
OR I G I N A L A R T I C L E

Deep spectral Q-learning with application to mobile health

Yuhe Gao1 | Chengchun Shi2 | Rui Song1

1Department of Statistics, North Carolina

State University, Raleigh 27695, USA

2Department of Statistics, London School of

Economics and Political Science, London

WC2A 2AE, UK

Correspondence

Rui Song, Department of Statistics, North

Carolina State University, Raleigh, NC 27695,

USA.

Email: rsong@ncsu.edu

Dynamic treatment regimes assign personalized treatments to patients sequentially

over time based on their baseline information and time-varying covariates. In mobile

health applications, these covariates are typically collected at different frequencies

over a long time horizon. In this paper, we propose a deep spectral Q-learning algo-

rithm, which integrates principal component analysis (PCA) with deep Q-learning to

handle the mixed frequency data. In theory, we prove that the mean return under the

estimated optimal policy converges to that under the optimal one and establish its

rate of convergence. The usefulness of our proposal is further illustrated via simula-

tions and an application to a diabetes dataset.
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1 | INTRODUCTION

Precision medicine focuses on providing personalized treatment to patients by taking their personal information into consideration (see,

e.g., Kosorok & Laber, 2019; Tsiatis et al., 2019). It has found various applications in numerous studies, ranging from the cardiovascular disease

study to cancer treatment and gene therapy (Jameson & Longo, 2015). A dynamic treatment regime (DTR) consists of a sequence of treatment

decisions rules tailored to each individual patient's status at each time, mathematically formulating the idea behind precision medicine. One of

the major objectives in precision medicine is to identify the optimal dynamic treatment regime that yields the most favorable outcome on

average.

With the rapidly development of mobile health (mHealth) technology, it becomes feasible to collect rich longitudinal data through mobile apps

in medical studies. A motivating data example is given by the OhioT1DM dataset (Marling & Bunescu, 2020), which contains data from 12 patients

suffering from type-I diabetes measured via fitness bands over 8 weeks. Data-driven decision rules estimated from these data have the potential

to improve these patients' health (see, e.g., Shi et al., 2020; Zhu et al., 2020; Zhou et al., 2022). However, it remains challenging to estimate the

optimal DTR in these mHealth studies. First, the number of treatment stages (e.g., horizon) is no longer fixed, whereas the number of patients can

be limited. For instance, in the OhioT1DM dataset, only 12 patients are enrolled in the study. Nonetheless, suppose treatment decisions are made

on an hourly basis, the horizon is over 1000. Existing proposals in the DTR literature (Ertefaie et al., 2021; Fang et al., 2022; Guan et al., 2020;

Mo et al., 2021; Murphy, 2003; Nie et al., 2021; Qi & Liu, 2018; Shi et al., 2018; Song et al., 2015; Zhang et al., 2013, 2018; Zhao et al., 2015)

become inefficient in these long or infinite horizon settings and require a large number of patients to be consistent. Second, patients' time-varying

covariates typically contain mixed frequency data. In the OhioT1DM dataset, some of the variables, such as the continuous glucose monitoring

(CGM) blood glucose levels, are recorded every 5 min. Meanwhile, other variables, such as the carbohydrate estimate for the meal and the

Abbreviations: CGM, continuous glucose monitoring; DTR, dynamic treatment regime; IGC, index of glycemic control; mHealth, mobile health; PCA, principal component analysis; ReLU, rectified

linear unit; RL, reinforcement learning.
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exercise intensity, are recorded with a much lower frequency. Concatenating these high-frequency variables over each 1-h interval produces a

high-dimensional state vector, and directly using these states as input of the treatment policy would yield very noisy decision rules. A naive

approach is to use some ad hoc summaries of the high-frequency data for policy learning. However, this might produce a suboptimal policy due to

the information loss.

Recently, there is a growing line of research in the statistics literature for policy learning and/or evaluation in infinite horizons. Some refer-

ences include Chen et al. (2022), Ertefaie and Strawderman (2018), Liao et al. (2020), Liao et al. (2021), Li et al. (2022), Luckett et al. (2020),

Ramprasad et al. (2022), Shi et al. (2022, 2021), and Xu et al. (2020). In the computer science literature, there is a huge literature on developing

reinforcement learning (RL) algorithms in infinite horizons. These algorithms can be casted into as model-free and model-based algorithms.

Popular model-free RL methods include value-based methods that model the expected return starting from a given state (or state-action pair)

and compute the optimal policy as the greedy policy with respect to the value function (Dabney et al., 2018; Ernst et al., 2005; Mnih et al.,

2015; Riedmiller, 2005; Van Hasselt et al., 2016), and policy-based methods that directly search the optimal policy among a parameterized

class via policy gradient or actor-critic methods (Koutnk et al., 2013; Mnih et al., 2016; Schulman et al., 2015; Schulman et al., 2015; Wang

et al., 2017). Model-based algorithms are different from the model-free algorithms in the sense that they model the transition dynamics of the

environment and use the model of environment to derive or improve policies. Popular model-based RL methods include Guestrin et al. (2002),

Janner et al. (2019), Lai et al. (2020), and Li et al. (2020), to name a few. Recently, Chen et al. (2021), Janner et al. (2021), and Villaflor et al.

(2022) have formulated RL as a sequence modeling problem, where the dynamics of state-action-reward is captured by some transformer

architectures such as GPT (Radford et al., 2018). See also Arulkumaran et al. (2017), Luo et al. (2022), Sutton and Barto (2018), and Villaflor

et al. (2022) for more details. These methods cannot be directly applied to datasets such as OhioT1DM as they haven't considered the mixed

frequency data.

In the RL literature, a few works have considered dimension reduction to handle the high dimensional state system. In particular, Murao and

Kitamura (1997) proposed to segment the state space and learn a cluster representation of the states. Whiteson et al. (2007) proposed to divide

the state space into tilings to represent each state. Both papers proposed to discretize the state space for dimension reduction. However, it can

lead to considerable information loss (Wang et al., 2017). Sprague (2007) proposed an iterative dimension reduction method using neighborhood

components analysis. Their method uses a linear basis function to model the Q-function and cannot allow more general nonlinear function

approximation. Recently, there are a few works that employ principal components analysis (PCA) for dimension reduction in RL (Curran et al.,

2015, 2016; Parisi et al., 2017). However, none of the aforementioned papers formally established the theoretical guarantees for their proposals.

Moreover, these methods are motivated by applications in games or robotics, and their generalization to mHealth applications with mixed fre-

quency data remains unknown.

In the DTR literature, a few works considered mixed frequency data, which include both scalar and functional covariates. Specifically,

McKeague and Qian (2014) proposed a functional regression model for optimal decision making with one functional covariate. Ciarleglio et al.

(2015) and Ciarleglio et al. (2016) extended their proposal to a more general setting with multiple scalar and functional covariates. Ciarleglio et al.

(2018) considered variable selection to handle the mixed frequency data. Laber and Staicu (2018) applied functional PCA to the functional

covariates for dimension reduction. All these works considered single-stage decision making. Their methods are not directly applicable to the infi-

nite horizon settings.

Our contributions are as follows. Scientifically, mixed frequency data frequently arise in mHealth applications. Nonetheless, it has been less

explored in the infinite horizon settings. Our proposal thus fills a crucial gap and greatly extends the scope of existing approaches to learning

DTRs. Methodologically, we propose a deep spectral Q-learning algorithm for dimension reduction. The proposed algorithm achieves a better

empirical performance than those that either directly use the original mixed frequency data or its ad hoc summaries as input of the treatment pol-

icy. Theoretically, we derive an upper error bound for the regret of the proposed policy and decompose this bound into the sum of approximation

error and estimation error. Our theories offer some general guidelines for practitioners to select the number of principal components in the pro-

posed algorithm.

The rest of this paper is organized as follows. We introduce some background about DTR and the mixed frequency data in Section 2. We

introduce the proposed method to estimate the optimal DTR in Section 3 and study its theoretical properties in Section 4. Empirical studies are

conducted in Section 5. In Section 5.3, we apply the proposed method to the OhioT1DM dataset. Finally, we conclude our paper in Section 6.

2 | PRELIMINARY

2.1 | Data and notations

Suppose the study enrolls N patients. The dataset for the i-th patient can be summarized as Oi �fðSi,t,Ai,t,Ri,tÞ :1≤ t≤ Tig. For simplicity, we

assume Ti ¼ T for any i. Each state Si,t ¼ðXi,t,fZi,t,jgJj¼1Þ�S is composed of a set of low-frequency covariates Xi,t �ℝm0 and a set of J high-

frequency covariates fZi,t,jgJj¼1, where S is the state space. For each high-frequency variable Zi,t,j, j� f1,2, ::,Jg, we have Zi,t,j ¼
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ðZð1Þ
i,t,j ,Z

ð2Þ
i,t,j ,…,Z

ðmjÞ
i,t,j Þ

T
�ℝmj for some large integer mj. Let τ denote the length of a time unit. The low-frequency variables are recorded at time points

τ,2τ,…,tτ,…. The jth high-frequency variables, however, are recorded more frequently at time points m�1
j τ,2m�1

j τ,…. Notice that we allow the J

high-frequency variables to be recorded with different frequencies. Let m¼
PJ

j¼1mj and ZT
i,t ¼ ½ZT

i,t,1,Z
T
i,t,2,…,ZT

i,t,J��ℝm denote a high-dimensional

variable that concatenates all the high-frequency covariates. As such, the state Si,t can be represented as ðXi,t,Zi,tÞ�ℝm0þm. In addition, Ai,t denotes

the treatment indicator at the tth time point and A denotes the finite set of all possible treatment options with size jAj�ℕ. The reward, Ri,t corre-

sponds to the ith patient's response obtained after the tth decision point. By convention, we assume a larger value of Ri,t indicates a better out-

come. We require jRi,tj to be uniformly bounded by some constant Rmax >0, and assume O1,O2,…,ON are i:i:d:, which are commonly imposed in

the RL literature (see, e.g., Sutton & Barto, 2018). Finally, we denote the lp-norm of a function aggregated over a given distribution function σ by

:k kp,σ . We use ½q� to represent the indices set f1,2,3,…qg for any integer q�ℕ.

2.2 | Assumptions, policies, and value functions

We will require the system to satisfy the Markov assumption such that

PðS0,tþ1 �SjS0,t ¼ s,A0,t ¼ a,fS0,t0 ,A0,t0 g0≤ t0 < tÞ¼PðS0,tþ1 � SjS0,t ¼ s,A0,t ¼ aÞ, 8t,

for any s,a and Borel set S�S. In other words, the distribution of the next state depends on the past data history only through the current state-

action pair. We assume the transition kernel is absolutely continuous with respect to some uniformly bounded transition density function qðs0js,aÞ
such that sups,a,s0 jqðs0js,aÞj≤ cq for some constant cq >0.

In addition, we also impose the following conditional mean independence assumption:

EðR0,tjS0,t ¼ s,A0,t ¼ a,fR0,t0 ,S0,t0 ,A0,t0 g0≤ t0 < tÞ¼ EðR0,tjS0,t ¼ s,A0,t ¼ aÞ¼ rðs,aÞ,8t,

where we refer to rðs,aÞ¼ rðx,fzjgJj¼1,aÞ as the immediate reward function.

Next, define a policy π :S!PðAÞ as a function that maps a patient's state at each time point into a probability distribution function on the

action space. Given π, we define its (state) value function as

VπðsÞ¼
X∞
t¼0

γtEπfR0,tjS0,0 ¼ sg,

with γ � ½0,1Þ being a discount factor that balances the immediate and long-term rewards. By definition, the state-value function characterizes the

expected return assuming the decision process follows a given target policy π. In addition, we define the state-action value function (or Q-func-

tion) as

Qπðs,aÞ¼
X∞
t¼0

γtEπfR0,tjS0,0 ¼ s,A0,0 ¼ ag,

which is the expected discounted cumulative rewards given an initial state-action pair.

Under the Markov assumption and the conditional mean independence assumption, there exists an optimal policy π ∗ such that

Vπ ∗ ðsÞ≥VπðsÞ,8π,s�S (see, e.g., Puterman, 2014). Moreover, π ∗ satisfies the following Bellman optimality equation:

Qπ ∗ ðs,aÞ¼ EfR0,tþ γmax
a0 � A

Qπ ∗ ðS0,tþ1,a
0ÞjS0,t ¼ s,A0,t ¼ ag, ð1Þ

where Qπ ∗
denotes the optimal Q-function.

2.3 | Rectified linear unit (ReLU) network

In this paper, we use value-based methods that learn the optimal policy π ∗ by estimating the optimal Q-function. We will use the class of sparse

neural network with the ReLU activation function, i.e., fðxÞ¼ maxðx,0Þ, to model the Q-function. The advantage of using a neural network over a

simple parametric model is that the neural network can better capture the potential nonlinearity in the high-dimensional state system.

GAO ET AL. 3 of 16
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Formally, the class of sparse ReLU network is defined as

F SReLUðL,fdjgLþ1
j¼0 ,s,VmaxÞ¼ fℝd0 !ℝdLþ1 : fðxÞ¼WLgL�1 ∘gq�1 ∘…g1 ∘g0ðxÞ,

gjðxÞ¼ σðWjxþvjÞ,Wj �ℝdjþ1�dj ,vj �ℝdjþ1 , j� f0,1,…,Lg,

max
j¼0,1,…,L

fmaxð Wj

�� ��
∞, jvjj∞Þg≤1,

XL
j¼0

ð Wj

�� ��
0
þjvjj0Þ≤ s, max

k � f1,2,…,dLþ1g
fkk k∞ ≤Vmaxg:

Here, L is the number of hidden layers of the neural network and dj is the width of each layer. The output dimension dLþ1 is set to 1 since the Q-

function output is a scalar. The parameters in FReLUðLÞ are the weight matrices Wj and bias vectors vj. The sparsity level s upper bounds the total

number of nonzero parameters in the model. This constraint can be satisfied using dropout layers in the implementation (Srivastava et al., 2014).

In theory, sparse ReLU networks can fit smooth functions with a minimax optimal rate of convergence (Schmidt-Hieber, 2020). The main theo-

rems in Section 4 will rely on this property. An illustration of sparse ReLU network is in Figure 1.

3 | SPECTRAL FITTED Q-ITERATION

Neural network with ReLU activation functions in Section 2.3 is commonly used in value-based reinforcement learning algorithms. How-

ever, in medical studies, the training dataset is often of limited size, with a few thousands or tens of thousands of observations in total (see,

e.g., Liao et al., 2021; Marling & Bunescu, 2020). Meanwhile, the data contain high-frequency state variables, which yields a high-

dimensional state system. Directly using these states as input will procedure a very noisy policy. This motivates us to consider dimension

reduction in RL.

A naive approach for dimension reduction is to use some summary statistics of the high-frequency state as input for policy learning. For

instance, on the OhioT1DM dataset, the average of CGM blood glucose levels between two treatment decision points can be used as the sum-

mary statistic, as in Shi et al. (2022), Zhu et al. (2020), and Zhou et al. (2022). In this paper, we propose to use principal component analysis to

reduce the dimensionality of fZi,t,jgJj¼1. We expect that using PCA can preserve more information than some ad hoc summaries (e.g., average).

To apply PCA in the infinite horizon setting, we need to impose some stationarity assumptions on the concatenated high-dimensional vari-

ables ZT
i,t �ℝm: E½Zi,t� ¼ μ and Cov½Zi,t� ¼G for some mean vector μ�ℝm and covariance matrix G�ℝm�m that are independent of t. In real data

application, we can test whether the concatenated high-frequency variable Zi,t is weak stationary (see, e.g., Dickey & Fuller, 1979; Kwiatkowski

et al., 1992; Said & Dickey, 1984). If it is weak stationary, the concatenated high-frequency covariate Zi,t will automatically satisfy the two

assumptions above. Similar assumptions have been widely imposed in the literature (see, e.g., Kallus & Uehara, 2022; Shi et al., 2021). Without

loss of generality, we assume μ¼0m for simplicity of notations. For the covariance matrix G, it is generally unknown. In practice, we recommend

to use the sample covariance estimator Ĝ.

We describe our procedure as follows. By the spectral decomposition, we have Ĝ¼
Pm

k¼1 λ̂kÛkÛ
T
k , where λ1 ≥ λ2 ≥…≥0 are the eigenvalues

and Ûk 's are the corresponding eigenvectors. This allows us to represent Zi,t as
Pm

k¼1λ̂
1=2
k V̂

ði,tÞ
k Ûk , where V̂

ði,tÞ
k s are the estimated principal compo-

nent scores, given by λ̂
�1=2
k ZT

i,tÛk . For any κ, the estimated principal component scores V̂i,t,κ ¼ðV̂ði,tÞ
1 , V̂

ði,tÞ
2 ,…, V̂

ði,tÞ
κ Þ correspond to the κ ≤m largest

eigenvalues of the concatenated high-frequency variable Zi,t. When κ¼m, using these principal component scores is equivalent to using the origi-

nal high-frequency variable Zi,t. We will approximate QπðXi,t,Vi,t,m,Ai,tÞ by QπðXi,t,V̂i,t,κ ,Ai,tÞ and propose to use neural fitted Q-iteration algorithm

by Riedmiller (2005) to learn the estimated optimal policy. We detail our procedure in Algorithm 1.

F IGURE 1 Illustration of a rectified linear unit (ReLU) network.
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In Algorithm 1, we fit jAj neural networks corresponding to each a in Qðs,aÞ. This is reasonable in settings where the action space is small.

For the ReLU network ~Qkð�,aÞ,k¼0,1,…,K in Algorithm 1, the input is concatenation of the low-frequency part X�ℝm0 and the principal compo-

nent vector V̂�ℝκ . The input dimension for ~Qkð�,aÞ is then m0þκ. When the dataset is small (such as the OhioT1DM dataset), we recommend to

set n to NðT�1Þ such that all the data transactions (instead of a random subsample) will be used in each iteration.

Similar to the original neural fitted Q-iteration algorithm in Riedmiller (2005), the intuition of this algorithm is also based on the Bellman opti-

mality equation (1). In each step k of Algorithm 1, ~Qk estimates Qπ ∗
and the response Yi,tð ~QkÞ¼Ri,tþ γmaxa �A ~QkðXi,tþ1,V̂i,tþ1,κ ,aÞ corresponds to

the right-hand side of Equation (1). Therefore, fitting the regression of Yi,t with ~Qkþ1 is to solve the Bellman optimality equation. The key differ-

ence between Algorithm 1 and the original neural fitted Q-iteration algorithm is that the high-dimensional input ZT
i,t ¼ ½ZT

i,t,1,Z
T
i,t,2,…,Z

T
i,t,J� is involved

in the state space and is mapped to a lower dimensional vector V̂i,t,κ during the learning process, so the neural network ~Q0ðx,vκ ,aÞ takes principle
component V̂i,t,κ rather than original high dimensional Zi,t as input.

4 | ASYMPTOTIC PROPERTIES

Before discussing the asymptotic properties of our proposed Q-learning method, we introduce some notations.

Definition 1. Define

F 0ðL,fdigLþ1
i¼0 ,s,VmaxÞ¼ ff :S�A!ℝ, fð:,aÞ�F SReLUðL,fdigLþ1

i¼0 ,s,VmaxÞ,8a�Ag,

where F SReLUðL,fdjgLþ1
i¼0 ,s,VmaxÞ is the class of sparse ReLU network with L layers and sparsity parameter s and Vmax ¼ Rmax

1�γ , the uni-

form upper bound for the cumulative reward.

We define LF0 ¼ supf � F0
supx≠ y

jfðyÞ�fðxÞj2

y�xk k2
as the Lipschitz constant for the sparse ReLU class F SReLUðL,fdjgLþ1

i¼0 ,s,VmaxÞ used in F 0. Note that

this class F 0 is used in the original neural fitted Q-iteration algorithm to model the Q-function, where the dimension of high-frequency part Z in

state is not reduced through PCA. We further define a function class F 2 such that it models the Q-function by first converting high-frequency

part Z into its principal component scores and then use a sparse ReLU neural network to obtain the resulting Q-function. More specifically, F 2 is

a set of functions ff2g, such that f2ðx,z,aÞ¼ f0ðx, v̂κ ,aÞ, where f0 �F 0 and v̂κ is the vector containing first κ principle components of Z. Note that

F 2 is the function class that we use in Algorithm 1 to model the Q-function. That is, ~Qk �F 2,k� f1,2,…,Kg (formal definition of F 2 and another

function class F 1 not mentioned here are in Section A of Appendix S1).

In addition, we introduce the Hölder smooth function class by CrðD,β,HÞ with D�ℝr to be the set of function input. The definition is as

follows:

Definition 2. Define

CrðD,β,HÞ¼
(
f :D!ℝ :

X
γ < β

∂γfk k∞þ
X

α � ℕr
0 : αk k¼bβc

sup
x,y � D,x≠ y

j∂αfðxÞ� ∂αfðyÞj
x�yk kβ�bβc

∞

≤H

)
,

GAO ET AL. 5 of 16
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where α�ℕr
0 is a r-tuple multi-index for partial derivatives.

We next construct a q-layer network structure Gðfpj,tj,βj ,Hjgj � ½q�Þ with the component function on each layer of this network belonging to

Holder smooth function class CðD,β,HÞ, which is called composition of Holder Smooth functions. This composition network contains q layers,

with each layer being gj : ½aj,bj�pj !½ajþ1,bjþ1�pjþ1 , such that gjk the kth component (k� ½pjþ1�) in layer j satisfies that gjk � Ctj ð½aj,bj�
tj ,βj,HjÞ with

1≤ tj ≤ pj inputs. Similar to the definition of F 0, we can define the function class G0ðfpj ,tj ,βj,Hjgj � ½q�Þ (simply denoted as G0) on S�A!ℝ such

that each function g�G0 satisfies that gð:,aÞ�Gðfpj,tj,βj,Hjgj � ½q�Þ for 8a�A. The relation between function class G0 and the network structure G
is similar to the relation between function class F 0 and the neural network F SReLU in Definition 1. See Definition 4.1 of Fan et al. (2020) for more

details on G0ðfpj ,tj ,βj,Hjgj � ½q�Þ.
Next, we will introduce the three major assumptions for our theorems:

Assumption 1. The eigenvalues of CovðZÞ follow an exponential decaying trend λk ¼Oðe�ζkÞ,k¼1,2,…,m for some constant ζ >0.

Assumption 2. The estimator Ĝ¼
Pm

k¼1λ̂kÛkÛk
T
satisfies that Ûk�Uk

��� ���
2
¼Opðn�ΔÞ for 1≤ k ≤m such that Δ> 0 is some constant.

Assumption 3. First, we define the Bellman optimality operator T as

T fðx,z,aÞ¼ E
n
R0,tþ γmax

a0 �A
fðX0,tþ1,Z0,tþ1,a

0ÞjA0,t ¼ a,X0,t ¼ x,Z0,t ¼ z
o
:

Then we assume T f �G0 for f �F 2.

Among the three assumptions, the exponential decaying structure of eigenvalues in Assumption 1 can be commonly found in the literature of

high-dimensional and functional data analysis (see, e.g., Crambes & Mas, 2013; Jirak, 2016; Reiß & Wahl, 2020). This assumption is to control the

information loss caused by using the first κ principal component scores of Zi,t only. Assumption 2 is about the consistency of the estimators Ĝ and

similar assumptions are imposed in the literature of functional data analysis (see, e.g., Laber & Staicu, 2018; Staicu et al., 2014). Using similar argu-

ments in proving Theorem 5.2 of Zhang and Wang (2016), we can show that such an assumption holds in our setting as well. It is to bound the

error caused by the estimation of the covariance matrix. Assumption 3 is referred to as the completeness assumption in the literature (see,

e.g., Chen & Jiang, 2019; Uehara et al., 2021, 2022). This assumption is automatically satisfied when the transition kernel and the reward function

satisfy certain smoothness conditions.

Our first theorem is concerned with the convergence rate of ~QK in Algorithm 1.

Theorem 1 Convergence of estimated Q-function. Let μ be some distribution on S such that dμðsÞ
ds is bounded away from 0. Under

Assumptions 1 to 3, with sufficiently large n, there exists a sparse ReLU network structure for the function class F 2 modeling ~Qðs,aÞ, such
that ~QK obtained from our Algorithm 1 satisfies that

1
jAj
X
a �A

Qπ ∗ ð:,aÞ� ~QKð:,aÞ
��� ���2

2,μ
¼Op jAjðnα ∗

logξ
∗
nþd ∗

1 κÞn�1logξ
∗ þ1nþLF0 ðe�ζκ �e�ζmþn�2ΔÞþ γ2K

ð1� γÞ2
R2
max

 !
,

where 0< α ∗ <1 is a constant, ξ ∗ >1 is a coefficient related to the growing rate of neural network layer number with n, jAj is number of

treatment options, and d ∗
1 is the width of the first layer of the sparse ReLU network used in F 2 satisfying the bound m0þm≤ d ∗

1 ≤ nα
∗
.

More details of neural network structure, sample size assumptions, and values of α ∗ ,ξ ∗ for Theorem 1 can be found in Section B of Appendix

S1. Theorem 1 provides an error bound on the estimated Q-function ~QK . Based on this theorem, we further establish the regret bound of the esti-

mated policy πK obtained via Algorithm 1. Toward that end, we need another assumption:

Assumption 4. Assume there exist η>0,δ0 > 0, such that

Pðs :max
a

Qπ ∗ ðs,aÞ� max
a � A�argmaxa0Q

π ∗ ðx,a0 Þ
Qπ ∗ ðs,aÞ≤ ϵÞ¼OðϵηÞ

for 0 < ϵ≤ δ0.
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The margin type condition Assumption 4 is commonly used in the literature. Specifically, in classification, the margin conditions are imposed

to bound the excess risk (Audibert & Tsybakov, 2007; Tsybakov, 2004). In dynamic treatment regime, a similar assumption is introduced for prov-

ing the convergence of state-value function in a finite horizon setting (Luedtke & van der Laan, 2016; Qian & Murphy, 2011). In RL, these assump-

tions were introduced by Shi et al. (2022) to obtain sharper regret bound for the estimated optimal policy.

Theorem 2 Convergence of state-value function. Under Assumptions 1 to 4 and the conditions of μ,F 2,n in Theorem 1, we have

Eμ½Vπ ∗ ðsÞ�VπK ðsÞ� ¼Op
1

1� γ

(
Aj jðnα ∗

logξ
∗
nþd ∗

1 κÞn�1logξ
∗ þ1nþLF0 ðe�ζκ�e�ζmþn�2ΔÞþ γ2K

ð1� γÞ2
R2
max

)ηþ1
ηþ2

0
@

1
A:

The proofs of the two theorems are included in Section C of Appendix S1. We summarize our theoretical findings below. First, we notice that

the convergence rate of regret in Theorem 2 is faster than the convergence of estimated Q-functions in Theorem 1. This is due to the margin type

Assumption 4, which enables us to obtain a sharper error bound. Similar results have been established in the literature. See, for example, Theorem

3.3 in Audibert and Tsybakov (2007), Theorem 3.1 in Qian and Murphy (2011), and Theorems 3 and 4 in Shi et al. (2022). Without Assumption 4,

it is equivalent to the case of η¼0 in Theorem 2, where ηþ1
ηþ2¼ 1

2 and the convergence rates of the state-value function and Q-function will be

the same.

The regret bound in the theorems is mainly determined by four parameters: The sample size n, the number of principal components κ, the

number of iterations K, and the number of layers in the neural network (denoted as L). Here, the first term jAjðnα ∗ ðlogξ
∗
nÞþd ∗

1 κÞn�1logξ
∗ þ1n on

the right-hand side of Theorem 2 corresponds to the estimation error, which decreases with n and increases with κ. The second term LF0 ðe�ζκ �
e�ζmþn�2ΔÞ corresponds to the approximation error, which decreases with both n and κ. The remaining term γKþ1

ð1�γÞ2Rmax is the optimization error

that will decrease as the iteration number K in Algorithm 1 grows. For L, it satisfies L¼CLlog
ξ ∗
n for some constant CL >0 (details can be found in

Section B of Appendix S1). Note that L cannot be too small as it grows faster than logn. Furthermore, the error bound of Q-function and state-

value function contains a quadratic form of L, as is shown in the term jAjðnα ∗
logξ

∗
nþd ∗

1 κÞn�1logξ
∗ þ1n¼ jAjlogn

C2
L n

ðnα ∗
LþCLd

∗
1 κÞL of Theorems 1

and 2. Therefore, larger values of L tend to result in slower convergence.

Compared with the existing results on the convergence rate of deep fitted Q-iteration algorithm (see Theorem 4.4 of Fan et al., 2020), our

theorems additionally characterize the dependence upon the number of principal components. Specifically, selecting the first κ principal compo-

nents induces the information loss (e.g., bias) that is of the order e�ζκ�e�ζm but reduces the model complexity caused by high-frequency variables

from d ∗
1 m to d ∗

1 κ and hence the variance of the policy estimator. This represents a bias-variance trade-off. Notice that the bias decays at an expo-

nential order, when the training data are small, reducing the model complexity can be more beneficial. Thus, our algorithm is expected to perform

better than the original fitted Q-iteration algorithm in small samples, as shown in our numerical studies.

Finally, The number of principal components shall diverge with n to ensure the consistency of the proposed algorithm. Based on the two the-

orems, the optimal κ ∗ that balances the bias and variance trade-off shall satisfy κ ∗ � logðnÞ (details are given in Section D of Appendix S1). Thus,

when n goes to infinity, we will eventually take κ ∗ ¼m and our Algorithm 1 will be equivalent to the original neural fitted Q-iteration. This is just

an asymptotic guideline for selecting the number of principal components. We provide some practical guidelines in the next section.

5 | EMPIRICAL STUDIES

5.1 | Practical guidelines for number of principal components

In functional data analysis, several criteria have been developed to select number of principal components, including the percentage of variance

explained, Akaike information criterion (AIC), and Bayesian information criterion (BIC) (see, e.g., Li et al., 2013; Yao et al., 2005). In our setting, it is

difficult to apply AIC/BIC, since there does not exist a natural objective function (e.g., likelihood) for Q-function estimation. One possibility is to

extend the value information criterion (Shi et al., 2021) developed in single-stage decision making to infinite horizons. Nonetheless, it remains

unclear how to determine the penalty parameter for consistent tuning parameter selection.

Here, we select κ based on the percentage of variance explained. That is, we can look at the minimum value of κ such that the total variance

explained by PCA reaches a certain level (e.g., 95%). This method is also employed in Laber and Staicu (2018) in single-stage decision making. To

illustrate the empirical performance of this method, we apply Algorithm 1 with κ � f2,6,10,14…,74g and evaluate the expected return of these

policies in the following numerical study.

The data generating process can be described as follows. We set the low-frequency covariate Xi,t to be a two-dimensional vector and the

high-frequency variables Zi,t to be a 108-dimensional vector (m¼108). Both are sampled from mean zero normal distributions. The covariance
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matrix of Z is set to satisfy Assumption 1. The action space is binary (i.e., A¼f0,1g) and the behavior policy to generate actions in training data is

a uniform random policy. The reward function rðx,z,aÞ is set to ¼ xβ1,aþ zβ2,aþ cmaxfðxβ1,aþ zβ2,aÞ,0g for some constant c and coefficient vectors

β1,a,β2,a such that it is a mixture of a linear function and a neural network with a single layer and ReLU activation function. Next state

ðXi,tþ1,Zi,tþ1Þ will be generated from a normal distribution with mean being a linear function of state ðXi,t,Zi,tÞ and action Ai,t. The number of trajec-

tories N is fixed to 6 and the length of trajectory T is set to be 80.

The ReLU network is constructed with three hidden layers and width d1 ¼15,d2 ¼ d3 ¼5. Dropout layers with 10% dropout rate are added

between layer 1, layer 2, and layer 3. During training, the dropout layers randomly sets the output from previous layers to 0 with the probability

10%, which can introduce sparsity to the neural network and reduce overfitting (Srivastava et al., 2014). The hyperparamters of neural network

structure can be tuned via cross-validation. The discounted factor γ is fixed to 0.5.

To evaluate the policy performance, we can use a Monte Carlo method to approximate the expected return under each estimated policy. Spe-

cifically, for each estimated policy π, we generate Nmc ¼100 trajectories each of length Tmc ¼20 (in our setting with γ¼0:5, the cumulative

reward after Tmc ¼20 is negligible). The initial state distribution is the same as the one in the training dataset. The actions are assigned according

to π. The expected return can then be approximated via the average of the empirical cumulative rewards over the 100 trajectories.

For each κ in the list f2,6,10,14…,74g, we apply Algorithm 1 to learn the optimal policy over 80 random seeds and evaluate their expected

return using the Monte Carlo method. We then take the sample average and standard error of these 80 expected returns to estimate the value of

policy and construct the margin of error. Figure 2 depicts the estimated values of these expected returns as well as their confidence intervals. It

can be seen that increasing κ from 2 to 6 leads to a significant improvement. However, further increasing κ worsens the performance. This trend

is consistent with our theory since the bias term will dominate the estimation error for small value of κ. When κ increases, the bias decays at expo-

nentially fast and the model complexity term becomes the leading term. Meanwhile, the percentage of variance explained increases quickly when

κ ≤ 6 and remains stable afterwards. As such, it makes sense to use this criterion for κ selection. In our implementation, we select the smallest κ

such that the variance explained is at least 95%.

5.2 | Simulation study

In the simulation study, we compare the proposed policy πPCAK against two baseline policies obtained by directly using the original high-frequency

variable Zi,t,j (denoted by πALLK ) and its average as input (denoted by πAVEK ). Both policies are computed in a similar manner based on the deep fitted

Q-iteration algorithm. We additionally include one more baseline policy, denoted by πBOTTLEK , which adds one bottleneck layer after the input of

original Z in the neural network architecture such that the width of this bottleneck layer is the same as the input dimension of the proposed policy

πPCAK . This policy differs from the proposed policy in that it uses this bottleneck layer for dimension reduction instead of PCA. Both the data gener-

ating setting and the neural network structure are the same to Section 5.1. However, in this simulation study, we vary the sample size and the

dimension of the high-frequency variables. Specifically, we consider 15 cases of training size (N¼6,T¼30,45,60,75,90,105,120 and N¼
2,3,4,5,7,8,9,10,T¼120 ) and five different high-frequency part dimension m¼27,54,108,162,216. In particular, the two cases N¼6,T¼30 and

N¼2,T¼120 are corresponding to the scenarios where the size of available training data is extremely small. Furthermore, we have two settings

of generating high-frequency variables that will be discussed below. We similarly compare the proposed policy against πALLK , πBOTTLEK , and πAVEK and

use the Monte Carlo method to evaluate their values.

In the first setting, we consider five cases with J (the number of high-frequency variables) equal to 1, 2, 4, 6, 8 and each high-frequency vari-

able Zj, j� f1,2,…,Jg is of dimension 27. In this setting, all J high-frequency variables are dependent and eigenvalues of concatenated high-

F IGURE 2 Left: Estimated value of policies by Algorithm 1 when κ varies in f2,6,10,14…,74g (shaded area is 95% confidence interval); right:
proportion of variance explained by the first κ principal components.
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frequency variable Z decays at an exponential order. We find that the first five principal components explain over 95% of variance in all the five

cases, as shown in Figure 3. Therefore, we set the number of principal components κ¼5 and plot the results in Figure 4.

In the second setting, the J high-frequency variables are independent with each other. For each j, all the elements in Zj are dependent and

eigenvalues of Zj decay at the same exponential order as the eigenvalues of the concatenated high-frequency variable Z in the first setting. There-

fore, more principal components are needed to guarantee that the number of variance explained exceeds 95%, as J increases. Specifically, when

J¼1,2,4,6,8 high-frequency variables, the corresponding κ is given by 5, 10, 20, 30, 40 accordingly. See Figure 3 for details. The expected returns

of all estimated optimal policies are plotted in Figure 5.

From Figures 4 and 5, it can be seen that the proposed policy πPCAK always achieves a larger value than the three baseline policies. It is true

even in the two scenarios with very limited data size, which proves the robustness of our proposed method. Meanwhile, πALLK and πBOTTLEK perform

comparably. The value of both of them are significantly affected by the training size n. In addition, πAVEK outperforms πALLK and πBOTTLEK in small sam-

ples but performs worse than the two policies when the sample size is large. In the second setting, πALLK and πBOTTLEK tend to perform much better

than πAVEK when J¼4,6,8, since averaging over several high-frequency variables will lose more relevant information for policy learning.

Finally, we conduct an additional simulation study with large training datasets where N¼200 or 4000 and T¼120. This setting might be

unrealistic in an mHealth dataset. It is included only to test the performance of πALLK . As πALLK is consistent as well, we anticipate that the difference

between the value under πALLK and the proposed policy will be negligible as the sample size grows to infinity. Figure 6 depicts the results. As

expected, we observe no significant difference between πPCA and πALL when N≥ 200.

The time complexity of obtaining the principal component scores for all high dimensional vectors is Oðm3þnm2Þ. Denote the maximum width

and depth of hidden layers in the neural network of ~Q as d and L, respectively. Assuming that the maximum number of iterations of fitted Q-

iteration is K and that the number of training epochs for the neural network in each iteration is M, the time complexity of obtaining ~QK is given by

OðnKMjAj½ðm0þκÞdþLd2�Þ (see Section 6.5.7 of Goodfellow et al., 2016). Therefore, the total time complexity of Algorithm 1 is

F IGURE 3 Upper: Variance explained by first κ principal component scores when there are J¼1,2,4,6,8 high-frequency variables in the first
setting of simulation (corresponding to Figure 4). Horizontal dash line is 95% of variance explained. κ¼5 can explain 95% variance in all J¼
1,2,4,6,8 cases of the first setting; lower: variance explained by first κ principal component scores when there are J¼1,2,4,6,8 high-frequency
variables in the second setting of simulation (corresponding to Figure 5). Here, the number of principal components are κ¼5,10,20,30,40
corresponding to the five cases J¼1,2,4,6,8, respectively, to ensure 95% of variance explained. Here, eigenvalues of the concatenated high-

frequency Z decay at an exponential order λk ¼Oðe�ζkÞ with ζ¼0:6.
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OðnKMjAj½ðm0þκÞdþLd2�þm3þnm2Þ. In the simulation study, the training time of neural network is the bottleneck of the total computation

time, which dominates the time required for calculating the principal components. In the experiments with m¼27 and κ¼5 (corresponding to the

settings plotted in the first rows of Figures 4 and 5), the average running time (on a single CPU) of Algorithm 1 for an offline data with N¼2,T¼
120 and N¼10,T¼120 is 122 and 834 s, respectively.

F IGURE 4 First setting in simulation. Left: training data with N¼6 and T¼30,45,60,75,90,105,120 ; right: training data with T¼120 and
N¼2,3,4,5,6,7,8,9,10 when there are 1, 2, 4, 6, 8 variables with dimension 27 (shaded area is 95% confidence interval). In the legend, “PCA”
refers to πPCAK ; “all z” refers to πALLK ; “bottleneck z” refers to πBOTTLEK ; “mean z” refers to πAVEK . The leftmost dots in the plots (corresponding to T¼
30 or N¼2) represent the cases with limited observations.
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5.3 | Application on OhioT1DM Dataset

We apply the proposed Algorithm 1 on the updated OhioT1DM Dataset by Marling and Bunescu (2020). In the real data case, we would still like

to compare the behaviors of the four policies: πPCAK , πALLK , πBOTTLEK , and πAVEK . OhioT1DM Dataset contains medical information of 12 patients

F IGURE 5 Second setting in simulation. Left: training data with N¼6 and T¼30,45,60,75,90,105,120 ; right: training data with T¼120 and
N¼2,3,4,5,6,7,8,9,10 when there are 1, 2, 4, 6, 8 variables with dimension 27 (shaded area is 95% confidence interval). In the legend, “PCA”
refers to πPCAK ; “all z” refers to πALLK ; “bottleneck z” refers to πBOTTLEK ; “mean z” refers to πAVEK . The leftmost dots in the plots (corresponding to T¼
30 or N¼2) represent the cases with limited observations.
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suffering from type-I diabetes, including the CGM blood glucose levels of the patients, insulin doses applied during this period, self-reported infor-

mation of meals and exercises, and other variables recorded by mobile phone apps and physiological sensors. The high-frequency variables in the

OhioT1DM Dataset, such as CGM blood glucose levels, are recorded every 5 min. The data for exercises and meals are collected with a much

lower frequency, say recorded every few hours. Moreover, considering the basal insulin rate of in this dataset, although this variable is also col-

lected every 5 min, it usually remains a constant for several hours in a day. Thus, the basal insulin rate can also be regarded as a low-frequency

scalar variable by taking the average of it. The time period between two decision points is set as 3 h, as we only consider non-emergency situa-

tions where patients don't need to take bolus injection promptly. In other studies using the OhioT1DM Dataset, the treatment decision frequency

is also set to be much lower than the recording frequency of CGM blood glucose levels (see, e.g., Shi et al., 2022; Zhou et al., 2021; Zhu et al.,

2020).

For the low-frequency covariate Xi,t ¼ðXð1Þ
i,t ,X

ð2Þ
i,t Þ,X

ð1Þ
i,t is constructed based on the ith patient's self-reported carbohydrate estimate for the

meal during the past 3-h interval ½t�1,tÞ. The second scalar variable in Xi,t is defined as the average of the basal rate of insulin dose during the

past interval ½t�1,tÞ. We consider one high-frequency element, Zi,t, which contains CGM blood glucose levels recorded every 5 min during the

past 3 h (its dimension is m¼36). The action variable Ai,t is set to 1 when the total amount of insulin delivered to the i-th patient is greater than

one unit in the past interval and 0 otherwise. The response variable Ri,t is defined according to the Index of Glycemic Control (IGC

Rodbard, 2009), which is a nonlinear function of the blood glucose levels in the following stage. A higher IGC value indicates that the blood glu-

cose level of this patient stays close or falls in to the proper range of glucose level.

In this study, κ¼5 is selected when training πPCAK , as the proportion of variance explained by the first 5 principal components is over 99%, as

is shown in Figure 7. The ReLU network here is with two hidden layers and width di ¼6, i¼1,2 (dropout layers with 10% dropout rate added

F IGURE 6 Performance of πPCA and πALL as training data size n goes to extremely large (T fixed to be 120, N from 10 to 200 and 4000). The
x-axis presents logN. In this figure, shaded area is 95% confidence interval.In the legend, “PCA” refers to πPCAK ; “all z” refers to πALLK .

F IGURE 7 Proportion of variance explained by the first κ principal components for CGM blood glucose level in OhioT1DM data.
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between layer 1, layer 2, and the output layer). To estimate the value Vπðx,zÞ of the four policies, we use the fitted Q evaluation algorithm pro-

posed by Le et al. (2019). When applying the fitted Q evaluation algorithm, a random forest model is used to fit the estimated Q-function of the

policy to be evaluated. By dividing 12 patients into a training set of nine patients and testing set of three patients, there are 220 repetitions with

different patient combinations. In each repetition, the data of nine patients is used to train the policy and fit the random forest for fitted Q evalua-

tion corresponding to this policy. The data of the other three patient is used for approximating the value of the policy using the estimated Q-

function from fitted Q evaluation. The sample mean of estimated values from all 220 repetitions is taken as our main result and the standard

errors are used to construct the margin of error. To compare the performance of our proposed policies πPCAK against πALLK , πAVEK , and πBOTTLEK , we pre-

sent the difference of estimated values of πPCA and the three other policies in Table 1, where margin of error is standard error of the mean differ-

ence multiplied by the critical value 1.96. The estimated values of the four policies is in Table 2.

Based on the result, it can be shown that the estimated value of πPCAK is higher than all three baselines. The policy πAVEK obtained by using the

average of CGM blood glucose levels is commonly used in literature (Zhou et al., 2021; Zhu et al., 2020). The less plausible performance of πAVEK is

probably due to the information loss by simply replacing the CGM blood glucose levels with its average. On the other hand, the size of training

data is relatively small, as we didn't use all the data recorded in eight weeks due to the large chunks of missing values. Eventually training data

from about five consecutive weeks are used for training DTR policies. In such scenarios, using the original high-frequency vector Zi,t will signifi-

cantly increase the complexity of the ReLU network structure, such that the number of parameters to be trained is too large compared to the size

of training data. Thus, πALLK and πBOTTLEK cannot outperform πPCAK where input dimension is reduced by PCA. The results shown in Tables 1 and 2

agree with the results in Section 5.2.

6 | DISCUSSIONS

In summary, we propose a deep spectral fitted Q-iteration algorithm to handle mixed frequency data in infinite horizon settings. The algorithm

relies on the use of PCA for dimension reduction and the use of deep neural networks to capture the nonlinearity in the high-dimensional system.

In theory, we establish a regret bound for the estimated optimal policy. Our theorem provides an asymptotic guideline for selecting the number of

principal components. In empirical studies, we demonstrate the superiority of the proposed algorithm over baseline methods without dimension

reduction or use ad hoc summaries of the state. We further offer practical guidelines to select the number of principal components.

The current focus of our work is on training the policy with deep Q-learning offline on a finite treatment set. In the future, we plan to extend

our proposed method to an online version. First, notice that the covariance matrix of Z can be updated in an online manner (see, e.g., Dasgupta &

Hsu, 2007). Second, the fitted Q-iteration algorithm is originally developed in the online setting (Riedmiller, 2005). Specifically, at each iteration,

we adopt an ϵ-greedy policy to adaptively generate the data, calculate the principle components based on the estimated covariance matrix, and

fit a deep neural network model for the Q-function using these data. We repeat this procedure until convergence. It is worthwhile to investigate

the asymptotic properties of the resulting algorithm in future research.

Another potential research direction is to extended the current approach to handle a continuous action space. In this case, the fitted Q-

iteration algorithm needs to be replaced by some policy-based learning methods (e.g., actor-critic). Nonetheless, the principal component analysis

is equally applicable to obtain a parsimonious representation of the state as the input in both the actor and the critic models. It would be interest-

ing to study the theoretical properties of the resulting algorithm in future work. Furthermore, it is worthwhile to explore the effectiveness of other

dimension reduction methods, such as supervised PCA (Bair et al., 2006), Isomap (Tenenbaum et al., 2000), and t-SNE (Van der Maaten &

Hinton, 2008) in future studies.

TABLE 1 Estimate of value difference of four policies.

Difference πPCAk �πALLk πPCAk �πAVEk πPCAk �πBOTTLE
k

Mean 1.163 1.399 1.153

Margin of error 0.181 0.224 0.145

TABLE 2 Value estimate of the four policies.

Value Estimate πPCAk πALLk πAVEk πBOTTLE
k

Mean -8.762 -9.926 -10.162 -9.916

Standard error 0.055 0.096 0.121 0.086
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