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A B S T R A C T   

The European Union PESETA IV project has produced a comprehensive dataset that quantifies the impact of 
climate change on river flooding and damage in Europe. This data potentially has significant application in the 
insurance industry, but requires some steps of post-processing, and appropriate delivery mechanisms, before it 
can be used in practice. The post-processing approach we apply involves statistical modelling of the simulated 
changes in damage to estimate rates of change of log damage versus global mean surface temperature (GMST). 
Under linear assumptions, these rates of change can be used to calculate the change in damage between any two 
time-periods for any GMST scenario. Under further assumptions, these changes can be used to adjust many of the 
metrics of flood risk used in the insurance industry, such as average annual losses, exceedance probabilities and 
year loss tables. We deliver these results in two ways to suit different users in the insurance industry. First, the 
rates of change, and related correlations, are provided as freely available datasets for insurers who prefer to 
process and apply the data themselves. Second, commercial online software is provided that performs some steps 
of the processing and application. Many sources of uncertainty affect our results. The results must not therefore 
be interpreted too literally, but hopefully give a good indication of the sign and rough magnitude of the likely 
changes in river flood damage due to climate change. Future studies will hopefully reduce the uncertainty.   

Practical implications  

The insurance industry would benefit from access to better in-
formation about how climate change is affecting the possible 
financial impacts of flooding in Europe. We have written this 
paper, and created a new data-set and software tools, to meet this 
need. The dataset is generated from the output of the European 
union project PESETA IV, which includes the most comprehensive 
attempt so far to model the financial impacts of climate change on 
European flood risk. The outputs from PESETA IV are not, how-
ever, presented in a form in which they can be used by the in-
surance industry. We have processed the outputs from PESETA IV 
to convert them to an appropriate form. 

This paper describes the requirements of the insurance industry, 

our processing of the PESETA IV results, and the ways that our 
post-processed results can be used to adjust insurance industry 
metrics. 

The dataset consists of estimates of the rate of change of the 
financial impact of river flooding on current average annual 
damages, at NUTS2 resolution, for Europe. It also includes a 
covariance matrix. The variances in the covariance matrix repre-
sent the range of results from the different climate models used in 
the PESETA IV project, at NUTS2 resolution. The correlations in 
the covariance matrix represent the correlations in damage be-
tween all pairs of NUTS2 regions. 

This data can be used to estimate the change in average annual 
damages between a past and future time-period, as is required for 
insurance risk modelling. The past time-period, or baseline, rep-
resents the time-period of the data from which a flood risk model 
has been built. The future time-period represents the time-period 

* Corresponding author at: London, UK. 
E-mail address: stephen.jewson@gmail.com (S. Jewson).  

Contents lists available at ScienceDirect 

Climate Services 

journal homepage: www.elsevier.com/locate/cliser 

https://doi.org/10.1016/j.cliser.2023.100395 
Received 20 October 2022; Received in revised form 6 May 2023; Accepted 16 May 2023   

mailto:stephen.jewson@gmail.com
www.sciencedirect.com/science/journal/24058807
https://www.elsevier.com/locate/cliser
https://doi.org/10.1016/j.cliser.2023.100395
https://doi.org/10.1016/j.cliser.2023.100395
https://doi.org/10.1016/j.cliser.2023.100395
http://creativecommons.org/licenses/by-nc-nd/4.0/
http://creativecommons.org/licenses/by-nc-nd/4.0/


Climate Services 30 (2023) 100395

2

of interest. By making appropriate working assumptions, the data 
can also be used to adjust distributions of maximum and total 
annual damages, and the damage caused by individual simulated 
events from a flood risk model. 

The software performs the time-period adjustments automatically. 

The dataset, and software, may also be of use to others outside the 
insurance industry, as the information requirements of the insur-
ance industry are rather general. 

In due course, we hope to post-process other outputs from the 
PESETA IV project, for other perils, in a similar way. 

Data availability 

The data for means and standard deviations by NUTS2 region is 
available on Zenodo.   

Introduction 

The risks and consequences of river floods have influenced human 
activities for many centuries (Paprotny, et al., 2018; Blöschl, et al., 
2020; Prettenthaler, et al., 2022). However, because of anthropogenic 
climate change, some of the risks may now be increasing (Alfieri, et al., 
2015; Mentaschi, et al., 2020; Kron, et al., 2019), and methods used to 
cope with the risk in the past may have started to become less effective 
(Alfieri, et al., 2016). One way to help manage the problem of increasing 
risks is to use numerical simulations of river flooding to make estimates 
of the possible changes in risk due to climate change. One of the most 
ambitious programs to generate simulations of possible changes in river 
flood risk due to climate change is the river flooding component of the 
PESETA IV project (Dottori, et al., 2020). In this project, simulations of 
climate change from multiple dynamically downscaled climate models 
were combined with hydrological models for river flooding. The 
resulting simulations of flooding were then used to drive economic 
models that determined estimates of possible damage and change in 
damage. The PESETA IV project covers 34 countries in Europe and 
surrounding regions. 

The PESETA IV river flood results are potentially useful for many of 
the various groups that are interested in understanding changes in flood 
risks, although they may need to be converted to different formats, time 
periods and resolutions for different types of users and different appli-
cations. In this article we describe how we have applied the necessary 
conversion steps to make the PESETA IV results more directly usable in 
the insurance industry. We also describe how they can be used. One part 
of using our results is that they need to be scaled according to the 
required time-period and GMST scenario, and to allow for this the results 
are being supplied to insurers in two ways. First, as a freely available 
dataset, for those insurers who wish to apply the scaling themselves. 
Second, via a commercial software tool that performs the scaling auto-
matically and allows the extraction of scaled results. 

The insurance industry has been using computer modelling to 
quantify the risks of natural catastrophes, including floods, since the 
1960s: see the 1972 review by Don Friedman (Friedman, 1972) and 
textbooks such as Grossi and Kunreuther (2005) and Mitchell-Wallace 
et al. (2017). The results from these ‘catastrophe’ models feed into the 
pricing of insurance and reinsurance, as well as into other aspects of 
insurance risk management. For river flooding these models are often 
constructed from statistical simulations of rainfall variability, which are 
then used as inputs for model components that simulate flooding using 
dynamical equations. The simulated flood depths are then used, in turn, 
as inputs for model components that estimate damage to insured prop-
erties (Kaczmarska, et al., 2018; Zanardo, et al., 2019). Finally, damage 
estimates are converted to estimates of losses for insurers. The simula-
tions from catastrophe models are typically created in such a way that 

they represent N different versions of one year of flooding and its im-
pacts, where N might take values from 10,000 to 100,000 in order to 
cover a wide range of possibilities. Losses are derived for each flood 
event in each of the simulated years, and the loss results are then usually 
presented as year loss tables (YLTs), with N years of simulated losses in 
them. Various loss diagnostics can be calculated from the YLTs, such as 
the average annual loss at different spatial resolutions. Results can then 
be compared with results from fitting statistical distributions directly to 
historical losses (Prettenthaler, et al., 2017), as a form of validation. 

River flood catastrophe models are typically built to match historical 
measurements of rainfall, river flows, flooding and damage, under the 
assumption that the climate has been stationary during the period used 
to make the historical measurements. This period is usually the past few 
decades for rainfall and river flows, and the past one or two decades for 
damage measurements. The models are then used to understand present- 
day risks. In a changing climate, however, the assumption that models 
constructed in this way represent present-day risks realistically may not 
be entirely valid. An important challenge is to understand how to adjust 
the models to account for climate change, and there has recently been 
some work in this direction (Jewson, et al., 2019; Sassi, et al., 2019). 

In this study, we consider how to convert the PESETA IV river flood 
results to a format in which they could be used to adjust a river flood 
catastrophe model. The conversion requires three inputs: the first input 
specifies the period of time that is to be used as a reference, or baseline, 
representing the period of data on which the catastrophe model was 
built. The second input specifies the period of time of interest, which 
would typically be the present day, or some point in the future. The third 
input specifies a GMST scenario that represents a projection of future 
climate. We then create a statistical model that allows us to use the 
PESETA IV results to calculate the percentage change in flood risk be-
tween the baseline time period and the time period of interest, for the 
GMST scenario, using certain assumptions. The multiple climate models 
used in the PESETA IV project yield multiple alternative sets of results, 
which allows us to estimate part of the model uncertainty. We describe 
how to sample from this model uncertainty, incorporating spatial cor-
relations, to create N years of samples of possible percentage changes in 
river flood risk across Europe. These samples can be used to adjust ca-
tastrophe model outputs, in ways that we discuss. 

In Section 2 we discuss the data we use. In Section 3 we present the 
statistical model we use to condense and summarize the simulated 
damages from PESETA IV. In Section 4 we discuss how we apply the 
statistical model. In Section 5 we describe various ways in which the 
results can be applied to catastrophe model output. In Section 6 we 
discuss the uncertainties in the study, and how the methodology com-
pares with other methodologies that can be used to adjust river flood 
models for climate change. Finally, in Section 7, we conclude. 

PESETA IV and GMST data 

Peseta IV 

PESETA is an EU-funded project to understand some of the possible 
societal impacts of climate change in Europe and surrounding regions 
(Feyen, et al., 2020), and follows earlier EU projects such as Impact2C 
(https://www.atlas.impact2c.eu/en/). In its fourth iteration, known as 
PESETA IV, impacts due to climate change were calculated for extreme 
heat and cold, windstorms, water resources, droughts, river floods, 
coastal floods, wildfires, habitats, ecosystems, agriculture, energy sup-
ply and economic activity (https://joint-research-centre.ec.europa. 
eu/peseta-projects/jrc-peseta-iv_en). 

In this article, we only consider the river flood impacts, but may 
consider other impacts in future projects. We have started with river 
flood impacts because river flooding is both important, and expected to 
change significantly under climate change. In the European region 
covered by PESETA IV, the impacts of severe windstorms and river 
floods are of similar importance, but the results from the PESETA IV 
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report suggest that the rate of change of windstorm risk under climate 
change is expected to be low (Spinoni, et al., 2020), while the rate of 
change of river flood risk is expected to be much higher. 

The river flood modelling procedures used in PESETA IV are 
described in the PESETA IV technical report (Dottori, et al., 2020). To 
construct the model, outputs were taken from 5 European global climate 
models (GCMs). The simulations from the GCMs were downscaled using 
5 different regional climate models (RCMs). The 5 GCMs and 5 RCMs 
were combined in 11 ways, listed in Table 1 (Jacob, et al., 2014). Each of 
the 11 combined models were used to simulate climate from 1980 to 
2100, with greenhouse gas concentrations corresponding to RCP4.5 and 
RCP8.5 (Meinshausen, et al., 2011), giving 22 model-scenario combi-
nations in total. In PESETA IV, these climate simulations were used to 
drive the LISFLOOD hydrological model (Van Der Knijff, et al., 2010), 
and produce future scenarios of river flow including floods (Mentaschi, 
et al., 2020). River flow simulations were then used in combination with 
two-dimensional hydraulic simulations (Dottori, et al., 2022) land cover 
maps (Rosina et al., 2018), GDP maps (Eurostat, 2022a), and flood 
vulnerability functions (Huizinga, et al., 2017) to calculate economic 
damage caused by floods. PESETA IV contains projections based on both 
fixed and varying socio-economic scenarios: we use the projections for 
fixed scenarios. Validation of the modelled damages is discussed in 
Dottori et al (2023). In particular, table S18 and Fig. 2 of the supple-
mentary information for that paper compare modelled and reported 
average annual losses at country level. 

For our study, we will use the following outputs from PESETA IV. 
First, we use annual values of the GMST simulated by each of the 5 
global climate models. This data is part of the data that is used to train 
our statistical model, and we will refer to it as the training GMST data. 
GMST will provide the independent variable in our statistical model. We 
adjust the training GMST time series with a constant offset so they each 
have an average of zero during the period 1980–2000. The level of this 
offset has no impact on our analysis since our methods and results will 
only depend on changes in GMST. The 1980–2000 baseline is very 
different from the baselines often used to calculate changes in global 
temperature due to climate change. For instance, the PESETA IV project 
uses the baseline period 1881–1910. As a result, changes in GMST that 
we calculate relative to the 1980–2000 baseline will be considerably 
smaller than changes relative to earlier baselines. Annual values of the 
training GMST data are shown in Fig. 1 for the 22 model-scenario 
combinations, and show differences due to the model and the RCP. 
Second, we use annual losses simulated from the output from each of the 
22 model-scenario combinations, as calculated in the PESETA IV project. 
This is the other part of the data used to train our statistical model, and 
provides the dependent variable. The loss data was originally calculated 
at 5 km resolution, and then aggregated to NUTS2 regions (Eurostat, 
2022b). The size of the NUTS2 regions varies, as they follow adminis-
trative boundaries. In total, there are 296 NUTS2 regions in our domain, 
which are visible in Figs. 3 and 4. We will refer to the NUTS2 regions 
simply as regions. 

Application GMST data 

We will use past and future GMST data to convert the PESETA IV 
results into percentage changes in flood loss from the temporal baseline 
to the period of interest. We will refer to this data as the application 
GMST data. We take the application GMST data from Jewson et al. 
(2021a). The data was created by combining observed GMST values 
from NASA/GISS (NASA/GISS 2021; Hansen, et al., 2010) from 1880 to 
2019 with simulated future GMST values for the four standard RCPs 
(2.6, 4.5, 6.0, 8.5) created by averaging outputs from all the CMIP5 
models, within each scenario separately. We use future GMST based on 
CMIP5 RCPs rather than the more recent CMIP6 SSPs ( Meinshausen 
et al. (2011)) for our calculations because much of the risk modelling 
community is still at this point using RCPs to define future climate 
scenarios. As with the training GMST data, we have adjusted the 
application GMST data with a constant offset so that the period 
1980–2000 has a mean of zero. 

The reason we use different data for the training GMST data and the 
application GMST data is that the training GMST data, and the PESETA 
IV project as a whole, only considers RCP4.5 and RCP8.0. This is limiting 
for applications: commentary on the RCPs suggests that RCP6.0 may be 
more relevant (Sanford, et al., 2014; Harvey, 2020; UNEP, 2021; 
Hausfather, 2019), and in addition some users may wish to consider the 
impact of the SSPs. The application GMST data is shown in Fig. 1 in 
Jewson et al. (2021a). 

Statistical model 

Model definition 

There are various issues that complicate the direct application of the 
simulated PESETA IV damages to catastrophe model output. The first is 
that the PESETA IV damages consist of annual values starting in 1980, 
while catastrophe models are often built using historical data that pre-
dates 1980. The second is that the PESETA IV damages are only simu-
lated for RCP4.5 and RCP8.5. Using a statistical model, along with the 
application GMSTs, allows us to create damage estimates for the other 
two RCPs, as discussed above. It would also allow us to create damage 
estimates for the SSPs. The third is that the PESETA IV damage results 
show large variations from year to year and decade to decade in addition 
to the climate change signal. These variations are driven by climate 
variability in the underlying climate models. For our purposes, this 
variability is not relevant, since the cat models that we want to adjust are 
based on simulations of many thousands of years of climate variability, 
and hence already capture climate variability inherently. We will 
therefore attempt to filter out the climate variability in the PESETA IV 
results and extract only the climate change signal. The fourth is that the 
PESETA IV results represent damage rather than loss, where by ‘damage’ 
we mean physical damage, and by ‘loss’ we mean the losses incurred by 
an insurance company as a result of the damage, which may be different 
from the damage for various reasons, including details of insurance 
coverage. In our analysis, we will equate damage to loss, and will use the 
words damage and loss as synonyms, but users of our results may wish to 
adjust the results to render them more appropriate for their specific 
losses. 

To overcome the first three issues given above, we fit a statistical 
model to the PESETA IV damage results, and then use the output from 
the statistical model, rather than the results themselves. The statistical 
model makes the assumption that the logarithm (log) of the flood losses 
is a linear function of global mean surface temperature (GMST). GMST is 
the standard index used to measure the rate of climate change, and the 
assumption that climate change, and the impacts of climate change, are 
a simple function of GMST is commonly used in the climate community 
as a first approximation: see, e.g., Knutson et al. (2020). The details of 
the log-linear model for climate variables as a function of GMST are 
given in Jewson et al. (2021a). We will investigate the validity of this 

Table 1 
The climate models used in this study, each of which 
consists of a GCM and an RCM.  

GCM RCM 

CNRM-CM5 CCLM4.8–17 
EC-EARTH CCLM4.8–17 
MPI-ESM CCLM4.8–17 
EC-EARTH HIRHAM5 
IPSL-CM5 WRF331F 
EC-EARTH RACMO22E 
CNRM-CM5 RCA4 
EC-EARTH RCA4 
IPSL-CM5 RCA4 
HadGEM2 RCA4 
MPI-ESM RCA4  

S. Jewson et al.                                                                                                                                                                                                                                  



Climate Services 30 (2023) 100395

4

Fig. 1. Simulated global mean surface temperatures from the 5 global climate models used in this study, for RCP4.5 and RCP8.5 in each case. All values are adjusted 
so that the mean from 1980 to 2000 is zero. 

Fig. 2. PESETA IV losses due to river flood. (a) shows the logarithm of simulated losses for one particular NUTS2 region, for one of the 22 GCM-RCM combinations, 
versus GMST as simulated by the corresponding GCM. Best-fit straight lines are also shown, using GMST ranges up to 1.2℃, 1.5℃, 2.0 ◦C and the entire range of 
GMST. (b) shows log losses for the same NUTS2 region, but now as simulated by each of the 22 GCM-RCM combinations, with best-fit straight lines for each of the 22 
combinations, and for the entire data-set. (c) is as (a), but for a different NUTS2 region, (d) shows the distribution of slopes from the 22 regression lines derived from 
the data shown in (b), but fitted to GMST up to 1.2℃. 
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linear assumption for the log of the PESETA IV river flood losses below. 
In this statistical model, we write the losses as Lijk, and the log of the 

losses as a linear function of the training GMST Ttraining
jk, giving 

logLijk = αij + βijTtraining
jk + residuals (1)  

where αij and βij are free parameters, to be estimated. The subscript i 
refers to the region, and runs from 1 to 296, the subscript j refers to the 
model-scenario combination, and runs from 1 to 22, and the subscript k 
refers to the year, and runs from 1980 to 2100 (121 years). We use a log- 
linear model for the losses, rather than a linear model, since losses can 
only be positive, and a linear model would risk that the statistical model 
could give negative losses for certain values of GMST, which would be 
meaningless. Fitting the two parameters αij and βij to each of the 22 
model combinations and 296 NUTS2 regions leads to 6,512 pairs of 
fitted parameters. The GMST used to fit the parameters in each case is 
taken from the climate model used in that particular model-scenario 
combination. The slope parameter in the linear function βij can be 
either positive, indicating that losses increase with increasing GMST, as 
we might expect in regions of increasing rainfall, or negative, indicating 
that losses decrease with increasing GMST, as we might expect in regions 
of decreasing rainfall. The intercept parameter αij is typically non-zero, 
since we did not subtract the mean log-loss before performing the 
regression. We will see below that the value of the intercept is, in fact, 

irrelevant, since we are only interested in changes in damage. 

Examples, nonlinearity and truncation of GMST range 

Fig. 2a shows an example of the PESETA IV log losses, for a single 
NUT2s region (in London), and for just 1 of the 22 model-scenario 
combinations, plotted against the GMST from the corresponding GCM. 
Fig. 2a also shows best fit straight lines fitted using four different ranges 
of GMST changes: changes up to 1.2℃, 1.5℃, 2℃ and all changes. In 
this example, the relationship between the GMST and the log losses does 
appear to be reasonably linear, and the fitted lines shows a good fit to the 
data and are similar to each other. Variations in the data around the 
linear fit are mostly due to decadal time-scale climate variability in the 
climate model, and possibly due to non-linearity in the relationship 
between GMST and log loss. Fig. 2b shows results for the same NUTS2 
region, but now for all 22 model-scenario combinations, along with lines 
fitted to each (for the complete GMST range in each case). It also shows a 
single mean line fitted to all the data at once. There is significant spread 
around the mean line. This spread is due to climate variability in the 
individual climate models, differences in the response to GMST in the 
different model-scenario combinations, and possible non-linearity in the 
climate change response. 

Fig. 2a, b give reasonable validation for the use of a linear model for 
log loss versus GMST. However, not all of the NUTS2 locations give as 

Fig. 3. R-squared values, averaged over 22 model-combinations, for each of the 296 NUTS2 regions covered in the PESETA IV study. (a) and (b) show values for a 
log-linear model fitted to log loss GMST data up to 1.2℃ change in GMST, with the R-squared evaluated using data up to GMST of 1.2℃, while (c) and (d) show 
values for a model fitted to GMST data up to 2℃, but with the R-squared evaluated using data up to GMST of 1.2℃. (a) and (c) show the distribution of the 296 R- 
squared values for the 296 NUTSs regions, while (b) and (d) show their geographical distribution. 
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good a fit. Fig. 2c shows a region (La Rioja in Spain) for which, for this 
particular model-scenario combination, the variation of loss with GMST 
is distinctly non-linear, with the loss initially increasing as GMST in-
creases, but then decreasing rapidly beyond 1.2℃ of warming. Fig. 2c 
also shows regression lines fitted to the four different ranges of GMST 
used in Fig. 2a. The lines now each have very different slopes because of 
this nonlinearity. The regression line fitted to the whole range of GMST 
values does not capture the dependency of loss on GMST at all well. 
Further investigation of this non-linearity shows that it is fairly consis-
tent across the 22 model-scenario combinations, indicating that it is not 
principally due to climate variability, but is a feature of the loss response 
to climate change in these models at this location. It also occurs in many 
other locations. 

One way to deal with this non-linear response would be to extend the 
linear model to include non-linear terms. However, for all purposes for 
which we envisage our results being used, GMST increases larger than 
1.2℃, relative to the period 1980–2000, are not relevant. This is because 
insurers (and many other potential users of our methods and results) are 
mainly interested in present day climate, and the climate of the near 
future (perhaps up to 2035). As a result, we have restricted our regres-
sion analysis, for all locations, to just the range of GMST change up to 
1.2℃ i.e., we use the shortest of the regression lines in Fig. 2a and 2c, 
over which period the linear assumption is better justified. Under RCP 

4.5 / 6.0 / 8.5 a change of 1.2℃, relative to the period 1980–2000, 
occurs in the years 2045 / 2050 / 2037, respectively. The range of 1.2℃ 
of change relative to 1980–2000 therefore covers our required time 
period adequately. 

Fig. 2d shows the 22 model-scenario combination regression slopes 
estimated in the case shown in Fig. 2b, but now restricted to a GMST 
change of 1.2℃. A kernel density has been fitted to the 22 values. We see 
that most of the slope values are positive, but that there is a range, 
reflecting the range of values from the 22 model-scenario combinations. 
This range is an approximate indicator of the model uncertainty in these 
results. Normal distributions can be fitted to this distribution of 
regression slopes as a convenient way to summarize this model uncer-
tainty. For fixed GMST, a normal distribution for the regression slope 
gives a log-normal distribution for the resulting rate of change of loss 
versus GMST, by Eq. (1). 

To validate the choice to restrict to the GMST range to up to 1.2℃, 
Fig. 3 shows maps and distributions of R-squared values of the linear fit 
to the log loss time series from using data with GMST values up to 1.2℃ 
and 2.0℃. R-squared values are calculated only for data with GMST up 
to 1.2℃ in both cases. In other words, even when the lines are fitted to 
data up to 2℃, the R-squared is calculated only on data up to 1.2℃. This 
is to allow better comparison between the R-squared values in the two 
cases. The results for 2.0℃ show most of the R-squared values are less 

Fig. 4. Diagnostics from best fit straight lines fitted to the PESETA IV log losses vs GMST, using GMST data up to 1.2℃. (a) shows the mean slope parameter, 
averaged over the 22 model combinations. (b) shows the maximum slope parameter, (c) shows the standard deviation of the slope parameters and (d) shows the 
signal to noise of the slope parameters. 
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than 0.5, and many are less than 0, suggesting that the linear model is 
performing very poorly, as expected from the example shown in Fig. 2c. 
The results for 1.2℃ show higher R-squared values, mostly above 0.7. 
This justifies our choice to fit the linear model to data with GMST 
changes up to only 1.2℃. Using even less data might give an even better 
fit, but would reduce the precision of the parameter estimates and would 
limit the applicability of the model to less far into the future. 

We could consider testing more complex statistical models than Eq. 
(1) to capture the relationship between GMST and log loss, even for the 
range of GMST up to 1.2℃. However, given the great uncertainties in the 
models from which the losses were generated, and the large amount of 
noise due to climate variability, we feel that this would be over- 
interpretation. It would imply we understand more about the details 
of the response to climate change than is really possible to derive from 
this data given these uncertainties. We can consider the use of a linear 
model to be giving the first term in a series expansion of the climate 
change signal. We believe that this will already be useful, since currently 
there are few or no estimates available even for this first term. 

Spatial variability 

The analysis described above produces 296 distributions of values for 
αij and βij, for our 296 NUTS2 regions, where each distribution consists 
of 22 values, from the 22 model-scenario combinations. One such dis-
tribution was illustrated in Fig. 2d. We can summarize each distribution 
using the mean and variance. Fig. 4a shows the spatial variability of the 
mean values of βij. We see mostly positive values, indicating increases in 
losses with increasing GMST, but values close to zero or slightly negative 
in the north and south of the domain. A value of βij = 0 indicates no 
change in loss as GMST changes. For small values of the term 
(βijTapplication

jk), we can linearize equation (1) to give 

Lijk ≈ exp(αij)(1 + βijTapplication
jk)+ residuals (2) 

In this linearized form, a value of βij of 0.5 indicates a 50% increase in 
loss per degree C as GMST changes, and a value of βij of 1.0 indicates a 
100% increase in loss per degree C as GMST changes. In many regions 
the mean value of βij lies between 0 and 1, indicating changes of damage 
of between 0% and 100%. 

Fig. 4b shows the maximum values of βij by region. All regions show 
positive values i.e., all regions show some probability of increase in 
damage as GMST increases. Fig. 4c shows the standard deviation of 
values of βij and Fig. 4d shows the signal to noise ratio, calculated as the 
ratio of the absolute value of the mean to the standard deviation. We see 
that for much of the central region, the signal to noise is well above 1 i.e., 
the signal is larger than the noise, indicating reasonable agreement 
among the 22 model-scenario combinations. On the margins of the 
domain the signal to noise is often close zero, indicating significant 
disagreement among the 22 model-scenario combinations. We do not 
test for statistical significance of the values of βij, since statistical testing 
is not appropriate given that our goal is to get a best estimate of the 
changes in flood damage rather than accept or reject any hypothesis 
about the existence of trends. A detailed discussion of the reasons why it 
does not make sense to use statistical significance testing when creating 
best estimates is given in Jewson et al. (2021b). 

Fig. 5 shows the average βij values by country. In all countries, 
average βij is positive, indicating increasing damages. The largest 
average βij value is in France, with a value of over 0.6, corresponding to 
over 60% increase in damage per degree C (approximately). These 
average values are simply averages of the numerical values by NUTS2 
region, and are not weighted either by the asset values in each region, or 
by the damage in each region, and so do not necessarily represent the 
trend in the loss for the country as a whole. 

Fig. 5. Average values of the slope parameters shown in Fig. 4a, by country.  
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Spatial correlations 

We can also consider the correlations in space between the 296 
distributions for βij. Modelling these correlations is important for risk 
modelling, as we discuss in Section 4.3 below. These correlations cap-
ture the correlations between the results from the different model- 
scenario combinations, which we call the model uncertainty correla-
tion. Fig. 6 shows the linear correlation between the 22 estimates of βij 

for the Surrey/Sussex (SS) region and for 5 other regions in the UK. Since 
the correlations are based on only 22 values, they are rather poorly 
estimated. We see that locally, the estimates of βij are highly correlated 
with the SS estimate, while as distance increases the correlations tend to 
drop. However, the noise around the correlations is large enough that 
the relative sizes of the correlations do not vary with distance exactly as 
one might expect. These correlations show that those models that give βij 

values at the high end of the range of the 22 model-scenario combina-
tions in the SS region also give estimates at the high end of the range in 
nearby regions. These positive correlations increase the large-scale risk 
implied by the results, because they imply, for instance, that in the 
future scenarios in which SS experiences much more flood damage, 
much of the UK also experiences much more flood damage. A full rep-
resentation of the linear correlation structure of the βij values requires a 
296 by 296 correlation matrix, which we calculate. 

Application of the statistical model 

Single location application 

Having fitted log-linear models for loss for each region and model- 
scenario combination, we can now derive estimates of the change in 
loss for any period of interest, for each region, and for each model- 
scenario combination, by using the application GMST time series with 
the following equation 

logLijk = αij + βijT
application

k (3) 

This is derived from Eq. (1), but with Ttraining replaced by Tapplication, 
and with no residuals modelled, since we are only interested in model-
ling the climate change related variations in loss. The resulting value for 

the loss Lijk is then a projection of loss conditional on the application 
GMST time series. We can apply equation (3) using any of our applica-
tion GMST values from 1880 to 2100: we are not limited by the period of 
GMST values used in the training data. However, we are limited to using 
GMST changes up to 1.2℃, relative to 1980–2000, because the log- 
linear model fails for larger GMST changes. 

As the value of loss calculated by Eq. (3) is based on a single pro-
jected GMST value, it does not incorporate uncertainty around the 
projected GMSTs. GMST projection uncertainty could readily be incor-
porated, by replacing Tapplication by a distribution of possible future 
GMSTs. Whether this GMST projection uncertainty should be incorpo-
rated or not is a matter of choice, and depends on the definition of the 
type of projection one wishes to make. To make a projection conditional 
on the mean GMST from a single RCP, one should not incorporate un-
certainty around the GMST. To make a projection conditional on the 
distribution of GMST values from a single RCP, one should incorporate 
the uncertainty in the GMSTs from the set of relevant models. To make a 
prediction based on probabilities of the different RCPs one should 
include the uncertainties from the GMSTs from each of the different 
RCPs, appropriately weighted. 

We can convert the changes given by Eq. (3) into fractional changes 
Fij between two years k = m and k = n using the following equation: 

Fij =
Lijn − Lijm

Lijm
=

eαij+βijTn − eαij+βijTm

eαij+βijTm
=

eβijTn − eβijTm

eβijTm
= eβij(Tn − Tm) − 1 (4) 

We see that the fractional change only depends on βij, as αij has now 
cancelled. For these fractional changes, the βij parameters encapsulate 
all the information we need to capture from the results from the PESETA 
IV study. 

Equations (3) and (4) give loss for a single model-scenario combi-
nation and so ignore model uncertainty. Loss projection distributions 
that incorporate the model uncertainty can be generated in two alter-
native ways, which we refer to as non-parametric and parametric 
methods. In the non-parametric method the 22 values of βij for a given 
location can each individually be converted into loss projections, using 
equations (3) and (4), giving 22 loss projections, the range of which 
encapsulates the model uncertainty. In the parametric method normal 
distributions fitted to the 22 values of βij can be used in place of βij in Eq. 

Fig. 6. Correlations between slope parameters from the 22 model combinations, for 5 locations in the UK with one location in the South East UK.  
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(3) or (4). This gives log-normal distributions for the loss, for each value 
of GMST. Using the parametric method has the possible advantage that it 
will extrapolate the tails of the distribution, relative to just using the 22 
fitted values. If a large number of samples of the possible loss are 
required, either the normal distributions for βij, or the log-normal dis-
tributions for loss, can be sampled. 

Multi-year period application 

We can also calculate estimates of percentage changes in loss be-
tween any two multi-year periods. This is essential for our application to 
catastrophe models. Consider a catastrophe model built using observed 
rainfall data from 1970 to 2019. Without further adjustment, the model 
represents the climate of this historical period. Suppose then that the 
user wishes to understand how climate change may change the results 
from this model by the period 2025–2030. The change required is now a 
change between these two multi-year periods. Based on Eq. (3), changes 
between two multi-year periods P1 and P2, of lengths N1 and N2, with 
mean losses Mij

1 and Mij
2, are given by 

Fij =
M2

ij − M1
ij

M1
ij

=

1
N2

∑
i∈P2

eβij Ti − 1
N1

∑
i∈P1

eβij Ti

1
N1

∑
i∈P1

eβij Ti
(5) 

Once again, αij has cancelled. 

Single location example 

Fig. 7 gives an example. Fig. 7a shows 3 GMST projections, derived 
from the CMIP5 model ensemble. The projection baseline has been 
adjusted so that the projections are zero over the period 1950 to 2019, 
although the choice of projection baseline makes no difference to the 
results we derive below since it is only the change in the GMST that 
matters. Fig. 7b uses Equation (5) to derive fractional changes in the AAL 
for one particular NUTS2 region (region 65844949, Burgenland in 
Austria), based on the mean value of βij that we have derived for this 
region. In Fig. 7c we apply these fractional changes to a value for the 
baseline AAL for this region. For the baseline AAL value, we use the AAL 
estimate for this region from the first of the GCMs listed in Table 1, using 
results for the period 1980 to 2022. The period 1980 to 2022 therefore 
forms the period P1 in Equation (5). We define period P2 multiple times, 
using an 11 year sliding window around every year from 1970 onwards. 
We are thus modelling climate change driven variations in AAL both 
backwards and forwards in time using our model. This leads to negative 
values for the fractional change before the year 2000 (which is roughly 
the midpoint of the AAL baseline from 1980 to 2022) and hence values 

Fig. 7. An example of the application of the methodology we describe, for a single NUTS2 region. (a) shows GMST projections for 3 RCPs. (b) shows fractional 
changes in damage derived from the GMST projections, relative to a damage baseline of 1980–2022. (c) shows full modelled losses, generated by applying the 
fractional changes to an estimate of the average annual loss, based on modelling for the period 1980–2022 and (d) shows the same as (c) but with plus and minus 1 
standard deviation shown around the RCP4.5 modelled losses. 
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for the modelled AAL which are below the baseline AAL. However, it is 
the modelled AAL values from 2023 onwards which are of the most 
interest, and these show positive values for the fractional change and 
increases in the AAL relative to the baseline. Fig. 7d shows the same as 
Fig. 7c, but now with additional lines that show plus and minus one 
standard deviation of the AAL, for the RCP4.5 scenario only. We see that, 
for this NUTS2 region, the uncertainty range is wide, and wider than the 
range due to choice of RCP. 

Multi-location application 

In addition to generating loss scenarios for individual locations, we 
can create spatially distributed loss scenarios that take into account the 
spatial correlations between the different model-scenario combinations. 
This can be done in two ways, corresponding to the non-parametric and 
parametric methods described above for creating loss scenarios for a 
single location. In the non-parametric method, one could generate a 
spatial loss scenario by using Eq. (3) 296 times, with the 296 βij values 
for the 296 regions, but from just one of the 22 model-scenario combi-
nations (i.e., by varying i but fixing j). This would then be repeated for 
the other 21 model-scenario combinations (by varying j), to create 21 
further spatial loss scenarios. The 22 resulting spatial loss scenarios 
naturally incorporate the spatial correlations present in the βij values. 

In the parametric method, one could simulate a large number of 
realisations of the set of 296 βij values, using a multivariate normal 
distribution based on the normal distributions fitted to the βij values at 
each location, and the correlations between the locations discussed in 
Section 3.4 above. Using this method, one could, for instance, simulate N 
realisations of the set of 296 values, where N corresponds to the number 
of years of simulation in a YLT. This is then convenient for some of the 
methods one might use for adjusting catastrophe model results, as dis-
cussed below. 

Adjusting catastrophe model output 

We now discuss how the above results might be applied to different 
forms of output from a catastrophe model. Given the proprietary nature 
of the catastrophe models used by the insurance industry, we are unable 
to give any quantitative examples. 

Assumptions 

We start by discussing the assumptions we need to make to bridge the 
gap between the PESETA IV results and typical catastrophe model 
results. 

Assumptions with respect to assets modelled 
The first set of assumptions relates to the fact that the underlying set 

of assets being modelled is likely not the same for the PESETA IV 
changes and for any catastrophe model analysis. Therefore, to apply the 
PESETA IV results to a catastrophe model analysis we have to make the 
assumption that the impacts of climate change on the damage for the 
two different sets of assets, when expressed as a fractional change, will 
be similar. The PESETA IV project modelled the overall economic im-
pacts of river flooding. A typical catastrophe model analysis might 
model the impact of river flooding on databases that attempt to repre-
sent the set of buildings insured by the whole insurance industry, or the 
smaller set of buildings insured by one insurance company. Assuming 
that the impact of climate change would be the same on these different 
sets of assets is a bold assumption. However, it may not be unreasonable, 
as a first way to generate an estimate of the impacts of climate change, 
given the wider context. Little or no information is currently available 
about the details of the possible impacts of climate change on river flood 
damage, and there are large uncertainties involved in all aspects of both 
the PESETA IV project and catastrophe model analyses. 

Assumptions with respect to modelling resolution 
The second set of assumptions relates to resolution. The PESETA IV 

damages were originally calculated at 5 km resolution, and were then 
aggregated to NUTS2 resolution. Catastrophe models often calculate 
damages at much higher resolutions, perhaps of 10 m or 50 m, in an 
attempt to get close to resolving individual buildings. However, the 
catastrophe models certainly do not simulate all the factors that are 
relevant for understanding the details of flood risk at these scales. The 
catastrophe model results are often then aggregated to lower resolu-
tions, particularly to either HR-CRESTA or LR-CRESTA regions, both of 
which are higher resolution than NUTS2 (CRESTA regions are a pro-
prietary set of region definitions used in the insurance industry: see htt 
ps://www.cresta.org). The most consistent way that the PESETA IV re-
sults could be applied to catastrophe model results, in terms of resolu-
tion, would be for the catastrophe model results to be aggregated to 
NUTS2 resolution, so that they are at the same resolution as the PESETA 
IV results. Alternatively, the PESETA IV results at NUTS2 resolution 
could be applied to catastrophe model results at higher resolutions, such 
as LR-CRESTA or HR-CRESTA regions, or even to results for individual 
buildings, by assuming that the percentage changes in loss are constant 
across each NUTS2 region. This assumption of constant percentage 
change within each NUTS2 regions is likely unrealistic in detail, but can 
be used as a working assumption. 

We have not calculated our results directly on CRESTA regions since 
the definitions of the CRESTA regions are proprietary and not available 
to us at this point. We may be able to obtain the CRESTA region defi-
nitions in future: for now, to apply these results to CRESTA regions one 
would have to assume that the changes are constant across each NUTS2 
region as discussed above. 

Assumptions related to the impacts on individual flood events 
The third set of assumptions relates to the application of the PESETA 

IV results to individual flood events. The PESETA IV results we have 
used as input are changes in the annual average loss due to river 
flooding. Annual average losses are the average of losses from many 
individual flood events, large and small. In the PESETA IV results, there 
is no indication as to which of the individual event losses are changing, 
only that the annual mean across all types of events is changing. The 
most consistent way to apply the PESETA IV results is therefore to apply 
them to results for average annual losses from catastrophe models. 

However, insurers are also interested in the changes in individual 
events. To apply the PESETA IV results to individual events, or metrics 
related to individual events, one would have to make additional as-
sumptions. The simplest assumption would be to say that losses for all 
events are increasing by the same percentage change. This is a working 
assumption: there is little evidence at this point to prove or disprove this 
assumption. However, it is likely not true in detail. For instance, if the 
most extreme rainfall events are increasing more rapidly than other 
events, that may lead to the most extreme flood events increasing more 
rapidly than smaller events. 

Given these assumptions we can now consider how PESETA IV re-
sults could be applied to catastrophe model output of different types. 

Adjusting average annual losses 

One of the most commonly used metrics in insurance risk modelling 
is the average annual loss (AAL). AAL can be calculated from historical 
losses or from a catastrophe model, and at different resolutions ranging 
from individual buildings to a large globally distributed portfolio of 
buildings. When calculated for individual buildings, it is an important 
input into insurance pricing. The PESETA IV results could be used to 
adjust AAL results at any scale, subject to the assumptions discussed 
above. We will consider application at the NUTS2 scale. 

For any individual NUTS2 region, catastrophe model AALs could be 
adjusted in a number of different ways using our PESETA IV-derived 
results. Most simply, the mean percentage change in loss for that re-
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gion, calculated as the mean of the 22 individual loss changes from the 
22 model-scenario combinations, could be applied to the catastrophe 
model AAL, to give an adjusted AAL. This method, however, ignores the 
model uncertainty in our results. To capture the model uncertainty non- 
parametrically, the 22 changes for that region could be applied sepa-
rately to the catastrophe model AAL, to give 22 new values for the AAL. 
To capture the model uncertainty parametrically, N simulated values for 
the loss changes for that region could be applied to the catastrophe 
model AAL, to give N adjusted values for the AAL. Finally, if the unad-
justed AAL itself already has an associated uncertainty, the two distri-
butions of uncertainty could be convoluted together to create the new 
distribution of uncertainty. 

Adjusting annual loss distributions 

Other commonly used metrics in insurance risk modelling are the 
probabilities that the maximum loss in a year will exceed a certain level, 
and the probability that the total loss in a year will exceed a certain 
level. For some applications in insurance, particularly risk management, 
capital allocation and reinsurance design and pricing, these metrics are 
as important, or more important, than AAL. As discussed above, the 
PESETA IV results we have described apply to annual average losses, and 
contain no direct information about the distribution of individual losses 
in a year. If one is willing to assume that the changes apply equally to 
individual events, then they could, nevertheless, be applied as per-
centage changes to the maximum and annual total losses, giving changes 
in the distributions of these quantities. This may be better than nothing 
in the absence of any other information about how those distributions 
may change. As in the previous Section, the changes could be applied by 
using just the mean of the 22 model-scenario combinations. To capture 
model uncertainty, one could apply them non-parametrically by using 
the 22 values separately, or parametrically by using N simulated values 
of loss changes from a distribution fitted to the 22 values. 

Adjusting single region year loss tables 

Our PESETA IV results could also be used to adjust the losses in year 
loss tables, if again one is willing to assume that losses for different 
events all change by the same percentage change. For a single NUTS2 
region, the simplest way to do that would be to ignore model uncertainty 
and apply the mean percentage changes to the loss for every event in 
every year. To capture model uncertainty, one could apply the 22 values 
separately to different years in the YLT, or use N simulated values and 
apply different samples to every year. This latter methodology is perhaps 
the most consistent with the overall catastrophe modelling approach of 
sampling all possible uncertainties in every year of simulation. 

Adjusting multi location YLTs 

Since our results cover multiple regions, they could also be applied to 
simulated losses for multiple regions. All the methods described above 
generalize to adjustments for multiple regions at once, and would 
correctly propagate model uncertainty and model correlation into the 
final multi-region loss results. This is the most general way to apply our 
results. 

Discussion 

Uncertainties 

It must be emphasized that the components of this study, and the 
data on which it depends, each involve many uncertainties, and in 
combination the uncertainty in the final results is large. The sources of 
uncertainty in the PESETA IV study and resulting outputs include:  

1) Climate projection uncertainty: climate models only give imperfect 
representations of current and future climate. It is possible that the 
behaviour of future climate lies outside the range of the climate 
simulated by any of the 11 models used in the PESETA IV study.  

2) Flood model uncertainty: models for river flooding only give 
imperfect representations of real flooding, even if forced with real-
istic climate forcings, due to limitations in the input data, including 
topographic data and soil data, and limitations in the models them-
selves, including challenges related to the modelling of flood 
protection.  

3) Damage model uncertainty: models for the damage caused by 
flooding only give imperfect representations of what the actual 
future damage may be, even if forced with realistic floods. 

In addition, our linear model for log-loss as a function of GMST is an 
approximation. Other sources of approximation and hence uncertainty 
have been discussed in Section 4.1 (uncertainty related to future GMSTs) 
and Section 5.1 (uncertainty related to mismatches in the set of assets, 
spatial scales, and assumptions about whether the results can be applied 
to individual events). Furthermore, catastrophe models are themselves 
built using many approximations and have many uncertainties, even 
before adjustment with the PESETA IV results. 

Some of the overall uncertainty is quantified in our calculations. For 
instance, the spread of the results from the 22 climate model-scenario 
combinations gives an estimate of the climate projection uncertainty. 
However, many of the sources of uncertainty are not quantified in our 
calculations, and hence the ranges of results we derive are likely to 
underestimate overall uncertainty. 

These uncertainties do not invalidate our attempts to produce esti-
mates of the impact of climate change: it is important to estimate the 
impacts of climate change using the best methods we can at this point in 
time. At the time of writing, we are not aware of any other publicly 
available information which would give as much information about the 
possible economic impacts of climate change and river flooding in 
Europe as we are providing in this study. However, the uncertainties do 
affect the interpretation and application of the results. Our perspective 
on the impacts of the uncertainties is that we believe our results may 
well capture the correct sign of the impacts of climate change on loss in 
most regions. They certainly suggest that the changes are not zero. They 
may also give a first estimate of the rough magnitude of the size of the 
impacts. They likely do not give good estimates of the differences in 
impacts between regions with similar impacts. Whether information 
that is this uncertain is valuable or not and depends on the application, 
and ultimate decisions about whether and how to use this uncertain 
information lie with the user. 

Comparison with other methods for incorporating climate change into 
catastrophe models 

We have discussed the possibility of adjusting the results from river 
flood catastrophe models by taking changes in losses from the PESETA 
IV project and using them to adjust loss results from the catastrophe 
model. This approach could be argued to take advantage of the strong 
points of both catastrophe models and climate models, in that the ca-
tastrophe model is used to generate detailed high resolution flood losses, 
while the climate model results are used to capture the changes due to 
climate change. However, this method has many limitations (the 
possible sources of uncertainty have been discussed above), and there 
are various other methodologies that one could consider using to adjust 
a river flood catastrophe model to account for climate change. We 
briefly describe some of the alternatives below. 

A second methodology would be to rebuild the catastrophe model 
using rainfall simulated by climate models. A third methodology would 
be to rebuild the catastrophe model using rainfall simulated from sta-
tistical models, but adjusted to account for climate change. A fourth 
methodology would be to extract projected changes in rainfall from 
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climate models and use them to make adjustments to an existing ca-
tastrophe model, without rebuilding the model, by applying weights to 
the years of simulation (see Sassi et al. (2019)). 

These four approaches each have pros and cons, and none of these 
four approaches is remotely close to what one would ideally do, which is 
to connect an extremely high resolution highly realistic climate model to 
highly realistic flood and damage models and run the combined model 
for many thousands of years. However, this ideal approach is not 
possible at this point in time, and may not be possible for many decades 
in the future. Our approach, and the other three approaches described 
above, are therefore compromises that allow us to approximate the ideal 
approach in some way. Which of the four approaches gives the most 
realistic results is extremely difficult to say. 

Conclusions 

Flood risk is changing because of climate change, and information 
about how it may be changing could potentially help design responses 
that mitigate any negative impacts of the changes. For instance, one idea 
that has been suggested for mitigating the negative impacts of flooding is 
the formation of a state-run cross-border risk pooling mechanism (Pre-
ttenthaler, et al., 2017). Any mitigation efforts require analysis of the 
possible impacts of climate change on flooding. Perhaps the most 
comprehensive publicly available analysis of the impacts of climate 
change on flood risk in Europe has been produced as part of the PESETA 
IV project (Dottori, et al., 2020; Feyen, et al., 2020). The PESETA IV 
results have many possible applications: we have considered their 
application to insurance industry flood risk modelling. The insurance 
industry estimates flood risk using catastrophe models, and the PESETA 
IV results could potentially be used to adjust the output from those 
models. However, for the PESETA IV results to be used to adjust catas-
trophe models, they first have to be converted in various ways. We have 
described such a conversion process, involving three steps. First, we 
have used PESETA IV output consisting of simulated annual values of 
damage, at NUTS2 resolution, to estimate the rate of change of damage 
versus global mean surface temperature (GMST) in a log-linear model. 
This step smooths the variations in the PESETA IV output due to internal 
climate variability. The implicit assumption in this step is that the rate of 
change of log loss versus GMST is constant with time, which only turns 
out to be a reasonable assumption for the data we analyze up to around 
1.2 deg C change in GMST, relative to 1980–2000. Second, we have 
described how the rate of change of log loss versus GMST can then be 
used to estimate the percentage change in damage between the histor-
ical baseline period of a catastrophe model (the time period of the data 
on which the model was built and calibrated) and any other point in 
time, for any RCP, subject to the limitation that the GMST change should 
be less than 1.2℃ relative to 1980–2000. Third, we have described how 
a multivariate normal distribution can be fitted to the rate of change of 
the log loss, which allows for an arbitrary number of years of spatially 
correlated changes to be simulated. We have then also described how 
the percentage changes in damage calculated in this way can be applied 
to the different outputs from a catastrophe model, as well as the various 
assumptions that one must make for such adjustments to be valid. We 
deliver our results to the insurance industry in two ways. For those 
companies who wish to perform the scaling by time-period and GMST 
themselves, we provide the results as a freely available dataset. For other 
companies, a software tool is available that can be used to perform this 
scaling and extract the scaled results. 

There are extremely large uncertainties involved in our analysis, and 
in any results derived from our analysis using catastrophe models. These 
include the uncertainties inherent in the climate models, flood models 
and damage models used in the PESETA IV project and uncertainties 
related to our assumptions of a log-linear relationship between GMST 
and damage. They also include uncertainties related to the need to as-
sume that changes in damage for all physical assets, as calculated in 
PESETA IV, can be applied as changes in damage to subsets of the full set 

of physical assets, as required. Nevertheless, given the general lack of 
quantitative information about the impacts of climate change on 
flooding and damage in the public domain at this point in time, we hope 
that our results will prove useful as first estimates of the rate at which 
climate change is leading to changes in the damage caused by flooding. 
They may, at least, give reasonably robust indications of the regions in 
which damage may be increasing or decreasing, and rough estimates of 
the size of the changes. 

Data availability 

A dataset containing the results for the estimated rates and correla-
tions of the climate change impact on log damage due to river flooding 
for different regions in Europe will be freely available on Zenodo at 
publication. 

An online software tool that scales this data as a function of time- 
period and GMST scenario is commercially available. 
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