v(s)d�̄

v(s)

)

≤ ‖F‖Lip

(∫ t

0
gu,v(s)d�

v(s)−
∫ t

0
gu,v(s)d�̄

v(s)

)+

= ‖F‖Lip

(

gu,v(t)
(
�v(t)− �̄v(t)

)+
∫ t

0

(
�(s)− �̄(s)

)
d(−gu,v)(s)

)+

≤ gu,v(t)‖F‖Lip
(
�v(t)− �̄v(t)

)+ + ‖F‖Lip

∫ t

0

(
�v(s)− �̄v(s)

)+
d(−gu,v)(s)

≤ gu,v(0)‖F‖Lip‖(�v − �̄v)+‖t .
Thus taking the difference between the two processes Xu,v;x,� and Xu,v;x,�̄ defined
in (5.2) and coupled through the same Brownian motion, it follows that

X
u,v;x,�̄
t −X

u,v;x,�
t ≤ gu,v(0)‖F‖Lip‖(�v − �̄v)+‖t .
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Using the continuity of �v , we thus have for any s ∈ [0, t] on the event {τx,�u,v = s} that

Xu,v;x,�̄
s =Xu,v;x,�̄

s −Xu,v;x,�
s ≤ gu,v(0)‖F‖Lip‖(�− �̄)+‖�s .

Based on this, we can replicate the arguments from [15, Proposition 3.1] by instead
conditioning on the value of τx,�u,v and using the previous inequality to deduce that

P[t ≥ τx,�u,v ] − P[t ≥ τx,�̄u,v ]

≤
∫ t

0
P

[

inf
r∈[s,t]

∫ r

s

σu,v(h)dB
u,v(h) >−gu,v(0)‖F‖Lip‖(�− �̄)+‖�s

]

dP[s ≥ τx,�u,v ].
Performing a time change in the Brownian integral and using that there is a uniform
ε > 0 such that ε ≤ σu,v ≤ ε−1 by Assumption 1.2, it follows from the law of the
infimum of a Brownian motion that

P[t ≥ τx,�u,v ] − P[t ≥ τx,�̄u,v ] ≤ C‖(�− �̄ )+‖�t
∫ t

0
(t − s)−

1
2 dP[s ≥ τx,�u,v ],

where the constant C > 0 is independent of t , x, u and v. Now fix any ṽ ∈ S(V ).
Multiplying both sides of the above inequality by

∑k
h=1 ṽhuh and recalling that

this is nonnegative for all u in the support of π thanks to Assumption 2.4, we can
then integrate both sides of the resulting inequality against dP0(x|u,v)dπ(u, v), for
(x,u, v) ∈R+ ×R

k ×R
k , to arrive at

�[�]ṽ(t)− �[�̄ ]ṽ(t)≤ C‖(�− �̄ )+‖�t
∫ t

0
(t − s)−

1
2 d�[�]ṽ(t)

for all t < t0, for some fixed numerical constant C > 0 independent of t0 and ṽ. As
the right-hand side is positive, this proves the lemma. �

For any γ ∈ (0,1/2), A> 0 and t > 0, we define the space S(γ,A, t)⊆ C�
0,t by

S(γ,A, t) := {
� ∈ C

(
S(V );H 1(0, t)

) : (�v)′(s)≤As−γ

for a.e. s ∈ [0, t], v ∈ S(V )
}
,

which is a complete metric space with the metric inherited from C�
0,t . Moreover, we

define the map

�̂[�;u,v](t) :=
∫ ∞

0
P[t ≥ τx,�u,v ]p0(x|u,v)dx

so that �[�]ṽ(t) = ∑k
h=1 ṽh

∫

Rk×Rk uh�̂[�;u,v](t)dπ(u, v). Then for each u and
v, we can replicate the arguments from Hambly et al. [15, Sect. 4] leading up to
[15, Proposition 4.9], but for the function t �→ �̂[�;u,v](t) in place of the function
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t �→ �(t) defined in [15, Eq. (1.6)]. Given π and P0(dx|u,v) satisfying Assump-
tion 1.3, we can thus conclude (arguing by analogy with [15, Proposition 4.9]) that
there exists A > 0 such that for any ε0 > 0, there is a small enough time t0 > 0
for which

� : S
(

1 − β

2
,A+ ε0, t0

)

→ S
(

1 − β

2
,A+ ε0, t0

)

.

Moreover, by analogy with [15, Theorem 1.6], we can deduce from Lemma 5.1 that
� is a contraction on this space for small enough t0 > 0. Therefore the small time
existence of a continuously differentiable total loss process Lv =∑k

h=1 vhLh for the
system (1.2) with ρ = 0 now follows from an application of Banach’s fixed point the-
orem as in the proof of [15, Theorem 1.7]. Finally, by replicating the bootstrapping
argument from the proof of [15, Corollary 5.3], we conclude that the regular solu-
tion extends until the first time T� such that the H 1-norm of (L1, . . . ,Lk) on [0, T�)
diverges. This proves the first part of Theorem 2.3. �

5.2 Local uniqueness of càdlàg solutions with the cascade condition

It remains to verify that the approach of [15, Theorem 1.8] can be extended to the
present setting. This will be possible once we have the two lemmas that we turn
to next. The first lemma concerns a family of auxiliary McKean–Vlasov problems
given by

⎧
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

X
u,v;x,ε
t = x1{x≥ε} − ε

4
+
∫ t

0
bu,v(s)ds +

∫ t

0
σu,v(s)dB

u,v
s

− F

(

gu,v(0)λ
ε
v +

∫ t

0
gu,v(s)dL

v,ε
s

)

,

L
v,ε
t =

k∑

h=1

vh

∫

R+×Rk×Rk

ûhP[τx,ε
û,v̂

≤ t]dP0(x|û, v̂)dπ(û, v̂),

τ x,εu,v = inf{t ≥ 0 :Xu,v;x,ε
t ≤ 0}

(5.3)

for ε > 0, where λεv := ∑k
h=1 vh

∫

(0,ε)×Rk×Rk ûhdP0(x|û, v̂)dπ(û, v̂). Similarly to
[15, Sect. 5.2], the idea is to create a family of approximating solutions by artificially
removing an amount ε of mass, which is then counted as a loss already at time zero.
By rewriting each Lε

v as Lv,ε
t = λεv + L̃

v,ε
t , where

L̃
v,ε
t :=

k∑

h=1

vh

∫

[ε,∞)×Rk×Rk

ûhP[τx,ε
û,v̂

≤ t]dP0(x|û, v̂)dπ(û, v̂), (5.4)

we can verify that there indeed exist solutions to the approximating problems (5.3).
Moreover, we can obtain regularity estimates for these solutions on a small time
interval, uniformly in ε > 0. Recall that we are taking Assumptions 1.1–1.3 to be
satisfied.
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Lemma 5.2 There is an ε0 > 0 such that (5.3) has a family (Lε)ε≤ε0 of solutions
which are uniformly regular in the following sense: There exist A > 0 and t0 > 0
such that Lε ∈ S( 1−β

2 ,A, t0) uniformly in ε ∈ (0, ε0].

Proof First of all, we can ensure that λεv ≤ C�ε
1+β/(1 + β) uniformly in v, for small

enough ε > 0, by Assumption 1.3, and clearly F(x) = o(x1/(1+β)) as x ↓ 0 since F
is Lipschitz with F(0) = 0 by Assumption 1.2. Hence there exists ε0 > 0 such that
F(gu,v(0)λεv) ≤ ε/4 for all ε ∈ (0, ε0). Next, using (5.4) and making the change of
variables y = x − ε/4 − F(gu,v(0)λεv) in (5.3), we obtain the equivalent formulation

⎧
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

X̃
y,ε
u,v(t)= y +

∫ t

0
bu,v(s)ds +

∫ t

0
σu,v(s)dB

u,v
s

− F

(

gu,v(0)λ
ε
v +

∫ t

0
gu,v(s)dL̃

v,ε
s

)

+ F
(
gu,v(0)λ

ε
v

)
,

L̃
v,ε
t =

k∑

h=1

vh

∫

R+×Rk×Rk

ûhP[τ̃ y,ε
û,v̂

≤ t]pε0(y|û, v̂)dydπ(û, v̂),

pε0(y|u,v)= p0

(

y + ε

4
+ F

(
gu,v(0)λ

ε
v

)
)

1{y+ ε
4 +F(gu,v(0)λεv)≥ε},

τ̃
y,ε
u,v = inf{t ≥ 0 : X̃u,v;y,ε

t ≤ 0}.
Now take ε0 ≤ x�. Recalling that F(gu,v(0)λεv)≤ ε/4 for all ε ∈ (0, ε0), we can then
observe that

pε0(y|u,v)≤ C�

(
y + ε/4 + F

(
gu,v(0)λ

ε
v

))β
1{y+ε/4+F(gu,v(0)λεv)≥ε}

≤ C�(y + ε/2)β1{y≥ε/2} ≤ 2βC�y
β for all y < x�/2,

uniformly in u, v and ε ∈ (0, ε0). Therefore, for each ε ∈ (0, ε0), we can indeed
construct a regular solution L̃ε to the above system by the first part of Theorem 2.3
proved in Sect. 5.1. Moreover, since the boundary control on pε0( · |u,v) is uniform in
ε ∈ (0, ε0), uniformly in u and v, it follows from the fixed point argument in Sect. 5.1
that the regularity of the solutions L̃ε is also uniform in ε ∈ (0, ε0). By (5.4), the
uniform regularity of the original family Lε follows a fortiori from that of L̃

ε
, and

thus the proof is complete. �

Armed with Lemma 5.2, we can proceed to the final part of the general uniqueness
result, namely the monotonicity and trapping argument from [15, Sect. 5.2].

Lemma 5.3 Let L : S(V )→ L∞(0, T ) be given by

Lv
t :=

k∑

h=1

vhLh
t =

k∑

h=1

vh

∫

R+×Rk×Rk

ûhP[t ≥ τû,v̂]dP0(x|û, v̂)dπ(û, v̂)
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for a generic solution to (1.2) with ρ = 0. Suppose (L1, . . . ,Lk) have no jumps on
[0, t0) so that s �→ Lv

s is continuous on [0, t0) for all v. If Lε is a continuous solution
of (5.3) on [0, t0), then we have strict domination Lv,ε > Lv on [0, t0) for all v 
= 0.
Moreover, if L is differentiable on [0, t0) and the family (Lε) is uniformly regular on
[0, t0) in the sense of Lemma 5.2, then there is another time 0 < t1 ≤ t0 such that a
vanishing envelope is guaranteed on [0, t1], namely ‖L−Lε‖�t1 → 0 as ε → 0.

Proof Noting that Lv,ε
0 = λεv > 0 = Lv

0 for v 
= 0, towards a contradiction, we let
t ∈ (0, t0) be the first time that Lv,ε

t = Lv
t for some v 
= 0. Then for any s < t ,

gu,v(0)λ
ε
v +

∫ s

0
gu,v(r)dL

v,ε
r =

∫ s

0
Lv,ε
r d(−gu,v)(r)+ gu,v(s)L

v,ε
s

≥
∫ s

0
Lv
r d(−gu,v)(r)+ gu,v(s)L

v
s =

∫ s

0
gu,v(r)dL

v
r ,

and since F is increasing, we thus have

Xu,v;x
s −Xu,v;x,ε

s = x1{x<ε} + ε

4
+ F

(

gu,v(0)λ
ε
v +

∫ s

0
gu,v(s)dL

v,ε
s

)

− F

(∫ s

0
gu,v(s)dL

v
s

)

≥ ε

4
(5.5)

for all s ∈ (0, t). Arguing as in the proof of [15, Lemma 5.6], it follows from (5.5) that

L
v,ε
t ≥ Lv

t +
k∑

h=1

vh

∫

R+×Rk×Rk

ûhP
[

inf
r∈[0,t]X

u,v
s ∈ (0, ε/4]

]
dP0(x|û, v̂)dπ(û, v̂)

> Lv
t ,

which contradicts the definition of t , thus proving the first claim.
For the second claim, we can now rely on the fact that Lε

v > Lv on [0, t0) for all
v 
= 0. Consequently, since X

u,v;x,ε
s = 0 on the event {τx,εu,v = s}, we deduce that on

this event,

Xu,v;x
s =Xu,v;x

s −Xu,v;x,ε
s ≤ ε + ε

4
+ gu,v(0)‖F‖Lip‖Lε

v −Lv‖s , (5.6)

where the inequality follows by the equality in (5.5) and the same estimate as in the
proof of Lemma 5.1. From here, (5.6) allows us to retrace the last steps of [15, Propo-
sition 3.1] with the term gu,v(0)‖F‖Lip‖Lε −L‖�s in place of the term α(�s − �̄s), and
hence we can replicate the proof of [15, Lemma 5.7] to verify the second claim. �
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Based on Lemmas 5.1 and 5.3, we can now give the proof of Theorem 2.3. First,
if L corresponds to the regular solution obtained at the end of Sect. 5.1 and L̃ to an
arbitrary càdlàg solution on [0, T�], the same arguments as in Lemma 5.1 yield

(Lv
t − L̃v

t )
+ ≤ C‖(L− L̃ )+‖�t

∫ t

0
(t − s)−

1
2 dLv

s

for all v ∈ S(V ), for all t ∈ [0, T�). Arguing as in [15, Proof of Theorem 1.6], we can
thus use the regularity of Lv as the integrator to deduce that Lv

t ≤ L̃v
t for all t ∈ [0, T�)

and all v ∈ S(V ). Let t̃ > 0 be such s �→ L̃v
s is continuous on [0, t̃) for all v ∈ S(V )

(this is possible since we can consider the first time one of the k right-continuous
processes L̃h jumps, and each of these has L̃h

0 = 0). Then the first part of Lemma 5.3
gives Lv

t ≤ L̃v
t < L

v,ε
t for all t ∈ [0, t̃) and all v ∈ S(V ). Applying the second part

of Lemma 5.3 and sending ε ↓ 0, we then get a time t̃1 such that L = L̃ on [0, t̃1).
Suppose t̃1 < T� (otherwise, we are done). By the regularity of L̃ on [0, t̃1), we can
conclude as in [15, Lemma 5.1] that the density of each P[X̃u,v

t− ∈ dx, t ≤ τ̃u,v] is
Hölder-continuous at zero, and hence it is straightforward to check that we get

lim
ε↓0

lim
m→∞


(m,ε)

t̃1,v
= 0

in (2.4), for all v ∈ S(V ). In turn, 
L̃t̃1
= 0 since the statement of the theorem as-

sumes that the jump sizes are smaller than or equal to those given by the cascade
condition. This gives L= L̃ on [0, t̃1]. Using that we now have a nicely behaved den-
sity of P[X̃u,v

t ∈ dx, t < τ̃u,v], we can proceed as in [15, Proof of Corollary 5.3] and
bootstrap the uniqueness argument to get uniqueness on all of [0, T�). This completes
the proof of Theorem 2.3. �

6 Some directions for future research

The results presented in this paper raise a series of interesting questions for future
research. As we have seen, both the finite particle system and the mean-field problem
suffer from non-uniqueness. In the finite setting, we have argued that this is natu-
rally resolved by working with the cascade condition (2.12), meaning that we select
the greatest càdlàg clearing capital solution for the finite interbank system. In the
mean-field setting, however, it is less clear how to deal with the non-uniqueness in an
appropriate way. It would be interesting to understand if it is possible to show con-
vergence of (2.12) as n→ ∞, and if the limit points from Theorem 2.6 can be shown
to satisfy (2.4). Also, there is the question of whether there can be solutions that are
not limit points, similarly to Nutz et al. [24] where a mean-field game problem was
shown to have various solutions failing to be limits of the finite-player problems.

As we saw in Theorem 2.2, uniqueness becomes much easier when jump dis-
continuities can be ruled out. However, this cannot always be dismissed and then
uniqueness remains out of reach, even with a selection principle such as (2.4). Theo-
rem 2.3 suggests that the methods of Delarue et al. [9], suitably adapted, could yield
global uniqueness under (2.4). With the common noise, this is no longer the case
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as several parts of the arguments in [9] break down. Fine results related to Hölder
boundary regularity of the Dirichlet problem for one-dimensional stochastic partial
differential equations with transport noise, such as Krylov [19, Theorem 4.1], could
prove to be key for making progress in this direction. To overcome the difficulty of
jumps and non-uniqueness, it is also possible to consider a more gradual realisation
of the financial contagion as in Hambly and Søjmark [16]. Certainly, the convergence
arguments presented here easily transfer to the corresponding heterogeneous formu-
lation of [16]. In this case, it remains of interest to understand the jumps as limiting
cases where the time line of a continuously unfolding cascade is collapsed to zero.

Another interesting direction is to utilise the mean-field problem (1.1) together
with (2.4) as a way of computing risk measures based on partial information from
real-world financial systems. In practice, the links between financial institutions are
far from publicly known; so it could be practical to work with a distribution π on
R
k ×R

k , for a not too large level of granularity k, such that the dot product structure
u · v gives a satisfactory estimate of one’s belief about the heterogeneity of the links.
Furthermore, the convergence to the mean-field problem then justifies only attempt-
ing to estimate average parameters for different subsets of institutions, corresponding
to different parts of the support of π . Exploiting the structural modelling, it may be
feasible to exploit equity data for estimating such average parameters for the drift,
volatility and correlation to a common factor. In contrast to the homogeneous prob-
lem, one can then look at notions of systemic importance. For example, building on
the influential CoVaR methodology (see Adrian and Brunnermeier [1]), one could
study the value-at-risk or expected shortfall among peripheral parts of the system
conditionally on a period of steep increase in the probability of default within a core
fraction.

Finally, we wish to stress that the cascade condition (2.4) is instructive for nu-
merical implementation. From one time-step to the next, there is inevitably a small
increase in the probability of having defaulted before or at the current time-step for
each of the mean-field particles, before factoring in any contagion. Using the size of
these increases as the first input, we can then iterate (2.4) a finite number of times
until the resulting change is below some acceptable threshold, thus giving the total
change in the contagion processes before proceeding to the next time-step. Between
time-steps, we can effectively think of all the mean-field particles as simply sitting in
a heat bath; so all we have to do is convolve with a family of heat kernels and then
adjust the heat profiles at each time step according to the above iterative procedure for
(2.4). This yields an efficient way to simulate directly the mean-field system. It would
be interesting to understand what the gains are in terms of computational complexity
compared to simulating the finite system, as we let the number of particles increase.
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