
Utilities Policy 82 (2023) 101576

Available online 24 May 2023
0957-1787/© 2023 The Authors. Published by Elsevier Ltd. This is an open access article under the CC BY license (http://creativecommons.org/licenses/by/4.0/).

Full-length article 

Evidence of supply security and sustainability challenges in Nigeria’s 
power sector 

Cosimo Magazzino a,*, Carlo Drago b, Nicolas Schneider c 

a Department of Political Science, Roma Tre University, Italy 
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A B S T R A C T   

The increasing mismatch between the demand and supply of power in Nigeria raises concerns about the ability of 
this country to meet its vital energy security and sustainability targets in a demography-growing environment. 
This paper assesses how these three factors comove over the long run. While Nigeria provides an illustrative case, 
a multivariate framework including population dynamics, the demand for electricity, and CO2 emissions from the 
power and heating sector is set with actual time-series data spanning the last five decades. Two independent 
estimation strategies are conducted: a time-series analysis (i.e., Least Squares with breaks regression) is com-
plemented with Machine Learning experiments (i.e., ML Clustering method). In general, both methodologies’ 
outputs stress the engine role of the population in driving the demand for power over the long run.   

1. Introduction 

The security of the power electricity supply has become unavoidable 
when dealing with strategic energy decisions worldwide. Defined as the 
“uninterrupted availability of energy sources at an affordable price” 
(IEA, 2017), this concept is relevant to many nations impacted by the 
recent conflict between Russia and Ukraine. In Africa, power supply 
challenges include chronic electricity shortages linked to underinvest-
ment, lack of power infrastructure, and adequate technologies. Hence, 
finding optimal policies to meet growing sectoral (for domestic and in-
dustrial purposes) electricity demands in a more secure and less costly 
fashion without jeopardizing carbon targets are key policy direction for 
the future (Menyah and Wolde-Rufael, 2010; Intergovernmental Panel 
on Climate Change (IPCC), 2014; Li and Jiang, 2019). Within this 
trade-off lays the demographic channel: incoming economic and popu-
lation expansions in Africa are expected to affect the power supply 
availability substantially, threaten the availability and affordability of 
resource inputs, and worsen already existing waste-related issues (Nepal 
and Paija, 2019b). From resource utilization to waste management, a 
low-carbon expansion of the electricity sector is also a concern and re-
quires a much better understanding of how to consume, reuse, and 
recycle inputs in a circular way that would benefit greener energy 

production. 
In most advanced economies, many utilities’ primary role gradually 

shifted to “the management of energy supplied by independent power 
producers, rather than building and owning capacity themselves” 
(BNEF, 2017). Recent progress in digitalization enabled better coordi-
nation of supply and demands through adjusted prices and contributed 
to reducing the supply uncertainties related to power-based renewables 
volatility due to changing weather conditions and interconnected 
mini-grids. That is, such statements cannot entirely hold for Africa. 
Despite progress in rural electrification, more than 250 million people 
do not have access to electricity in the African continent; the gap was 
further widened by the COVID-19 outbreak, which drove more people 
into the poverty trap (Puig et al., 2021). In this context, electricity 
sectors are undergoing multi-faced challenges not limited to offering an 
affordable, secure energy supply but also enabling sustainable man-
agement of mineral resources to produce low-carbon energy plants and 
facilities. Indeed, renewable energy technologies, like any other inno-
vative applications, are heavily resource-dependent and waste-enablers, 
which sets how potentially conflicting power access and climate miti-
gation policies can be for the power sector. Solid waste associated with 
economic activity cannot be disconnected from the global environ-
mental concern, raising central questions about aligning these diverging 
targets. If unprocessed (i.e., left in landfills), waste liberates toxic 
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substances traveling into the soil and water. If processed (i.e., collected 
and burned up in treatment facilities), waste releases particles into the 
atmosphere that trigger our changing climate (Mele et al., 2022). 
Therefore, the nature and ways materials are extracted and combined 
into energy generation technologies codetermine the quality and sus-
tainability of expanding electricity markets in search of reducing infla-
ted power prices in Africa. 

In this study, Nigeria provides an illustrative case because of its 
incomparable demographic, economic, and power demand features that 
call for urgent implementation of sustainability policies in the electricity 
sector. Moreover, given its endowment in coastal zones and agricultural 
lands, Nigeria’s future cannot be delinked from global climate goals. 
First, with a population of 208.8 million in 2020, this country is the most 
populated in Africa and represents 15% of the continent’s total popu-
lation (Muftahu and Jamil, 2020). At the heart of this elevated trend 
stands a relevant natality rate, which has translated into a 2.6% annual 
growth rate of population (the fastest population growth rate of Africa’s 
continent). However, a substantial share of the population remains 
impoverished (44% is under 15 years old), justifying the alarming na-
ture of UN demographic projections (UNICEF, 2017). Circa 2050, 
Nigeria should have 400 million inhabitants (including 212 million in 
urban areas), whereas other forecasts extrapolate up to 864 million 
births by the end of the century (Ali et al., 2016; Cilluffo and Ruiz, 
2019). While human development indexes and electricity use appear 
highly correlated in most regions of the world1 (Akuru and Animalu, 
2009; Akuru et al., 2017; Amaral et al., 2005; Alam et al., 2016; O’neill 
et al., 2010; World Bank, 2019; Lawal et al., 2020; Shahbaz et al., 2018; 
Soytas et al., 2022), Nigeria’s high demographic trends highlight how 
limiting the extraction and consumption of resources in the present may 
constrain aggregate income and, thus, limit future employment per-
spectives, already in critical lack.2 If the developing economy is iden-
tified as an energy-dependent one, lowering the power supply (through 
energy conservation policies) may contradict the well-established 
“growth hypothesis.” Conversely, the expansion of urban activities has 
pushed up the forest and land degradation and impoverished soils, 

which in turn might affect the productive resource base of the economy 
(Ray and Ray, 2011). Therefore, designing effective regulatory measures 
over environmental common property resources and air quality is 
critical. 

Second, Nigeria is undergoing drastic shifting across both economic 
and social vectors, including the development of agro-industrial sectors, 
deregulation of the financial sector, elaboration of a public system 
through customs and excise duties, and achievement of a higher edu-
cation system (Ibanichuka et al., 2016; Isibor et al., 2017; Sulaiman and 
Abdul-Rahim, 2018). As it needs a more diversified economy, the 
country tempts to reduce its heavy dependence on crude oil exports, in 
conflict with most Sustainable Development Goals (SDGs) (Mesagan 
et al., 2018). Although its primary energy resources endowment allows 
for a limited import dependence, expanding the industrial and agricul-
tural sectors will require energy, for which local health and environ-
mental costs remain conditioned by the fossil or renewable inputs used 
throughout the domestic electricity production process. 

Third, looking at information on Nigeria’s energy balances and GHG 
emissions trends helps draw the nature of supply security and environ-
mental challenges in this country. Above all, nearly 60% of the popu-
lation remains out of grid-connected power and other standard 
electricity services (Akuru and Okoro, 2010). More precisely, the World 
Development Indicators (2023) reports that access to electricity in the 
urban areas reached 86% (% of the urban population) in 2020, which 
contrasts with rural electrification (eq. to 34% of the rural population) 
for the same year. Hence, current per capita electricity consumption 
reflects this energy gap, falling below a pretty low figure (100 kWh in 
2010: one of the lowest worldwide). Between 1971 and 2018 period, the 
total consumption of energy rose from 31,906.8 to 140,902.8 kilotons of 
oil equivalent (ktoe), whereas the total power supply was itself multi-
plied 15 times (from 136.4 to 2262.7 ktoe) over the same period (IEA, 
2020a, 2020b). Furthermore, the evolution of atmospheric carbon 
components is critical. Over the long historical time frame, Nigeria’s 
annual carbon dioxide emissions from fossil fuels and industry (land use 
change being excluded) recorded a substantial increase from 18,320 
tons in 1915, to 136.99 million tons in 2021, with an exponential rise 
over the 2000–2011 period (from 39.59 million tons to 129.57 million 
tons) (Our World in Data, 2023). 

Nonetheless, given the population size of Nigeria, demographic- 
weighted figures show per capita footprint information displaying 
much smaller scales (from 0.01 tons to 0.64 tons per capita over the 
1915–2021 period) (Our World in Data, 2023). Interestingly, the rela-
tive decline recorded after the 1980s matches the booming population 
rise that pushes down the total per capita ratio. On the other hand, its 
energy intensity, defined as the amount of energy consumed per unit of 
GDP (i.e., it captures how efficiently a country uses energy to produce a 

Abbreviations 

ACF Auto-Correlation Function 
ARDL Auto-Regressive Distributed Lags 
CAIT Climate Analysis Indicators Tool 
CNN-LSTM Convolution Neural Network, Long Short-term Memory 
CO2 Carbon Dioxide 
DFE Dynamic Fixed Effects 
DTW Dynamic Time-Warping 
ERT Energy for Rural Transformation 
FDI Foreign Direct Investments 
FMOLS Fully Modified Ordinary Least Squares 
GFCF Gross Fixed Capital Formation 
GHG Greenhouse Gas 
GMM Generalized Method of Moments 
IEA International Energy Agency 

IPCC Intergovernmental Panel on Climate Change 
ML Machine Learning 
MuSIASEM Multi-Scale Integrated Analysis of Societal and 

Ecosystem Metabolism 
NIPPS National Integrated Power Projects 
NIPR Nigeria Industrial Revolution Plan 
PACF Partial Auto-Correlation Function 
PMG Pooled Mean Group 
RETs Renewable Energy Technologies 
STIRPAT Stochastic Impacts by Regression on Population, 

Affluence, and Technology 
UNICEF United Nations of International Children’s Emergency 

Fund 
VAR Vector Auto-Regressive 
VECM Vector Error Correction Model 
WDI World Development Indicators  

1 This was notably the case in China and India whose booming population has 
been identified as a non-negligible development-enabler in the past decades 
(Mazur, 1994; Mesagan et al., 2018). It also corroborates the 2014 review of the 
World Urbanization Prospects by the United Nations (UN) DESA’s Population 
Division stating that China, India, and Nigeria will lead the world urbanization 
growth in the coming decades. Asia and Africa are expected to record 90% of 
the global urbanization growth in the future, cover 37% of world’s urban 
population (India and Nigeria together) by mid-century (Ali et al., 2016).  

2 Nigeria’s unemployment rate rose from 3.10% to 43.1% over the 
1970–2018 period (Raifu et al., 2020). 
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given amount of economic output), decreased from 1.30 kWh in 1984 to 
0.46 kWh in 2018 (Our World in Data, 2023). Fig. 1 displays the total 
electricity generation by source from 1990 to 2020 in Nigeria (and 
shows the dominant place devoted to fossil fuels), whereas the total final 
energy consumption by source from 1990 to 2020 is shown in Fig. 2. 
Finally, Fig. 3 presents a chart of GHG emissions by the domestic sector 
for 2019. 

Therefore, electricity rationing and blackouts are frequent for 
households and industries, thus slowing down the country’s transition 
toward an industrial and productive path requiring fast-growing energy 
needs. As of 2021, industry (including construction) represented 31.4% 
of total GDP (i.e., 90.39 billion of constant 2015 US$), whereas services 
and agriculture covered 43.8% (i.e., 302.69 billion of constant 2015 US 
$) and 23% of GDP (i.e., 119.49 billion of constant 2015 US$), respec-
tively (World Development Indicators, 2023). To cope with this demand, 
non-renewable installed capacities3 to generate power (and notably coal 
fire plants) have been expanded, being cheaper, more efficient, and 
operationally flexible than renewables, which hindered the early 
deployment of a low-carbon energy sector. Accordingly, Nigeria’s 
electricity sector is facing a double-edged challenge:  

• Ensuring affordable power access to its growing population  
• Allowing for the secure deployment of low-carbon energy sources. 

To offer a comprehensive picture of this critique power segment and 
provide energy security and environmental sustainability insights, since 
no clear consensus has been reached, this paper examines the inter- 
relationships between population, electricity demand, and environ-
mental pollution dynamics in this topic, the power sector in Nigeria. 
Based on the literature, the population-GDP nexus has been subject to 
many applications (Kuznets, 1968; Becker et al., 1999; Dao, 2012; 
Shaari et al., 2013; Peterson, 2017; Abeywardhana, 2019; Kuhe, 2019; 
Magazzino et al., 2023). Some underlined that a poverty trap might 
emerge as population and income grow (Bloom and Canning, 2001), 
while others did not (Kraay and McKenzie, 2014). However, Casey and 
Galor (2017) showed that lower fertility could increase per capita in-
come and lower carbon emissions. Second, both single-country (Amaral 

et al. (2005) for Brazil; Rehman and Deyuan (2018) for Pakistan; Ima-
siku and Ntagwirumugara (2020) for Rwanda), multi-country (Keho 
(2016) for 12 Sub-Saharan African countries) or global-scale (Sheffield, 
1998) approaches were adopted to investigate this nexus for developing 
countries. However, while most of the existing papers relied on 
employment data to conduct their analysis (Shahbaz et al., 2013; 
Bhattacharya et al., 2016; Magazzino and Schneider, 2020), population 
driver remains overlooked by the energy and environmental literature, 
despite much stronger policy-relevant potentials for regions displaying 
fast demographic features (Schneider, 2022). Regarding the Nigerian 
case, very few seminal empirical applications exist (Aiyetan and Olo-
mola, 2017; Mesagan et al., 2018), but they systematically relied on 
aggregate energy data, avoiding other fundamental sub-components, 
including the power sector. Third, the population-CO2 emissions nexus 
has attracted extensive attention in the research domain, but mainly 
from a global perspective,4 whereas only a few recent examinations 
considered the single Nigerian case even though limiting their inquiry to 
single country case study (Alege and Ogundipe, 2015; Sulaiman and 
Abdul-Rahim, 2018; Yahaya et al., 2020). Fourth and finally, most 

Fig. 1. Total electricity generation (GWh) by source (Nigeria, 1990–2020). 
Source: International Energy Agency (2023). 

Fig. 2. Total final energy consumption (TJ) by source (Nigeria, 1990–2020). 
Notes: the yellow area represents electricity consumption. 
Source: International Energy Agency (2023). 

Fig. 3. GHG emissions (million tons) by sector (Nigeria, 2019). 
Source: Our World in Data (2023) based on Climate Analysis Indicators 
Tool (CAIT). 

3 The proportion of electricity produced from oil, gas, and coal sources has 
risen from 16.6% to 81.8% over the 1971–2015 period, making the electricity 
and heating sector now responsible for more than 40% of the global CO2 
emissions (WDI, 2019). 

4 See O’neil et al. (2010) for 34 countries; Alam et al. (2016) for Brazil China, 
India, and Indonesia; Zoundi (2017) for 25 African countries; Dong et al. (2019) 
for 128 countries; Hashmi and Alam (2019) for 29 OECD countries; Weber and 
Sciubba (2019) for 22 EU countries; Nabi et al. (2020) for 98 countries. 
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previous assessments relied on econometric tools (Granger causality 
test, Auto-Regressive Distributed Lags (ARDL), and Vector 
Error-Correction Model (VECM)) that did not preclude conflicting con-
clusions. That is, the use of Machine Learning (ML) experiments remains 
incipient for such type of study, although AI-derived techniques recently 
demonstrated great potential in complementing standard time-series 
outputs (Mele and Magazzino, 2020; Magazzino et al., 2020a, 2020b, 
2020c; Soytas et al., 2022). 

Following previous empirical studies (Akpan and Akpan, 2012; 
Chindo et al., 2015; Rafindadi, 2016), we analyzed in a multivariate 
framework the relationship among population, electricity, and growth 
for a geopolitical oil-exporter relevant country. 

In sum, this paper contributes to the literature in three distinct 
manners (both empirically and methodologically). First, this is the first 
empirical assessment of the long-run effect of population dynamics on 
demand for electricity, along with the CO2 emissions from Nigeria’s 
power and heating sector, using actual time-series data spanning the 
past five decades. Second, this study contrasts with previous ones as it 
conducts two independent estimation strategies thought to ensure more 
robust outcomes: a time-series analysis (i.e., unit root and cointegration 
tests, Least Squares with breaks regression, spectral Granger causality 
tests) complemented with ML robustness checks (i.e., ML clustering 
method). Third and finally, this research displays a last competitive edge 
as it uses the concept of energy security as a reading grid to interpret the 
results and generate policy implications for Nigeria’s electricity sector. 

The rest of the paper is organized as follows. Section 2 presents the 
relevant literature. Section 3 describes the data and the empirical 
approach. Section 4 displays and discusses the empirical findings. Sec-
tion 5 gives concluding remarks and policy implications. 

2. Literature review 

This Section presents the literature grouped into the following sub-
sections: population-electricity (2.1.), population-growth (2.2), and 
population-environment (2.3) links. 

2.1. Population-electricity 

A strand of the literature examined the relationships between energy 
consumption and economic growth (Odhiambo, 2009; Apergis and 
Payne, 2009; Ozturk and Acaravci, 2010; Gozgor et al., 2018; Shahbaz 
et al., 2018), and a subset of it considered the electricity component 
(Shiu and Lam, 2004; Altinay and Karagol, 2005; Shahbaz and Lean, 
2012; Osman et al., 2016; Lawal et al., 2020) in either bivariate or a 
multivariate framework for a single country or a multi-country setting 
(Nepal and Paija, 2019a). Furthermore, various studies focused on the 
population-energy nexus for various cases. In addition, Sheffield (1998) 
analyzed the population growth rate and energy consumption correla-
tions with global insights. Focusing on the ten major regions of the world 
(North America, Latin America, Europe OECD, Former Soviet Union, 
and Central and Eastern Europe, China, Pacific OECD, East Asia, South 
Asia, Africa, and the Middle East), the author provided an estimated 
growth of the energy demand. Overall, this study highlighted that the 
growing population expansion worldwide requires a massive utilization 
of energy resources. Amaral et al. (2005) adopted an innovative 
approach and estimated the population-energy consumption nexus 
using the Defense Meteorological Satellite Program (DMSP) with 
night-time satellite data for the case of Brazil. They studied 749 mu-
nicipals in Amazonia, concluding that the population is linearly corre-
lated with power consumption. Shaari et al. (2013) investigated the 
relationship between population, energy consumption, and economic 
growth in Malaysia. Empirical results confirmed a long-term relation-
ship between population, energy consumption, and economic growth in 
this country. Keho (2016) explored the drivers of energy consumption 
for 12 Sub-Saharan African countries, collecting data from 1970 to 
2011. Results provided evidence that energy consumption is 

cointegrated with population and real GDP per capita, Foreign Direct 
Investments (FDI), and urbanization. 

Moreover, the study of the long-run determinants of total energy 
consumption confirmed the leading role of population and per capita 
income for the whole sample. Rehman and Deyuan (2018) examined the 
link between economic growth, electricity access, energy use, and 
population growth in Pakistan using yearly data covering 1990–2016. 
Applying an ARDL bounds testing approach to cointegration, results 
indicated that the electricity access to the total population, energy use, 
population growth, and urban population growth significantly impact 
the economy’s growth. 

Furthermore, population and energy use appear closely related. 
Lizunkov et al. (2018) presented the forecast for world energy con-
sumption, considering population growth through 2030. The estimated 
trends of primary energy consumption per capita are fundamentally 
different when comparing countries with rapid population growth (i.e., 
most developed economies) to others (i.e., developing countries). 
Furthermore, they highlighted that some developing countries could not 
sufficiently increase their per capita energy consumption to meet the 
outstripping population growth. Hence, the energy poverty concern 
remains, and massive energy supply expansion is suggested. More 
recently, Imasiku and Ntagwirumugara (2020) analyzed how the pop-
ulation growth in Rwanda exerts energy-water-food-land pressures. 
Although policymakers promoted these sectors, they omitted integrating 
population growth and land usage within the forecasting, posing a 
critical concern if left unattended. 

The authors recommended using the Multi-Scale Integrated Analysis 
of Societal and Ecosystem Metabolism (MuSIASEM) method to design 
appropriate transition policies in Rwanda. On a more neighbouring 
topic, He et al. (2023) investigated how city centrality, population 
density, and electricity efficiency interact. They employed continuous 
night light data and LandScan population data to construct a mono-
centric index to measure whether a city tends to be a monocentric or 
polycentric spatial structure and estimated the impact of such structure 
on energy and power efficiency by using a two-way fixed effects model. 
Results showed that increasing the urban mono-centricity index would 
significantly reduce urban energy intensity. Jain et al. (2023) investi-
gated the climate sensitivity of electricity consumption and peak de-
mand in six energy-intensive Indian states across heterogeneous climate 
zones using a non-parametric approach known as multivariate adaptive 
regression splines and suggested that the highest temperature sensitivity 
of cooling electricity consumption peaks. All in all, Park and Yun (2022) 
offered evidence on the social determinants of residential electricity 
consumption in Korea, whereas Wang et al. (2023) applied a Convolu-
tion Neural Network, Long Short-Term Memory (CNN-LSTM) model 
with multimodal information to forecast power demand in China. 

2.2. Population-economic growth 

Population growth is said to play a crucial role in the development 
process of a country. The relationship between population and economic 
growth is controversial. A well-known theory regarding the population- 
development nexus comes from Malthus (1797), who argued that the 
stationary level of world per capita income at the end of the 18th century 
was related to the elevated population growth rate. The Malthusian 
income determination model postulates that a higher population may 
depress per capita incomes since it reduces marginal productivity. 
Subsequently, establishing the foundations of the theory of economic 
growth, the neo-classical models (notably (Solow, 1956; Swan, 1956) 
enlarged the knowledge of the role of population growth and supported 
the inclusion of capital formation determinants. Later, Kuznets (1968) 
provided a seminal contribution to the literature on this topic, analyzing 
how much high population growth impedes GDP growth. Related find-
ings emphasized that technological and economic factors may allow for 
sufficient economic gains in most developing countries under a signifi-
cant population rise. Becker et al. (1999) sketched out a few features of 
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past research on population and growth, providing important implica-
tions for the effects of population dynamics on economic growth. Upon 
them, they questioned the well-established Malthusian theory and stated 
that, with a few exceptions, a greater population does not necessarily 
lower per capita incomes through diminishing returns. Although posi-
tive and negative effects of population on productivity are found, larger 
populations may boost specialization and favour investments in 
knowledge. Bloom and Canning (2001) estimated the statistical rela-
tionship between the youth-age and old-age population shares and 
economic growth in Asian countries. Regression analysis indicated that 
an increase in old-age shares might not significantly impact the econo-
my’s growth in the long run. Inversely, an increase in youth-age shares 
negatively affects the long-run economic performance. Dao (2012) 
investigated the population-economic growth nexus and took the de-
mographic transition in 43 developing countries as an illustrative case. 
Results highlighted that per capita GDP growth is linearly dependent 
upon population growth. Kraay and McKenzie (2014) investigated the 
various underlying poverty trap mechanisms that have notably been 
used to explain the poverty concerns of highly populated developing 
economies. Through various approaches (“big-push” theories of devel-
opment, hunger-based traps, and occupational poverty trap), they 
concluded that these are rare and largely limited to remote or disad-
vantaged areas. Hence, relying on non-traditional policy (i.e., migra-
tion) is recommended. Looking at the feedback growth-population 
channel, Aiyetan and Olomola (2017) showed a unidirectional causality 
flow from economic growth to population growth in Nigeria. Performing 
a global-scale assessment, Casey and Galor (2017) provided evidence 
that lower fertility can increase per capita income and lower carbon 
emissions. This finding contrasts with a strand of the literature and 
suggests that population policies could be part of the approach to 
combating global climate change. Peterson (2017) collected historical 
data to link population growth and overall economic growth over the 
past 200 years. Empirical insights showed that low population growth in 
high-income countries would likely create social and economic issues. 
Conversely, higher population growth in low-income countries may 
slow their development. In addition, important income inequality con-
cerns may emerge under limited migration. More recently, Abey-
wardhana (2019) looked at the impact of the aging population on 
economic growth in South Asia, assessing whether employment targets 
would be sufficient to compensate for the negative impact of the de-
mographic burden expected in the region. An important finding is that 
GDP remains highly sensitive to demographic change. Hence, a 
degreasing working-age population may adversely affect the region’s 
growth. Kuhe (2019) investigated the empirical relationship between 
population growth and economic growth in Nigeria. Based on data from 
1960 to 2015, Engle-Granger residual-based cointegration test, Fully 
Modified Ordinary Least Squares (FMOLS), Vector Auto-Regressive 
(VAR), and Granger causality test are applied. Although evidence of 
cointegrating relationships among variables is provided, no significant 
causal relationship between population growth and economic growth in 
Nigeria is established. For the Gulf Cooperation Council (GCC) coun-
tries, Al Bannay and Takizawa (2022) proposed an empirical framework 
to capture the decoupling potential of water production, power gener-
ation, GDP and population. Rennert et al. (2022) advanced research on 
the social cost of carbon and the long-term probabilistic projections of 
population, GDP, and emissions. Related work by Mason and Lee (2022) 
proposed a reading grid highlighting six potential scenarios through 
which population will affect the global economy by mid-century. 
Overall, Fariss et al. (2022) offered newly updated estimates on the 
historical GDP-population nexus using data series spanning 500 years 
and provided inclusive knowledge on this long-debated topic. 

2.3. Population-environment 

A seminal assessment has been conducted by O’Neil et al. (2010), 
who conducted a comprehensive analysis of the implications of 

demographic change for global carbon dioxide emissions. An energy- 
economic growth model that accounts for a range of demographic dy-
namics is employed to do so. Based on information collected from 34 
countries, they showed that slowing population growth could provide 
16–29% of the emissions reductions suggested to be necessary by 2050 
to avoid dangerous climate change. Tightly linked to this issue, Ray and 
Ray (2011) studied the effect of population growth on India’s land, 
forest, water, and energy resources. Findings revealed that rapid popu-
lation growth is central to decreasing per capita agricultural land, forest, 
and water resources. Furthermore, population pressure was established 
as a leading contributor to land degradation and soil erosion. 

A range of studies has assessed population-environmental pollution 
through multi-country approaches. Upon the most recent contributions, 
Alam et al. (2016) examined the impacts of population, income, and 
energy consumption on CO2 emissions in Brazil, China, India, and 
Indonesia. They used data for 1971–2012 and performed an ARDL 
analysis considering linear and non-linear assumptions for time-series 
data. While a significant relationship between CO2 emissions and pop-
ulation growth is found for India and Brazil, an insignificant one is found 
for China and Indonesia in both the short and long runs. Zoundi (2017) 
explored the viability of the Environmental Kuznets Curve (EKC) for 25 
selected African countries and incorporated population growth and 
renewable energy consumption in a multivariate framework. General-
ized Method of Moments (GMM), Dynamic Fixed Effects (DFE), and 
Pooled Mean Group (PMG) results highlighted that population growth 
does not affect CO2 emissions in Africa. This finding contradicts Dong 
et al. (2019) who used the Stochastic Impacts by Regression on Popu-
lation, Affluence, and Technology (STIRPAT) model and the Dumitrescu 
and Hurlin (2012) panel causality test on a panel dataset of 128 coun-
tries covering 1990–2014. For the global panel, a unidirectional cau-
sality is found running from population size to CO2 emissions. This 
finding indicates that the population may be an effective pollution 
driver, and adequate policies should be designed to address the climate 
issue. This result aligns with those of Hashmi and Alam (2019), who 
extended the analysis on evaluating factors influencing carbon emis-
sions for 29 OECD countries. 

Moreover, the authors showed that a 1% increase in population is 
associated with a 1.5% rise in CO2 emissions (in the DFE model), while 
real GDP per capita growth is found to increase CO2 emissions by 0.49%. 
Accordingly, population and GDP emerge as two CO2 driving forces in 
the OECD. This evidence corroborates the findings from Liddle and Lung 
(2010), Wang et al. (2013), and Uddin et al. (2016), who indicated that 
population remains the most influential variable on CO2 emissions. 
Weber and Sciubba (2019) compiled a dataset of 1062 regions within 22 
EU countries and assessed the population growth-CO2 emissions-urban 
land use relationship with data from 1990 to 2006. Results from panel 
data regressions, spatial econometric models, and Propensity Score 
Matching (PSM) confirmed that regional population considerably affects 
CO2 emissions and urban-land use in Europe, although more pro-
nounced in the Western states. Recently, Nabi et al. (2020) explored the 
dynamic linkages between population growth, price level, poverty 
headcount ratio, and carbon emissions for 98 countries in 2011. Results 
of the cross-sectional regression underlined the positive effect of poverty 
rates on CO2 emissions, while a U-shaped curve between economic 
growth and environmental pollution is registered. Hence, this indicates 
that addressing the inequality issue should be at the forefront of 
development policies, as the emergence of a poverty trap may seriously 
hinder the sustainability perspectives of the country. Looking at the 
feedback channel, Ta et al. (2022) estimated and projected population 
and GDP exposure to extreme precipitation events on Loess Plateau 
under the 1.5 ◦C global warming level. 

Finally, a few recent examinations considered the Nigerian case. 
Isola and Ejumedia (2012) inspected the effect of population and oil 
production on CO2 emissions in Nigeria. Results of the ECM confirmed 
that population growth, oil production, and per capita income are 
positively related to CO2 emissions in this economy. Alege and Ogundipe 
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(2015) tested the relationship between economic growth and environ-
mental quality in Nigeria, controlling for population density and using 
data covering 1970–2011. They showed that as population density in-
tensifies, the marginal impact of GDP on emissions decreases, indicating 
that the pressure for cleaner environments allows for establishing an 
inverted U-shaped curve among economic and environmental in-
dicators. Sulaiman and Abdul-Rahim (2018) assessed the nexus between 
population growth and CO2 emissions through an ARDL model covering 
various periods (1971–2000, 1971–2005, and 1971–2010) in Nigeria. 
While energy consumption and economic growth drive CO2 emissions, 
the population is not a significant determinant of CO2 emissions in all 
three periods in the long run. Lastly, Yahaya et al. (2020) analyzed the 
role of population growth, energy use, GDP, financial progress, and 
trade on environmental degradation in Nigeria. Employing an ARDL 
technique from 1980 to 2014, a long-run association is discovered 
among the variables. In addition, short-run results indicated that pop-
ulation density, energy consumption, and financial progress increase 
CO2 emissions. However, output growth reduces environmental pollu-
tion in Nigeria. Based on the long-run estimations, population growth is 
emphasized to accelerate environmental degradation. 

3. Materials and methods 

3.1. Data collection 

To implement our model, we collected data on Nigeria for the 
following core variables: population (total), total electricity consump-
tion (kilo tons of oil equivalent), per capita GDP (constant LCU), Gross 
Fixed Capital Formation (GFCF, constant LCU), CO2 emissions from fuel 
combustion (restricted to electricity and heat production, thousand 
tons). Accordingly, total electricity consumption is used as a proxy for 
electricity demand. As made in Nepal and Paija (2019a, 2019b), GFCF is 
a closed proxy value for capital stock. CO2 emissions series is used as a 
proxy for environmental pollution. The data series cover the 1971–2019 
period. Population, per capita GDP, and GFCF data are taken from the 
World Development Indicators database (WDI, 2019).5 Data on elec-
tricity consumption are taken from the OECD Environment Statistics 
database (2020).6 CO2 emissions from electricity and heat production 
are taken from the IEA CO2 emissions from fuel combustion Statistics 
(IEA, 2020a, 2020b).7 Data definitions, data sources, and variable def-
initions are summarized in Table 1, while exploratory data analyses and 
scatterplot matrices are given in Table A and Figure A, respectively (in 
the Appendix). 

3.2. Methodology 

In this paper, the behaviour of the log-periodogram regression esti-
mation introduced by Geweke/Porter-Hudak (Geweke and 
Porter-Hudak, 1983) is considered for various slowly decaying trends in 
the data. The GPH method uses non-parametric methods – a spectral 
regression estimator – to evaluate the long memory (fractional inte-
gration) parameter d of a time series without explicit specification of the 
“short memory” Auto-Regressive Moving Average (ARMA) parameters 
of the series. Furthermore, we apply the Bayer and Hanck (Bayer and 
Hanck, 2013) combined cointegration approach to examine the long-run 
relationship among the variables. This test combines the results of 

previous cointegration approaches (Engle and Granger, 1987; Johansen, 
1991; Boswijk, 1994; Banerjee et al., 1998) and provides Fisher F sta-
tistics for more conclusive and reliable empirical findings. Then, the 
Gregory and Hansen (1996) residual-based test for cointegration is 
employed to test for structural breaks in the cointegrating relationship. 

Afterward, we run the Least Squares with breaks regression to esti-
mate the model. The standard linear regression model assumes that the 
model’s parameters do not vary across observations. Nevertheless, 
structural change can significantly alter the estimation’s results. 
Consequently, in this paper, linear regression models subject to struc-
tural change are performed. The regime breakpoints are estimated ac-
cording to Bai (1997), Bai and Perron (2003), and related techniques. 

Finally, this study employs the Breitung and Candelon (2006) 
Spectral Granger (BCSG) causality test. Such a test is superior to stan-
dard causality tests because it can predict the target variables at precise 
time frequencies. Hence, the technique enables us to identify the his-
torical changes to implement the policy intervention. However, the 
methodology is limited to a finite time horizon and cannot predict 
infinite time models. 

Afterward, we use some ML tools for robustness checks. In Artificial 
Intelligence (AI) context, ML lets computers find patterns in data and 
make decisions based on this information (Aguiar-Pérez et al., 2023). 
Typically, unsupervised learning consists of grouping datasets into ho-
mogeneous clusters based on their characteristics. When clustering 
time-series, we attempt to find relevant clusters of the series that are 
maximally similar in their clusters (or groups of series) and, simulta-
neously, maximally different between the different series clustered 
together. 

In this respect, we consider an unsupervised learning approach to 
analyze the selected time series. To this extent, we select different al-
gorithms to classify the series. So, we start by considering different al-
gorithms used in economic applications and use them to classify the 
selected time series. Then, we choose the PVclust algorithm to evaluate 
the uncertainty. 

Following Montero and Vilar (2015) from two real-value processes: 

X={xt, t∈Z} (1)  

Y={yt, t∈Z} (2)  

as time series composed of real-value data points. In this way, we get in 
the clustering process two realizations as sequences of T observations 
represented as vectors of length T. So, we can write: 

XT =(x1,…, xT)
′

(3)  

and, at the same time, a second realization: 

YT =(y1,…, yT)
′

(4) 

Alternative clustering methodologies are used to categorize the time 

Table 1 
Data description.  

Indicator Acronym Measure Source 

Population POP Total 
population 

World Development 
Indicators (WDI, 2019) 

Electricity consumption EPC Kilo tons of oil 
equivalent 
(ktoe) 

OECD Environment 
Statistics (2020) 

CO2 emissions from fuel 
combustion (electricity 
and heating 
production) 

CO2 Thousand tons IEA CO2 Emissions 
from Fuel Combustion 
Statistics (2020) 

Per capita GDP RGDP Constant LCU World Development 
Indicators (WDI, 2019) 

Gross Fixed Capital 
Formation 

K Constant LCU World Development 
Indicators (WDI, 2019) 

Source: authors’ elaborations. 

5 Data on Population, per capita GDP, and GFCF are available at: https:// 
databank.worldbank.org/source/world-development-indicators.  

6 Data on electricity consumption are available at: https://data.oecd.org/ 
environment.htm. 

7 Data on CO2 emissions from fuel combustion (electricity and heating pro-
duction) are available at: <u>https://www.oecd-ilibrary.org/energy/data/i 
ea-co2-emissions-from-fuel-combustion-statistics/co2-emissions-by-prod 
uct-and-flow_data-00430-en.</u>. 
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series as groups with some specific similarities. We consider different 
clustering approaches (methods and algorithms) to check the results 
obtained. Thus, we use the Euclidean distance (Liao, 2005; Berthold and 
Höppner, 2016): 

DE(xT, yT)=

̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅

∑T

t=1
(xt − yt)

2

√
√
√
√ (5) 

Another relevant measure to classify the time series is Fréchet’s 
distance (Fréchet, 1906). When comparing two curves, Fréchet’s dis-
tance takes into account the point locations and orderings along the 
curves to calculate the similarity between them: 

DF(xT, yT)=min
r∈N

(

max
i=1,..,n

⃒
⃒xai − yci

⃒
⃒

)

(6) 

In order to use this approach, we need to set all the possible se-
quences of n pairs. It is important to note that we are explicitly preser-
ving the order of the different observations. Thus, the distance between 
them can be calculated based on the observed pairs of two time series. 

Given N as all sequences of n different pairs which are considering all 
the data: 

r=
( (

xa1 , yc1

)
,…,

(
xan , ycn

))
(7) 

and given as indices within a time series that represent specific points 
in time: 

ai, cj ∈ {1,…,T} (8)  

with a1 = c1 = 1 and an = cn = T, where we also have ai+1 = ai or ai+1 and 
ci+1 = ci or ci+1 for i ∈ {1, .., n − 1} (Montero and Vilar, 2015). Fréchet’s 
distance differs from other dissimilarity measures because it considers 
the order of observations in a time series; this approach evaluates the 
structure and orderings of the time series and the observations across 
time. 

Dynamic Time Warping (DTW) distance is another approach that 
accounts for the order of the time series (Sankoff and Kruskal, 1983; 
Berndt and Clifford, 1994). This distance can consider time series of 
various lengths and shapes. In many real-world applications, the size 
and structure of time-series data might change due to variable sample 
rates, measurement errors, or other causes. Furthermore, the DTW dis-
tance aligns the two time series by reducing the distance between them, 
allowing for more exact grouping findings on the clustering. Therefore, 
we have: 

DDTW(xT, yT)=min
r∈N

(
∑

i=1,..,n
|Xai − Yci |

)

(9) 

Another dissimilarity criterion is based on Pearson’s correlation 
(Liao, 2005; Berthold and Höppner, 2016). Pearson’s correlation coef-
ficient is a straightforward dissimilarity measure for analyzing the 
similarity between two time series. This approach can analyze the linear 
relationship between two series by calculating the correlation coeffi-
cient. In this sense, the dissimilarity criterion can be written as follows: 

COR (XT,YT)=

∑T

t=1
(xt − yT)(yt − yT)

SxSy
(10)  

where we consider as xT and yT the mean of their realization process. In 
the case of xT, we have: 

xT =
1
N

∑T

t=1
xt (11) 

and 

Sx =

̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅

∑T

t=1
(xT − xT)

2

√
√
√
√ (12) 

Another relevant problem in time-series cluster analysis is evaluating 
uncertainty about obtained clusters. With the Pvclust algorithm (Suzuki 
and Shimodaira, 2006), considering the clustering performed, running a 
bootstrap analysis to assess the associated uncertainty is possible. It is 
recognized that uncertainty assessment is of paramount importance and 
can be used to evaluate the different clusters obtained. 

Auto-Correlation Function (ACF) distance (Galeano and Pena, 2000; 
Montero and Vilar, 2015) may be used to classify the time series taking 
into account their temporal structure (i.e., temporal dependence). Let us 
consider the autocorrelation vectors estimated from the time series XT 
and YT: 

ρ̂XT
=
(

ρ̂1,xT
, .., ρ̂L,xT

)′
(13) 

and also 

ρ̂YT
=
(

ρ̂1,yT
, .., ρ̂L,yT

)′
(14) 

Then, we take the Euclidean distance used to construct the distance 
DACF between two relevant processes. In addition, a distance from the 
Partial Auto-Correlation Function (PACF) DPACF is simple to obtain. 

Finally, looking at the alternative models, a specific distance might 
be derived based on the models’ differences. Therefore, Piccolo’s dis-
tance DP is calculated considering the parameter estimations of the 
ARMA models for the time series XT and YT. 

Validation of clusters requires examining the groups generated by 
the clustering method. We validate each obtained cluster by considering 
a silhouette plot and maximizing the average silhouette width, deter-
mining if the number of clusters is correct. Thus, we determine the exact 
number of clusters for each methodology. 

Finally, for each variable, we compute the different methods in 
which the single variable falls in the same cluster. The final measure 
determines the level of concordance of the different time series in the 
same clusters obtained by the different procedures considered and al-
lows us to understand the level of concordance of the economic time 
series. 

4. Empirical findings 

The Geweke and Porter-Hudak (1983) test is performed to check the 
stationarity properties of the variables. The results are given in Table 2. 

The GPH test, applied to our series, generates estimates of the long 
memory parameter, with a power = 0.50, that cannot reject the null 
hypothesis at the 5% significance level using the z test for CO2 emissions 
and capital formation. On the contrary, real GDP seems non-stationary, 
while the test statistic varies over the power spectrum for electric power 
consumption. A range of power values (from 0.40 to 0.60) is also 
calculated to evaluate the robustness of the GPH estimate. 

Moreover, we check for the (eventual) presence of a long-run rela-
tionship among the selected series, applying the Bayer and Hanck 
(2013) procedure (see Table 3). The first model, which in the deter-
ministic specification does not allow either a constant or a trend, gives a 
test statistic = 7.8259 (with a 5% Critical Value = 10.640), based on 
Engle and Granger (1987) and Johansen (1991) tests, and a test statistic 
= 12.4445 (with a 5% Critical Value = 20.237), based on Engle-Granger, 
Johansen, Boswijk (1994), and Banerjee et al. (1998) tests. We can as-
sume that a cointegrating relation does not emerge from these findings. 
The second model includes an unrestricted constant, with a test statistic 
= 7.6406 (with a 5% Critical Value = 10.637), based on Engle and 
Granger and Johansen tests, and a test statistic = 10.8322 (with a 5% 
Critical Value = 20.486), based on all four tests. Again, we cannot find 
any support for a long-run relationship. Finally, the last model includes 
both a linear and a quadratic trend, with a test statistic = 6.6008 (with a 

C. Magazzino et al.                                                                                                                                                                                                                             



Utilities Policy 82 (2023) 101576

8

5% Critical Value = 10.711), based on Engle and Granger and Johansen 
tests, and a test statistic = 7.0730 (with a 5% Critical Value = 20.788), 
based on all tests. Here, the evidence of a lack of cointegration is clear, 
and the null hypothesis cannot be rejected at any significance level. 

For robustness purposes, the Gregory and Hansen (1996) cointe-
gration technique is also performed, allowing for potential structural 
breaks in the data. 

The results based on the Gregory and Hansen cointegration proced-
ure suggest that the calculated statistic is smaller than the 5% Critical 
Value reported by Gregory and Hansen (1996) in all four deterministic 
specifications. This test confirms that we cannot reject the null hy-
pothesis of no cointegration in favour of the existence of at least one 
cointegration relationship in the presence of a structural break. 
Regarding the structural breaks, the results indicate their occurrence 
between 1979 and 1986, coinciding with the two oil shocks (see 
Table 4). 

Given the possible structural breaks in the data, the Least Squares 
with breaks regression is estimated. The Heteroskedasticity and 

Autocorrelation-Consistent (Newey-West) Standard Errors with the 
Bartlett kernel is selected, allowing error distributions to differ across 
breaks and setting a trimming percentage of 15 and a significance level 
of 0.05. 

The Bai and Perron test results suggest splitting the sample period 
into four sub-periods: 1981–1990, 1991–2001, 2002–2007, and 
2008–2018. The estimation results highlight that electricity consump-
tion, real GDP, and capital formation significantly affect CO2 emissions 
in the first and third sub-periods. However, only real GDP has exhibited 
a significant coefficient in recent years. 

The empirical findings evidence a positive effect of electricity con-
sumption on emissions in Nigeria, which is also documented in Akpan 
and Akpan (2012). The positive association between aggregate income 
and CO2 emissions in Nigeria is in line with previous empirical results by 
Akpan and Akpan (2012), Ayadi (2014), Lin et al. (2015), Rafindadi 
(2016), Sulaiman and Abdul-Rahim (2018), and Maduka et al. (2022). 
Finally, Mesagan (2015) shows capital formation’s influence. 

As regards the diagnostic tests, the Breusch-Godfrey serial correla-
tion LM test does not reject the null hypothesis (F-statistic = 1.5650, P- 
Value = 0.2336), which confirms that the estimated model does not 
suffer from autocorrelation problems. In addition, the Breusch-Pagan- 
Godfrey heteroskedasticity test does not soundly reject the null hy-
pothesis of homoskedasticity (F-statistic = 0.3417, P-Value = 0.9818). 
The correlogram of residuals clarifies how the residuals series is unaf-
fected by the auto-correlation problem (Figure B in the Appendix). Re-
sults from CUSUM plots show that all the data series are within the 95% 
confidence band, confirming the estimated models’ stability. Besides, 
we analyzed the stability tests to confirm the goodness fit of the model 
(Figure C in the Appendix). 

In Fig. 4, the main results of the BCSG test are shown. The re-
lationships among the variables are assessed over the time-frequency 
domain. Each figure displays the Wald statistics over all frequencies ω 
∈ (0; π). The test statistics for the Granger non-causality from electricity 
consumption to CO2 emissions are significant at the 10% level for fre-
quencies with ω < 1.54 (Fig. 4a). The opposite causal flow (from CO2 to 
EPC) is not rejected at a 5% and a 10% level for all frequencies (Fig. 4b). 
Real GDP is found to significantly affect emissions for frequencies ≤0.43 
and ≥ 1.26, at a 5% level; for frequencies in the range ω ∈ (0.44; 0.99) 
and (1.12; 1.25) at a 10% level in the range (Fig. 4c). On the other hand, 
CO2 emissions seem to cause real GDP since the null hypothesis of no 
causality is rejected for ω ≥ 0.45 at a 5% level and a 10% level for all 
frequencies (Fig. 4d). Finally, for the last couple of variables, the capital 
formation causes emissions at a 5% level for ω < 1.62 and ω > 2.42 
(Fig. 4e), while CO2 emissions do not affect K, given the fact that the 
calculated test statistic is always lower than the Critical Values (Fig. 4f). 
Therefore, to summarize the causality findings, we discovered: a) a 
unidirectional causal flow from electricity consumption to CO2 emis-
sions; b) a bidirectional causal flow between CO2 emissions and real 
GDP; c) a unidirectional causal flow from capital formation to CO2 
emissions. 

Furthermore, generally speaking, the test results according to 
Geweke-type conditioning are qualitatively similar. 

For the clustering analysis, the different results show some specific 
similarities in the behaviour of the electricity and CO2 emissions series. 

Table 2 
Results for Geweke/Porter-Hudak test.  

Power Estimated d Standard Error z P-Value 

EPC 
0.40 0.7836 0.4624 1.2641 0.206 
0.45 0.8741 0.3190 1.7172* 0.086 
0.50 0.7649 0.2063 1.9717** 0.049 
0.55 0.8181 0.1764 2.3317** 0.020 
0.60 1.0288 0.1873 3.4374*** 0.001 
CO2 
0.40 0.2386 0.4824 0.3849 0.700 
0.45 0.5624 0.4207 1.1048 0.269 
0.50 0.5710 0.2716 1.4718 0.141 
0.55 0.5334 0.2266 1.5203 0.128 
0.60 0.6571 0.1832 2.1955** 0.028 
RGDP 
0.40 1.0458 0.8544 1.6871* 0.092 
0.45 1.2635 0.6008 2.4823** 0.013 
0.50 1.5816 0.3948 4.0770*** 0.000 
0.55 1.6473 0.3309 4.6951*** 0.000 
0.60 1.4188 0.3054 4.7406*** 0.000 
K 
0.40 0.2477 0.1261 0.3982 0.690 
0.45 0.1491 0.1181 0.2914 0.771 
0.50 0.2919 0.1498 0.6624 0.508 
0.55 0.3497 0.1289 0.8940 0.371 
0.60 0.4503 0.1076 1.3807 0.167 

Notes: ***p < 0.01, **p < 0.05, *p < 0.10. 

Table 3 
Results for Bayer-Hanck tests.  

Test Test Statistic P-Value 

Model 1 
Engle-Granger − 1.0155 0.9653 
Johansen 26.6715** 0.0207 
Banerjee-Dolado-Mestre − 1.9143 0.4399 
Boswijk 9.5161 0.2258 
Model 2 
Engle-Granger − 1.4198 0.9657 
Johansen 30.1068** 0.0227 
Banerjee-Dolado-Mestre − 2.1224 0.5687 
Boswijk 9.9955 0.3565 
Model 3 
Engle-Granger − 1.3618 0.9911 
Johansen 32.0739** 0.0372 
Banerjee-Dolado-Mestre − 1.9167 0.8185 
Boswijk 3.8434 0.9648 

Notes: Model 1: do not include a trend or a constant in the model; Model 2: 
include an unrestricted constant in the model; Model 3: Include a linear trend in 
the cointegrating equations and a quadratic trend in the undifferenced data. 
***p < 0.01, **p < 0.05, *p < 0.10. 

Table 4 
Results for Gregory-Hansen cointegration tests.   

Constant Constant and 
trend 

Constant and 
slope 

Constant, slope 
and trend 

Test 
Statistic 

− 2.71 − 4.09 − 3.13 − 4.68 

Critical 
Values 

− 5.77 
− 5.28 
− 5.02 

− 6.05 
− 5.57 
− 5.33 

− 6.51 
− 6.00 
− 5.75 

− 6.89 
− 6.32 
− 6.16 

Date 1979 1981 1984 1986 

Notes: Zt statistics are reported. 1%, 5%, and 10% Critical Values are reported. 
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Fig. 4. Breitung-Candelon Spectral Granger causality test results 
Source: authors’ elaborations in STATA, Notes: Confidence level on y-axis. Hosoya-type conditioning was used. The following relationships are empirically tested: 
EPC → CO2: innovation in electricity consumption causes CO2 emissions. CO2 → EPC: innovation in CO2 emissions causes electricity consumption. RGDP → CO2: 
innovation in real GDP causes CO2 emissions. CO2 → RGDP: innovation in CO2 emissions causes real GDP. K → CO2: innovation in capital formation causes CO2 
emissions. CO2 → K: innovation in CO2 emissions causes capital formation. 
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Considering the different approaches and methodologies, we can 
observe relevant similarities in this respect. We found a general asso-
ciation by observing the different dendrograms between the time series 
(Fig. 5). 

However, a different result is obtained considering correlation dis-
tance and ACF and PACF distance, in which the different time series 
related to CO2 emissions and electricity reacts to the same shocks and 
seem to have a specific strong relationship with each other. In this case, 
also considering the case of Piccolo’s distance, the relationship seems 
confirmed. The different dendrograms show multiple relationships 
among the variables (Fig. 6). 

The relationship between CO2 and electricity is also significant, 
looking at the correlation distance and the PVclust algorithm, which 
found a statistically significant relationship (Fig. 7). 

In the short run, these relationships clearly show a significance 
(between CO2 emissions and electricity). However, in the long run, 
many confounding factors can impact emissions. We identify a clear and 
significant relationship in the short run by observing some relevant 
distances (particularly ACF and PACF). In this respect, the results 
confirm our previous analyses (see Table 5). 

From these first exploratory analyses, we go to the cluster validation 
(the results are shown in Table 6). In order to validate the different 
clusters, we analyze different partitions to optimize the average 
silhouette width of the obtained clusters. This measure shows us the 
optimality of the partition obtained in each clustering. 

Then we compare the different clusters obtained and analyze the 
level of concordance from the clusters for each time series (Table 7). We 
can observe a maximum concordance between CO2 emissions and 
electricity; a lower concordance is found for RGDP and K. The result is 
consistent with the fact that we can observe a stronger relationship 
between CO2 emissions and electricity in the short run. 

5. Conclusions and policy recommendations 

Given the pace at which the Nigerian population is growing, the 
concern for the increase in electricity demand, energy insecurity, and 
environmental pollution equally grows. This paper assesses how these 
three factors coevolve over the long run. While Nigeria is taken as an 

illustrative case, a multivariate framework including population dy-
namics, the demand for electricity, and CO2 emissions from the power 
and heating sector is set using yearly time series spanning the last five 
decades. Two independent estimation strategies are conducted: a time- 
series analysis (i.e., stationarity tests, cointegration tests, Least 
Squares with breaks regression, spectral Granger causality tests) is 
complemented with ML experiments (i.e., ML Clustering method). In 
general, both methodologies’ outputs stress the engine role of the pop-
ulation in driving the demand for power over the long run. Also, yearly 
recorded carbon levels keep exhibiting a strict dependence on trends in 
electricity generation, thus highlighting how such a segment of the 
economy is far from being decarbonized. On the other hand, while 
economic, energy, and environmental factors seem to comove over time, 
reasonable assumptions suggest that material use dependency is likely to 
rise further in the present and future periods. Causality findings reveal a 
unidirectional causal flow from electricity consumption to CO2 emis-
sions, a bidirectional causal flow between CO2 emissions and real GDP, 
and a unidirectional causal flow from capital formation to CO2 emis-
sions. Based on these findings, some implications for energy policy can 
be proposed. 

First, as recent demographic forecasts suggest that global material 
use will double by 2060 (Gardiner and Hajek, 2020), minimizing the 
absolute waste volume generated through consumption and production 
patterns is complicated by the growing technological needs of the power 
sector. Therefore, not much is left but to incentivize sustainable 
post-consumption practices maximizing waste value-extraction, mate-
rial recovery (including composting and incineration with 
waste-to-energy processes), and recycling, limiting landfilling for ma-
terials encompassing highly polluting chemicals (Magazzino and Fal-
cone, 2022). However, additional policy suggestions can be offered to 
develop Nigeria’s power sectors without jeopardizing its climate targets. 
In the past, several reform initiatives have indeed been conducted in 
Nigeria (e.g., the National Electric Power Policy (2002), the National 
Energy Policy (2003), and the Electric Power Sector Reform (ESPR) Act 
(2005)). The government should expand the national grid, as initiated 
through 10 National Integrated Power Projects (NIPPs), totalling an 
installed capacity of 5455 MW. 

Notwithstanding, as shown by our results, the pivotal role of fossil 

Fig. 5. Comparative clustering (Euclidean, Frechet, DTW, and correlation-based distance) 
Source: authors’ elaborations in R. 
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fuels prevents low-carbon sources from taking centre stage in the power 
generation process. While renewable energy may guarantee sustainable 
development without imperilling the security of supply, we call for 
further expanding Nigeria’s power-based solar strategy, although major 

obstacles related to technological gaps and fixed capital costs must be 
addressed first. Furthermore, training a skilled workforce capable of 
expanding low-carbon applications throughout the country, its opera-
tion, utilization, and integration with consistent standards and 

Fig. 6. Comparative clustering (ACF, PACF, and Piccolo distance) 
Source: authors’ elaborations in R. 

Fig. 7. PVclust Algorithm 
Source: authors’ elaborations in R. 

Table 5 
Results of Least Squares with breaks regression.  

Variable 1981–1990 1991–2001 2002–2007 2008–2018 

EPC 0.2013*** (0.0608) 0.2003* (0.1124) 0.9495*** (0.1264) 0.4604 (0.3500) 
RGDP 0.9131*** (0.1710) 0.4998 (0.3057) 0.9630*** (0.1074) 0.9173*** (0.1504) 
K 0.2766*** (0.0469) 0.3309*** (0.0558) 0.9308*** (0.1225) 0.1818 (0.2515) 
Constant 3.5401* (1.9209) 22.0629*** (4.9011) 11.1821*** (1.1949) 24.5221*** (6.2020) 
R-squared 0.9389 Adjusted R-squared 0.8972  
SER 0.0487 Log-Likelihood 71.3318  
F 22.5361 (0.0000) AIC − 2.9122  
SBIC − 2.2227 HQIC − 2.6669  
DW 2.0222    

Notes: Weights: Inverse Standard Deviation. Break type: Bai-Perron tests of 1 to M globally determined breaks. ***p < 0.01, **p < 0.05, *p < 0.10. 
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procedures is unavoidable. In line with Monyei et al. (2018), we suggest 
reinforcing the Technical and Vocational Education (TVET) plan, a 
sub-component of the Nigeria Industrial Revolution Plan (NIPR), as a 
way to further match industrial skills to minimum international stan-
dards in the renewable electricity sector. Finally, our results may hold 
global relevance to other developing countries since there exist impli-
cations for most power generation sectors throughout the African 
continent. However, in general, our conclusions align with those of Puig 
et al. (2021), highlighting that an optimal combination of supply-side 
incentives (risk-guarantee schemes and blending instruments) and 
demand-side subsidies (direct or indirect payments to secure electricity 
access to the poorest households in Africa) might ensure a significant 
expansion of affordable and secure power through African grids. The 
cost of electrification, especially in off-grid communities and rural areas, 
is high because of the capital-intensive nature of such projects in Africa. 
For instance, Kenya endorsed a tax exemption on all imported 
LED-lighting products and solar application components to incentivize 
the domestic assembly of solar PV technologies within the country, 
whereas, in the context of the national Energy for Rural Transformation 
(ERT) program, a 45% subsidy on solar equipment has been imple-
mented for targeted rural areas. Also, Ethiopia recently applied an 
inland tax duty and surtax exemption on solar technology components 
to reduce the mean cost borne by producers at each stage of the supply 
chain. As for Nigeria, subsidizing Renewable Energy Technologies 
(RETs) would push down prices and thus strengthen low-carbon energy 

deployment across the most financially constrained counties. Naturally, 
given the persisting low energy access in some rural regions of the 
continent, a partnership between African and other multilateral lending 
institutions is favoured, as promoted by the African Single Electricity 
Market (launched in February 2021). Besides offering large-scale policy 
direction, such an integrated approach presents the advantage of 
harmonizing regulatory and technical aspects of electricity generation, 
transmission, and distribution across the continent, with benefits for 
technology and knowledge transfers. 

However, this paper is not without caveats, and future studies should 
aim at filling them. For instance, the empirical potential of combined 
time-series analyses and ML methodologies. If data availability allows 
that, drawing insights with plant-level information may help to identify 
other potential drivers hidden by the broad aggregation of heteroge-
neous units. 
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Appendix  

Table A 
Descriptive statistics.  

Variable Mean Median SD Skewness Kurtosis Range IQR 10-Trim 

EPC − 11.8401 − 11.8153 0.4297 − 0.8037 3.0431 1.6680 0.6013 − 11.78 
CO2 − 9.8917 − 9.7781 0.4805 − 1.6540 5.2231 2.1867 0.3305 − 9.797 
RGDP 12.5029 12.5601 0.2223 − 0.0235 1.4606 0.6433 0.4428 12.50 
K 11.1273 11.0967 0.2919 2.2927 8.7320 1.4502 0.2513 11.07 

Notes: SD: Standard Deviation; IQR: Inter-Quartile Range; 10-Trim: 10% trimmed mean.  

Table 6 
Memberships of the different clusters computed to validate the different results.  

Variables Euclidean Frechet DTW Correlation ACF PACF Piccolo 

POP 1 1 1 1 1 1 1 
EPC 1 2 2 2 2 2 2 
REGDP 1 1 1 1 2 2 1 
K 2 1 3 1 2 2 2 
CO2 1 1 4 2 2 2 2  

Table 7 
Concordance levels between the different variables on different clusters.  

Variables POP EPC RGDP K CO2 

POP 1 0.14 0.71 0.29 0.29 
EPC 0.14 1 0.43 0.43 0.71 
RGDP 0.71 0.43 1 0.57 0.57 
K 0.29 0.43 0.57 1 0.57 
CO2 0.29 0.71 0.57 0.57 1  
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Fig. A. Scatterplot matrices.Source: authors’ elaborations in STATA  

Fig. B. Correlogram of residuals.Source: authors’ elaborations in EVIEWS  

Fig. C. CUSUM test graph.Source: authors’ elaborations in STATA  
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Amaral, S., Câmara, G., Monteiro, A.M.V., Quintanilha, J.A., Elvidge, C.D., 2005. 
Estimating population and energy consumption in Brazilian Amazonia using DMSP 
night-time satellite data. Comput. Environ. Urban Syst. 29 (2), 179–195. 

Al Bannay, S., Takizawa, S., 2022. Decoupling of water production and electricity 
generation from GDP and population in the Gulf Cooperation Council (GCC) 
countries. Sustainability 14 (9), 5386. 

Alege, P.O., Ogundipe, A.A., 2015. Environmental quality and economic growth in 
Nigeria: a fractional cointegration analysis. Int. J. Dev. Sustain. 2, 2. 

Ali, H.S., Law, S.H., Zannah, T.I., 2016. Dynamic impact of urbanization, economic 
growth, energy consumption, and trade openness on CO2 emissions in Nigeria. 
Environ. Sci. Pollut. Control Ser. 23 (12), 12435–12443. 

Altinay, G., Karagol, E., 2005. Electricity consumption and economic growth: evidence 
from Turkey. Energy Econ. 27 (6), 849–856. 

Apergis, N., Payne, J.E., 2009. Energy consumption and economic growth: evidence from 
the Commonwealth of Independent States. Energy Econ. 31 (5), 641–647. 

Ayadi, F.S., 2014. Economic integration, growth and the environment in Africa: a study 
of Nigeria. J. Emerg. Issues Econ., Financ Banking 3, 1274–1289. 

Bai, J., 1997. Estimation of a change point in multiple regression models. Rev. Econ. Stat. 
79, 551–563. 

Bai, J., Perron, P., 2003. Computation and analysis of multiple structural change models. 
J. Appl. Econom. 6, 72–78. 

Banerjee, A., Dolado, J.J., Mestre, R., 1998. Error-correction mechanism tests for 
cointegration in a single equation framework. J. Time Anal. 19 (3), 267–283. 

Bayer, C., Hanck, C., 2013. Combining non cointegration tests. J. Time Anal. 34, 83–95. 
Becker, G.S., Glaeser, E.L., Murphy, K.M., 1999. Population and economic growth. Am. 

Econ. Rev. 89 (2), 145–149. 
Berndt, D.J., Clifford, J., 1994. Using Dynamic Time Warping to Find Patterns in Time 

Series. KDD Workshop, pp. 359–370. 
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