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A B S T R A C T   

We develop novel methods for establishing coherency and completeness conditions in Static and 
Dynamic Limited Dependent Variables (LDV) Models. We characterize the two distinct problems 
as “empty-region” incoherency and “overlap-region” incoherency or incompleteness and show 
that the two properties can co-exist. We focus on the class of models that can be Simultaneously 
Incomplete and Incoherent (SII). We propose estimation strategies based on Conditional 
Maximum Likelihood Estimation (CMLE) for simultaneous dynamic LDV models without 
imposing recursivity. Point identification is achieved through sign-restrictions on parameters or 
other prior assumptions that complete the underlying data process. Using as modelling frame-
work the Panel Bivariate Probit model with State Dependence, we analyse the impact of financing 
constraints on innovation: ceteris paribus, a firm facing binding finance constraints is substan-
tially less likely to undertake innovation, while the probability that a firm encounters a binding 
finance constraint more than doubles if the firm is innovative. In addition, a strong role for state 
dependence in dynamic versions of our models is established.   

1. Introduction 

In this paper we investigate the fundamental identification issues of coherency and completeness of Limited Dependent Variable 
(LDV) models with endogeneity and flexible temporal and contemporaneous correlations in the unobservables. We focus on the class of 
models that can be Simultaneously Incomplete and Incoherent (SII), which was largely ignored by the existing literature. 

Our main contributions can be summarized as follows: in Section 2, we define and distinguish two types of identification problems 
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termed “empty-region incoherency” and “completeness or overlap-region incoherency.” This distinction clears up the past literature 
where confusing and frequently conflicting definitions were used. In Section 3, we discuss the class of Simultaneously Incomplete and 
Incoherent (SII) models, which exhibit simultaneously both types of incoherency. We thus establish that incoherency and incom-
pleteness are not a model’s either/or properties but they could co-exist. Furthermore, while the traditional approaches focus on 
sufficient conditions for coherency, our methods prove that they may not be necessary. We discuss the similarities with and differences 
from the existing literature in Section 4. 

Our third contribution, presented in Section 5, is to establish coherency and completeness of static and dynamic LDV models without 
imposing recursivity. We achieve this through the use of (a) endogeneity in terms of latent variables and/or (b) sign restrictions on model 
parameters. The issues and solutions are first presented through a Graphical approach, while in Section 6 we develop an alternative 
analysis which we term the DGP approach. We employ this approach to solve considerably more complicated LDV models, especially those 
that contain intertemporal endogeneity. 

The novel methods we develop, which have intuitive interpretations and are easy to implement and generalize, lead to estimation 
strategies based on Conditional Maximum Likelihood Estimation (CMLE) for simultaneous LDV models. The methods also allow us to 
establish the coherency of several Dynamic LDV models, for which it was impossible to determine whether they were coherent and/or 
incomplete using traditional methods. We then establish for the first time the coherency and completeness of the Panel Univariate Probit 
model with State Dependence and that of the Panel Bivariate Probit model with State Dependence. Extensions and other issues are dis-
cussed in Section 7. 

In Section 8, we propose an empirical application to quantify the interactions between innovation by firms and the financial 
constraints they may face. We use as the modelling framework the Panel Bivariate Probit model with State Dependence. 

Our empirical results are quite striking: ceteris paribus, we estimate that a firm that faces a binding finance constraint is 
approximately 30% less likely to undertake innovation, while the probability that a firm encounters a binding finance constraint more 
than doubles if the firm is classified as innovative. Finally, we establish a strong role for state dependence: firms tend to innovate 
continuously rather than occasionally and past financial difficulties are correlated with the present ones even after conditioning on 
important firm characteristics. We thus establish the value of our novel approach, which for the first time eliminates the need to 
assume model recursivity Section 9 concludes. 

2. Coherency and completeness as distinct, one-at-a-time problems 

We focus our analysis by using the Simultaneous LDV Model with Two Binary Responses. In this model, limited dependent variables 
y1 and y2 are jointly determined through filter functions τ1(⋅) and τ2(⋅) operating on latent variables y*

1 and y*
2 respectively: 

y1it = τ1
(
y*

1it ≡
[
h1
(
x′

1itβ1, y2itγ
)
+ ϵ1it

])
(1)  

y2it = τ2
(
y*

2it ≡
[
h2
(
x′

2itβ2, y1itδ
)
+ ϵ2it

])
(2)  

The (possibly non-linear) functions h1(⋅) and h2(⋅) are known up to parameter vectors β1 and β2 and the two interaction coefficients γ 
and δ. The interaction terms y2itγ and y1itδ appear in the respective latent variables y*

1it and y*
2it . Let x1it and x2it denote the vectors of 

exogenous factors for each side. The parameter vector to be estimated is θ ≡ (β′
1, β′

2, γ, δ, σ2
1, σ2

2, ρ)
′ 
where ρ ≡ correlation(ϵ1it ,ϵ2it). In the 

most general case, the sample is a panel data set indexed by i = 1,⋯,N and t = 1,⋯,Ti. 
The existing econometric literature has established as the typical coherency condition to be: γ ⋅ δ = 0, i.e., no reverse interaction 

terms are allowed among the two endogenous variables. This condition, which is termed “recursivity,” is sufficient for the joint dis-
tribution (y1it , y2it

⃒
⃒x1, x2, θ) to be well-specified. 

The first case we focus on is the binary threshold crossing response model where: τj(z) ≡ 1(z> 0) where 1(z > 0) is the indicator 
function defined by: 

1(z> 0) ≡
{

1 if z > 0
0 if z ≤ 0 .

In terms of the two latent variables y*
1 and y*

2 and the observed binary indicators y1 and y2, and suppressing the observation indices, we 
have: 

y1 =

{
1 if y*

1 ≡ x′
1β1 + γy2 + ϵ1 > 0

0 if y*
1 ≡ x′

1β1 + γy2 + ϵ1 ≤ 0
(3)  

y2 =

{
1 if y*

2 ≡ x′
2β2 + δy1 + ϵ2 > 0

0 if y*
2 ≡ x′

2β2 + δy1 + ϵ2 ≤ 0
(4)  

In the empirical application of Section 8.2, we employed this model to study the impact of financing constraints on a firm’s decision 
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and ability to innovate in panel data.2 

The specific version of joint binary probit model becomes:3 

Iit =

{
1 if I*

it ≡ xI
itβ

I + γFit + ϵI
it > 0

0 if I*
it ≡ xI

itβ
I + γFit + ϵI

it ≤ 0
(5)  

Fit =

{
1 if F*

it ≡ xF
it β

F + δIit + ϵF
it > 0

0 if F*
it ≡ xF

it β
F + δIit + ϵF

it ≤ 0
(6)  

Analytically, (Iit , Fit) ∈ {(1,1), (1, 0), (0, 1), (0,0)} such that:  

(Iit ,Fit) I*it  F*
it 

(1,1) x′
1itβ1 + γ+ ϵ1it > 0 , x′

2itβ2 + δ+ ϵ2it > 0 
(1,0) x′

1itβ1 + ϵ1it > 0 , x′
2itβ2 + δ+ ϵ2it < 0 

(0,1) x′
1itβ1 + γ+ ϵ1it < 0 , x′

2itβ2 + ϵ2it > 0 
(0,0) x′

1itβ1 + ϵ1it < 0 , x′
2itβ2 + ϵ2it < 0  

For a typical it observation, the probability Prob(Iit , Fit |X, θ) is thus characterized by the constraints on the unobservables: (aI, aF)
′ 

< (ϵI, ϵF)
′
< (bI, bF)

′ defined by:  

Iit Fit aI bI aF bF 

1 1 − xI
itβ

I − γ ∞ − xF
itβ

F − δ ∞ 
1 0 − xI

itβ
I ∞ − ∞ − xF

itβ
F − δ 

0 1 − ∞ − xI
itβ

I − γ − xF
itβ

F ∞ 
0 0 − ∞ − xI

itβ
I − ∞ − xF

itβ
F  

In general, in the absence of coherency conditions, there will be overlaps and/or gaps in the domain of (ϵ1it + x′
1itβ1,ϵ2it + x′

2itβ2). 
Theoretically, Triangularity is an assumption that imposes the Coherency and Completeness conditions through γ = 0 and/or δ = 0 

Fig. 1. Case 1: γ > 0, δ > 0 Innovation and Finance Constraint bivariate binary probit in latent variables space. Four implied regimes. Region of 
Incoherency is of the overlap type (cross-hatched). 

2 A related application of this setup in International Finance is the Banking and Currency Crises Model of Falcetti and Tudela (2008) where (Cit ,

Bit) refer to Currency and Banking Crises respectively. Their model is recursive, in that Currency crises are allowed to depend on Banking crises but 
not vice-versa.  

3 For the first equation, I* is used for the latent and I for the observed LDV as a mnemonic to the Innovation side of the model of Section 8.2 below. 
Similarly, for the second equation we use F* and F as a mnemonic to Financing Constraints. 
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restrictions. In typical applications, these restrictions are unrealistically stringent and should be relaxed.4 

Prior sign restrictions on the parameters, e.g., γ*δ < 0, would be entirely analogous in achieving identification.5 Obviously, there 
exist four cases based on the signs of γ and δ. In our empirical analysis below, there is a behavioural/economic motivation in terms of 
the *signs* of the interaction terms.6 We now analyze the theoretical implications of these four possible cases: 

2.1. Cases 1 and 2: γ ⋅ δ > 0 — overlapping regions incoherency, i.e., incompleteness 

When the interaction coefficients γ and δ are of the same sign, the model is incomplete/incoherent with overlapping regions. See 
Figs. 1 and 2. 

Fig. 2. Case 2: γ < 0, δ < 0 Innovation and Finance Constraint bivariate binary probit in latent variables space. Four implied regimes. Region of 
Incoherency is of the overlap type (cross-hatched). 

4 Exceptions of this do exist, however: for example in industrial organization a two-agent discrete game may be employed to model the strategic 
interactions between firms in a duopoly setup. If one firm is a Stackelberg leader while the other is a follower, a recursive model may be applicable, 
even though the analogy is not precise.  

5 A related LDV model that does not exhibit similar coherency difficulties is the bivariate probit model with latent variable interactions (as 
opposed to limited variable interactions). Specifically: 

y1it = τ1
(
y*

1it ≡
[
h1
(
x′

1itβ1, y*
2itγ

)
+ ϵ1it

])

y2it = τ2
(
y*

2it ≡
[
h2
(
x′

2itβ2, y*
1itδ

)
+ ϵ2it

])

Then: 

y*
1 = x1β1 + y*

2γ + ϵ1  

y*
2 = x1β1 + y*

1δ + ϵ2  

and 

y*
1 = x1β1 + γ ⋅

[
x2β2 + y*

1δ+ ϵ2
]
+ ϵ1  

y*
2 = x2β2 + δ ⋅

[
x1β1 + y*

2γ + ϵ1
]
+ ϵ2  

Hence y*
1 = RF1 and y*

2 = RF2, allowing us to obtain y1 = τ(RF1) and y2 = τ(RF2). We thus see that it is considerably more straight-
forward identify LDV models with latent variable interactions as opposed to limited variable interactions.  

6 For example, economic theory suggests that γ < 0 (firms are less likely to be innovative if they cannot get external finance readily) and that δ > 0 
(banks are more likely to refuse loans to more “risky” innovative firms). The implied support restrictions are derived based on these economic 
considerations about the gamma and delta signs. 
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2.2. Cases 3 and 4: γ ⋅ δ < 0 — empty regions incoherency - identification through conditioning 

When the interaction coefficients γ and δ are of opposite sign, the model exhibits empty regions incoherency. Identification can then 
be achieved by conditioning to lie outside the “empty” region. For example, Fig. 3 implies the conditioning probability: 1 − Prob( − γ 
< ϵ1 + x′

1β1 < 0, 0 < ϵ2 + x′
2β2 < − δ). The estimation method that implements this is CMLE. The same procedure will solve the 

symmetric case depicted in Fig. 4 when γ < 0,δ > 0. 

2.3. Can overlapping regions incoherency be overcome through LDV redefinition? 

In the absence of additional coherency conditions, there will be overlaps and/or gaps in the domain of (ϵ1 + x′
1β1, ϵ2 + x′

2β2). A 
researcher might thus be tempted to propose that the incoherency cases with overlapping regions (Cases 1 and 2 above) may be 
overcome by redefining one of the two limited dependent variables to their complement. According to this reasoning, since the 
incoherency is caused in these cases because γ and δ are of the same sign, and since changing y2, say, to its complement yN

2 ≡ (1 − y2)

would result in δN ≡ − δ, then coherency would be achieved since then γ ⋅ δN < 0. 
Such reasoning would be incorrect, however. We show in Appendix A that such a redefinition would maintain the overlapping- 

region incoherency or incompleteness. This is because the yN
2 ≡ (1 − y2) redefinition would also switch the sign of γ and hence γN ⋅ 

δN > 0 just as γ ⋅ δ > 0. See Fig. 5 for the analysis. 

3. Simultaneously incomplete and incoherent models 

The fundamental problem with the existing literature and with the model of the previous section is that it is not acknowledged that 
LDV Models can simultaneously exhibit both Incompleteness and Incoherency. We term such models Simultaneously Incomplete and 
Incoherent (SII) and illustrate with the following single-agent, simultaneous binary & trinomial ordered probit model of Hajivassiliou and 
Ioannides (2007), where a single optimizing agent responds rationally to multiple market constraints, such as financing/liquidity 
constraints and constraints on work hours. This model studies interactions between liquidity and employment constraints on indi-
vidual households indexed by i at a given point in time indexed by t, and is in sharp contrast to the existing literature that concentrates 
on models where multiple agents play strategic games against each other. The reason we select this model is because it can exhibit 
simultaneously both types of incoherency (overlaps and gaps). This is critical because it will allow us to devise estimation strategies 
that overcome certain types of incoherency and incompleteness. 

Define two latent dependent variables y*
1it and y*

2it . The first denotes the propensity of individual i in period t to be liquidity 
constrained and the second its propensity to face employment hour constraints. The corresponding LDVs are denoted by y1it and y2it . 
Dropping the it subscripts for simplicity, the model is defined by: 

y1 =

{
1 if y*

1 > 0 (liquidity constraint binding),
0 if y*

1 ≤ 0 (liquidity constraint not binding).
(7)  

y2 =

⎧
⎪⎪⎨

⎪⎪⎩

− 1 if y*
2 ≤ λ− (overemployed)

0 if λ− ≤ y*
2 < λ+ (voluntarily employed)

+1 if λ+ ≤ y*
2 (under-/unemployed).

(8)  

where the latent variables are given by: 

y*
1 = 1

(
y*

2 < λ−
)
γ11 + 1

(
λ− < y*

2 < λ+
)
γ12 + x′

1β1 + ϵ1

y*
2 = 1

(
y*

1 > 0
)
δ + x2β2 + ϵ2  

Since (y1, y2) lie in {0,1}× { − 1,0,1}, the 6 possible configurations are:  

y1 y2 y*
1 y*

2 

0 -1 γ11 + x1β1 + ϵ1 < 0, x2β2 + ϵ2 < λ−

0 0 x1β1 + ϵ1 < 0, λ− < x2β2 + ϵ2 < λ+

0 +1 γ12 + x1β1 + ϵ1 < 0, λ+ < x2β2 + ϵ2 

1 -1 γ11 + x1β1 + ϵ1 > 0, δ+ x2β2 + ϵ2 < λ−

1 0 x1β1 + ϵ1 > 0, λ− < δ+ x2β2 + ϵ2 < λ+

1 +1 γ12 + x1β1 + ϵ1 > 0, λ+ < δ+ x2β2 + ϵ2  
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In terms of the unobservables, the probability of a (y1, y2) observed pair is equivalent to the probability: 
(

a1
a2

)

<

(
ϵ1
ϵ2

)

<

(
b1
b2

)

where (ϵ1, ϵ2)
′
∼ N(0,Σϵ), and a and b are given by:  

y1 y2 a1 a2 b1 b2 

0 -1 − ∞ − ∞ − (γ11 + x1β1) λ− − x2β2 
0 0 − ∞ λ− − x2β2 − x1β1 λ+ − x2β2 
0 +1 − ∞ λ+ − x2β2 − (γ12 + x1β1) + ∞ 
1 -1 − (γ11 + x1β1) − ∞ + ∞ λ− − δ − x2β2 
1 0 − x1β1 λ− − δ − x2β2 + ∞ λ+ − δ − x2β2 
1 +1 − (γ12 + x1β1) λ+ − δ − x2β2 + ∞ + ∞  

Using traditional arguments, we obtain that a sufficient condition for coherency of the model is: (γ11 + γ12)δ = 0 and γ11γ12δ = 0.
To verify this condition, suppose (y1,y2) = (0,0). This rules out (y1, y2) = (0, − 1) because x2β2 + ϵ2 > λ− , and rules out (y1, y2) =

(1,0) because x1β1 + ϵ1 < 0. But (1, − 1) is not ruled out if the coherency conditions do not hold, since γ11 could be sufficiently negative 
and δ sufficiently positive to imply the (1, − 1) conditions. Similarly, the (1, 1) possibility cannot be ruled out in the absence of the 
coherency conditions, since γ12 and δ can be sufficiently positive. 

Such logical inconsistencies are prevented if either (a) δ = 0 or (b) γ11 and γ12 are simultaneously 0. 

Fig. 3. Case 3: γ > 0, δ < 0 Innovation and Finance Constraint bivariate binary probit in latent variables space. Four implied regimes. Region of 
Incoherency is of empty region type. Conditional MLE achieves coherency by ruling out the event: [ − γ < ϵ1 + x′

1β1 < 0,0 < ϵ2 + x′
2β2 < − δ]

Fig. 4. Case 4: γ < 0, δ > 0 Innovation and Finance Constraint bivariate binary probit in latent variables space. Four implied regimes. Region of 
Incoherency is of empty region type. Conditional MLE achieves coherency by ruling out the event: [0 < ϵ1 + x′

1β1 < − γ, δ < ϵ2 + x′
2β2 < 0]
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Fig. 6 gives the 6 possible regimes (y1 ×y2) = {1,0} × { − 1, 0,1} in terms of the two latent variables y*
1 and y*

2 and the possible 
configurations in terms of parameters λ ≡ λ+, λ ≡ λ− , δ, γ11, and γ12. y*

1 is on the horizontal axis and y*
2 on the vertical.7 The figure 

makes clear the role of the coherency condition (a) δ = 0 or (b) γ11 = γ12 = 0: in general, regions R2 and R6 exhibit double-counting 
(cross-hatched area), as well as a white rectangle remains which makes the six regions not mutually exhaustive. These two logical 
incoherencies disappear when either δ = 0 and/or γ11 = γ12 = 0 hold. 

This graphical approach is useful to highlight the fundamental distinction between two types of incoherency, the first corre-
sponding to overlap regions in latent variables space, while the second to empty regions. A critical fact that this model illustrates is that 
a particular model may simultaneously exhibit incoherencies of both kinds, empty region incoherency as well as overlapping region 
incoherency, also termed incompleteness. This is a critical point that is not well understood in previous work, e.g., Chesher and Rosen 
(2014). 

Fig. 5. γN < 0, δN < 0 Innovation and Finance Constraint bivariate binary probit in latent variables space. Situation identical to Fig. 1 (Case 1) but 
with Innovation negated to its complement (1-Innovation). Both γN and δN switch sign by this redefinition, and hence: γN < 0, δN < 0. Consequently, 
the model remains incoherent/incomplete, with an overlap (cross-hatched) region. 

Fig. 6. Coherency and Completeness of Binary+Trinomial SII Model Regions in latent variables space that define the observed dependent quali-
tative variables Liquidity (binary) and Employment (trinomial) constraints. Six implied regimes. We see two regions of incoherency/incompleteness, 
one cross-hatched, the other empty. Both regions disappear under the sufficient condition: δ = 0 and/or γ11 = γ12 = 0. 

7 This graphical approach was first included in the LSE working paper Hajivassiliou (2008) and was presented at the CRETE Conference in Syros in 
2003. It should also be noted that our graphical approach presented here is related to that of Tamer (2003) who studied the problem of coherency 
and incompleteness in bivariate discrete models for games with multiple equilibria. 
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4. Comparison with the existing literature 

Heckman (1978) considered a simultaneous equations system with discrete endogenous regressors. He allowed both the empty 
region as well as the overlap region case in his proof of the main theorem based on his parameter π23, whereby he showed that the 
necessary and sufficient condition (NASC) for the reduced form to “make sense” was the “principal assumption” that π23 = 0. He showed 
that if this coefficient is negative, the probabilities add up to below unity, whereas if positive they add up to over unity. Heckman did 
not introduce terms for either type of problem. 

Gourieroux et al. (1980) explained the identification condition in terms of there being a valid function from (ϵ1it , ϵ2it) to the 
observable endogenous variables (y1it , y2it) so that empty region incoherency is ruled out. Maddala (1983) used the term “Logical 
Consistency” to mean the regime probabilities adding up to unity, but as with Heckman, the two problem cases were neither named nor 
discussed separately. 

The first researcher to study overlap region incoherency, which he termed “Incompleteness,” was Tamer (2003). It is useful to 
highlight here the similarities and differences with our work. Tamer also used a graphical approach to analyze a simultaneous discrete 
response model for a homogeneous two-agent discrete game of entry. Since the two rival firms in his setting were assumed identical, 
any incoherency arising was necessarily of the overlapping region type — see our two subcases 2.1, where the interaction terms γ and δ 
are of the same sign. Consequently, the possibility of the interaction terms being of opposite sign was not under focus in his analysis. 

Subsequently, Lewbel (2007) derived the NASC for a valid reduced form to exist. However, the “Necessary” part implicitly ruled out 
the possibility of DGPs with support restrictions, which is precisely what underpins our CMLE solution. 

It is useful to note that our approach of relying on prior sign restrictions developed here is related to the approach by Uhlig (2005) 
for Vector Autoregression identification under prior sign restrictions on impulse response functions.8 Dagenais (1997) also makes a 
distinction between alternative types of incoherency regions.9 

At this point, we stress that the approach and terminology in Chesher and Rosen (2014) is likely to lead to the incorrect belief that a 
model may exhibit only a single type of incoherency, either of the empty region- or overlap- type. Such misunderstanding would 
prevent the CMLE solution we develop in the following section. In fact, the terminology adopted by those authors, calling overlapping 
region incoherency as “model incompleteness” and empty region incoherency as proper “model incoherency,” excacerbates this 
confusion in somehow giving the impression that a model can only exhibit one of the two irregularities. 

It is also critical to explain why recent methodologies developed for econometric partially identified models with multiple equi-
libria cannot solve the coherency problems of the type we study here. There is a fundamental reason why the works of Berry and Tamer 
(2006), Ciliberto and Tamer (2009), Beresteanu et al. (2011) and de Paula and Tang (2012), which follow on the pioneering approach 
of Tamer (2003), are not applicable to our models: these works require simultaneous games with multiple decision makers making a 
simultaneous decision. In the absence of these two ingredients, we believe that our CMLE approach is the only available solution. 

In addition, it is important to note the important work of Blundell and Smith (1994), which is an early example of Dis-
crete/Continuous LDV models. In this paper we focus instead on purely Discrete simultaneous models, and outline our plans for 
investigating the more general Discrete/Continuous cases in Section 7. 

Finally, we note that, contrary to Tamer (2003) and the cited subsequent game-theoretic papers, our DGP approach here can be 
extended to study the coherency of dynamic LDV econometric models. We develop these extensions in Section 6.1. 

5. Coherency and completeness through parameter sign restrictions 

The traditional approaches to model coherency suffer from several major difficulties. Firstly, derivations of formal conditions using 
the traditional approach lack intuition. Secondly, the derived conditions are impossible to generalize and verify in moderately more 
complicated LDV models, especially in cases where the models are allowed to contain intertemporal endogeneity of the type 
considered in Falcetti and Tudela (2008). Similarly, in case the joint binary probit model (3)-(4) is extended intertemporally, as for 
example in the empirical dynamic application in Section 8.2, the coherency condition is impossible to generalize and verify using the 
traditional analysis of the previous subsection. Thirdly, in practice non-triangular or reverse triangular cases are the most interesting 
from an economic point of view. Finally, the traditional approaches focus on establishing sufficient conditions for coherency, while our 
methods allow us to prove that they are not necessary. 

To overcome the first two difficulties, alternative ways for establishing coherency are developed here, that are both intuitive and 
straightforward, as well as much more generalizable. In addition, our methods allow us to resolve the last two difficulties leading to 
estimation based on CMLE for much more interesting practical applications. It is shown in the next Section how to establish coherency 
without model recursiveness through the use of (a) endogeneity in terms of latent variables and/or (b) sign restrictions on model 
parameters. 

8 We are indebted to Alain Trognon for pointing out the potential of parameter sign restrictions overcoming incoherency of the “empty region” 
type, and to Hashem Pesaran for bringing to our attention Uhlig’s work on sign identification.  

9 Unfortunately his work remains incomplete and unpublished due to his untimely death. 
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5.1. Efficient estimation through conditional maximum likelihood with empty region incoherency 

The optimal parametric estimation approach for the models with empty region incoherency (Cases 3 and 4 above) will be condi-
tional maximum likelihood (CMLE), employing the appropriate likelihood contributions that characterize correctly the necessary 
conditioning through truncation that ensures that the LDVs stay out of the empty region of incoherency. For example, assuming in-
dependence across observations {it}, the likelihood contribution in Case 3 will be: 

lit =
Prob(ϵ1, ϵ2 : I = 1(I* > 0) & F = 1(F* > 0))

(1 − Prob( − γ < ϵ1 + x′
1β1 < 0, 0 < ϵ2 + x′

2β2 < − δ)

while for Case 4: 

lit =
Prob(ϵ1, ϵ2 : I = 1(I* > 0) & F = 1(F* > 0))

(1 − Prob(0 < ϵ1 + x′
1β1 < − γ, δ < ϵ2 + x′

2β2 < 0)

These likelihood contributions make it clear why approaches that ignore the coherency issue are inconsistent in general: the incon-
sistency would arise because the conditioning probability expressions in the denominator are functions of the underlying parameters 
and data, and hence affect critically the evaluation of the correct likelihood function. 

It is important to remember that the fact that the likelihood contributions depend on denominator probabilities characterizing the 
support of the underlying truncated distributions that are also functions of parameters and data does not make the CMLE estimation 
problem irregular. The earliest example where such likelihood problems were studied formally is Amemiya (1973) for models of 
censoring and truncation. The uniform consistency, asymptotic normality, and efficiency of the CMLE estimators for the empty region 
inchorency Cases 3 and 4 can be established using methods in Amemiya (1973) and in works that followed. 

Finally, we explain that the CMLE approach for achieving identification without triangularity and recursivity, does not violate the 
NASC results of Gourieroux et al. (1980) and Lewbel (2007) for a Valid Reduced Form to exist. This is because their “Necessary” part 
differs from ours in terms of the possible original DGP allowed, as they assume implicitly that the support of the original DGP is 
unrestricted. In contrast, our CMLE approach rests on the assumption that the true DGP is characterized by a truncated distribution so 
that the random draws stay out of incoherent regions. 

5.2. Estimation with Overlap Region Incoherency 

We note that Cases 1 and 2 (with same sign of the interaction coefficients γ and δ) may be handled in an analogous fashion by 
assuming that the Data Generating Process (DGP) incorporates additional mechanisms akin to the randomization postulated by Tamer 
(2003).10 To find the correct likelihood contributions in Cases 1 and 2, define: 

p*
11 ≡ Prob(I* > 0,F* > 0) p*

10 ≡ Prob(I* > 0,F* ≤ 0)
p*

01 ≡ Prob(I* ≤ 0,F* > 0) p*
00 ≡ Prob(I* ≤ 0,F* ≤ 0)

Then, note that: p*
11 + p*

10 + p*
01 + p*

00 = S = 1 + O > 1 where O is the probability of the overlap region (rectangle ABCD in Figs. 1 and 
2). In Case 1, the overlap occurs between regimes R1 = (1, 1) and R4 = (0,0), while for Case 2 between regimes R2 = (1, 0) and R3 = (0,
1).11 

In this paper, we propose two alternative additional identifying assumptions to complete the model in case of overlap region 
incoherency/incompleteness. The first approach, termed the “Contiguous Triangles,” is to split the rectangle ABCD into the constituent 
triangles — ABC (closest to R1) and ACD (closest to R4) in Case 1, and BCD (to R2) and ABD (to R3) in Case 2 — and select the outcome 
of the triangle closest to the relevant regime. Thus, for Case 1 when the disturbances (ϵ1, ϵ2) fall in the overlap (indeterminate) region, 
triangle ABC is assigned to regime R1 = (1,1) and ACD to regime R4 = (0,0). Conversely, in Case 2, triangle BCD is assigned to regime 
R2 = (1, 0) and triangle ABD to regime R3 = (0,1). In general, the probabilities of two equal triangles will differ depending on the 
shape of the density above them. 

10 The analogous estimation approach is presented herefor completeness only because on a priori grounds the γ and δ of our Financing Constraints/ 
Firm Innovation application are of opposite sign, a theoretical feature that is confirmed by our empirical findings. Furthermore, the randomization 
assumption is arguably much less unambiguous and clear-cut compared to the implied truncation in the cases of empty regions incoherency.  
11 Consequently, in Case 1 (β > 0, δ > 0), O = Pr( − x1β1 − γ < ϵ1 < − x1β1, − x2β2 − δ < ϵ2 < − x2β2), while in Case 2 (β < 0, δ < 0) O = Pr( −
x1β1 < ϵ1 < − x1β1 − γ, − x2β2 < ϵ2 < − x2β2 − δ). 
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Consequently, the likelihood contribution for observation {it} for Case 1 is:12 

lit =

⎧
⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎩

p11 ≡ Prob(I = 1&F = 1) =
(
p*

11 − Pr(ACD)
)

p10 ≡ Prob(I = 1&F = 0) = p*
10

p01 ≡ Prob(I = 0&F = 1) = p*
01

p00 ≡ Prob(I = 0&F = 0) =
(
p*

00 − Pr(ABC)
)

A second alternative method we propose for overcoming overlapping regions incoherency/incompleteness is the “Truncated Distri-
butions” approach. We then assume that the disturbances are drawn from distributions that are truncated to stay outside the inde-
terminacy/incompleteness rectangle ABCD. This enables CMLE, exactly analogously to the empty region incoherency cases. Given our 
emphasis on single-agent decision models, the two alternatives we propose here have a certain theoretical and behavioural appeal — 
whereas the alternative game-theoretic schemes13 for the overlapping regions case are only applicable to models with multiple agents. 

5.3. Estimation of SII models 

As discussed above, for cases of overlapping regions incoherency/incompleteness, we proposed two alternative approaches for 
resolving the model: first, the “Contiguous Triangles” approach adjusts the overlap regime probabilities by assigning the two triangles 
of the overlap region ABCD to the closest regime. Second, the “Truncated Distributions” approach conditions on the probability of 
staying outside the indeterminancy region and is results in the CMLE parametrically optimal strategy. Both solutions preserve the 
correct individual regime probabilities and make them add up to unity. Also as explained already, in the cases of empty regions 
incoherency, the CMLE approach relies on truncating the DGP out of the empty regions, thus dividing the regime probabilities by the 
term (1 − Pr(empty region)). 

In case of an SII model in which empty and overlap regions appear simultaneously, our proposed solutions can be combined. To 
illustrate with the 6-regime SII model (7)-(8) in Fig. 6, define E = Pr(empty region) = Pr(EFGH) and O = Pr(overlap region) = Pr(ABCD). 
Adopting the “Contiguous Triangles” incompleteness solution with the CMLE for the empty region incoherency, the adjusted prob-
abilities are: 

lit =

⎧
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

p1 ≡ Prob(S = 0&E = − 1) = p*
1

/
(1 − E)

p2 ≡ Prob(S = 0&E = 0) =
(
p*

2 − Pr(ABC)
)/

(1 − E)
p3 ≡ Prob(S = 0&E = +1) = p*

3

/
(1 − E)

p4 ≡ Prob(S = 1&E = − 1) = p*
4

/
(1 − E)

p5 ≡ Prob(S = 1&E = 1) = p*
5

/
(1 − E)

p6 ≡ Prob(S = 1&E = +1) =
(
p*

6 − Pr(ADC)
)/

(1 − E)

After the adjustments, the probabilities add up to unity since: 

∑6

i=1
pi =

p*
1 +

(
p*

2 − Pr(ABC)
)
+ p*

3 + p*
4 + p*

5 +
(
p*

6 − Pr(ADC)
)

(1 − E)

=
p*

1 + p*
2 + p*

3 + p*
4 + p*

5 + p*
6 − O

(1 − E)

=
1 − E + O − O

1 − E
= 1  

since O = Pr(ABCD) = Pr(ABC)+ Pr(ADC). Identification then follows by the fact that the probabilities of the two types of regions, O 
and E, are distinct functions of the underlying parameters and the density function above them. Hence they will have distinct con-
tributions to the likelihood derivatives. 

12 Analogously for Case 2: 

lit =

⎧
⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎩

p11 ≡ Prob(I = 1&F = 1) = p*
11

p10 ≡ Prob(I = 1&F = 0) =
(
p*

10 − Pr(ABD)
)

p01 ≡ Prob(I = 0&F = 1) =
(
p*

01 − Pr(BCD)
)

p00 ≡ Prob(I = 0&F = 0) = p*
00    

13 (for example, the game-theoretic models of entry analyzed by Tamer (2003) and the works that followed him already cited) 
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6. Alternative analysis of incoherency and incompleteness: the DGP Method 

Despite the usefulness of the graphical approach of the previous section to LDV problems with two latent variables, the method is 
very unwieldy or inapplicable to higher dimensional cases. To cover such problems, we develop a second approach to incoherency and 
incompleteness, which consists of designing a data-generating algorithm (hypothetical or implemented on a computer) to simulate 
random draws from an LDV model’s structure. Consider again Liquidity-Employment Constraints Eqs.  (7) and (8). We draw ϵ1 and ϵ2 

under the joint bivariate normal distribution with zero mean vector and variance-covariance matrix Σϵ, and given x′
1β1 and x′

2β2 we 
attempt to generate y*

1 and y*
2. This is straightforward provided the coherency condition holds: If (a) δ = 0, then latent y*

2 can be drawn, 
then LDV y2, which together with ϵ1 and x′

1β1 determines the right hand side of y*
1, thus allowing y1 to be drawn. Similarly, if (b) γ11 =

γ12 = 0, then y*
1 can be drawn from the first equation based on ϵ1 and x′

1β1, which determines y1, thus giving y*
2 and hence y2. In 

general it is impossible, however, to devise such a data generation mechanism in case the recursivity condition does not hold. Hence, 
the DGP method proves that recursity is sufficient to rule out empty-region and overlap-region incoherencies. 

As we will show in the next section, the approach extends naturally to cases with intertemporal endogeneities in panel LDV models, 
and can be used to prove the coherency of the classic multiperiod panel probit with state dependence (Heckman (1981a)), as well as 
the intertemporal endogeneity versions of the models in Section 8.2 with explicit dynamic effects. 

We show that empty region incoherency can be overcome through conditional maximum likelihood estimation (CMLE) of trun-
cating the LDVs to lie outside the incoherency regions. The CMLE approach can also be motivated through the DGP approach for 
establishing coherency discussed in the previous subsection. In that case, we consider DGPs truncated to lie on a specific region of the 
latent variables space.14 

Finally we show that under prior sign restrictions on model parameters, incoherencies of the empty region type can be eliminated 
through the use of CMLE. 

6.1. The coherency of dynamic LDV panel data (PD) models with intertemporal endogeneities using dgp approach 

Extending the analysis to a panel data set, we explain how the probability of a pair (y1it , y2it) in Section 2 and in Section 3, can be 
represented in terms of the linear inequality (a1, a2)

′
< (ϵ1, ϵ2)

′
< (b1, b2)

′where the error vector has a flexible autocorrelation struc-
ture. For example, one-factor random effect assumptions will imply an equicorrelated block structure on Σϵ, while our most general 
assumption of one-factor random effects combined with an AR(1) process for each error implies that Σϵ combines equicorrelated and 
Toeplitz-matrix features. Consequently, the approach incorporates fully (a) the contemporaneous correlations in ϵit, (b) the one-factor 
plus AR(1) serial correlations in ϵi, and (c) the dependency of y1it on y2it and vice versa. The coherency issue expands naturally to the 
panel sequence of data, by thinking of each (correlated) time-period for a given individual i as a distinct probit equation and then 
dealing with the independent cross-section of equations across individuals. Details of the analysis can be found in Hajivassiliou (2007). 

The proofs of all Theorems and Lemmas can be found in Appendix B. 

6.1.1. Univariate PD Probit with State Dependence 
Our hypothetical DGP method presented above for establishing coherency is now applied to the canonical panel data Probit model 

with state dependence, first analyzed by Heckman (1981a). The model is defined by: 

yiT = 1
(
λyi,T− 1 + xiT β + ϵiT > 0

)

yi,T− 1 = 1
(
λyi,T− 2 + xi,T − 1β + ϵi,T− 1 > 0

)

⋮
yi2 = 1(λyi1 + xi2β + ϵi2 > 0)
yi1 = 1(xi1ξ1 + ⋯ + xiT ξT + ui1 > 0)

The equation for t = 1 is a generalization of the Barghava and Sargan (1982) approach. Let Σ ≡ VCov(ϵiT , ⋯, ϵi1, ui1). Imposing 
one-factor random effect assumptions will imply an equicorrelated block structure on the top left (T − 1) × (T − 1) block of Σ, while 
more general assumptions of one-factor random effects combined with an AR(1) or ARMA(p,q) processes for each ϵ error implies that Σ 
combines equicorrelated and Toeplitz-matrix parts. The last row and last column of Σ giving the variance of u1i and its covariances with 
all ϵit allow the flexibility stipulated by Heckman (1981b). 

Define the Cholesky lower triangular times upper triangular matrix factorization of Σ = CC′. Given the assumed normality, the 

error vector can be written as: (ϵ′
i, u1i)

′
= Cνi where νi ∼ N(0T, IT)

Theorem 1. The Univariate PD Probit Model with State Dependence defined above is coherent and complete. 

6.1.2. Bivariate PD Probit with State Dependence 
Parameter mnemonics: (1) exogenous variable coefficients: β,θ; (2) interaction terms: γ,δ; (3) own state dependence: λy,λw; (4) cross 

state dependence: ζw,ζy. 

14 A specific algorithm for achieving this is given in Hajivassiliou (2008). 
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yiT = 1
(
x′

iT β + λyyi,T− 1 + γwiT + ζwwi,T − 1 + ϵiT > 0
)

wiT = 1
(
z′

iT θ + λwwi,T − 1 + δyiT + ζyyi,T − 1 + uiT > 0
)

.

yit = 1
(

x′
i,tβ + λyyi,t− 1 + γwit + ζwwi,t− 1 + ϵit > 0

)

wit = 1
(
z′

itθ + λwwi,t− 1 + δyit + ζyyi,t− 1 + uit > 0
)

⋮
yi2 = 1

(
x′

i2β + λyyi1 + γwi2 + ζwwi1 + ϵi2 > 0
)

wi2 = 1
(
z′

i2θ + λwwi1 + δyi2 + ζyyi1 + ui2 > 0
)

.

yi1,wi1 exogenous  

Lemma 2. Without any restrictions on the γ, δ parameters or the distribution of (ϵ, u) , the General Bivariate PD Probit Model with State 
Dependence above is not coherent. 

Theorem 3. The General Bivariate PD Probit Model with State Dependence above is coherent and complete without any restrictions on the λ, ζ 
state dependence parameters or the distribution of (ϵ, u), if the simultaneous interaction terms satisfy γ ⋅ δ = 0 , i.e., the model is triangular. 

Theorem 4. The General Bivariate PD Probit Model with State Dependence above is coherent and complete without any restrictions on the λ,
ζstate dependence parameters, if: 

(i) the simultaneous interaction terms are of opposite signs, i.e., γ ⋅ δ < 0 and 
(ii) the distribution of (ϵ, u) satisfies F(ϵt , ut |ϵ− t , u− t) = F(ϵt , ut |ϵ<t , u<t) and the random variables (ϵ, u) are restricted on rectangular re-

gions determined recursively. 

7. Issues and extensions 

In Appendix C we develop and summarize the results of a set of extensive Monte-Carlo experiments, which confirm very substantive 
Mean-Squared-Error estimation improvements of the CMLE approach over estimators that make overly restrictive triangularity/ 
recursivity assumptions about the Data Generating Process (DGP). We also discuss future extensions of the experiments to assess the 
performance of the proposed alternative “contiguous triangles” and “truncated distributions” solutions to the overlap incoherency/ 
incompleteness problem. 

Hajivassiliou (2007) discusses how to extend the analysis to another SII model with two simultaneous (bivariate) ordered probit 
equations with multiple regions. We refer the interested reader to that study. 

Another natural extension to consider is to allow more complicated interaction terms rather than just the parallel shifts of the 
models of Section 2. For example, instead of the first Eq. (3), the extension would postulate: 

y1 =

{
1 if y*

1 ≡ x′
1[β1 ⋅ y2 + β2 ⋅ (1 − y2)] + ϵ1 > 0

0 if y*
1 ≡ x′

1[β1 ⋅ y2 + β2 ⋅ (1 − y2)] + ϵ1 ≤ 0
(9)  

This would allow possibly all the coefficients of the exogenous factors in the latent variables expressions to change depending on the 
binary outcome of the other side, instead of just the intercepts. This extension corresponds to a switching regressions specification with 
endogenous interaction terms. 

An important question to pose is how important the exact distributions of the underlying disturbances are for our CMLE approach. 
The answer is that the distributional assumptions are important only to the extent that their supports are needed to characterize the 
necessary conditioning in order to achieve identification through CMLE, by ruling out ranges of values of the errors. They are also used 
for defining the necessary Accept-Reject truncation mechanism of the underlying DGP. 

We plan to investigate reduced reliance on such parametric distributional assumptions, through semi-parametric simulation-based 
estimation of the probability of the empty regions (and possibly of overlap regions). This will be achieved by incorporating Accept- 
Reject simulation methods to define Conditional Maximum Simulated Likehood (CMSL) estimation approaches. 

Another interesting extension is to focus on Discrete/Continuous LDV models, instead of the purely Discrete models of this paper — 
or the easier models with purely continuous interactions discussed in footnote 5. See, for example, the Roy models studied in, inter alia, 
Blundell and Smith (1994), Dubin and McFadden (1984), Hanemann (1984), and Heckman and Honoré (1990) where continuous 
endogenous variables are censored or truncated based on discrete simultaneous variables. Extending our analysis to such models is 
enhanced by certain features of the Roy model, while at the same time it is hindered by other features. A facilitating feature is the fact 
that the continuous side contains more valuable information than when purely discrete. On the other hand, the combination of 
continuous and discrete sides implies that the distributions that need to be analyzed are now much more complicated, namely 
censored, truncated, and/or mixtures of distributions. Along the same lines, the final extension we intend to study are Dis-
crete/Continous Endogenous Treatment models, whereby outcome Y depends on treatment T and simultaneously T depends on Y. We 
leave these extensions to future work. 
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8. Quantifying the interactions between financial constraints and firm innovation 

8.1. Direct measures of innovation and financial constraints 

We apply our approach to assess the links between financing constraints and a firm’s decision to innovate. Empirical evidence of the 
impact of financial constraints on the behaviour of firms is however not easy to obtain, essentially because the notional demand of 
firms for external finance is not observed directly.15 We rely on qualitative direct information about innovation and binding financing 
constraints as reported by firms in surveys by the European Union (CIS, Community Innovation Surveys), as well as in a French survey 
about the financing of innovation (FIT, Financement de l’innovation technlogique). We merged the surveys with balance sheet dataset 
(Fiben, Banque de France), see Data Online Appendix for details.16 

In the survey we use, firms are asked whether some of their innovative projects were delayed, abandoned or non started because of 
(i) unavailability of new financing, (ii) searching and waiting for new financing, (iii) too high cost of finance. We define as financially 
constrained firms with hampered innovative projects because of one of these three reasons, so that our direct indicator of financial 
constraints takes into account both quantity rationing and higher cost of finance.17 Innovation in this survey is defined according to the 
technological innovation in the Oslo Manual (OECD).18 

Table 1 
Comparative Summary of Empirical Results   

Model 1 Model 2 Model 3 Model 4  
Triangular, Triangular, Full Joint Full Joint 

All Firms Exogenous FC Endogenous FC Static Dynamic 

No.of Waves One One One Two 
No.of Firms 1940 1940 1940 1512 

INNOVATION EQUATION     
Size 0.33*** 0.305 0.183*** 0.256*** 
γ (FC dummy) 0.55*** -0.555*** -0.324** -0.447*** 
Market Share -0.01 -0.001*** 0.020 0.027 
Innovt− 1 — — — 0.829*** 
FinCont− 1 — — — 0.301 

avg P̂I 0.418 0.418 0.418 0.543 

P̂I : F = 0 0.384 0.453 0.438 0.554 

P̂I : F = 1 0.601 0.250 0.316 0.377 

%Δ̂PI : F = 0→1 56.42 -44.72 -27.93 -31.82 

FINANCE EQUATION     
Size -0.054 -0.002 -0.016 0.035 
δ (Innov dummy) — — 0.647*** 0.627*** 
Collateral 0.067 0.030 0.030 0.003 
Banking Debt Ratio 0.010*** 0.010*** 0.015*** 0.005 
Own Financing Ratio -0.003** -0.003*** -0.001** -0.008*** 
Profit Margin -0.007** -0.008*** -0.002*** -0.007*** 
Innovt− 1 — — — 0.236** 
FinCont− 1 — — — 0.135*** 

avg P̂F 0.160 0.160 0.160 0.060 

P̂F : I = 0 0.160 0.160 0.103 0.029 

P̂F : I = 1 0.160 0.160 0.268 0.102 

%Δ̂PF : I = 0→1 0.0 0.0 160.62 252.58 

corr(Innov,FinCons) — 0.572*** 0.132** 0.500** 
LogLikFunction -1060-803=-1863 -1853 -1712 -1331 (-1706 imputed) 

1. ***=significant at 1%; **=significant at 5%; *=significant at 10%.2. Industry dummies (11) included in both Innovation and Financial Constraint 
equations. 

15 See Hottenrott and Peters (2012) for a test based on the use of a hypothetical payment received by the firm, and Brown et al. (2009), Brown 
et al. (2012) for traditional approaches linking R&D investment and firm level financial factors.  
16 Such direct information about credit constraints have already been used by Guiso (1998) to assess the probability for a firm to be credit 

constrained, and more recently by Minetti et al. (2019) to study the effect of financial constraints on firms’ participation in supply chains.  
17 Given that this is a qualitative self-assessed measure of financial constraint, we checked that it correlates strongly with quantitative balance 

sheet variables related to the financial health of firms. (See Table A1 and Table A2 in the online data appendix for summary descriptive statistics). 
18 This is then a qualitative self-assessed and survey-based information which was implemented to overcome some other shortcomings of tradi-

tional measures (R&D, patents), see Mohnen (2019) for a detailed discussion on these issues. 
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8.2. Empirical application 

Using the econometric machinery developed in Section 5.1 that allows us to estimate joint binary probit equations with interaction 
terms on both sides, we apply those methods to the key issue of Being Innovative vs. Binding Financing Constraints interactions. 
Obviously, the propensity to innovate may be affected by financial constraints, and at the same time, innovative firms are likely to face 
specific financial constraints: innovation affects survival of firms (see Audretsch (1995) and Klette and Kortum (2004)), asset intan-
gibility is higher for innovative firms which lowers their collateral value, and due to their innovative nature informational asymmetries 
with external investors are more pronounced (Holmstrom (1989), Hall and Lerner (2010)). 

We take as our starting point the results obtained by Savignac (2008) who studied the impact of financial constraints on the de-
cision to innovate by investigating the impact of financial constraints on innovation through a recursive model that did not allow for 
the probability of a binding finance constraint to depend on whether or not the firm is innovative. Recursivity corresponds to the key 
identifying assumption that innovation does not affect financial distress directly (δ = 0). On a priori grounds, this assumption seems 
particularly dubious since innovation may lead to higher profits and thus relax financial constraints (corresponding to δ > 0). An 
alternative possibility is that innovation may lead to higher investment in intangible assets thus reinforcing binding financial con-
straints (corresponding to δ < 0). Both possibilities violate the traditional coherency condition. 

The propensity to innovate is explained by the traditional determinants of innovation, and we account for financial constraints 
through our qualitative indicator reflecting the financial difficulties encountered by firms to conduct their innovative projects.19 To 
close the system, we now define also the probability of a binding financing constraint, which is assumed to have as an important 
determinant the (binary) decision of whether or not the firm chooses to be innovative. The key idea modelled by this equation is that 
prospective lenders will try to assess the creditworthiness of the applicant firm in the face of incomplete information. In particular, they 
do not know the precise riskiness of assets so they attempt to infer that using observable characteristics of firms. In the face of such 
uncertainty, it makes sense for lenders to be more cautious granting loans to innovative firms since they present a higher inherent (but 
not directly observed) risk. 

Such a system can be formulated as in Eqs. 3-(4) of Section (2), where xI
i is a list of control variables for the traditional determinants 

of the propensity to innovate (firm size and market power, technology push, latent consumer demand);20 and xF
i is a list of control 

variables for the propensity to be finance constrained (firm’s size, profit margins, the guarantees that could be used as collateral, 
industry dummies, and variables reflecting the firm’s ex ante financial structure). See the Online Appendix for the detailed list of 
control variables. 

The econometric specifications we estimate below belong in three main groups. The first group contains recursive specifications 
following the traditional approach, which ignore the possibility that the propensity to innovate may be affected by financial con-
straints. The second group allows for reverse interactions, whereby a firm undertaking actively innovative activities raises significantly 
the probability of it encountering a binding financing constraint, possibly because potential lenders are particularly wary of granting 
loans to firms of such type because of the extra riskiness involved. The third group of estimated specifications, investigates state 
dependence in financing and innovation experiences of firms the nature of the available datasets can be exploited to study whether, 
ceteris paribus, past financial distress or innovation failures can affect a firm’s current experiences in these two dimensions.21 The 
second and third groups of specifications constitute the key applications of the novel estimation strategies developed in this paper. 

The most general specification that we estimate below, accounting for both reverse and dynamic effects, is: 

Iit =

{
1 if I*

it ≡ αIIit− 1 + xI′
itβ

I + γ0Fit + γ1Fit− 1 + ϵI
it > 0

0 if I*
it ≡ αIIit− 1 + xI′

itβ
I + γ0Fit + γ1Fit− 1 + ϵI

it ≤ 0
(10)  

Fit =

{
1 if F*

it ≡ αFFit− 1 + xF′
it βF + δ0Iit + δ1Iit− 1 + ϵF

it > 0
0 if F*

it ≡ αFFit− 1 + xF′
it βF + δ0Iit + δ1Iit− 1 + ϵF

it ≤ 0
(11) 

19 For the importance of endogeneity in this setting, see Mohnen and Roller (2005) who find the “paradox” of a positive correlation between 
financial constraints and innovation.  
20 Main determinants of the propensity for a firm to innovate are known to be its size, its market power and its environment ([Cohen and Levin, 

1989]). The positive correlation between innovation and firm size is largely exposed in the literature. (see [Cohen and Klepper, 1996]). Large firms 
can amortize sunk costs caused by their innovative activities and are able to diversify the risk incurred by innovation by running simultaneously 
several investment projects at the same time. And finally, large established firms are less likely to be financially constrained as they are able to 
generate cash-flow and to raise external funds. Regarding the link between innovation and competition, the Schumpeterian theory argues that 
market power and innovation are positively correlated whereas Arrow’s theory shows that the gains to innovate are larger in an ex-ante competitive 
market. [Aghion et al., 2005] try to solve this puzzle and propose an inverted U shape relationship between innovation and competition: in a 
competitive environment, firms are incited to innovate to gain market power and increase their profits, but when competition becomes hard, the 
followers can be discouraged to innovate. Other factors affecting innovative behaviour are driven by the firm environment (technological push, 
latent consumer demand perceived by the firm). See among others [Crepon et al., 1998] or [Raymond et al., 2010].  
21 Though the surveys about innovation we use are not truly longitudinal “panel” sets, the information was collected in multiple biennial waves. 

We hence restrict our “longitudinal” dataset to two waves in order to limit the reduction of the sample size when merging the waves. Hence, we 
know whether a particular firm i has reported binding financing constraints in the past. See the Online Data Appendix for details about the dataset 
employed here and the transition tables for the 1512 firms in the sample over the two waves starting 1994 and ending 1999. 
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8.3. Comparative analysis of alternative specifications 

Table 1 summarizes succinctly our key empirical results and presents the calculated direct and reverse effects that we obtained.22 

To recapitulate, Models 1 and 2 adopt the existing approach of the past literature of forcing the econometric specification to be 
triangular with financial constraints allowed to affect the innovation decision, while the financial constraint outcome is assumed 
independent of being innovative or not. Models 3 and 4 allow the binary interactions on both the Innovation and the Finance sides, 
proved to be coherent through our Coherency analysis based on prior sign restrictions and estimated through the CMLE approach 
developed and analyzed in this paper. Model 3 is static with a single cross-section of firms, while Model 4 uses a two-wave, dynamic 
panel data set. 

Apart from the coefficient estimates for the most important exogenous explanatory variables, Table 1 presents also: γ, the coef-
ficient for the financial constraint dummy when entered in the Innovation side; δ, the coefficient for the Innovation dummy entered in 
the Finance side; and for the dynamic Model 4, the coefficients for the lags of the Finance and Innovation dummies. First, note how 
seriously misleading conclusions were reached by the early strands of the literature, that inappropriately ignored the endogeneity of 
the Finance dummy: doing so yields a completely counterintuitive γ estimate of + 0.55, implying that finance constraints raise 
significantly the likelihood of innovation, confirming Savignac (2008). This positive effect is explained by two sources of bias: a se-
lection bias due to firms not wishing to innovate, which we studied elsewhere and a problem of simultaneity between investment and 
financing decisions that we tackle below. At the same time, treating the Finance constraint dummy as endogenous gives a range of 
negative estimates from − 0.32 to − 0.56. Since Models 1 and 2 impose a triangular specification, they do not estimate δ coefficients for 
the Innovation dummy in the Finance equation. In contrast, our two CMLE models give statistically very significant δ estimates of over 
0.6 — as we expected a priori, being innovative raises the probability of facing a binding finance constraint. In the dynamic Model 4, 
we find very significant state dependence over the two periods of the panel — note the statistical significance of three of the four lagged 
dummies entered as regressors. Our findings confirm the strong importance of such dynamic terms and establish very significant 
positive state dependency. Our results show that firms tend to innovate persistently rather than occasionally. 

Second, past financial difficulties are positively correlated with current binding financial constraints. As we take into account the 
experience of a firm concerning innovation, the state dependence of financial constraints seems particularly interesting. Indeed, firms 
currently implementing innovative projects as well as firms with innovative experience in the past are more likely to find it difficult to 
finance their current projects.23 

Third, the probability for a firm to be currently conducting an innovative project is negatively impacted by the current financing 
difficulties as found in the static regressions but also positively correlated with financing constraints encountered in the past. One 
possible explanation for this positive correlation could be that financial difficulties mainly impact the beginning of the projects so that 
innovative projects that were initially hampered by financial difficulties are more likely to be continued when they become more 
mature. However, additional information on the stage of development of the innovative projects and on their duration would be 
necessary to further investigate this point. In particular, we are not able to identify whether the firms were continuing with the same 
project over Waves 1 and 2. 

In order to quantify the importance of our interaction findings about γ and δ, we present in Table 1 four estimated probability 
calculations for each of the two I and F sides: (a) avg P̂I , the average probability of undertaking innovation; (b) P̂I : F = 0, the esti-
mated probability of Innovation given the Finance constraint is not binding; (c) P̂I : F = 1, the estimated probability of Innovation 
given a binding Finance constraint; and (d) %Δ̂PI : F = 0→1, the percentage change in the estimated probability of changing from F 
= 0 to F = 1, while keeping everything else unchanged. For the finance side, the analogous four quantities are: avg P̂F , P̂F : I = 0, P̂F : I =
1, and %Δ̂PF : I = 0→1. 

Our estimated probability results are quite striking: for the Innovation equation, we find that when a firm faces a binding finance 
constraint, the probability of being innovative falls ceteris paribus by 30%-40% depending on the version.24 Moving to the Finance 
constraint side, the magnitudes of the results are even more impressive: a firm being innovative more than doubles the probability of a 
finance constraint.25 

22 The detailed estimation results are presented in Tables 2 and 3 in Appendix D.  
23 An important issue discussed frequently in the econometrics literature is the possibility that state dependence may not be an important factor per 

se, but it might appear statistically significant if persistent heterogeneity among individual economic agents is ignored. As Heckman (1981a) shows, 
the two can be identified when a panel data set with more than two waves per individual is available. Since our dynamic sample consists only of two 
waves, we need to acknowledge the possibility that the strong state dependence we report here may be compounded by unobserved persistent 
heterogeneity that is not accounted for explicitly.  
24 In the erroneous Model 1 that ignores the endogeneity of the Finance constraint, the probability of innovation is predicted torise by over 50% as a 

result of a binding Finance constraint!  
25 Since Models 1 and 2 do not allow for reverse interactions by excluding the I dummy from the F side, they imply %Δ̂PF : I = 0→1 equal to zero. 
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9. Conclusions 

We investigated the fundamental identification issues of coherency and completeness of LDV models with endogeneity and flexible 
temporal and contemporaneous correlations in the unobservables. We focused on the class of models that can be Simultaneously 
Incoherent and Incomplete (SII), which was largely ignored by the existing literature. We defined and distinguished two types of 
identification problems termed “empty-region incoherency” and “completeness or overlap-region incoherency.” The distinction 
cleared up the past literature where confusing and frequently conflicting definitions were used. The class of SII models establishes that 
incoherency and incompleteness are not a model’s either/or properties but they could co-exist. Furthermore, while the traditional 
approaches focus on sufficient conditions for coherency, our methods prove that they may not be necessary. 

We proceeded to establish coherency and completeness of static and dynamic LDV models without imposing recursivity. We 
achieved this through the use of sign restrictions on model parameters. The issues and solutions were first presented through a 
Graphical approach, while we then developed an alternative analysis of incoherency and incompleteness which we term the DGP 
approach. Using the DGP approach we solved considerably more complicated LDV models, especially those containing intertemporal 
endogeneity such as the Panel Univariate and Panel Bivariate Probit models with State Dependence. 

The two novel methods we developed led to CMLE for simultaneous LDV models and allowed us to establish the coherency and 
completeness of several Dynamic LDV models which was impossible using traditional methods. 

We proposed an empirical application to quantify the interactions between innovation by firms and the financial constraints they 
may face. We used as the modelling framework the Panel Bivariate Probit model with State Dependence. 

Our empirical findings were quite striking: ceteris paribus, we estimated that a firm that faces a binding finance constraint is 
approximately 30%-40% less likely to undertake innovation, while the probability that a firm encounters a binding finance constraint 
more than doubles if the firm is classified as innovative. Finally, we established a strong role for state dependence: firms tend to innovate 
continuously rather than occasionally; past financial difficulties are correlated with the present ones even after conditioning on 
important firm characteristics; and firms with current and/or past innovative experiences are more likely to encounter difficulty 
financing their current projects. Our novel approach for the first time eliminated the need to assume model recursivity. We concluded 
that such issues are critical if direct and reverse interactions between innovation and financing constraints are to be quantified reliably. 

Appendix A: Redefining Binary Response Indicators 

Suppose we have incoherency because we believe γ > 0 (in our application below translating to binding finance constraints ex-
pected to raise the chance of innovation I) and that δ > 0 (innovative firms face a higher chance that the banks will refuse them a loan). 
So γ ⋅ δ > 0. This is Case 1 analyzed in Subsection 2.1 as represented by Fig. 2, and corresponding to the constraints on the un-
observables: (a1, a2)

′
< (ϵ1, ϵ2)

′
< (b1, b2)

′such that:  

I F a1 b1 a2 b2 Shading Region 

1 1 − x′
1β1 − γ ∞ − x′

2β2 − δ ∞ horizontal R1 
1 0 − x′

1β1 ∞ − ∞ − x′
2β2 − δ /////// R2 

0 1 − ∞ − x′
1β1 − γ − x′

2β2 ∞ \ \\ \ \\\ R3 
0 0 − ∞ − x′

1β1 − ∞ − x′
2β2 vertical R4  

Now consider the transformed model with NF instead of F. This transformation still gives an overlapping region in the transformed 
variables, and hence corresponds to an incoherent model. To see this, proceed as follows: 

In terms of the two latent variables I* and NF* = − F* and the observed binary indicators I and NF = 1 − F, and suppressing the 
observation index: 

I =

{
1 if I* ≡ x′

1β1 + γNNF + ϵ1 > 0
0 if I* ≡ x′

1β1 + γNNF + ϵ1 ≤ 0
(13)  

NF =

{
1 if NF* ≡ x′

2βN
2 + δNI + ϵN

2 > 0
0 if NF* ≡ x′

2βN
2 + δNI + ϵN

2 ≤ 0
(14)  

Given this transformation, we expect that γN < 0 (high NF means not very binding constraints so cause dampening of I) and that δN < 0 
(firms who have high I i.e., innovate, raise the chance the banks will refuse them a loan so low NF). So γN ⋅ δN > 0. See Fig. 5. 

For a typical i observation, the probability Prob(y1i, y2i
⃒
⃒X, θ) is characterized by the constraints on the unobservables: (a1, a2)

′ 
<

V. Hajivassiliou and F. Savignac                                                                                                                                                                                    



Journal of Econometrics 238 (2024) 105546

17

(ϵ1, ϵN
2 )

′
< (b1, b2)

′ through the configuration:  

I NF a1 b1 a2 b2 Shading Region 

1 0 − x′
1β1 ∞ − ∞ − x′N

2 β2 − δN horizontal R1 
1 1 − x′

1β1 − γN ∞ − x′
2βN

2 − δN ∞ /////// R2 
0 0 − ∞ − x′

1β1 − ∞ − x′N
2 β2 \\\ \ \\\ R3 

0 1 − ∞ − x′
1β1 − γN − x′N

2 β2 ∞ vertical R4  

Appendix B: Proofs of Theorems 

Proof of Theorem 1: We use the DGP approach. Let us begin with the simplified case of the initial condition being exogenous: 

yiT = 1
(
λyi,T − 1 + x′

iT β+ ϵiT > 0
)

(14)  

yi,T − 1 = 1
(

λyi,T − 2 + x′
i,T − 1β+ ϵi,T − 1 > 0

)
(15)  

⋮ (16)  

yi2 = 1
(
λyi1 + x′

i2β+ ϵi2 > 0
)

(17)  

yi1 = exogenous (18)  

Suppose first the ϵit has the one-factor (equicorrelated) error components structure ϵit = αi + νit . Conditional on αi, these T − 1 
equations are independent (since they only depend on the i.i.d. νits). Hence draw an αi and an independent νi2. Then use the exogenous 
yi1 outcome to generate yi2. This completes Eq. 17 which allows to move sequentially to generating yi3, then yi4, etc. until yiT is 
generated. This establishes the coherency of the model. 

Now allow for a general Σ ≡ VCov(ϵiT,⋯, ϵi2) = CC′. Given that we assume Gaussianity and dropping the i index, we obtain: 

yT = 1
(
λyT − 1 + xT β+ cT1ν1 + cT2ν2 +⋯ + cT,T − 1νT − 1 + cTT νT > 0

)

yT − 1 = 1
(
λyT − 2 + xT− 1β+ cT− 1,1ν1 + cT − 1,2ν2 +⋯ + cT,T − 1νT − 1 > 0

)

⋮  

y2 = 1(λy1 + x2β+ c22ν2 + c21ν1 > 0)

y1 = exogenous  

Given a random draw of νi1,⋯,νiT , an unambiguous rule gives sequentially yi1→yi2→⋯yi,T− 1→yiT. Hence, the above defines a recursive 
DGP which establishes the coherency of the model. 

Finally, consider the more general case when yi1 cannot be assumed as exogenous. We then supplement the system with an initial 
condition equation: 

yi1 = 1(xi1ξ1 +⋯ + xiT ξT + ui1)〉0 (19)  

The following remarks are in order: First note that (19) is a generalization of the Barghava and Sargan (1982) approach. Second, 
one-factor random effect assumptions will imply an equicorrelated block structure on the top left (T − 1) × (T − 1) block of Σ, while 
more general assumptions of one-factor random effects combined with an AR(1) or ARMA(p,q) processes for each ϵ error implies that Σ 
combines equicorrelated and Toeplitz-matrix parts. The last row and last column of Σ giving the variance of u1i and its covariances with 
all ϵit allow the flexibility stipulated by Heckman (1981a). The only modification now necessary is to change the initial condition 
equation to: 
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yi1 = 1(xi1ξ1 +⋯ + xiT ξT + c11νi1 > 0)

This recursive representation again establishes the coherency of the model: given a random draw of νi1,⋯,νiT, an unambiguous DGP 
rule can be defined to establish sequentially yi1→yi2→⋯yi,T− 1→yiT. ▪ 

Proof of Lemma 1: 

yit = 1
(
x′

itβ + λyyi,t− 1 + γwit + ζwwi,t− 1 + ϵit > 0
)

wit = 1
(
z′

itθ + λwwi,t− 1 + δyit + ζyyi,t− 1 + uit > 0
)

Given y,w from period t − 1, the λ and ζ terms are determined on the latent variable terms for period t (defining the event arguments of 
the indicator functions). 

Together with unrestricted values of the random shocks and the exogenous variables of period t, everything in the event conditions 
is determined, except the simultaneous interaction terms γ,δ. 

But since the interaction terms appear both as conditioning variables on the RHS as well as dependent variable dummies on the 
LHS, they cannot be determined unambiguously. Hence, no complete DGP can be defined from ϵ, u to y,w. ▪ 

Proof of Theorem 2: Assume that γ ⋅ δ = 0 because γ = 0. 

yit = 1
(
x′

itβ + λyyi,t− 1 + ζwwi,t− 1 + ϵit > 0
)

wit = 1
(
z′

itθ + λwwi,t− 1 + δyit + ζyyi,t− 1 + uit > 0
)

Given y,w from period t − 1, the λ and ζ terms are determined on the latent variable terms for period t (defining the event arguments of 
the indicator functions). Together with unrestricted values of the random shocks and the exogenous variables of period t, everything in 
the event condition of the yt is determined, since no simultaneous interaction term is present on the RHS (as γ = 0). 

Entering the yt value in the interaction term on the RHS of the wt equation, everything in its event condition is now determined, 
which fixes wt. 

Hence, a complete DGP can be defined sequentially from the errors to the observables: yi1,wi1→yi2,wi2→⋯yi,T− 1,wi,T1→yiT,wiT. 
The proof for the δ = 0 case is perfectly symmetric and will not be repeated. ▪ 
Proof of Theorem 3: Assume that γ ⋅ δ < 0 because γ < 0,δ > 0. 

yit = 1
(
x′

itβ + λyyi,t− 1 + γwit + ζwwi,t− 1 + ϵit > 0
)

wit = 1
(
z′

itθ + λwwi,t− 1 + δyit + ζyyi,t− 1 + uit > 0
)

Given y,w from period t − 1, the λ and ζ terms are determined on the latent variable terms for period t (defining the event arguments of 
the indicator functions). 

Given the exogenous variables of period t, the event conditions of yt ,wt are determined except (a) the interaction terms γ, δ and (b) 
the error terms. 

In the absence of condition (ii), the model would exhibit “empty region incoherency” as defined above. Employing the graphical 
approach of the static bivariate probit above, defines the necessary rectangular exclusion region (drawn white) for the support of the 
truncated gaussian: 

0 < ϵit + x′
itβt + λyyi,t− 1 + ζwwi,t− 1 < − γ

δ < uit + z′
itθ + λwwi,t− 1 + ζyyi,t− 1 < 0  

Based on the underlying uniform rv’s drawn at the start of the DGP, the truncated gaussian ϵ, u are drawn to satisfy the identifying 
rectangle restrictions using the probability integral transform method defined in Hajivassiliou (2008). 

Hence, the model under conditions (i) and (ii) is coherent, since a complete DGP could be defined sequentially from the errors to the 
observables: yi1,wi1→yi2,wi2→⋯yi,t− 1,wi,t1→yit ,wit . 

The proof for γ ⋅ δ < 0 because γ > 0, δ < 0 is exactly symmetric and will not be repeated. ▪ 
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Appendix C: Monte-Carlo Evidence on CMLE 

As we showed in Section 5 we obtain a coherent non-recursive model with interaction dummies included on both sides, provided 
we believe the feedback terms have opposite signs on the two sides. Note that it is sufficient to consider only the γ ≥ 0, δ ≤ 0 case, since 
the reverse can always be subsumed by redefining both dependent binary variables to their complements y′

it ≡ (1 − yit). 
We performed extensive Monte-Carlo experiments designed to illustrate the consequences of adopting existing and novel esti-

mation strategies for the problem of this paper. The experiments confirm that the CMLE approach under sign restrictions derived above 
provides reliable, consistent and efficient estimates of the underlying parameters including the two interaction terms. In contrast, the 
existing traditional approaches (unrestricted mle ignoring possible incoherency and mle that incorrectly assumes recursivity of the 
system) give seriously misleading and inconsistent results. The interested reader is referred to the online companion paper Haji-
vassiliou (2008) for an extensive presentation of the Monte-Carlos and detailed analysis and findings.26 We give a brief summary 
here27:  

• The Truncated CMLE proposed in this paper performs very satisfactorily, being the only consistent estimator for the reverse 
feedback cases, and with only small sacrifices in terms of efficiency in the recursive DGPs when it is not strictly necessary.  

• Truncated CMLE also works well for the overlap region incoherency cases.  
• Unrestricted likelihood estimation ignoring the resulting incoherency due to the empty or overlap region(s) is by far the worst 

performing estimator, dominated even by equation by equation univariate estimators which estimate the two equations separately 
while ignoring the other side of the model. 

We plan to expand the online companion Monte-Carlo study Hajivassiliou (2008) to examine the relative performance of the two 
methods we developed here for addressing overlap region incoherency/incompleteness, namely the “contiguous triangles” and 
“truncated distributions” solutions. 

26 The cited study considered nine estimation approaches: 1. incorrectly forcing the old coherency condition to hold, i.e., assuming recursivity 
when in fact both feedback terms are present (estimators e-trwn=assuming δ = 0 and e-trnw =assuming γ = 0); 2. unrestricted likelihood 
estimation, which ignores the resulting incoherency due to the empty or overlap region(s) (estimator e-inco); 3. restricted likelihood estimation 
conditioning on the data lying outside the empty region(s) of incoherency (estimators e-sqpm =assuming (γ ≥ 0, δ ≤ 0) and e-sqmp=assuming 
(γ ≤ 0, δ ≥ 0)); 4. restricted likelihood estimation conditioning on the data lying outside the overlap region(s) of incoherency (estimators e-sqpm 
=assuming (γ ≥ 0, δ ≥ 0) and e-sqmp=assuming (γ ≤ 0, δ ≤ 0)); and 5. lpols: (linear probability) ordinary least squares estimation of each binary 
probit equation ignoring the possible endogeneity of the interaction terms; and lp2sls: applying two-stage least squares recognizing that the two 
interaction terms on the rhs of each probit equation can be endogenous. In the cited study, six “true” models were generated, depending on whether 
interaction terms were allowed on one or both sides in each case, the nine estimators e-trwn, e-trnw, e-inco, e-sqpm, e-sqmp, e-sqpp, e- 
sqmm, lpols, andlp2slswere calculated.  
27 To simulate data from these six models studied in the Monte-Carlo paper, it was necessary to devise a methodology for generating standard 

gaussian variates truncated to lie outside an interval 
[

λ, λ̄
]

. The following algorithm achieved this: let z ∼ n(0, 1) and define τ ∼ z
⃒
⃒
⃒
⃒

{

z ∕∈

[

λ, λ̄
]}

then 

cdf(z) : f(z) = ϕ(z) and 

cdf (τ) : f (τ) =

⎧
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

ϕ(z)

1 − ϕ(λ̄) + ϕ
(
λ
)

if z < λ,

ϕ
(
λ
)

1 − ϕ(λ̄) + ϕ
(
λ
)

if λ < z ≤ λ̄,

ϕ
(
z
)
− ϕ(λ̄) + ϕ

(
λ
)

1 − ϕ
(
λ̄
)
+ ϕ

(
λ
)

if z > λ̄.

The procedure is exact for a univariate z truncated on 
{

z ∕∈

[

λ, λ̄
]}

, but it will not work for higher dimensions. For DGPs with higher 

dimensions, the leading alternative procedures are Acceptance-Rejection and Gibbs Resampling — see Hajivassiliou and McFadden 
(1998) for discussion. 
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Appendix D: Detailed Estimation Results  

Table 2 
Innovation and Financing Constraints Joint Probit With Reverse Interaction Effects.  

Full sample, nobs=1940          

model 3     
coeff. std. 

Innovation Equation      
constant    -7.235*** 0.118 
size    0.183*** 0.020 
market share    0.020 0.045 
tp4    1.822*** 0.183 
tp3    1.0110*** 0.199 
tp2    0.437*** 0.176 
financial constraints    -0. 324** 0.255 
11 industry dummies    misc  
Financial Constraint Equation 
constant    -1.221*** 0.241 
firm innovates    0.647*** 0. 032 
size    -0.016 0.073 
collateral amount    0.030 0.050 
banking debt ratio    0. 015*** 0.002 
own financing ratio    -0. 001*** 0.001 
profit margin    -0.002*** 0.002 
11 industry dummies    misc  
corr12    -0.132*** 0. 013 
log lik innovation      
log lik fin constraint      
log lik bivariate    -1712    

Table 3 
Innovation and Financing Constraints Joint Probit  

With Reverse Interaction Effects and Dynamics      
Full sample, nobs=1512          

Model 4     

Coeff. Std. 

Innovation Equation      
Constant    -2.441*** 0.323 
Innovt− 1    0.829*** 0.094 
Size    0.256*** 0.037 
Market share    0.027 0.071 
TP4    1.461*** 0.201 
TP3    0.932*** 0.156 
TP2    0.621*** 0.143 
Financial Constraints    -0. 447*** 0.106 
Financial Constraintst− 1    0. 300 0.123 
11 Industry dummies    misc  
Financial Constraint Equation 
Constant    -0.885*** 0.311 
Firm Innovatest    0.627*** 0. 022 
Firm Innovatest− 1    0. 236** 0.133 
Financial constraintst− 1    0. 135*** 0.093 
Size    0.035 0.039 
Collateral amount    0.003 0.002 
Banking debt ratio    0.005 0.003 
Own financing ratio    -0. 008*** 0.002 
Profit margin    -0.007*** 0.002 
11 industry dummies    misc  
corr12    0.500** 0. 210 
Log lik Innovation      
Log lik Fin Constraint      
Log lik Bivariate    -1331   
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