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The effect of weather on the willingness to pay for
residential energy-efficiency

Rodolfo Sejas-Portillo�

London School of Economics and Political Science

May 2023

I study the effects of weather conditions on the economic valuation of energy-
efficiency (EE) in the UK housing market. The benefits of EE features depend
directly on the expected weather over the ownership time frame (e.g. insulation
for maintaining heat during cold periods). However, due to its notorious unpre-
dictability, current weather conditions provide little to no additional information
about future weather conditions (beyond common knowledge such as seasonal tem-
peratures). Using transaction-level data of over 5 million residential property sales
in England and Wales, I find that weather conditions on the month the buying
decision is made can disproportionately influence the EE valuation of properties:
During rough weather (i.e. cold and rainy) the EE rating of a property has a
stronger influence on its sale price than during favourable weather (i.e. warm and
dry). I show that these results are unlikely to be driven by energy-cost optimi-
sation or self-selection behaviour. The consistency of the results with intuitive
predictions (in the UK the benefits of EE are much higher during rough weather)
highlights their importance: People understand the benefits of EE yet make bi-
ased intertemporal valuations. I model and discuss psychological biases as the
most likely mechanisms and find that salience appears to have the stronger effect.
I also present a novel extension to the regression-kink design (RDK) for identifying
and estimating the treatment effect when the running variable also moderates the
effect of another variable (via interaction). I conclude with policy recommenda-
tions. JEL Codes : D91, R31, Q41

�Department of Geography and Environment, London School of Economics and Political
Science, Houghton Street, London, WC2A 2AE, UK (email: r.sejas-portillo@lse.ac.uk). I thank
Till Stowasser and Mirko Moro for their feedback and gratefully acknowledge participants at
various seminars, conferences and workshops for their valuable comments.
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1 Introduction

In asset and investment markets, utility is almost exclusively realised in the future.

For example, when deciding to purchase a house, the expected utility will include

the forthcoming benefits of living in the property and the expected price apprecia-

tion over time. Assessing future utility is an intertemporal problem where, at the

time the purchase decision is made, individuals need to estimate all future bene-

fits and costs. While neo-classical economic models typically assume precise utility

estimations across time (Rabin 2002b), current research suggests that individuals

are susceptible to making systematic mistakes when presented with intertemporal

problems (see Ericson & Laibson 2019 and DellaVigna 2009 for reviews of the

literature). For instance, individuals may be inattentive to information relevant

to future utility (salience and limited attention bias – see Gabaix 2019), make

overinferences about future states of the world from a small set of recent past ob-

servations (overinference bias – e.g. Rabin 2002a and Benartzi 2001) or incorrectly

project their current preferences into the future (projection bias – see Loewenstein

et al. 2003). Recent research provides evidence that external factors, such as the

weather, can aggravate these biases and thus have an important influence on the

efficiency of intertemporal economic valuations and the corresponding purchasing

decisions (e.g. Busse et al. 2015, Conlin et al. 2007).

This paper presents evidence that weather conditions can disproportionately

influence the economic valuation (price premia) of energy-efficiency (EE) in the UK

housing market. In the UK, sellers must provide an energy performance certificate

(EPC) for the property to potential buyers at the first point of contact (e.g. as

part of advertisement materials or during an arranged viewing), long before a price

is agreed upon. One of the main components of the EPC is the EE rating (also

referred to as SAP rating), a standardised numerical score ranging from 1 (for the

least efficient properties) to 100 (for the most efficient). This paper shows that

if the weather was rough (i.e. cold and/or rainy) during the month the buying

decision was made, the EE rating of a property has a stronger influence on the

final sale price than if the weather was favourable (i.e. warm and/or dry).

Policies that rely on economic incentives and market mechanisms are normally

designed assuming accurate and consistent product valuations over time. If the
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influence on market valuations of external factors which policy makers cannot

control – such as the weather – are ignored, the impact of policies will be difficult

to predict and manage (e.g. as part of a cost-benefit analysis). For instance, as

discussed in Sejas-Portillo et al. (2020), price premia resulting from EE ratings

have an important effect on the decision by sellers to invest in EE improvements

before marketing their property.

Using data of over 5 millions sale transactions from England and Wales, I find

that on average, an increase of 10 EE rating points leads to a sale price increase

of 1.687 percentage points (�4,461 based on average sale prices) if the mean air

temperature was 5C◦ in the month the buying decision was made. However, the

same 10 points increase in the EE rating would lead to an increase in price of only

0.385 percentage points (�1,018) if the mean air temperature was 20C◦.1 I find

a similar effect for rainfall: If total rainfall was 1cm for the month the buying

decision was made, a 10 EE rating points increase leads, on average, to a 0.552

percentage point increase (�1,460) in sale price. Yet, if the total monthly rainfall

was 15cm, a 10 EE rating points increase leads to a much higher 1.914 percentage

point increase in price (�5,062). Moreover, I show that the relationship between

air temperature and EE valuation is kinked, with the effects considerably more

sensitive for very cold temperatures (less than 6.5C◦) and very warm tempera-

tures (more than 17C◦). Intuitively, the kinked effect is expected since people are

more sensitive to distinctively low and distinctively high temperatures. I discuss

the importance of these kinked effects given the increasing frequency of extreme

weather events (attributed to climate change) and the differences in temperatures

across regions in England and Wales.

Importantly, I show that the effects are unlikely to be due to rational optimi-

sation of running fuel costs or self-selection behaviour (of either sellers or buyers).

Instead, I propose that the effects are driven by psychological biases. I model

and discuss salience (Gabaix 2019), probability overinference (Rabin 2002a) and

projection bias (Loewenstein et al. 2003) as the most likely mechanisms behind

these results. I find evidence suggesting that salience has a stronger effect than

1It is important to note that the UK housing market is seasonal, with most sales occurring
during summer, nonetheless the analysis in this paper rules out that the identified weather effects
are driven by market seasonal differences.
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probability overinference and projection bias.2 The results are consistent with

the notion that individuals understand qualitatively the benefits of EE, but make

imprecise estimations of the magnitude of the utility derived due to the biases

described above (Loewenstein et al. 2003). I find that some individuals appear to

behave (bounded) rationally and take corrective action in the form of future EE

investments once they realise that their utility predictions were inaccurate.

This paper directly contributes to the literature investigating the effects of

external factors on intertemporal utility estimations during market transactions.

To my knowledge, this paper is the first to provide formal evidence that weather

conditions can systematically influence the price paid for energy-efficiency, which

by itself is an important finding of increasing relevance due to rapidly changing

weather patterns and the constant efforts by governments worldwide to increase

energy security (e.g. through retrofitting incentives). Closely related to this pa-

per, Conlin et al. (2007) find that weather conditions over-influence decisions to

purchase cold-weather apparel, and they provide evidence that projection bias is

the likely mechanism behind these decisions. Similarly, Busse et al. (2015) show

that weather conditions, at the time of purchase, influence the decision of individ-

uals to buy convertibles and four-wheel-drive cars. They also propose projection

bias as one of the mechanisms behind the decisions, and put forward the notion

that salience can play a role. This paper shows that weather conditions can also

influence decisions in the housing market, where corrective action can be more ex-

pensive and difficult once individuals realise their mistakes (e.g. having to replace

windows with triple glazing).3 This paper further contributes to this literature by

providing estimates for pricing effects attributed to the weather (i.e. how much

people are willing to pay for EE under different weather conditions). Busse et al.

2015 include pricing estimations but, due to the structure of the car market they

study, only find small and mostly non-statistically-significant effects. In this paper

I am able to identify pricing effects reliably because I analyse the population of

sale transactions of a fast-clearing market with an auction structure (the hous-

2It is worth noting that emotion tagging (Dolan 2002, Laudenbach et al. 2019) can also play
a role in the biased utility estimations. For example, individuals who experienced a particularly
cold winter can emotionally value EE higher, aggravating the biases I document.

3A working paper version of Busse et al. (2015) also looks at the housing market, although
they analyse properties with swimming pools whereas I study EE pricing.

4



ing market in England and Wales – Section 3 explains the auction structure in

detail). I find that salience appears to have a stronger effect than the other psy-

chological biases. This paper adds to the literature on housing EE, Comerford

et al. (2021) and Sejas-Portillo et al. (2020) provide policy recommendations for

increasing retrofitting by improving the design of the EE labels used for properties

in the UK (and across the European Union). My results suggest that implementing

labelling strategies that include cues and reminders about the different weather

conditions can further improve their effectiveness.

This paper also contributes to the literature on the empirical estimation of

kinked effects using a regression kink design (RKD – Nielsen et al. 2010, Card

et al. 2015). The current RKD literature considers identification and estimation

of treatment effects when the slope of the outcome changes when the running vari-

able crosses a threshold (i.e. there is a kink in the effect). I extend this framework

to cases where the slope of the outcome conditional on another independent con-

tinuous variable changes when the running variable crosses a threshold. I derive

the additional assumptions required for identification and present a novel non-

parametric estimator. The estimated parameter can be interpreted as the change

in the strength of the effect from the independent variable when the running vari-

able crosses a threshold (i.e. the change in the effect of the independent variable

when moderated by the running variable). I show the applicability of this esti-

mator by documenting the kinked effects of air temperature on EE valuation as

explained above. This setup is different from the fuzzy RKD (Card et al. 2015)

where the probability of receiving treatment changes (not necessarily from 0 to 1

as in a standard RKD) when a threshold is crossed. In the context of this paper,

the probability of receiving treatment changes from 0 to 1 at the threshold (e.g. all

sale transactions receive treatment after the 6.5C◦ threshold, there is no possible

selection given that the running variable is the weather), but the strength of the

effect of EE rating on price is different.

The remainder of the paper is organised as follows. Section 2 describes the

transaction-level data used in the analysis and the structure of the UK housing

market. Section 3 discusses the empirical strategy and presents the results for

average-effects estimations. Section 4 details the identification and estimation

strategies for interacted effects in a RKD and presents the results obtained for the
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kinked effects of air temperature on EE valuation. Section 5 discusses potential

explanations for the results. Finally, Section 6 concludes.

2 Data

I analyse transaction-level data of over 5 million residential property sales in Eng-

land and Wales from June 2012 to January 2020.4 The data contains the popula-

tion of sales between these dates and is constructed by merging records from: a)

Her Majesty’s Land Registry (HMLR) Price Paid Data; b) The Department for

Communities and Local Government (DCLG) Energy Performance of Buildings

Data: England and Wales; and c) Rural Urban Classification official statistics.

The HMLR data holds records for all sales registered in England and Wales since

1995. The DCLG dataset contains the details of mandatory energy performance

certificates (EPC) that must be commissioned before offering a property for sale

(Sejas-Portillo et al. 2020).5 Each transaction contains sale price, sale date, prop-

erty characteristics, geographic location and the EPC valid at the date of sale.

The EPC includes a numerical EE rating score for the property which ranges from

1 (the least efficient) to 100 (the most efficient).6 Transactions prior to June 2012

are excluded as the legislation in place could be interpreted as requiring sellers to

show the EPC to buyers before the sale was complete (i.e. before contracts were

signed), but not necessarily before a price was agreed. Policy amendments came

into force in 2012 clarifying the requirement to include the EE rating graph in all

marketing materials (printed and online), effectively meaning that buyers would

have seen the rating before agreeing on a price. I also exclude new and repurposed

buildings from the analysis because these usually follow a different selling process

– namely off-plan – where the sale transaction occurs before construction is com-

plete. An EPC may not be available for these properties when a price is agreed

4The data ends in January 2020, before the COVID-19 pandemic disrupted the housing
market and the overall economy.

5I direct the reader to Sejas-Portillo et al. (2020) for a detailed description of the different
datasets and a comprehensive explanation of EPC policies and legislation in the UK.

6The EE rating is an energy-cost rating based on engineering calculations and standardised
across properties of different types and sizes (Sejas-Portillo et al. 2020).
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on, thus the EE rating may not reflect the EE valuation of market participants.7

Each sale transaction is matched to monthly air temperature and rainfall data

for the geographic region where the property is located (9 regions in England plus

Wales).8 Air temperature is measured in degrees Celsius C◦ as the daily mean

air temperature averaged over the calendar month. Rainfall is measured as the

total cumulative precipitation during the calendar month in cm. The weather data

was obtained from the HadUK-Grid dataset published by the Met Office (the UK

national meteorological office). Regional weather values are produced by inter-

polating weather information from land surface climate observation stations and

averaging them across the geographic boundaries of the region (see Met Office 2019

for details on weather data collection, interpolation and geographic composition).

Tables 1 and 2 show summary statistics for key variables used in the analysis.

The slight seasonality of the market is evident in the data, with 28.5% of sale

transactions registered in the third quarter (summer sales) compared to 21.5%

during the first quarter (winter sales). The majority of the transactions in the

dataset (39.1%) are from the south of England (London, South East and South

West), where the weather is relatively warm on average, and a smaller proportion

(26.2%) are from the north of England (North East, North West and Yorkshire and

The Humber) which, conversely, has colder weather on average. The remaining

proportion (34.7%) are from regions in central England (East Midlands and West

Midlands) and Wales. The differences in sale frequencies at each region suggest

different market dynamics and the importance of controlling for geographic area

effects in the analysis. Marked differences can also be observed in the frequencies

of built types (31.8% are for terraced properties compared to 15.2% for flats) and

property construction ages (with most properties built before 1976 – 68.9%). Even

though the EPC energy audit takes into account built-form (e.g. detached) and

7A small amount of transactions where the number of rooms is missing (12,069 of 5,337,903
transactions – 0.23%) was also excluded since this variable is used as a control in the analysis.

8The 9 regions in England are the highest tier of sub-national division and are used for a wide
range of statistical government and media reports. Their population ranges from approximately
2.5 million (North-East) to 9 million (London). Their population density is mostly homogeneous
ranging between 250 and 500 people per km2 except for London, which as a large urban centre,
hosts around 5,700 people per km2. Wales is one of the constitutive countries of the UK and
has a local Government with partially devolved powers. It has a population of approximately 3
million and a density of around 150 people per km2. A map of the UK with official geographical
borders showing the 9 regions in England and Wales is provided in ONS (2019).
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produces a standardised EE rating, my analysis controls for these property charac-

teristics as EE features and sale prices can differ considerably. For example, while

detached houses generally sell for higher prices, a flat that has other flats above

and below will achieve a high EE rating without the need for roof or floor insu-

lation (a detached property may require all round insulation to achieve a similar

EE rating). The tenure of a property represents the ownership of the land and the

building: Freehold grants permanent ownership to both, whereas leasehold rep-

resents ownership of the building but a long term lease for the ground (normally

99+ years).9 Freehold properties sell for higher prices on average. The majority of

transactions in the dataset are for freehold properties (79.9%) and most leasehold

transactions are for flats (74%). The frequency distribution of sales across the EE

rating scale is approximately normal, the average EE rating is 60 and the large

majority of properties have an EE band of C or D (72.2%).10 The average sale

price in the dataset is £264,398, the average total floor area is 94m2 and the av-

erage number of rooms is 5.11 Finally, the average monthly mean air temperature

is 10.78C◦ and the average monthly total rainfall is 7.53cm.

Table 1: Summary statistics for continuous variables

Mean SD Min Max

Price Paid (�) 264,397.77 288,719.04 1,000.00 46,131,500.00
Total Floor Area (m2) 93.83 46.88 30.00 8,824.00
Price per Square Meter (�/m2) 2,813.57 1,930.37 3.92 220,920.64
Number of Rooms 4.67 1.66 1.00 99.00
EE Rating (SAP Rating) 60.19 12.66 1.00 100.00
Monthly Mean Air Temperature (C◦) 10.78 4.59 1.34 21.25
Monthly Total Rainfall (cm) 7.53 4.34 0.06 33.69

Observations 5,325,834

Notes: This table presents summary statistics for key continuous variables. SD stands
for Standard Deviation.

9Leaseholders usually pay rent to the owner of the ground.
10Sejas-Portillo et al. (2020) provide an in-depth explanation of EE bands and how they are

constructed from the EE rating score.
11The dataset excludes properties with a total floor area of less than 30m2 and sale prices of

less than £1,000 as these are not realistic.
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Table 2: Summary statistics for categorical variables

Variable Freq. %

Property Type
Detached 1,248,699 23.4
Flat 807,404 15.2
Semi-detached 1,574,030 29.6
Terraced 1,695,701 31.8

Tenure
Freehold 4,253,899 79.9
Leasehold 1,071,935 20.1

Region
North East 225,279 4.2
North West 669,198 12.6
Yorkshire and The Humber 502,031 9.4
East Midlands 468,090 8.8
West Midlands 501,653 9.4
East 614,137 11.5
London 588,932 11.1
South East 911,472 17.1
South West 577,969 10.9
Wales 267,073 5.0

Area Density
Rural 989,372 18.6
Urban 4,336,462 81.4

EE Band
A 1,020 0.0
B 100,608 1.9
C 1,268,464 23.8
D 2,576,365 48.4
E 1,061,985 19.9
F 253,164 4.8
G 64,228 1.2

Variable Freq. %

Sale Quarter
Quarter 1 1,147,474 21.5
Quarter 2 1,187,645 22.3
Quarter 3 1,516,799 28.5
Quarter 4 1,473,916 27.7

Sale Year
2012 324,932 6.1
2013 622,112 11.7
2014 743,631 14.0
2015 740,225 13.9
2016 730,607 13.7
2017 718,160 13.5
2018 701,812 13.2
2019 693,967 13.0
2020 50,388 0.9

Construction Age Band
Before 1900 586,439 11.0
1900-1929 785,376 14.7
1930-1949 783,932 14.7
1950-1966 866,647 16.3
1967-1975 651,996 12.2
1976-1982 311,628 5.9
1983-1990 413,286 7.8
1991-1995 209,075 3.9
1996-2002 317,444 6.0
2003-2006 256,420 4.8
2007 Onward 112,586 2.1
Unknown 31,005 0.6

Observations 5,325,834

Notes: This table presents the frequencies and proportions (%) for key categorical
variables.

Figure 1 shows the relationship between EE ratings and sale prices across

each calendar month, and how it compares to the variation in monthly mean

air temperature. The coefficients from regressions of the EE rating on price-per-

meter (log) for each calendar month are shown in red,12 and the monthly mean air

temperature in black, lagged by one month to account for the time between the

date a sale is agreed on (i.e. an offer accepted) and the date it is completed.13 A

striking pattern is clearly visible: As temperatures rise the relationship between

EE rating and sale price becomes weaker, and conversely as temperatures drop

the relationship becomes stronger. Sections 3 and 4 provide formal estimations of

12Regressions are run separately for each month. Using R2 instead of the coefficient shows a
similar trend.

13A detailed discussion of the importance of the lag for the analysis is included in Section 3.
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these effects.

Figure 1: Air temperature - EE rating coefficient on sale price
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Notes: This figure plots the coefficients from a regression of EE rating on price-per-
meter (log) for each calendar month and the average monthly mean air temperature
for the UK. The mean air temperature is lagged by one month to account for the time
between the date a sale is agreed on and the date it is completed. N=5,325,834.

An important concern for the analysis is the seasonality of the housing mar-

ket in the UK. The activity in the housing market increases during summer and

decreases during winter. As a result, sale frequencies and prices are higher during

summer months. Figure 2 illustrates this seasonality by showing monthly aver-

ages for the number of transactions and sale prices, and, as before, it includes

monthly mean air temperature lagged by one month. The correlation between

market activity and air temperature is visible, and thus, it is important for the

formal analysis in Sections 3 and 4 to control for local market conditions. I show

that market conditions do not influence the effect of EE ratings on sale prices and

that they are mostly orthogonal to EE valuation.
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Figure 2: Air temperature - Market conditions
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Notes: This figure plots monthly sale frequencies, monthly average sale prices and the
average monthly mean air temperature for the UK. The mean air temperature is lagged
by one month to account for the time between the date a sale is agreed on and the date
it is completed. N=5,325,834.

3 Estimation of weather effects on EE valuation

The identification strategy involves testing if weather conditions, close to the time

a buying offer is made, influence the EE valuation of a property. The housing

market in the UK follows a double auction structure where buyers make offers

that sellers can then accept or reject. As the dataset is comprised of final sale

transactions, the recorded price is the latest offer from a buyer that was accepted

by a seller, and thus it reflects the final market valuation of a property. I study EE

valuation by estimating the effect that the EE rating of a property has on its final

sale price. The relationship between the EE rating and the final sale price captures
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the importance that buyers place on EE, in other words their economic valuation

for EE benefits (e.g. thermal comfort, lighting needs). It is important to recall

that the EE rating, which – as mentioned above – is standardised and ranges from

1 to 100 in discrete 1 unit increments (1, 2, 3 and so forth), cannot be precisely

predicted before the EPC energy audit is performed. Thus the distribution of

properties of different characteristics (e.g. size, type), locations and EE features

(e.g. insulation, triple glazing, boiler type) is effectively random at each discrete

EE rating score, allowing me to study EE valuation as such as opposed to specific

property features.

In practice, the precise time when the buying decision was made is unobserv-

able: It can take several weeks before an offer is formally sent and accepted,

contracts are signed and the ownership transferred. The sale date in the dataset

records the date when the sale was legally completed, as stated in the transfer of

deed (HMLR 2016). Furthermore, the EE valuation is likely to be influenced not

only by the weather conditions on the day the decision was made but also on the

days or weeks leading up to it. Thus, I use the weather conditions of the month

before the sale was completed E[W |t − 1] in my estimations. I use the previous

calendar month to simplify the interpretability of the results from a policy per-

spective, but my estimates are essentially the same if I use a lagged 30-day rolling

average.14

The variability of daily mean air temperature within each calendar month is

notably low, which provides further evidence that a monthly measure is adequate

for my analysis. The average SD of daily mean air temperature within a calen-

dar month in the dataset is 2.46C◦, with an average monthly air temperature of

10.17C◦, a minimum of 2.52C◦ and a maximum of 18.70C◦.15 Rainfall, however,

has a much higher variability within each month. The average SD of daily rainfall

in a month is 0.42cm, the average daily rainfall is 0.26cm, the minimum 0.05cm

and the maximum 0.53cm. I test whether monthly rainfall variation influences EE

14I also show in Appendix C that my results are robust to alternative lags for weather con-
ditions. The results using a lagged 30-day rolling average are available from the author upon
request.

15The results for Sections 3 and 4 are virtually the same when aggregating mean air temper-
ature at shorter periods such as weeks (instead of months). Full results are available from the
author upon request.
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pricing and find that a higher variance leads to a lower effect of rainfall on EE val-

uations.16 This suggests that the intensity of rain during short periods can have an

important effect on valuations (e.g.individuals looking out the window on a rainy

day increasing the salience of EE – Buchheim & Kolaska 2017, Busse et al. 2015).

I provide a longer discussion of potential psychological biases behind this finding

in Section 5. Importantly, as mentioned earlier, in the data I do not observe the

exact day when a buying decision was made. Thus, as with air temperature, I use

rainfall aggregated at the monthly level when estimating effect sizes to reduce mea-

surement error and prevent rainfall effects being confounded with approximations

of the amount of time that it takes to complete a sale transaction.

I use the weather conditions within the region where the property is located.

UK wide weather data is too coarse a measure and would introduce higher mea-

surement error, especially for rainfall. Using regional data follows a more micro

approach and offers better, more granular variation.17 While I cannot observe the

previous living or working locations of buyers in the dataset, people in the UK

exhibit low regional mobility (for a detailed discussion and estimates see Langella

& Manning 2019 and Coulter & Scott 2015).

3.1 Pooled cross-sectional estimation

I start with a pooled cross-sectional regression analysis (i.e. all sale transactions

are treated as independent18) of the relationship between the EE rating, sale price

and weather conditions using the following specification:

(1) Pi = α + βEEi + δWr,t−1 + θEEi ∗Wr,t−1 + γZi + εi

Where Pi represents the price-per-meter (log) of property i and EEi represents

its EE rating. Wr,t−1 is a vector of weather conditions, namely monthly mean air

16Results from the additional regressions are available from the author upon request.
17I repeat the analysis using the average air temperature for all of the UK and show in

Appendix C that the results hold.
18Appendix C shows that the results for the EE rating interacted with weather conditions

remain mostly unchanged if I exclude properties that were sold more than once.
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temperature and monthly total rainfall, for region r (the region where property i

is located) and month t − 1 (as explained above the month is lagged to account

for the time it takes from the moment an offer is made to the date the sale is

completed). These variables are centered at their sample mean. Zi is a vector of

control covariates for property characteristics (property type, tenure, property age

and number of rooms), location (local authority district and urban/rural classifica-

tion) and date (sale year and month). The interaction term EEi ∗Wr,t−1 captures

the additional effect that the EE rating has on price under different weather condi-

tions. The coefficients of interest are β, which captures the effect of the EE rating

on price, and θ, that captures the effect of the interaction term. I interpret the

results as the first derivative of equation (2) with respect to EE:

(1a)
∂P

∂EE
= β + θWr,t−1

As previously explained, the housing market is seasonal with more sales occurring

during the summer months. Thus, it is important to rule out that the results are

driven by spurious variation in local market conditions (i.e. the ’hotness’ of the

market) which may be correlated with the weather (e.g. people going on fewer

viewings during rainy days). Specification (1) already partially controls for local

market characteristics by including dummy indicators for the sale date (month

plus year) and the local authority district (LAD) as the geographic level. LADs

are administrative units in England and Wales with responsibilities including local

planning, housing and building (ONS 2020), and thus they provide a good delimi-

tation for static local housing-market conditions (there are 339 LADs in total). To

further control for dynamic conditions of the housing market within each LAD, I

extend the specification to include two measures of local market dynamics: The

number of sales per month in the LAD (demeaned), and the average sale price

per month in the LAD (de-trended, normalised and demeaned). Specific calcula-

tions of these market measures are included in Appendix B. The specification that

controls for time-varying local market conditions is:
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(2) Pi = α+βEEi+ δWr,t−1+ θEEi ∗Wr,t−1+μMa,t+ τEEi ∗Ma,t+γZi+ εi

WhereMa is a vector of the market conditions described above (local sale frequency

and price measures) for local area a (the LAD where property i is located). I also

interact the EE rating with the vector of market conditions to show that the

additional effect of weather on EE valuation is not the result of varying market

conditions.

Table 3 presents the estimates for Specifications (1) and (2). I centre the EE

rating, weather variables and market conditions at their means to show that the

coefficient for EE remains stable when adding the interactions terms.19 Column

(1) shows the coefficients for a regression on price-per-meter (log) of the EE rating

and the vector of covariates Zi, Column (2) adds the vector of weather conditions

Wr,t−1.
20 Column (3) shows the estimations using Specification (1) and Column

(4) using Specification (2) which includes the vector Ma,t of local market condi-

tions. The coefficient for EE is remarkably consistent across all specifications, and

indicates that for a 1 point increase in the EE rating score the price-per-meter of a

property increases by 0.119 percentage points on average, holding air temperature

and rainfall constant at their averages. It is worth noting that the coefficient for air

temperature, although positive, loses statistical significance when controlling for

market conditions, providing evidence that the market controls adequately capture

the seasonality of local markets and that the effect of air temperature on property

prices is primarily through its relationship with EE (i.e. the interaction terms).

The main coefficients of interest are the interactions between the EE rating

and weather conditions (air temperature and rainfall). These are statistically

significant at the 0.1% level and, importantly, do not change much after controlling

for market conditions. The results can be interpreted using Equation (1a), the first

derivative of the specifications with respect to the EE rating. The coefficient θ

for the interaction between the EE rating and air temperature indicates that a

19Centering these variables at their means does not change the estimation of the coefficients
for the interaction terms.

20Columns (1) and (2) are included to show the stability of the results.
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1C◦ increase in mean air temperature (on the month prior to the sale completion)

reduces the marginal effect of the EE rating on the price-per-meter of a property by

0.009 percentage points on average. Similarly, for rainfall the coefficient θ indicates

that a 1cm increase in rainfall increases the marginal effect of the EE rating on

the price-per-meter of a property by 0.01 percentage points on average. The signs

of both coefficients are as expected. These results confirm the intuition for people

in the UK. During cold temperatures individuals are more price sensitive towards

EE (e.g. heating for comfort) and to energy costs, which translates to a higher

valuation of the EE rating. As temperature raises they become less sensitive to

these features and costs, and thus the EE rating has a less prominent role in the

sale price. Similarly, during rainy periods individuals seem to value EE more and

prices are more sensitive to EE ratings. These results are not aligned with fully

rational behaviour, I present a more in-depth discussion of their implications in

Section 5.

The effects are also economically significant, and as such have the potential to

influence seller EE investment decisions. For instance, using marginal effects at the

means (MEM) estimations with Specification (2), I find that a 10 points increase

in EE rating leads to a sale price increase of 1.687 percentage-point (�4,461 based

on the average sale price) if the air temperature on the previous month was 5C◦.

However, the same 10 points increase in EE rating leads to only 0.385 percentage-

point increase in price (�1,018) if the air temperature during the previous month

was 20C◦. Similarly, a 10 points increase in the EE rating when total rainfall for

the previous month was 1cm increases the sale price by 0.552 percentage points

on average (�1,459.71), but the same increase in the EE rating leads to a much

bigger increase of 1.914 percentage points (�5,061.68) if the total rainfall was 15cm.
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Table 3: Pooled cross-sectional results

(1) (2) (3) (4)

EE Rating 0.119∗∗∗ 0.119∗∗∗ 0.118∗∗∗ 0.119∗∗∗

(0.009) (0.009) (0.009) (0.009)
Temperature 0.212∗∗ 0.248∗∗∗ 0.094

(0.064) (0.066) (0.082)
Rainfall −0.005 −0.002 −0.004

(0.014) (0.015) (0.014)
EE Rating*Temperature −0.008∗∗∗ −0.009∗∗∗

(0.001) (0.001)
EE Rating*Rainfall 0.010∗∗∗ 0.010∗∗∗

(0.002) (0.002)
Property Characteristics Yes Yes Yes Yes
Area FE Yes Yes Yes Yes
Date FE Yes Yes Yes Yes
Local Market FE Yes
EE Rating*Local Market FE Yes

R-squared 0.721 0.721 0.721 0.721
Observations 5,325,834 5,325,834 5,325,834 5,325,834

Notes: Standard errors in parentheses. * significant at 5%; ** significant at 1%
*** significant at 0.1%. Coefficients and standard errors have been multiplied by
100 to interpret them as percentage point increases. Standard errors clustered at
the LAD level. The EE Rating ranges from 1 to 100. Temperature is measured in
C◦ and Rainfall in cm. Property Characteristics FE include property type, tenure,
property age and number of rooms. Location FE include LAD and urban/rural
classification. Date FE include sale year and month. Local Market FE add number
of sales per month in the LAD (demeaned) and average sale price per month in the
LAD (de-trended, normalised and demeaned). Column (1) presents the results of a
regression of EE rating and baseline covariates on price-per-meter (log). Column (2)
adds weather conditions on the month prior to the sale. Column (3) shows the results
using Specification (1). Column (4) shows the results using Specification (2).

3.2 Property fixed-effects estimation

I also perform the analysis using property fixed-effects specifications, as there may

be some unobservable property characteristics that systematically affect the selling

price during certain seasons. For example, properties that have large gardens can

be seen as more desirable during summer and command higher prices, but having

a larger garden is not correlated with EE and should not influence EE valuation.

Using a sub-sample of properties that have more than one sale recorded in the
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dataset (1,329,057 transactions in total), I estimate property-level fixed-effects

regressions with the following specifications:

(3) P̃i,t = β ˜EEi,t + δW̃r,t−1 + θ ˜EEi,t ∗ W̃r,t−1 + Z̃iγ + νi,t

(4) P̃i,t = β ˜EEi,t+δW̃r,t−1+θ ˜EEi,t∗W̃r,t−1+μM̃a,t+τẼEi,t∗M̃a,t+Z̃iγ+νi,t

Where the tilde (̃ ) variables are the property-level demeaned versions of the ones

introduced in Specifications (1) and (2). As before, the coefficients of interest are β

and θ. Importantly, the coefficient β for EE in this specification captures how much

the variability in the EE rating score affects the variability in price. The majority

of properties that were sold more than once increased their EE rating between sales

(55.65% of transactions).21 An improvement in EE features will normally indicate

other improvements were also made to the property. For instance, after installing

new insulation, walls can be re-painted and flooring redone, which can increase

the sale price of the property irrespective of EE gains. Moreover, sellers who

invest in EE improvements may be aiming for overall higher sale returns and thus

invest in other improvements such as exterior redecoration, which again will not

impact EE. The EE-rating coefficient β captures all of these differences and is thus

expected to be larger than the one in the cross-sectional specification. Conversely,

the θ coefficients for the interactions between EE rating and weather conditions

(air temperature and rainfall) are expected to be smaller since, according to the

argument, these capture the effects of weather conditions on EE valuation, which,

as explained above, is only a portion of the total effect of the EE rating score

increase on price. This provides further evidence that weather conditions influence

sale prices mainly through features that individuals associate with EE.

Table 4 presents the results from the property fixed-effects analysis. Column

(1) shows the coefficients from a regression on price-per-meter (log) of the EE rat-

21In 55.65% of the sale transactions the current EE rating was higher than the previous one
for the same property, 41.61% was the same and 2.74% was lower. Lower EE ratings can occur
for example when extensions are added to a house or when the boiler is changed.
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ing and the control covariates Z̃i, Column (2) adds the vector of weather conditions

W̃r,t−1, Column (3) shows the estimation using Specification (3), and Column (4)

using Specification (4). Similar to the cross-sectional analysis, the coefficients are

remarkably consistent across all specifications and the signs and statistical signifi-

cance of the estimations confirm the direction of the effects of weather conditions

on EE valuation. As discussed above, the coefficient β for EE rating is higher, at

0.459, as it captures other improvements made to the property in addition to EE.

The interaction terms θ for EE rating with air temperature (-0.002) and rainfall

(-0.001) are nominally smaller than in the cross-sectional analysis.

Table 4: Property fixed-effects results

(1) (2) (3) (4)

EE Rating 0.461∗∗∗ 0.461∗∗∗ 0.460∗∗∗ 0.459∗∗∗

(0.017) (0.017) (0.016) (0.016)
Temperature 0.470∗∗∗ 0.485∗∗∗ 0.344∗∗∗

(0.087) (0.087) (0.085)
Rainfall 0.002 0.003 0.003

(0.018) (0.018) (0.018)
EE Rating*Temperature −0.003∗∗∗ −0.002∗∗∗

(0.000) (0.000)
EE Rating*Rainfall 0.003∗∗∗ 0.003∗∗∗

(0.001) (0.001)
Property Characteristics Yes Yes Yes Yes
Area FE Yes Yes Yes Yes
Date FE Yes Yes Yes Yes
Local Market FE Yes
EE Rating*Local Market FE Yes

R-squared 0.505 0.505 0.505 0.506
Observations 1,329,057 1,329,057 1,329,057 1,329,057

Notes: Standard errors in parentheses. * significant at 5%; ** significant at 1% ***
significant at 0.1%. Coefficients and standard errors have been multiplied by 100 to
interpret them as percentage point increases. Standard errors clustered at the LAD
level. The EE Rating ranges from 1 to 100. Temperature is measured in C◦ and
Rainfall in cm. Property Characteristics FE include property type, tenure, property
age and number of rooms. Location FE include LAD and urban/rural classification.
Date FE include sale year and month. Local Market FE add number of sales per month
in the LAD (demeaned) and average sale price per month in the LAD (de-trended,
normalised and demeaned). Column (1) presents the results of a property fixed-effects
regression of EE rating and baseline covariates on price-per-meter (log). Column (2)
adds weather conditions. Column (3) shows the results using Specification (3) and
Column (4) using Specification (4).
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4 Heterogeneity of weather effects

In this section, I study if the uncovered effects are linear or if the effects of severe

weather conditions differ from those of mild weather conditions. Figure 3 shows

the estimated effect of air temperature on EE valuation across the entire air tem-

perature range (i.e. the coefficient and 95% confidence interval for the interaction

term between the EE rating and air temperature EEi ∗Wr,t−1 from Specification

2). I create bins for sale transactions at 0.5C◦ intervals and plot the coefficients

and their confidence intervals at the 95% level. The average monthly air tem-

perature in the dataset (11C◦) is used as the hold-out bin category. The effect

on price decreases sharply from 1C◦ to around 6.5C◦, thereafter the relationship

stays mostly flat (in relation to the holdout category of 11C◦) up to around 17C◦

where is starts decreasing sharply again. I plot linear fits to highlight the kinked

functional form. The different slopes show that if the mean air temperature is

below 6.5C◦, EE has a larger effect on sale prices (i.e. individuals value EE more).

The magnitude of this effect increases as the temperature gets lower. Similarly, if

the mean air temperature is above 17C◦, EE has a increasingly smaller effect on

sale prices.

I perform the same analysis for rainfall but do not find kinked effects, the

relationship appears linear. Figure 4 presents the estimated effect of rainfall on

EE valuation across the rainfall range, with 1cm bins relative to 0cm. As before,

I use the coefficient and 95% confidence interval of rainfall interacted with the EE

rating EEi ∗ Wr,t−1 from Specification (2). The effect follows a linear trend, the

more it rains the more individuals value EE.

Intuitively, these functional forms are to be expected, individuals are sensitive

to very cold temperatures (the kink at 6.5C◦) and to very warm temperatures (the

kink at 17C◦), but they are only progressively sensitive to rainfall (e.g. under the

perception that once it starts raining it only gets worse).
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Figure 3: EE valuation – Air temperature
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Notes: This figure plots the coefficients and 95% confidence
intervals for the interaction term EE Rating*Temperature from
Specification (2) across the air temperature range. Sale transactions
are grouped in bins of 0.5C◦ with 11C◦ (the average monthly air
temperature) as the holdout category. N=5,325,834.

Figure 4: EE Valuation – Rainfall
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Notes: This figure plots the coefficients and 95% confidence intervals
for the interaction term EE Rating*Rainfall from Specification (2)
across the rainfall range. Sale transactions are grouped in bins at
1cm intervals with 0cm as the holdout category. N=5,325,834.
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4.1 Interaction effects in a regression kink design

In order to formally test the changes in the size of the effect that air temperature

has on EE valuation at 6.5C◦ and 17C◦, I employ a regression kink design (RKD)

as described by Nielsen et al. (2010) and Card et al. (2015). While the current

literature on RKD deals with the identification and estimation of treatment effects

when there is a change in the slope (i.e. a kink) in the running variable, I extend

this framework to estimate treatment effects when there is a kink in the interaction

term between the running variable and an independent variable.

Generally speaking, in this setup, the effect of an observable variable EE

(energy-efficiency) on the outcome of interest P (price) is moderated by another

observable variable W (weather). This effect is captured through the moderation

function f(EE,W ), which is what the analysis is ultimately interested in. The

effect of f(EE,W ) on P is heterogeneous across the range of W : If the value

of W is over a threshold WD, then the moderating effect on EE changes. The

relationship between f(EE,W ) and P will then have a kink at W = WD, and

the corresponding change in slope can be estimated using a RKD. This setup is

different from the fuzzy RKD (Card et al. 2015) where the probability of receiv-

ing treatment changes when a threshold is crossed (not necessarily from 0 to 1

as in a standard RKD). In the setup considered in this paper, the probability of

receiving treatment goes from 0 to 1 at the threshold (i.e. all transactions receive

treatment after the 6.5C◦ threshold, there is no possible selection given that the

running variable W is the weather), but the effect of the independent variable EE

on outcome P changes through function f(EE,W ), which also depends on the

running variable W (in other words, the moderating effect of W on EE changes

at the threshold).

I first explain the RKD assumptions that must hold for identification of hetero-

geneous effects using interaction terms. I then present an estimator for obtaining

empirical results and show the results of this method applied to the relationship

between the EE rating of properties and air temperature as shown in Figure 3.
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4.1.1 Identification

Formally, following the potential outcomes framework (Rubin 1974), I assume a

random sample of observations where P ∈ R represents the outcome of interest

and D ∈ {0,1} represents treatment status. The observed outcome is expressed

as P = (1 − D) · P0 + D · P1 where P0 and P1 are the potential outcomes with

and without treatment respectively. The continuous observable variables EE ∈ R

and W ∈ R have an effect on P . W also determines treatment status (i.e. is the

running variable); if W is over a threshold value WD then treatment is received:

D = 1(W ≥ WD). And, specific to this analysis, W also moderates the effect that

EE has on P (i.e. W and EE are interacted). I start with the following general

specification, which allows for non-separability:

P = p(G,U)(5)

G = g(EE,W,D)

D = d(W )

Where d(.) is a deterministic function of W with a kink at WD. g(.) is a function

that captures the independent and interacted effects that W and EE have on P ,

which as explained above are heterogeneous on D. U represents the error term.

The objective is the identification of the change of the moderating effect of W on

EE at the kink point WD, which I denote as the estimand τ . The moderating

effect is the cross-derivative of G with respect to D and EE:

τ =
∂2g(ee, w0, d0)

∂d∂ee
where w0 = WD and d0 = d(WD)(6)

The existing literature on RKD (see Card et al. 2015 for a detailed discussion and

review of previous literature) documents the assumptions necessary for identifica-

tion of the effect of W on P without interactions. I extend these assumptions for

the case where P depends on EE, W and their interaction. All that is required are
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regularity and smoothness conditions for P , W and EE around the kink thresh-

old: P is assumed to be a continuous function partially differentiable with respect

to EE, W and D and cross-partially differentiable with respect to EE and W .

Moreover, the partial derivative of D needs to be continuous at threshold WD.

Similarly, the effects of EE, W and their interaction need to be continuous at WD.

Lastly, the conditional density of P given W needs to be continuous at WD (no

sorting into treatment).

In order to estimate τ , g(.) must be continuous and cross-differentiable with

respect to EE and W at WD. This is an additional assumption that is introduced

in this analysis over the standard RKD assumptions explained by Nielsen et al.

(2010) and Card et al. (2015). Then, τ can be non-parametrically estimated as

(proof in Appendix A):

τ =

lim
w0→W+

D

∂2E[P |EE = ee,W = w]

∂w∂ee

∣∣∣
w=w0

− lim
w0→W−

D

∂2E[P |EE = ee,W = w]

∂w∂ee

∣∣∣
w=w0

lim
w0→W+

D

∂d(w)

∂w

∣∣∣
w=w0

− lim
w0→W−

D

∂d(w)

∂w

∣∣∣
w=w0

(7)

The numerator of the expression is the change in slope of the effect of the

interaction between EE and W on the conditional expectation of P at the kink

point w = WD. The denominator is the change in the slope of the deterministic

treatment function D at w = WD.

A functional form with a derivative that is continuous at w = WD must be

assumed for the moderation function f(EE,W ). If a multiplicative function is

assumed, then as ∂f(ee,w)
∂w

= ee the only additional condition for the identification

of τ is that EE must be continuous (i.e. without a jump) at WD. This additional

condition ultimately translates into having to perform the same continuity tests

for EE as the ones for W .
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4.1.2 Estimation and inference

The RKD identification of interacted effects does not impose any parametric re-

strictions on p(.). However, some assumptions are required to obtain empirical

estimates of τ . Importantly, as shown before, g(.) must be cross-differentiable

with respect to EE and W . If p(.) and g(.) are modelled as additive functions,

and the interaction between EE and W within g(.) as a cross-product, then the

estimation of τ can be obtained using local polynomial regressions (generalised

for RKD in Card et al. 2015 and Calonico et al. 2014). I employ the following

first-order specification:22

Pi = α + βEEi + γWi + δEEi ·Wi +Di[λ+ μEEi + ωWi + θEEi ·Wi] + εi(8)

The coefficients of interest are δ, which captures the slope of the interacted effect of

EE and W when treatment is not received, and θ, which captures the additional

effect when treatment is received. The coefficients β, γ, μ and ω are necessary

to capture the independent additive effects of EE and W on P , however these

are not the main focus of the analysis. Moreover, to improve the precision of the

estimator (as explained by Calonico et al. 2019 for RDDs and RKDs), a vector of

control covariates Z can be included in the regression as:

Pi = α + βEEi + γWi + δEEi ·Wi +Di[λ+ μEEi + ωWi + θEEi ·Wi] +Ziζ + εi

(9)

The estimation of τ using a local polynomial regression will depend on the

selection of the order of the polynomial, the kernel and the bandwidth (Card

et al. 2015). If a first order polynomial with a uniform kernel is used then the

local estimation of Specifications (8) and (9) can be obtained using OLS. The

numerator for the estimation of τ in Equation (7) is the estimation for θ. Also,

if W is exogenous to P , as is the case in the analysis of weather effects, then the

denominator term is 1 and the estimator is just θ.

22I model EE, W and EE ·W as a first order polynomial to simplify interpretation.
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4.2 Heterogeneous weather effects on EE valuation

In this section, I apply the identification and estimation strategy presented above

to test for the different effects that severe and mild air temperatures have on EE

valuation. The outcome of interest is price-per-meter (P ), the running variable is

air temperature (W ) which determines treatment status (D) and also moderates

the effect of the EE rating score (EE) on price. Treatment (D) is received if air

temperature (W ) is above the threshold of interest (WD), either 6.5C◦ or 17C◦.

Appendix C shows that the variables used in this analysis (air temperature and

EE rating) satisfy the identification conditions explained above.

The formal estimates confirm the kinks in EE valuation across monthly mean

air temperature that can be observed in Figure 5 at 6.5C◦ and 17C◦. Table 5

presents the estimates obtained using Specifications (8) and (9). Columns (1) to

(3) present the results for the 6.5C◦ threshold and Columns (4) to (6) for the 17C◦

threshold. Columns (1) and (4) show the estimates using Specification (8), which

does not include any covariates. Columns (2) and (5) present the results of Specifi-

cation (9) using the vector of covariates Zi (property characteristics, area FE, date

FE, rainfall and rainfall interacted with the EE rating). Finally, Columns (3) and

(6) add market-condition covariates (local market FE and local market measures

interacted with the EE rating). Importantly, for Specification (9) – which includes

all covariates and is depicted in Columns (3) and (6) – the estimates for the effect

of EE rating on price before crossing the threshold (coefficient β) are very close

to those obtained using the pooled cross-sectional regression analysis from Section

3, and they do not change much after crossing the threshold (coefficient μ). This

provides empirical evidence that the interaction terms in the RKD specification

(coefficients δ and θ) are the ones that capture the changes in the moderating

effect of air temperature on EE rating at the thresholds (i.e. the kinked effects of

interest).

The estimates for the main parameter of interest, θ, are statistically significant

at the 0.1% level and remarkably stable across all specifications. The stability of

the results to the inclusion of covariates provides evidence that the relationship

between the EE ratings and air temperature on the month the buying decision is

made is not systematically correlated with any observable property characteristic
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Table 5: RKD results

6.5C◦ 17C◦

(1) (2) (3) (4) (5) (6)

EE Rating*Temperature*D [θ] 0.038∗∗∗ 0.041∗∗∗ 0.041∗∗∗ −0.076∗∗∗ −0.053∗∗∗ −0.053∗∗∗

(0.011) (0.006) (0.006) (0.021) (0.010) (0.010)
EE Rating*Temperature [δ] −0.014 −0.022∗∗∗ −0.024∗∗∗ −0.016∗∗ −0.012∗∗∗ −0.012∗∗∗

(0.008) (0.005) (0.005) (0.006) (0.003) (0.003)
EE Rating*D [μ] −0.060∗∗ −0.041∗∗∗ −0.038∗∗∗ −0.039 −0.016 −0.016

(0.021) (0.011) (0.011) (0.025) (0.012) (0.012)
EE Rating [β] 0.357∗∗∗ 0.113∗∗∗ 0.112∗∗∗ 0.269∗∗∗ 0.103∗∗∗ 0.103∗∗∗

(0.040) (0.011) (0.011) (0.036) (0.010) (0.010)
Property Characteristics Yes Yes Yes Yes
Area FE Yes Yes Yes Yes
Date FE Yes Yes Yes Yes
Local Market FE Yes Yes
EE Rating*Local Market FE Yes Yes

RD Bandwidth 4 4 4 4 4 4
R-squared 0.023 0.715 0.715 0.061 0.729 0.729
Observations 2,494,385 2,494,385 2,494,385 1,951,386 1,951,386 1,951,386

Notes: Standard errors in parentheses. * significant at 5%; ** significant at 1%
*** significant at 0.1%. Coefficients and standard errors have been multiplied by
100 to interpret them as percentage point increases. Standard errors clustered at
the LAD level. The EE Rating ranges from 1 to 100. Temperature is measured in
C◦ and Rainfall in cm. Property Characteristics FE include property type, tenure,
property age and number of rooms. Location FE include LAD and urban/rural
classification. Date FE include sale year and month. Local Market FE add number of
sales per month in the LAD (demeaned) and average sale price per month in the LAD
(de-trended, normalised and demeaned). Columns (1) to (3) present the results for
the kink at 6.5C◦ and columns (4) to (6) for the kink at 17C◦. Columns (1) and (4)
show the results using Specification (8) which does not include covariates. Columns
(2) and (5) use Specification (9) including the vector of baseline covariates. Columns
(3) and (6) add controls for local market conditions. The estimated coefficients with
and without controlling for local market conditions (columns 2 and 3 for the 6.5C◦

threshold and 5 and 6 for the 17C◦ threshold) are remarkably stable and similar up
to 3 decimal points in many cases. This provides further evidence of the orthogonality
of market conditions to the analysis of EE valuation as mentioned above. The full
results of the regressions are included in Appendix C and show that the coefficients
for weather variables without EE interactions (i.e. the portions not attributable to
their moderation of EE) do change when market controls are included.

in a way that would be of concern.

I start by discussing the results for the 17C◦ threshold using the most restric-

tive specification (Column 6). When temperature is below 17C◦, the coefficient for

δ indicates that a 1C◦ increase in air temperature reduces the marginal effect of

the EE rating on price by 0.012 percentage points. However, when air temperature

is higher than 17C◦, the coefficient for θ shows that an increase of 1C◦ reduces the

marginal effect of EE rating by much more, 0.053 percentage points (in addition
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to the 0.012 percentage points estimated for δ). With respect to the threshold at

6.5C◦, when the temperature is lower than 6.5C◦, for a 1C◦ increase in air tem-

perature the marginal effect of the EE rating decreases by 0.024 percentage points

(coefficient δ). When the threshold is crossed, the additional effect (captured by

the estimate for coefficient θ) becomes positive, indicating a much lower marginal

effect of air temperature on EE valuation. Appendix C presents and discusses a

wide range of robustness checks including continuity tests for EE ratings, density

tests (as explained in the previous section) and different bandwidth sizes.

4.2.1 Extreme weather events and heterogeneity across regions

In the previous section, I show how the effect of air temperature on EE valuation

changes considerably under severe weather conditions (very cold and very warm

weather). This is important for policy making as extreme weather events cannot

be easily predicted and there is ample evidence that they will only become more

frequent due to global warming (Xu et al. 2018). For instance, as reported by the

MET Office, the 10 warmest years on record in the UK have all occurred since

2002 (Kendon et al. 2019). The Summer of 2018 saw extremely warm temperatures

and was registered at the time as the warmest in England since records began in

1884 (Kendon et al. 2019). Similarly, severely cold temperatures occurred in the

Winters of 2013 and 2018. These events were recorded as extreme events by the UK

MET Office (see Kendon & McCarthy 2015 and Kendon et al. 2019 for a detailed

meteorological discussion). The Winter of 2013/2014 was recorded at the time

as the stormiest period in the UK during the last 20 years (Kendon & McCarthy

2015), while the Winter of 2018 saw extremely cold temperatures as a result of

a polar continental air mass (Kendon et al. 2019), which prompted the media to

label this event as ’the beast from the east’. It is worth noting that the analysis

in this paper already controls for the date of sale. Nonetheless, to further rule

out that the 6.5C◦ and 17C◦ kink estimations are driven by these extreme events,

I run the analysis excluding sales from 2013 and 2018 and show in Appendix C

that the results hold. Rather, the results highlight the importance of considering

rapidly changing weather conditions in the design of household energy policies.

Similarly, not all regions in England and Wales experience the same weather
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conditions. The north of England experiences colder weather in general and thus

it has a larger proportion of sales occurring in low temperatures. Conversely,

the south and east of England experience warmer weather overall and a larger

proportion of sales occur when air temperature is high. My analysis controls for

narrowly defined geographic areas (local authority districts), and their market

conditions, to show that the results are not specific to any of these areas. I also

show in Appendix C that the results hold even if I remove the regions with the

highest proportions of sales under severely cold and warm weather (namely North

East and London respectively). The results show that policies aimed at increasing

the EE of the housing stock should account for the fact that EE valuations are

not homogeneous across the country.

5 Discussion

In this section, I show that the results I document are unlikely to be driven by

rational optimisation (namely optimising running fuel costs) or self-selection be-

haviour. I then proceed to discuss potential psychological mechanisms and biases

that can better explain the effects.

5.1 Rational optimisation of running fuel costs

A possible explanation for the results I find would be that individuals are using

weather information (either obtained by personal experience or other means like

news reports) to optimise their total running energy costs – higher EE translates

to lower energy consumption while maintaining the same level of benefits from

energy services such as room temperature. If this mechanism was behind the

findings then: (a) Current weather should be a good predictor of future weather

so that estimating future energy consumption would be possible to a reasonable

degree; and (b) the effect of weather conditions on EE valuation should be stronger

for bigger properties and properties with lower EE ratings, as these incur in higher

energy consumption and therefore have higher energy running costs.

With regards to (a), Figure 1 shows the mean air temperature for each cal-

endar month. While climatic seasons (spring, summer, autumn and winter) are
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pronounced in the UK, the speed at which changes in temperature occur does not

follow a set pattern (i.e. the slope of the temperature function in Figure 1 is not

predictable). Similarly, the maximum and minimum monthly temperatures for

each year are not strongly correlated to that of previous years. There is plenty

of literature documenting the unpredictability of the weather (e.g. Palmer 2017,

Bauer et al. 2015). Existing research shows that, currently, weather forecasts can

only be estimated with enough accuracy to be useful up to 10 days in advance

(Alley et al. 2019, Bauer et al. 2015). Then, beyond common knowledge which

relates to seasonal differences, current weather conditions do not provide much

additional information about future weather conditions. Rational individuals, at

most, would be able to optimise running energy costs for the present season. Given

that in the UK it normally takes over a month before new owners are able to move

into a property (as discussed earlier), EE price premia paid during a season (e.g.

winter) would predictably only help with the running costs of the next two months.

Energy costs would have to be prohibitively high for the price effects I estimate in

Sections 3 and 4 to justify the additional expenditure.

Regarding (b), I find that the relationship between air temperature and EE

valuation is mostly constant across properties with different EE ratings and sizes.

Figure 5 shows the estimated parameter for EE*Air temperature (θ from Specifi-

cation 2) across the full EE rating scale (Panel a) and across properties of different

sizes (Panel b). The effect is mostly constant across both ranges (without statis-

tically significant differences in either case), contrary to the prediction for opti-

mization of energy costs where lower EE or large properties would be expected to

produce higher effects.

Neither prediction (a) or (b) holds, therefore the results from Sections 3 and 4

are not indicative of buyers trying to optimise on running energy costs.
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Figure 5: EE valuation – Air temperature
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Notes: This figure plots the coefficients and 95% confidence intervals for the interaction term
EE*Temperature from Specification 2 across EE ratings and property sizes. Panel (a) shows
average effects for each EE rating score using 1 as the hold-out category. Panel (b) shows average
effects across property sizes, measured as the total floor area in square-meters (sqm), using 5sqm
bins with 95sqm (the average in the data) as the hold-out category. Confidence intervals for
bins higher or equal than 95 in Panel (a) and 200sqm in Panel (b) are not drawn since they
are disproportionately large due to the small number of properties with these characteristics.
N=5,325,834.

5.2 Self-selection behaviour

Another potential explanation that I am able to discard is self-selection behaviour

(either strategic or non-strategic). For instance where sellers, with the intention to

obtain higher sale prices, make some properties (un)available based on EE ratings

and weather conditions (e.g. intentionally delaying the sale of low EE properties

until summer). Or where buyers, who are active under different weather conditions,

have contrasting EE preferences (i.e. the composition of buyers is different under

different weather).

If individuals were successfully self-selecting into the market, then the distri-

bution of sales with respect to EE would be different across weather conditions. It

follows immediately for sellers (the supply side), a specific group of properties (e.g.

with low EE ratings) would simply not be available to buy during certain periods

(e.g. winter). The channel is slightly more subtle for buyers (the demand side),

but applicable in this setting. If a large number of buyers – enough to change the

composition of demand – with preferences correlated to EE (e.g. environmentally
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conscientious people preferring high EE) enter the market during specific periods

(e.g. winter), then properties with unfavourable ratings (e.g. low EE) will sell

comparatively slower (e.g. a flat with lower EE will take longer to sell than a

similar flat in the same building with high EE), and, at the very least, a portion of

these will sell in the next weather period (while favoured properties will sell soon

after they enter the market).

Figure 6: Sale frequency distribution
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Notes: This figure plots the distribution of sales with respect to EE conditional on
weather quarter. Q1 stands for Quarter 1, Q2 for Quarter 2 and so forth. The vertical
line shows the mean EE for each quarter. N=5,325,834.

To test self-selection entry into the market, weather seasons are the most sen-

sible level of time aggregation, it would be unrealistic for individuals to base their

decisions to enter the housing market on a shorter time frame. For example, it

is not feasible for a seller to go through the process of contracting and dismissing

a estate agent, setting up and taking down advertising or transferring mortgages

on a weekly or monthly basis. Likewise, it would be difficult for a buyer to ne-

gotiate and then cancel a mortgage every month. I am able to observe the true
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distribution of properties sold in the dataset (as explained in Section 2, I analyse

the population of residential sale transactions registered in England and Wales

between June 2012 and January 2020). Figure 6 shows that, contrary to the self-

selection prediction, the distribution with respect to EE is very similar (almost

identical) across weather seasons. I provide formal statistical tests on the equality

of the shape of the distributions in Appendix D.

It is also important to note that I fail to find evidence that once in the market,

sellers engage in strategic behaviour to obtain higher sale prices. For example,

by avoiding viewings during cold and rainy days to make windows without draft-

proofing or roofs with leaks less noticeable. If strategic behaviour of this form was

successful, then the identified effects would be considerably different between lower

and higher EE properties. Continuing with the example, properties with low EE

would be ’hidden’ during unfavourable weather, making their EE valuation less

likely to be influenced by weather conditions. However, I show in Panel (a) of

Figure 5 that the weather effects on EE valuation are mostly constant across the

EE rating scale (they are not statistically different).

5.3 Psychological mechanisms

I now discuss potential psychological mechanisms that can explain the results I

document, specifically salience, probability overinference and projection bias. The

results from Sections 3 and 4 are consistent with these three biases, and it is

difficult to differentiate them using solely sale transaction data. However, as I

explain in more detail below, salience appears to be the main driver of the effect.

As mentioned before, in asset and investment markets, the valuation of a prod-

uct and its features needs to account for the total anticipated utility across the

ownership time-frame. Within this context, the utility derived at each time period

will depend on the weather at the time (i.e. state-dependent utility), since fu-

ture weather cannot be predicted with certainty, the expected utility for each time

period also depends on the (a priori) probabilities of different weather conditions

occurring (i.e. a decision about the future needs to be made under uncertainty).

The payoff obtained from owning a property with a specific EE level is a function

of the energy services consumed (e.g. room temperature, water temperature and
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lighting) and the cost of the fuels these services require (e.g. electricity and/or

gas). Assuming time-consistent preferences, individuals have an optimal energy

services consumption that does not change over time (as a result of consumption

smoothing).23

Then, from a classic expected utility maximisation perspective (Rabin 2002b,

DellaVigna 2009), the EE utility valuation (conditional on future weather condi-

tions) of a fully rational individual is given by:

Uee =

T0+TN∑
t=T0

δt−T0

∑
wt∈Wt

p(wt)u(x
ee
t |wt)(10)

xee
t = x(ceet , ft)

Where Uee is the utility derived from ownership of a property with EE rating ee.

Utility is accumulated over all ownership time periods t ∈ [T0, T0 + TN ]. Months

can be assumed as the unit of t since fuels such as electricity are typically invoiced

monthly. The parameter δ ∈ [0, 1] is the (time consistent) discount factor. For

each time period t, the expected utility is obtained from all the possible future

weather conditions wt ∈ Wt and their probabilities of occurring. The probability

that weather wt occurs is given by p(wt). The payoff of having a property with an

EE rating ee at time t is xt
ee, and the utility derived from payoff xt

ee given weather

wt is u(xt
ee|wt). The payoff xt

ee represents the cost of maintaining a chosen level

comfort (e.g. keeping the property at ’room temperature’) and depends on the

energy-services consumption ceet (provided the property has an EE rating ee) and

the cost of fuel ft at time t.24 Higher EE increases the payoff by decreasing energy

services consumption while maintaining the chosen level comfort.

23For simplicity, I will not consider budget constraints or changing preferences, such as lower
energy services consumption resulting from environmental concerns. Nonetheless, if preferences
move in the direction of reducing energy consumption then higher EE will be preferred. The
effects of weather on EE valuation should then be lower since it will have a lower influence on
energy consumption and comfort.

24The model can be extended to account for accumulated EE feature depreciation eedt entering
function f(.), but I choose to keep the model simple to help with the discussion of potential
mechanisms for EE valuation.
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Importantly, when purchasing a property, EE valuation happens at T0− 1, one

month before ownership starts. As explained in Section 2, it normally takes over a

month from the moment an offer is made to the completion of the sale transaction;

only then is the new owner able to either move in, rent out or resell the property.

There are no payoffs at time T0 − 1, and thus the weather conditions at T0 − 1 do

not enter the valuation function of a fully rational individual.

5.3.1 Salience and limited attention

Weather conditions can influence the salience of EE during the purchasing process.

Intuitively, while experiencing cold weather, individuals will pay more attention

to EE ratings while they search for houses. Current weather will then have a

weighting effect on the expected utility derived from EE. Previous research (e.g.

Sejas-Portillo et al. 2020, Myers 2019) also shows that limited attention plays

an important role in the understanding of energy labels and energy costs in the

housing market. The model can be extended to incorporate this effect:

Uee = g(θ, wT0−1)

T0+TN∑
t=T0

δt−T0

∑
wt∈Wt

p(wt)u(x
ee
t |wt)(11)

Where g(.) can produce values between [0, 1]. The parameter θ represents the

baseline level of inattention to EE or, equivalently, to the utility derived from EE.

If the weather does not influence the salience of EE then g(.) = θ. If weather

conditions do influence the salience of EE, then g(.) �= θ, for example during a

very warm summer in the UK g(.) may evaluate to be close to 0.

5.3.2 State-Dependent preferences and projection bias

Individuals may exhibit state-dependent preferences where their utility evaluations

depend on the state of the world they are experiencing at the time. For instance,

room temperature preferences may be different if an individual is feeling very

warm or very cold (analogous to the example used by Loewenstein et al. 2003

where individuals order more food at the beginning of a meal if they are feeling
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particularly hungry). Intuitively, if individuals are feeling very warm during a

particularly hot summer, they will prefer cold indoor temperatures and their utility

evaluations for heating services will be low. These state dependent preferences

could then be projected into the future, thus reducing the expected utility derived

from heating services over the whole ownership period and influencing the total

EE valuation. This behavioural bias, expecting future preferences to be similar to

current ones when contextual factors (e.g. the weather) may be different, is referred

to as projection bias in the literature (Loewenstein et al. 2003). An individual

exhibiting projection bias would have the following EE valuation function:

Uee =

T0+TN∑
t=T0

δt−T0

∑
wt∈Wt

p(wt)û(x
ee
t |wt, wT0−1)(12)

û(xee
t |wt, wT0−1) = (1− α)u(xee

t |wt) + αu(xee
t |wT0−1)

Where the predicted experienced utility function û(.) takes into account not only

the weather at time t but also the weather at time T0−1. The parameter α ∈ [0, 1]

represents the extent of the bias. If α = 0, the individual does not exhibit projec-

tion bias and the utility evaluation is the same as before. If α > 0, the predicted

future utility evaluation is influenced by the present state (e.g. weather conditions).

5.3.3 Probability overinference and future weather conditions

It can be seen graphically in Figure 1 that current weather conditions are not a

good predictor for future weather conditions. As mentioned above, there is plenty

of literature documenting the unpredictability of the weather (e.g. Palmer 2017,

Bauer et al. 2015). Nonetheless, previous research (e.g. Rabin 2002a) has shown

that people make overinferences from a small number of observations. A potential

explanation for the results I observe is that people may overweight the probability

of certain weather conditions happening in the future based on the weather they

observe in the short sequence of weeks or months prior to their purchase. In other
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words, individuals use the weather conditions of the past few weeks or months to

make predictions about long term weather trends. The model can be extended to

include overinference as follows:

Uee =

T0+TN∑
t=T0

δt−T0

∑
wt∈Wt

p̂(wt|wT0−1,wT0−2, ...)u(x
ee
t |wt)(13)

Where the probability distribution function p̂(.) is not i.i.d. and depends on the

previous observed weather.

5.3.4 Identifying the main mechanism

A model that incorporates all of the psychological biases explained above can be

written as:

Uee = g(θ, wT0−1)

T0+TN∑
t=T0

δt−T0

∑
wt∈Wt

p̂(wt|wT0−1, wT0−2, ...)û(x
ee
t |wt, wT0−1)(14)

Importantly, if salience plays a prominent role, since g(.) is not compounded or

discounted at each time period t, the effect I document will be less sensitive to

(or not depend on) the total expected length of the ownership TN . Moreover,

individuals buying a property with the aim to resale it shortly after may be more

sensitive to changes in the salience of EE if they expect future buyers to follow

a similar valuation process. Conversely, if projection or overinference bias play a

larger role, then the effect I identify would increase with the ownership time TN .

In order to empirically test the relationship between the effect I identify and

the total expected length of the ownership TN , I extend Specification 2 to include

dummies for properties that were resold within 2, 5 and 10 years. While I cannot

directly observe if the aim of the buyer was to resale the property within this

time-frame (or if the sale was circumstantial), I expect that at least some sellers

will do this. The dummies that indicate if a property was resold within 2, 5 and 10

years are interacted with the effect I study (namely EE ∗Weather). The dummies
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are also included without interactions in the regressions. The coefficients for the

interactions can be interpreted as the additional marginal effect of weather on EE

for properties that were resold within 2, 5 and 10 years.

Table 6: Pooled cross-sectional results with additional effects for proper-
ties that were resold within 2, 5 and 10 years

(1)

EE Rating*Temperature −0.008∗∗∗

(0.001)
EE Rating*Temperature*2-Years 0.001

(0.001)
EE Rating*Temperature*5-Years −0.001

(0.001)
EE Rating*Temperature*10-Years −0.002

(0.002)
EE Rating*Rainfall 0.009∗∗∗

(0.002)
EE Rating*Rainfall*2-Years 0.008∗∗∗

(0.002)
EE Rating*Rainfall*5-Years 0.002∗

(0.001)
EE Rating*Rainfall*10-Years 0.003

(0.002)
Property Characteristics Yes
Area FE Yes
Date FE Yes
Local Market FE Yes
EE Rating*Local Market FE Yes

R-squared 0.723
Observations 5,325,834

Notes: Standard errors in parentheses. * significant at 5%; ** significant at 1% ***
significant at 0.1%. Coefficients and standard errors have been multiplied by 100 to in-
terpret them as percentage point increases. Standard errors clustered at the LAD level.
The EE Rating ranges from 1 to 100. Temperature is measured in C◦ and Rainfall in
cm. The coefficients for EE Rating*Temperature*2-Years, EE Rating*Temperature*5-
Years and EE Rating*Temperature*10-Years are for EE Rating*Temperature interacted
with dummies for properties that were resold within 2, 5 and 10 years. The same ap-
plies to the coefficients interacted with Rainfall. Property Characteristics FE include
property type, tenure, property age and number of rooms. Location FE include LAD
and urban/rural classification. Date FE include sale year and month. Local Market
FE add number of sales per month in the LAD (demeaned) and average sale price per
month in the LAD (de-trended, normalised and demeaned).
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Table 6 shows the results of this analysis for the main coefficients of interest (the

full results are shown in Appendix E). The additional effect for air temperature

on properties resold within 2, 5 and 10 years is not-statistically significant (it is

effectively 0), and for rainfall they are positive and significant for properties sold

within 2 and 5 years. As explained above, these results support the notion that

salience plays larger role than probability overinference and projection bias in the

effects I document (since the effect for properties with a larger expected ownership

time frame TN is not bigger in magnitude).

5.3.5 Utility maximisation corrections

If (bounded) rational individuals make incorrect predictions about future utility –

whether these are due to salience, overinference, projection bias or another mech-

anism – they will attempt to take corrective action once they realise their mistake

(Conlin et al. 2007). Within the context of my analysis, if individuals purchased

a property during a hot summer and mistakenly predicted low future utility from

EE features (e.g. they were partially inattentive to the EE rating or projected

their current heating preferences), once winter arrives they should realise their

misprediction and invest to increase the EE of the property.

While the dataset does not allow me to observe all of the EE investments made

to properties (since it is not required to commission a new EPC or energy audit

after an improvement but only before selling or renting), I can analyse the subset

of properties that were sold more than once and where the EE rating recorded

for the resale increased. I run a simple regression on properties that were sold

multiple times (1,329,057 observations) where the dependent variable is an indi-

cator of whether the EE rating increased since the previous sale (i.e. a linear

probability model). The independent variables are – as before – the EE rating,

baseline covariates (property characteristics, location and date), local market con-

ditions, weather conditions and the interaction term. The results show that for

each additional C◦ in air temperature during the month the purchase decision was

made, the probability of investing in EE increases by 0.145 (SE 0.141) percentage

points. And for each additional cm of rainfall the probability decreases by −0.015

(SE 0.020) percentage points. The directions of the effects are as expected and
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their magnitudes are considerable. The estimations in Sections 3 and 4 show that

buyers undervalue EE when the weather is warm (i.e. they value it less than if

the weather was colder). If they realise their mistake when the weather gets cold,

they are more likely to invest in EE, hence the positive sign of the coefficient in

the regression. Rainfall works in the opposite direction, hence the negative sign

of the coefficient. These results suggest that at least some buyers take corrective

action once they realise they made a mistaken utility prediction.

6 Conclusion

This paper presents evidence that weather conditions, at the time a buying decision

is made, can disproportionately influence the economic valuation of EE in the UK

housing market. I find that EE valuations made during rough weather (e.g. cold

and/or rainy) are higher than those made under favourable weather (e.g. warm

and/or dry). For instance, a 10 points increase in the EE rating of a property leads

to a sale price increase of 1.687 percentage points (�4,461 at average sale prices)

on average if air temperature was 5C◦ on the month the buying decision was made.

However, the same 10 points increase in EE rating would lead to an increase of

only 0.385 percentage points (�1,018 at average sale prices) if the temperature

was 20C◦. Similarly, if the total monthly rainfall was 1cm during the month the

buying decision was made, a 10 points increase in the EE rating leads, on average,

to a 0.552 percentage points (�1,459.71) increase in price. If the total monthly

rainfall was 15cm, the price increase is much higher at 1.914 percentage points

(�5,061.68). Using a novel estimator (within a regression kink design framework),

I find that the relationship between air temperature and EE valuation is kinked

at 6.5C◦ and 17C◦. These kinks are expected as individuals are more sensitive to

severe temperatures (either cold or warm).

I show that the effects do not seem to be driven by rational optimisation of

running fuel costs or by self-selection behaviour. Rather, I argue that the effects are

due to psychological biases. I model and discuss salience, probability overinference

and projection bias as the most likely mechanisms. I find evidence that suggests

salience plays a larger role than probability overinference and projection bias. I

also find that some individuals appear to display (bounded) rational behaviour
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and take corrective action, in the form of future EE investments, once they realise

their mistaken (biased) utility predictions.

Policies that fail to consider the effects of relevant external factors – such as

the weather for EE – can be difficult to predict and manage. Moreover, in housing

markets, there is a positive overall welfare effect of EE improvements, in the form

of reduced housing energy consumption contributing to mitigating climate change.

In the UK, EE is most beneficial during winter to keep properties warm,25 thus

a low-cost informational intervention where buyers are reminded about winter

temperatures and rainfall levels can influence summer purchases (towards a higher

valuation of EE) while retaining the existing effect on winter purchases. Another

informational intervention can provide statistics about the increasing incidence

of extreme weather events to buyers, since, as described in Section 4.2.1, they

are likely to become more frequent. These informational cues can be included, for

instance, as part of the mandatory energy performance certificates (EPC) shown to

potential buyers. I argue against including comparative seasonal cost information

in this specific scenario (e.g. including comparisons of energy costs during winter

and summer in the EPC), since it could have the drawback of hinting at overpriced

energy costs during winter (i.e. buyers in winter thinking that their overall costs

will be lower in summer). Having differentiated policies for different regions in

the UK can also be beneficial. For example, as discussed in Section 4.2.1, severe

cold weather is more likely in certain regions, thus informational policies can be

prioritised in these regions and rolled out as needed to others.

Continuing with this line of research, it is important to further investigate

the welfare implications of the results. Specifically, how the effects I document

compare to energy prices and EE improvement costs to provide a comprehensive

cost-benefit analysis of implementing de-biasing interventions. Also, laboratory

experiments can be helpful to further disentangle the effects of salience, overinfer-

ence and projection bias. Distinguishing between these mechanisms in the field

is difficult as they influence decisions in a similar manner (Ericson & Laibson 2019).

25Home air conditioning (to keep properties cool) is rare in the UK. In other countries EE may
be most beneficial during summer to keep properties cool or similarly beneficial across seasons.
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Appendix A RKD interaction estimator proof

Consider the following general specification:

P = g(EE,W, d(W )) + u

Where, as explained in Section 4, d(.) is a deterministic function of W with a

kink at WD, g(.) is a function that captures the independent and interacted effects

that W and EE have on P and u represents the error term. g(.) and E[u|EE,W ]

must be continuous and cross-differentiable with respect to EE and W at WD. To

simplify notation, g′ is defined as the first derivative of g with respect to EE and

u′′ as the cross derivative of E[u|EE,W ] with respect to EE and W :

g′(ee, w, d(w)) ≡ ∂g(ee, w, d(w))

∂ee

u′′ ≡ ∂2E[u|EE = ee,W = w]

∂w∂ee

Then:
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Appendix B Measures of local market conditions

B.1 Local market sale intensity

The measure of local market sale intensity is computed per local authority district

(LAD) per month. It represents the deviation from the LAD average monthly sale

frequency. It is computed as:

MF
l,t = Fl,t −

T∑
i=1

Fl,ti

T

Where MF
l,t is the measure of local market sale intensity MF for LAD l and month

t. Fl,t is the frequency of sales for LAD l and month t. T is the total number of

months in the dataset. And
T∑
i=1

Fl,ti is the sum of the LAD frequency of sales for

all months.

B.2 Local market price intensity

The measure of local market price intensity is computed per LAD per month.

It represents the deviation from the LAD average monthly price. To make this

measure comparable across LADs and months, prices need to be detrended (to

remove inflationary effects) and the measure normalised (since the price level of

properties is not homogeneous across LADs – e.g. the price level of LADs in

London is a lot higher than the price level of LADs in the North East).

Prices are first detrended at the year level by obtaining the residuals from a

regression of price-per-meter (log) on the sale year as a categorical variable.

Pi = α + βYi + εi

PR
i = εi

Where Pi is the price-per-meter (log) of property i, Yi is the year when property
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i was sold (as a categorical variable) and εi the portion of price that cannot be

explained by the variability of the year dummies (i.e. the price residual for property

i) denoted as PR
i .

The price residuals are then demeaned and normalised:

MP
l,t =

PR
l,t −

T∑

i=1
PR

l,ti

T
T∑

i=1
PR

l,ti

T

Where MP
l,t is the measure of local market price intensity MP for LAD l and

month t. PR
l,t is the average price residuals for LAD l and month t. T is the total

number of months in the dataset. And
T∑
i=1

PR
l,ti is the sum of the LAD average

price residuals for all months.
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Appendix C Robustness analysis results

Further robustness checks are available from the authors upon request.

C.1 Cross-sectional analysis

Table C1: Effect of UK average air temperature on EE valuation

(1) (2) (3) (4)

EE Rating 0.119∗∗∗ 0.119∗∗∗ 0.119∗∗∗ 0.119∗∗∗

(0.009) (0.009) (0.009) (0.009)
Temperature −6.153∗∗∗ −6.147∗∗∗ −6.557∗∗∗

(0.105) (0.105) (0.127)
EE Rating*Temperature −0.004∗∗∗ −0.004∗∗∗

(0.000) (0.000)
Property Characteristics Yes Yes Yes Yes
Area FE Yes Yes Yes Yes
Date FE Yes Yes Yes Yes
Local Market FE Yes
EE Rating*Local Market FE Yes

R-squared 0.721 0.721 0.721 0.721
Observations 5,325,834 5,325,834 5,325,834 5,325,834

Notes: Standard errors in parentheses. * significant at 5%; ** significant at 1% ***
significant at 0.1%. Coefficients and standard errors have been multiplied by 100 to
interpret them as percentage point increases. Standard errors clustered at the LAD
level. The EE Rating ranges from 1 to 100. Temperature is measured in C◦. Property
Characteristics FE include property type, tenure, property age and number of rooms.
Location FE include LAD and urban/rural classification. Date FE include sale year
and month. Local Market FE add number of sales per month in the LAD (normalised
and demeaned) and average sale price per month in the LAD (de-trended, normalised
and demeaned). Column (1) presents the results of a regression of EE rating and
baseline covariates on price-per-meter (log). Column (2) adds weather conditions on
the month prior to the sale. Column (3) shows the results of Specification (1). Column
(4) shows the results of Specification (2).
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Table C2: Effect of weather conditions on EE valuation
(Excluding properties sold more than once)

(1) (2) (3) (4)

EE Rating 0.090∗∗∗ 0.090∗∗∗ 0.089∗∗∗ 0.089∗∗∗

(0.009) (0.009) (0.009) (0.009)
Temperature 0.135∗ 0.169∗ 0.022

(0.068) (0.069) (0.091)
Rainfall −0.007 −0.004 −0.006

(0.015) (0.015) (0.015)
EE Rating*Temperature −0.007∗∗∗ −0.009∗∗∗

(0.001) (0.001)
EE Rating*Rainfall 0.009∗∗∗ 0.009∗∗∗

(0.002) (0.002)
Property Characteristics Yes Yes Yes Yes
Area FE Yes Yes Yes Yes
Date FE Yes Yes Yes Yes
Local Market FE Yes
EE Rating*Local Market FE Yes

R-squared 0.725 0.725 0.725 0.725
Observations 3,530,595 3,530,595 3,530,595 3,530,595

Notes: Standard errors in parentheses. * significant at 5%; ** significant at 1% ***
significant at 0.1%. Coefficients and standard errors have been multiplied by 100 to
interpret them as percentage point increases. Standard errors clustered at the LAD
level. The EE Rating ranges from 1 to 100. Temperature is measured in C◦ and
Rainfall in cm. Property Characteristics FE include property type, tenure, property
age and number of rooms. Location FE include LAD and urban/rural classification.
Date FE include sale year and month. Local Market FE add number of sales per
month in the LAD (normalised and demeaned) and average sale price per month in
the LAD (de-trended, normalised and demeaned). Column (1) presents the results of
a regression of EE rating and baseline covariates on price-per-meter (log). Column (2)
adds weather conditions on the month prior to the sale. Column (3) shows the results
of Specification (1). Column (4) shows the results of Specification (2).
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Table C3: Effect of weather conditions on EE valuation
(2-month weather lag)

(1) (2) (3) (4)

EE Rating 0.119∗∗∗ 0.119∗∗∗ 0.118∗∗∗ 0.118∗∗∗

(0.009) (0.009) (0.009) (0.009)
Temperature 0.244∗∗∗ 0.280∗∗∗ 0.147

(0.069) (0.070) (0.080)
Rainfall −0.008 −0.005 −0.009

(0.015) (0.015) (0.014)
EE Rating*Temperature −0.008∗∗∗ −0.008∗∗∗

(0.001) (0.001)
EE Rating*Rainfall 0.010∗∗∗ 0.010∗∗∗

(0.002) (0.002)
Property Characteristics Yes Yes Yes Yes
Area FE Yes Yes Yes Yes
Date FE Yes Yes Yes Yes
Local Market FE Yes
EE Rating*Local Market FE Yes

R-squared 0.721 0.721 0.721 0.721
Observations 5,325,834 5,325,834 5,325,834 5,325,834

Notes: Standard errors in parentheses. * significant at 5%; ** significant at 1% ***
significant at 0.1%. Coefficients and standard errors have been multiplied by 100 to
interpret them as percentage point increases. Standard errors clustered at the LAD
level. The EE Rating ranges from 1 to 100. Temperature is measured in C◦ and
Rainfall in cm. Property Characteristics FE include property type, tenure, property
age and number of rooms. Location FE include LAD and urban/rural classification.
Date FE include sale year and month. Local Market FE add number of sales per
month in the LAD (normalised and demeaned) and average sale price per month in
the LAD (de-trended, normalised and demeaned). Column (1) presents the results of
a regression of EE rating and baseline covariates on price-per-meter (log). Column (2)
adds weather conditions on the month prior to the sale. Column (3) shows the results
of Specification (1). Column (4) shows the results of Specification (2).
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Table C4: Effect of weather conditions on EE valuation
(3-month weather lag)

(1) (2) (3) (4)

EE Rating 0.119∗∗∗ 0.119∗∗∗ 0.118∗∗∗ 0.118∗∗∗

(0.009) (0.009) (0.009) (0.009)
Temperature 0.800∗∗∗ 0.831∗∗∗ 0.661∗∗∗

(0.081) (0.081) (0.106)
Rainfall −0.108∗∗∗ −0.104∗∗∗ −0.108∗∗∗

(0.012) (0.012) (0.013)
EE Rating*Temperature −0.006∗∗∗ −0.007∗∗∗

(0.001) (0.001)
EE Rating*Rainfall 0.011∗∗∗ 0.011∗∗∗

(0.002) (0.002)
Property Characteristics Yes Yes Yes Yes
Area FE Yes Yes Yes Yes
Date FE Yes Yes Yes Yes
Local Market FE Yes
EE Rating*Local Market FE Yes

R-squared 0.721 0.721 0.721 0.721
Observations 5,325,834 5,325,834 5,325,834 5,325,834

Notes: Standard errors in parentheses. * significant at 5%; ** significant at 1% ***
significant at 0.1%. Coefficients and standard errors have been multiplied by 100 to
interpret them as percentage point increases. Standard errors clustered at the LAD
level. The EE Rating ranges from 1 to 100. Temperature is measured in C◦ and
Rainfall in cm. Property Characteristics FE include property type, tenure, property
age and number of rooms. Location FE include LAD and urban/rural classification.
Date FE include sale year and month. Local Market FE add number of sales per
month in the LAD (normalised and demeaned) and average sale price per month in
the LAD (de-trended, normalised and demeaned). Column (1) presents the results of
a regression of EE rating and baseline covariates on price-per-meter (log). Column (2)
adds weather conditions on the month prior to the sale. Column (3) shows the results
of Specification (1). Column (4) shows the results of Specification (2).
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C.2 RKD analysis

C.2.1 Continuity tests

As discussed in Section 4.1.1, an identifying assumption for a valid RKD is that

the observed density around the kink point evolves smoothly with respect to the

running variable (air temperature in this analysis – Card et al. 2015). A sudden

change in the density function would be indicative of self-selection behaviour. In

the context of this paper, self-selection seems implausible since either sellers or

buyers would have to delay the transaction until the temperature drops below or

raises above a given threshold. The data confirms the absence of sudden density

changes. Figure C1 shows the frequency distribution of property sales across the air

temperature range. Notice that the frequency distribution, although continuous,

has mass points because I use monthly regional average temperatures (i.e. the

average temperature level is assigned to sales that occurred during a specific month

within a specific region). No noticeable changes in the smoothness of the observed

density are present around the 6.5C◦ and 17C◦ thresholds.
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Figure C1: Sale frequency distribution - Air temperature
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Notes: This figure plots the frequency of sales with respect to air temperature. The
solid line shows the kernel density estimation (epanechnikov).
N=5,325,834.

An additional identifying assumption for the RDK extension proposed in this

paper, as explained in Section 4.1.1, is the continuity of the independent variable

(energy-efficiency) and its first derivative around the kink points in the running

variable (air temperature). Importantly, as mentioned previously, the analysis

employs regional monthly averages, thus a continuity test of EE needs to control

for regional fixed effects and monthly fixed effects, otherwise the estimation would

be biased since the air temperature coefficient would capture regional and date

effects. It is worth noting that my results of moderated effects do not suffer from

these issue as the non-interacted air temperature coefficient would capture these

effects keeping the interacted coefficients valid, nonetheless the main results in

Section 4.2 show that the coefficients for the interacted terms remain stable with
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or without the inclusion of any covariates.

Figure C2 shows the average EE of properties across the air temperature range

(in 0.001C◦ bins). The estimated marginal effect at the means of air temperature

after controlling for region and month of sale is also shown. There are no visible

changes either in the level or the slope of the effect at the thresholds.

Figure C2: EE - Air temperature
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Notes: This figure plots the average EE of sold properties (in bins of 0.001C◦) across
the air temperature range. The kink points at 6.5C◦ and 17C◦ are shown with dotted
lines. The solid lines show the marginal effects of air temperature before and after
the kink points. Marginal effects are constructed from the results of a regression using
Specification (15).
N=5,325,834.

I use Specification (15) to formally test the continuity of EE across the air

temperature range within a regression-discontinuity design (RDD) framework:
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EEi = α + τDi + β−Wi + β+DiWi +Ziγ + εi(15)

Where EEi is the energy-efficiency rating of property i, Di is a binary variable

that determines treatment status (i.e. if a threshold was crossed), Wi is the air

temperature measurement, Zi is a vector of covariates and εi the error term. β−
and β+ are included to test that there is no change in marginal effects (i.e. the

derivative) at the threshold, which as mentioned above is important for the RKD

analysis.

Table C5 shows the results for the kink points at 6.5C◦ and 17C◦. The estimates

for τ and β+ show that the level and first derivative effects on EE do not change

at these kink points (i.e. they are close to 0 and without statistical significance at

conventional levels), confirming the continuity identifying assumption.
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Table C5: RDD results for testing the continuity of EE at the kink points

6.5C◦ 17C◦

(1) (2) (3) (4)

D [τ ] 0.035 0.035 −0.024 −0.009
(0.042) (0.031) (0.041) (0.037)

D * Air Temperature [β+] −0.027 −0.013 −0.032 0.031
(0.046) (0.025) (0.018) (0.026)

Air Temperature [β−] −0.004 −0.023 −0.024 −0.078∗

(0.051) (0.031) (0.054) (0.037)
Area FE Region LAD Region LAD
Date FE Yes Yes Yes Yes
Property Characteristics Yes Yes
Local Market FE Yes Yes

RD Bandwidth 4 4 4 4
R-squared 0.006 0.310 0.006 0.313
Observations 2,494,385 2,494,385 1,951,386 1,951,386

Notes: Standard errors in parentheses and clustered at the area level (region or LAD).
* significant at 5%; ** significant at 1% *** significant at 0.1%. Columns (1) and
(2) present test results for the threshold at 6.5C◦ and columns (3) and (4) for the
threshold at 17C◦. Area FE include Region for Columns (1) and (3) and LAD and
urban/rural classification for Columns (2) and (4). Date FE include sale year and
month. Property Characteristics FE include property type, tenure, property age and
number of rooms. Local Market FE add number of sales per month in the LAD
(normalised and demeaned) and average sale price per month in the LAD (de-trended,
normalised and demeaned).

It is also important to test the continuity in the proportions of sales per region

at the kink points. Figure C3 shows the proportions per region across the air

temperature range. No discontinuities are visible at the 6.5C◦ and 17C◦ kink

points. Tables C6 and C7 show the formal tests using RDD regressions of the

form explained for Specification (15). As before, the estimates for τ and β+ show

that the levels and first derivatives do not change systematically at the kink points.

While the first derivative is statistically significant for London at the 17C◦, I show

in Table C9 that the RKD results change very little if I remove sales from the

London region. RDD estimations for discontinuities at each individual month (i.e.

year + month) do not show systematic statistically significant effects either, these

results are not included due to their large volume (92 months) but are available

58



from the author upon request. Similarly, RDD tests for the other covariates –

property type, tenure, property age, number of rooms, urban/rural classification

and local market conditions – do not find systematic discontinuities at the kink

points, these results are also available upon request from the author to save space

in this Appendix.

Figure C3: Sale proportions per region
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Notes: This figure plots sale frequency proportions per region across the air temper-
ature range (in bins of 0.5C◦). The kink points at 6.5C◦ and 17C◦ are shown with
dotted lines.
N=5,325,834.
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Table C6: RDD results for testing the continuity of proportions
per region at the 6.5C◦ kink point

North East North West Yorkshire and The Humber East Midlands West Midlands East of England London South East South West Wales

D [τ ] 0.054 −0.037 −0.006 −0.071 −0.067 0.025 0.130 −0.002 0.006 −0.032
(0.043) (0.047) (0.026) (0.068) (0.063) (0.034) (0.078) (0.043) (0.037) (0.034)

D * Air Temperature [β+] 0.025 0.007 0.052 0.024 0.023 0.023 0.007 −0.017 −0.101 −0.043
(0.026) (0.026) (0.042) (0.027) (0.024) (0.029) (0.039) (0.042) (0.077) (0.046)

Air Temperature [β−] −0.156 −0.193 −0.160 −0.031 −0.019 0.030 0.185 0.156 0.190 −0.002
(0.133) (0.166) (0.150) (0.053) (0.049) (0.060) (0.152) (0.152) (0.164) (0.023)

Date FE Yes Yes Yes Yes Yes Yes Yes Yes Yes Yes

RD Bandwidth 4 4 4 4 4 4 4 4 4 4
R-squared 0.231 0.176 0.121 0.020 0.017 0.025 0.266 0.097 0.115 0.021
Observations 2,494,385 2,494,385 2,494,385 2,494,385 2,494,385 2,494,385 2,494,385 2,494,385 2,494,385 2,494,385

Notes: Standard errors in parentheses and clustered at the region level. * significant
at 5%; ** significant at 1% *** significant at 0.1%. Date FE include sale year and
month.

Table C7: RDD results for testing the continuity of proportions
per region at the 17C◦ kink point

North East North West Yorkshire and The Humber East Midlands West Midlands East of England London South East South West Wales

D [τ ] −0.002 0.044 0.012 0.068 −0.076 0.204 −0.139 0.008 −0.142 0.023
(0.015) (0.047) (0.024) (0.068) (0.077) (0.144) (0.095) (0.094) (0.129) (0.027)

D * Air Temperature [β+] 0.055 0.046 0.006 −0.050 −0.015 −0.044 0.118∗∗ −0.084 −0.058 0.027
(0.049) (0.043) (0.022) (0.051) (0.022) (0.045) (0.030) (0.073) (0.057) (0.028)

Air Temperature [β−] −0.081 −0.167 −0.083 −0.008 −0.009 0.060 0.195 0.131 0.035 −0.074
(0.076) (0.131) (0.084) (0.031) (0.038) (0.074) (0.136) (0.131) (0.053) (0.075)

Date FE Yes Yes Yes Yes Yes Yes Yes Yes Yes Yes

RD Bandwidth 4 4 4 4 4 4 4 4 4 4
R-squared 0.152 0.249 0.096 0.016 0.026 0.095 0.430 0.089 0.035 0.095
Observations 1,951,386 1,951,386 1,951,386 1,951,386 1,951,386 1,951,386 1,951,386 1,951,386 1,951,386 1,951,386

Notes: Standard errors in parentheses and clustered at the region level. * significant
at 5%; ** significant at 1% *** significant at 0.1%. Date FE include sale year and
month.

As explained in Section 4.2.1, extreme weather events occurred in 2013, 2018.

To show that the effects I identify for air temperatures below 6.5C◦ and above

17C◦ are not driven solely by these events, I repeat the analysis excluding sales

that occurred in these years. Table C8 shows that the estimates remain remarkably

stable.
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Table C8: RKD results
(Excluding sales from 2013 and 2018)

6.5C◦ 17C◦

(1) (2) (3) (4) (5) (6)

EE Rating*Temperature*D [θ] 0.073∗∗∗ 0.070∗∗∗ 0.069∗∗∗ −0.067∗ −0.074∗∗∗ −0.072∗∗∗

(0.015) (0.009) (0.009) (0.030) (0.016) (0.015)
EE Rating*Temperature [δ] −0.056∗∗∗ −0.054∗∗∗ −0.053∗∗∗ −0.018∗ −0.020∗∗∗ −0.021∗∗∗

(0.013) (0.008) (0.008) (0.008) (0.004) (0.004)
EE Rating*D [μ] 0.005 0.002 0.003 −0.164∗∗∗ −0.025 −0.026

(0.024) (0.014) (0.014) (0.032) (0.015) (0.015)
EE Rating [β] 0.310∗∗∗ 0.072∗∗∗ 0.073∗∗∗ 0.269∗∗∗ 0.089∗∗∗ 0.088∗∗∗

(0.042) (0.015) (0.015) (0.038) (0.011) (0.011)
Rainfall Yes Yes Yes Yes
EE Rating*Rainfall Yes Yes Yes Yes
Property Characteristics Yes Yes Yes Yes
Area FE Yes Yes Yes Yes
Date FE Yes Yes Yes Yes
Local Market FE Yes Yes
EE Rating*Local Market FE Yes Yes

RD Bandwidth 4 4 4 4 4 4
R-squared 0.034 0.718 0.718 0.096 0.732 0.733
Observations 1,907,755 1,907,755 1,907,755 1,464,303 1,464,303 1,464,303

Notes: Standard errors in parentheses. * significant at 5%; ** significant at 1% ***
significant at 0.1%. Coefficients and standard errors have been multiplied by 100 to
interpret them as percentage point increases. Standard errors clustered at the LAD
level. The EE Rating ranges from 1 to 100. Temperature is measured in C◦ and
Rainfall in cm. Property Characteristics FE include property type, tenure, property
age and number of rooms. Location FE include LAD and urban/rural classification.
Date FE include sale year and month. Local Market FE add number of sales per
month in the LAD (normalised and demeaned) and average sale price per month in
the LAD (de-trended, normalised and demeaned). Columns (1) to (3) present the
results for the kink at 6.5C◦ and columns (4) to (6) for the kink at 17C◦. Columns
(1) and (4) show the results using Specification (8) which does not include covariates.
Columns (2) and (5) use Specification (9) including the vector of baseline covariates.
Columns (3) and (6) add controls for local market conditions.

Likewise, I discuss in Section 4.2.1 how very low temperatures are more likely

in the north of England, and conversely warmer temperatures are more common

in the south of England. I show above that the effects at the 6.5C◦ and 17C◦ kink

points are not due to changes in the proportion of sales between regions. As an

additional robustness test, Table C9 presents the results of the analysis excluding

the regions with the highest proportion of sales under cold and warm weather

(i.e. North East for cold weather and London for warm weather). As before, the

estimates remain stable.
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Table C9: RKD results
(Excluding sales from the North East and London Regions)

6.5C◦ 17C◦

(1) (2) (3) (4) (5) (6)

EE Rating*Temperature*D [θ] 0.033∗∗∗ 0.027∗∗∗ 0.027∗∗∗ −0.067∗∗∗ −0.039∗∗∗ −0.040∗∗∗

(0.009) (0.005) (0.005) (0.016) (0.009) (0.009)
EE Rating*Temperature [δ] −0.017∗ −0.012∗∗∗ −0.014∗∗∗ −0.024∗∗∗ −0.011∗∗∗ −0.010∗∗∗

(0.007) (0.003) (0.003) (0.006) (0.003) (0.003)
EE Rating*D [μ] −0.040∗∗ −0.029∗∗∗ −0.026∗∗ −0.006 −0.016 −0.016

(0.014) (0.009) (0.009) (0.027) (0.012) (0.012)
EE Rating [β] 0.362∗∗∗ 0.119∗∗∗ 0.117∗∗∗ 0.266∗∗∗ 0.101∗∗∗ 0.101∗∗∗

(0.037) (0.010) (0.011) (0.033) (0.011) (0.011)
Rainfall Yes Yes Yes Yes
EE Rating*Rainfall Yes Yes Yes Yes
Property Characteristics Yes Yes Yes Yes
Area FE Yes Yes Yes Yes
Date FE Yes Yes Yes Yes
Local Market FE Yes Yes
EE Rating*Local Market FE Yes Yes

RD Bandwidth 4 4 4 4 4 4
R-squared 0.017 0.637 0.637 0.034 0.644 0.644
Observations 2,128,147 2,128,147 2,128,147 1,628,100 1,628,100 1,628,100

Notes: Standard errors in parentheses. * significant at 5%; ** significant at 1% ***
significant at 0.1%. Coefficients and standard errors have been multiplied by 100 to
interpret them as percentage point increases. Standard errors clustered at the LAD
level. The EE Rating ranges from 1 to 100. Temperature is measured in C◦ and
Rainfall in cm. Property Characteristics FE include property type, tenure, property
age and number of rooms. Location FE include LAD and urban/rural classification.
Date FE include sale year and month. Local Market FE add number of sales per
month in the LAD (normalised and demeaned) and average sale price per month in
the LAD (de-trended, normalised and demeaned). Columns (1) to (3) present the
results for the kink at 6.5C◦ and columns (4) to (6) for the kink at 17C◦. Columns
(1) and (4) show the results using Specification (8) which does not include covariates.
Columns (2) and (5) use Specification (9) including the vector of baseline covariates.
Columns (3) and (6) add controls for local market conditions.
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C.2.2 Empirical specification

Table C10: RKD results
(Bandwidth of 3)

6.5C◦ 17C◦

(1) (2) (3) (4) (5) (6)

EE Rating*Temperature*D [θ] 0.101∗∗∗ 0.081∗∗∗ 0.080∗∗∗ −0.054∗∗ −0.033∗∗∗ −0.033∗∗∗

(0.018) (0.008) (0.008) (0.018) (0.010) (0.010)
EE Rating*Temperature [δ] −0.032∗∗ −0.037∗∗∗ −0.037∗∗∗ −0.038∗∗ −0.032∗∗∗ −0.032∗∗∗

(0.011) (0.006) (0.006) (0.014) (0.006) (0.006)
EE Rating*D [μ] −0.101∗∗∗ −0.059∗∗∗ −0.057∗∗∗ −0.009 0.009 0.008

(0.030) (0.012) (0.012) (0.030) (0.014) (0.014)
EE Rating [β] 0.342∗∗∗ 0.100∗∗∗ 0.099∗∗∗ 0.239∗∗∗ 0.080∗∗∗ 0.081∗∗∗

(0.039) (0.010) (0.010) (0.040) (0.012) (0.012)
Rainfall Yes Yes Yes Yes
EE Rating*Rainfall Yes Yes Yes Yes
Property Characteristics Yes Yes Yes Yes
Area FE Yes Yes Yes Yes
Date FE Yes Yes Yes Yes
Local Market FE Yes Yes
EE Rating*Local Market FE Yes Yes

RD Bandwidth 3 3 3 3 3 3
R-squared 0.028 0.715 0.715 0.079 0.729 0.729
Observations 2,043,655 2,043,655 2,043,655 1,609,348 1,609,348 1,609,348

Notes: Standard errors in parentheses. * significant at 5%; ** significant at 1% ***
significant at 0.1%. Coefficients and standard errors have been multiplied by 100 to
interpret them as percentage point increases. Standard errors clustered at the LAD
level. The EE Rating ranges from 1 to 100. Temperature is measured in C◦ and
Rainfall in cm. Property Characteristics FE include property type, tenure, property
age and number of rooms. Location FE include LAD and urban/rural classification.
Date FE include sale year and month. Local Market FE add number of sales per
month in the LAD (normalised and demeaned) and average sale price per month in
the LAD (de-trended, normalised and demeaned). Columns (1) to (3) present the
results for the kink at 6.5C◦ and columns (4) to (6) for the kink at 17C◦. Columns
(1) and (4) show the results using Specification (8) which does not include covariates.
Columns (2) and (5) use Specification (9) including the vector of baseline covariates.
Columns (3) and (6) add controls for local market conditions.
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Table C11: RKD results
(Bandwidth of 5)

6.5C◦ 17C◦

(1) (2) (3) (4) (5) (6)

EE Rating*Temperature*D [θ] 0.031∗∗ 0.039∗∗∗ 0.040∗∗∗ −0.067∗∗∗ −0.048∗∗∗ −0.049∗∗∗

(0.011) (0.006) (0.006) (0.018) (0.009) (0.009)
EE Rating*Temperature [δ] −0.022∗∗ −0.028∗∗∗ −0.030∗∗∗ −0.016∗∗∗ −0.016∗∗∗ −0.017∗∗∗

(0.008) (0.005) (0.005) (0.004) (0.002) (0.002)
EE Rating*D [μ] −0.017 −0.007 −0.003 −0.046∗ −0.010 −0.009

(0.020) (0.011) (0.011) (0.022) (0.011) (0.011)
EE Rating [β] 0.336∗∗∗ 0.092∗∗∗ 0.090∗∗∗ 0.268∗∗∗ 0.089∗∗∗ 0.089∗∗∗

(0.043) (0.013) (0.012) (0.037) (0.010) (0.010)
Rainfall Yes Yes Yes Yes
EE Rating*Rainfall Yes Yes Yes Yes
Property Characteristics Yes Yes Yes Yes
Area FE Yes Yes Yes Yes
Date FE Yes Yes Yes Yes
Local Market FE Yes Yes
EE Rating*Local Market FE Yes Yes

RD Bandwidth 5 5 5 5 5 5
R-squared 0.026 0.713 0.713 0.071 0.726 0.726
Observations 2,812,530 2,812,530 2,812,530 2,354,662 2,354,662 2,354,662

Notes: Standard errors in parentheses. * significant at 5%; ** significant at 1% ***
significant at 0.1%. Coefficients and standard errors have been multiplied by 100 to
interpret them as percentage point increases. Standard errors clustered at the LAD
level. The EE Rating ranges from 1 to 100. Temperature is measured in C◦ and
Rainfall in cm. Property Characteristics FE include property type, tenure, property
age and number of rooms. Location FE include LAD and urban/rural classification.
Date FE include sale year and month. Local Market FE add number of sales per
month in the LAD (normalised and demeaned) and average sale price per month in
the LAD (de-trended, normalised and demeaned). Columns (1) to (3) present the
results for the kink at 6.5C◦ and columns (4) to (6) for the kink at 17C◦. Columns
(1) and (4) show the results using Specification (8) which does not include covariates.
Columns (2) and (5) use Specification (9) including the vector of baseline covariates.
Columns (3) and (6) add controls for local market conditions.
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Appendix D Distribution of sales across weather

seasons

I show in Section 5.2 that the distribution of property sales with respect to EE is

very similar across weather seasons. Figure D1 show the density plots.

Figure D1: Sale frequency proportion - Air temperature (by region)
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Notes: This figure plots the distribution of sales with respect to EE conditional on
weather quarter. Q1 stands for Quarter 1, Q2 for Quarter 2 and so forth. The vertical
line shows the mean EE of each quarter.
N=5,325,834.

The distributions are approximately normal but they are skewed (with the

mean to the left of the mode). Also, each season sample has a different number

of observations (due to the seasonality of the market explained above). Thus,

a t-test for comparing the equality of sample means would not be appropriate.
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Instead, I apply the non-parametric Wilcoxon rank-sum test (also referred to as the

Mann–Whitney two-sample statistic – Wilcoxon 1945, Mann & Whitney 1947) to

test for the null hypothesis that two samples are derived from the same population.

Table D1 shows the results of the test for each pair of samples (e.g. Quarter

1 and Quarter 2, Quarter 1 and Quarter 3, and so forth). The p-value shows no

statistical differences between Quarters 1, 2 and 4, providing evidence that these

samples are taken from the same population. In other words, I find no differences

in the proportions of properties with each EE rating sold across these quarters.

Regarding Quarter 3, although the p-values suggest statistical significance, the es-

timated differences and their confidence intervals (measured as the median of the

differences – Bauer 1972) are effectively 0 (for instance the estimated median of

differences between Quarters 1 and 3 is 0.00000001468347). Also, notice that the

number of observations for this quarter is much higher than the others, reducing

the accuracy of the test (due substantially different sample sizes – Mann & Whit-

ney 1947). Nonetheless, I repeat the analysis excluding properties sold in Quarter

3 and show in Table D2 that the results remain largely unchanged.

Table D1: Wilcoxon (Mann –Whitney) rank-sum test

Quarters W statistic p-value Difference CI N

Q1 and Q2 749,163,368,900.5 0.348 0.000 0.000 | 0.000 1,104,475 | 1,357,539
Q1 and Q3 838,646,771,380.5 0.000 0.000 0.000 | 0.000 1,104,475 | 1,513,076
Q1 and Q4 745,215,953,774.5 0.195 0.000 0.000 | 0.000 1,104,475 | 1,350,744
Q2 and Q3 1,031,547,229,177.0 0.000 0.000 0.000 | 0.000 1,357,539 | 1,513,076
Q2 and Q4 916,590,751,223.5 0.694 0.000 0.000 | 0.000 1,357,539 | 1,350,744
Q3 and Q4 1,017,117,453,597.0 0.000 0.000 0.000 | 0.000 1,513,076 | 1,350,744

Notes: The CI column shows the confidence intervals (lower and upper) of the
respective estimated differences. The N column presents the number of observations
for the quarter samples separately.
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Table D2: Pooled cross-sectional results
(Excluding properties sold in Quarter 3)

(1) (2) (3) (4)

Energy Efficiency 0.121∗∗∗ 0.121∗∗∗ 0.120∗∗∗ 0.120∗∗∗

(0.009) (0.009) (0.009) (0.009)
Temperature −0.025 0.002 −0.135

(0.076) (0.077) (0.088)
Rainfall −0.029 −0.025 −0.031

(0.019) (0.019) (0.019)
EE*Temperature −0.010∗∗∗ −0.011∗∗∗

(0.001) (0.001)
EE*Rainfall 0.008∗∗∗ 0.009∗∗∗

(0.002) (0.002)
Property Characteristics Yes Yes Yes Yes
Area FE Yes Yes Yes Yes
Date FE Yes Yes Yes Yes
Local Market FE Yes
EE*Local Market FE Yes

R-squared 0.722 0.722 0.722 0.722
Observations 3,812,758 3,812,758 3,812,758 3,812,758

Notes: Standard errors in parentheses. * significant at 5%; ** significant at 1% ***
significant at 0.1%. Coefficients and standard errors have been multiplied by 100 to
interpret them as percentage point increases. Standard errors clustered at the LAD
level. The EE Rating ranges from 1 to 100. Temperature is measured in C◦ and
Rainfall in cm. Property Characteristics FE include property type, tenure, property
age and number of rooms. Location FE include LAD and urban/rural classification.
Date FE include sale year and month. Local Market FE add number of sales per
month in the LAD (normalised and demeaned) and average sale price per month in
the LAD (de-trended, normalised and demeaned). Column (1) presents the results of
a regression of EE rating and baseline covariates on price-per-meter (log). Column (2)
adds weather conditions on the month prior to the sale. Column (3) shows the results
of Specification (1). Column (4) shows the results of Specification (2).
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Appendix E Additional effects for properties that

were resold within 2, 5 and 10 years

Table E1 shows the results of the analysis including dummies that indicate if a

property was resold within 2, 5 and 10 years. The dummies are interacted with the

effect I study (namely EE ∗Weather). The coefficients for the interactions can be

interpreted as the additional marginal effect of weather on EE for properties that

were resold within 2, 5 and 10 years.
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Table E1: Pooled cross-sectional results with additional effects for prop-
erties that were resold within 2, 5 and 10 years

(1)

EE Rating 0.087∗∗∗

(0.009)
2-Years −8.948∗∗∗

(0.468)
5-Years −0.182

(0.156)
10-Years 0.524∗∗

(0.173)
EE Rating*2-Years 0.304∗∗∗

(0.009)
EE Rating*5-Years 0.061∗∗∗

(0.006)
EE Rating*10-Years −0.011

(0.011)
EE Rating*Temperature −0.008∗∗∗

(0.001)
EE Rating*Temperature*2-Years 0.001

(0.001)
EE Rating*Temperature*5-Years −0.001

(0.001)
EE Rating*Temperature*10-Years −0.002

(0.002)
EE Rating*Rainfall 0.009∗∗∗

(0.002)
EE Rating*Rainfall*2-Years 0.008∗∗∗

(0.002)
EE Rating*Rainfall*5-Years 0.002∗

(0.001)
EE Rating*Rainfall*10-Years 0.003

(0.002)
Property Characteristics Yes
Area FE Yes
Date FE Yes
Local Market FE Yes
EE Rating*Local Market FE Yes

R-squared 0.723
Observations 5,325,834

Notes: Standard errors in parentheses. * significant at 5%; ** significant at 1% ***
significant at 0.1%. Coefficients and standard errors have been multiplied by 100 to in-
terpret them as percentage point increases. Standard errors clustered at the LAD level.
The EE Rating ranges from 1 to 100. Temperature is measured in C◦ and Rainfall in
cm. The coefficients for EE Rating*Temperature*2-Years, EE Rating*Temperature*5-
Years and EE Rating*Temperature*10-Years are for EE Rating*Temperature interacted
with dummies for properties that were resold within 2, 5 and 10 years. The same ap-
plies to the coefficients interacted with Rainfall. Property Characteristics FE include
property type, tenure, property age and number of rooms. Location FE include LAD
and urban/rural classification. Date FE include sale year and month. Local Market
FE add number of sales per month in the LAD (demeaned) and average sale price per
month in the LAD (de-trended, normalised and demeaned).
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