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Abstract 
The Markov property is widely imposed in analysis of time series data. Correspondingly, testing the Markov 
property, and relatedly, inferring the order of a Markov model, are of paramount importance. In this article, 
we propose a nonparametric test for the Markov property in high-dimensional time series via deep 
conditional generative learning. We also apply the test sequentially to determine the order of the Markov 
model. We show that the test controls the type-I error asymptotically, and has the power approaching one. 
Our proposal makes novel contributions in several ways. We utilise and extend state-of-the-art deep 
generative learning to estimate the conditional density functions, and establish a sharp upper bound on the 
approximation error of the estimators. We derive a doubly robust test statistic, which employs a 
nonparametric estimation but achieves a parametric convergence rate. We further adopt sample splitting 
and cross-fitting to minimise the conditions required to ensure the consistency of the test. We 
demonstrate the efficacy of the test through both simulations and the three data applications. 
Keywords: deep conditional generative learning, high-dimensional time series, hypothesis testing, Markov property, 
mixture density network 

1 Introduction 
The Markov property is fundamental and is commonly imposed in time series analysis. For in-
stance, in economics and reinforcement learning, the Markov property is the foundation of the 
Markov decision process that provides a general framework for modelling sequential decision 
making. In finance and marketing, the Markov property is widely assumed in most continuous 
time modelling. See Chen and Hong (2012) for a review. Correspondingly, testing the Markov 
property, and relatedly, inferring the order of a Markov model, are of paramount importance 
in a broad range of applications. 

Such a testing problem, however, is highly nontrivial and poses many challenges, especially for 
high-dimensional time series. For the Markov property test, Aït-Sahalia (1997) proposed a non-
parametric test based on the Chapman–Kolmogorov equation and smoothing kernels. Chen 
and Hong (2012) tackled the testing problem based on the conditional characteristic function 
(CCF) estimated by local polynomial regressions (LPRs). However, kernel smoothers, including 
LPRs, suffer from a poor estimation accuracy in moderate to high-dimensional settings, leading 
to an inflated type-I error or a low power for the tests. For the order determination in nonparamet-
ric autoregression, Cheng and Tong (1992), Yao and Tong (1994) and Vieu (1995) developed 
some cross-validation based methods, and Auestad and Tjøstheim (1990) and Tschernig and 
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Yang (2000) proposed a final prediction error based criterion. But none of those order determin-
ation methods are based on hypothesis testing, and they all assume the dimension of the time series 
is fixed. More recently, Shi et al. (2020) developed a quantile random forest algorithm and a dou-
bly robust procedure to test the Markov assumption in the context of reinforcement learning. But 
their method, as we show later in Section 5, would fail to control the type-I error in the time series 
setting. 

In this article, we propose a nonparametric testing procedure for the Markov property in high- 
dimensional time series via deep conditional generative learning. The proposed test can be sequen-
tially applied for order selection of the Markov model as well. Our proposal makes unique and 
useful contributions in several ways. 

Particularly, we utilise some state-of-the-art deep conditional generative learning methods to 
address a classical yet challenging statistical inference problem in time series analysis. Deep con-
ditional generative models include mixture density networks (MDNs) (Bishop, 1994), conditional 
generative adversarial networks (Mirza & Osindero, 2014), conditional variational autoencoders 
(Sohn et al., 2015), and normalising flow models (Kobyzev et al., 2020). They provide a powerful 
set of tools to flexibly learn conditional probability distributions, and have been used in numerous 
applications, such as computer vision, imaging processing, and artificial intelligence (Jo et al., 
2021; Shu et al., 2017; Wang et al., 2018; Yan et al., 2016). Nevertheless, these tools are much 
less used and studied in the statistics literature. We employ this family of models to learn highly 
complex conditional distributions in a nonparametric fashion, and demonstrate their advantages 
over the more traditional kernel smoothers including LPRs, especially in a high-dimensional 
setting. 

Meanwhile, it is far from a simple application of some ready-to-use deep learning tools, but 
instead it requires both crucial modification of the methods and careful characterisation of their 
theoretical properties. We build our testing procedure based upon MDNs (Bishop, 1994), com-
bined with several crucial new components. First, we propose a new MDN architecture to mod-
el the conditional distribution of a multivariate response. Based on such an architecture, we 
learn two distributional generators, a forward generator and a backward generator, then prop-
erly integrate the two generators to construct the test statistic. Second, we derive the conver-
gence rate of the MDN estimator in Theorem 3 , which is crucial to establish the consistency 
of our proposed test, but is not currently available in the MDN literature. In particular, we pro-
vide a sharp upper bound on the approximation error of MDN in Lemma 1 when the under-
lying conditional density function follows an infinite conditional Gaussian mixture model. We 
remark that, although it is possible to obtain a bound by directly applying Lemma 1 of  
Barron (1993), it would only yield a very loose bound; see Section 4.1 for more details. To 
our knowledge, we are among the first to systematically study the error bound of MDN, and 
our results are useful for the general theory of deep (generative) learning methods (see e.g.  
Chen et al., 2020; Farrell et al., 2021; Liang, 2021; Zhou, Jiao et al., 2022; Zhou, Su et al., 
2022). Third, we show the proposed test controls the type-I error in Theorem 5, and has the 
power approaching one in Theorem 6. We show that our test statistic achieves a parametric con-
vergence rate and a parametric power guarantee while its components are estimated nonpara-
metrically. This is made possible because the way in which we combine the two distribution 
generators yields a doubly robust estimator of the test statistic (Tsiatis, 2007). Thanks to this 
double robustness, the bias of our test statistic estimator decays to zero faster than the rate 
of the individual nonparametric distribution generator. Finally, to avoid the requirement of cer-
tain metric entropy conditions for the distribution generator estimators (Chernozhukov et al., 
2018, Equation (1.6)), we further employ the sample splitting and cross-fitting strategy 
(Romano & DiCiccio, 2019) to ensure the size control of the test. 

The rest of the article is organised as follows. We formulate the hypotheses and propose a 
doubly robust test statistic in Section 2. We develop the corresponding test, as well as a for-
ward sequential procedure for order determination in Section 3. We establish the theoretical 
guarantees in Section 4. We carry out simulations in Section 5, and illustrate with three real 
datasets in Section 6. We relegate all technical proofs to the Online Supplementary Material, 
Appendix.  
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2 Hypotheses and test statistic 
2.1 Hypotheses 
We first formulate the hypotheses of interest. Consider a strictly stationary d-dimensional time ser-
ies, Xt = (Xt,1, Xt,2, . . . , Xt,d)⊤, t ≥ 1. We target the following pair of hypotheses: 

H0 : P(Xt+1 ≤ x|It) = P(Xt+1 ≤ x|Xt) almost surely for all x ∈ Rd and t > 0;
HA : P(Xt+1 ≤ x|It) ≠ P(Xt+1 ≤ x|Xt) for some x ∈ Rd and t > 0,

(1) 

where It denotes the data history {Xt, Xt−1, . . . }. The Markov property holds under H0. 
Intuitively, this property requires the past and future values to be independent, conditionally on 
the present. To test H0, it suffices to test a sequence of conditional independences 

Xt+q ⊥ {Xj}t≤j<t+q−1 |Xt+q−1, (2) 

for any time t > 0 and any lag q ≥ 2, where ⊥ denotes the conditional independence. 
We next characterise the conditional independence using the CCF. A similar result is given in  

Chen and Hong (2012, Equation (2.6)). For any vector μ ∈ Rd of the same dimension as Xt, define 
the CCF of Xt+1 given Xt as 

φ∗(μ|x) = E exp (iμ⊤Xt+1)|Xt = x
􏼈 􏼉

.

Theorem 1 The conditional independence (2) holds if and only if 

φ∗(μ|Xt+q−1)E[ exp (iν⊤Xt)|{Xj}t<j<t+q] = E exp (iμ⊤Xt+q + iν⊤Xt)|{Xj}t<j<t+q

􏽨 􏽩

(3) 

almost surely, for any t > 0, q ≥ 2, and μ, ν ∈ Rd. 

2.2 Doubly robust test statistic 
Theorem 1 suggests a possible test for the hypotheses in (1). That is, under H0, taking another ex-
pectation on both sides of (3), we obtain that 

E exp (iμ⊤Xt+q) − φ∗(μ|Xt+q−1)
􏼈 􏼉

exp (iν⊤Xt)
􏼂 􏼃

= 0, 

for any t, q, μ, ν. This suggests the following test statistic: 

􏽥S(q, μ, ν) =
1

T − q

􏽘T−q

t=1

exp (iμ⊤Xt+q) −􏽢φ(μ|Xt+q−1)
􏼈 􏼉

exp (iν⊤Xt) − φ̅(ν)
􏼈 􏼉

, (4) 

where 􏽢φ denotes some estimator of the CCF φ∗, and φ̅(ν) = T−1􏽐
1≤t≤T exp (iν⊤Xt). Aggregating 

􏽥S(q, μ, ν) over different combinations of (q, μ, ν) yields the test statistic proposed in Chen and 
Hong (2012, Equation (2.18)). 

Computing (4) requires a suitable estimator 􏽢φ for φ∗. Chen and Hong (2012) proposed to use the 
LPR to estimate φ∗. However, the LPR tends to perform poorly when the dimension d of Xt in-
creases (Taylor & Einbeck, 2013), and the corresponding test would fail to be consistent. More 
recently, deep conditional generative learning models have demonstrated an exceptional capacity 
of estimating complex conditional distributions (e.g. Kobyzev et al., 2020; Sohn et al., 2015). 
These tools can be potentially employed to estimate PXt|Xt−1 , and subsequently the CCF φ∗. 
However, naively plugging in a deep conditional generative learning estimator for φ∗ would induce  
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a heavy bias in (4), which would fail to guarantee a tractable limiting distribution for the test 
statistic. 

To address this issue, we propose to construct a doubly robust test statistic. Specifically, for any 
vector ν ∈ Rd of the same dimension as Xt, define the CCF of Xt given Xt+1 as 

ψ∗(ν|x) = E exp (iν⊤Xt)|Xt+1 = x
􏼈 􏼉

.

We introduce a doubly robust estimating equation in the next theorem. 

Theorem 2 Under H0, for any t ≥ 0, q ≥ 2, μ, ν ∈ Rd, we have 

E exp (iμ⊤Xt+q) − φ∗(μ|Xt+q−1)
􏼈 􏼉

exp (iν⊤Xt) − ψ∗(ν|Xt+1)
􏼈 􏼉

= 0. (5) 

In addition, (5) is doubly robust, in that, for any CCFs φ and ψ, as long as ei-
ther φ = φ∗, or ψ = ψ∗, we have that E{exp (iμ⊤Xt+q) − φ(μ|Xt+q−1)} 
{exp (iν⊤Xt) − ψ(ν|Xt+1)} = 0. 

Motivated by (5), we propose the following test statistic: 

S(q, μ, ν) =
1

T − q

􏽘T−q

t=1

{exp (iμ⊤Xt+q) −􏽢φ(μ|Xt+q−1)}{ exp (iν⊤Xt) −􏽢ψ(ν|Xt+1)}, (6) 

where 􏽢φ and 􏽢ψ denote some estimators of φ∗ and ψ∗, respectively. This statistic, as suggested by 
Theorem 2, is doubly robust. A key advantage is that the bias of this test statistic can decay to 
zero at a faster rate than the convergence rate of the individual estimator 􏽢φ and 􏽢ψ. By contrast, 
the bias of the test statistic in (4) has the same order of magnitude as that of 􏽢φ; see Theorem 4. 
This double robustness property thus enables us to employ some highly flexible nonparametric es-
timators for φ∗ and ψ∗. In the next section, we extend MDNs (Bishop, 1994) to estimate the CCFs, 
and develop the corresponding testing procedure. 

3 Testing procedure 
3.1 Mixture density networks 
The MDN is a classical deep generative model that combines the Gaussian mixture model with 
deep neural networks (DNNs) (Bishop, 1994), and has shown promising performance in condi-
tional density estimation (Koohababni et al., 2018; Rothfuss et al., 2019). In effect it integrates 
the universal approximation property of the Gaussian mixture model to approximate any smooth 
density function (Nguyen & McLachlan, 2019), with the capacity of DNNs to approximate both 
smooth and nonsmooth conditional mean and variance functions in high dimension. See 
Assumption 2(iii) for the class of smooth functions, and Imaizumi and Fukumizu (2019) for the 
class of nonsmooth functions that can be well approximated by DNNs. Next, we first introduce 
the standard MDN model, then propose a new MDN architecture to model the conditional distri-
bution of a multivariate response. 

We aim to estimate an unknown conditional probability density function of some univariate re-
sponse Y given a predictor vector X ∈ Rd0 with d0 being the input dimension. Suppose the condi-
tional density of Y given X follows a MDN model, 

f (y|x) =
􏽘G

g=1

αg(x)
1

���
2π
√

σg(x)
exp −

{y − μg(x)}2

2σ2
g(x)

􏼢 􏼣

, (7) 

where G is the number of mixture components, and DNNs are used to estimate the mean vector 
μ(x) = (μ1(x), . . . , μG(x))⊤, the standard deviation vector σ = (σ1(x), . . . , σG(x))⊤, and the weight 
vector α = (α1(x), . . . , αG(x))⊤. Figure 1 depicts the structure of the model. The input layer is the 
d0-dimension vector x. Then, there are H hidden layers, each with a number of hidden units.  
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A hidden layer is between the input and output layers, which takes in a set of weighted inputs and 
produces an output through an activation function. The last hidden layer outputs a G-dimensional 
vector h(H)(x), and is connected to three parallel layers whose outputs are given by 

hα(x) = Θ⊤
1 h(H)(x), hμ(x) = Θ2h(H)(x), hσ(x) = Θ⊤

3 h(H)(x), 

respectively, where Θj is a G × G coefficient matrix that is to be trained via back propagation, 
j = 1, 2, 3. Next, two of those functions pass through activation functions, yielding 

α(x) = softmax(hα(x)), μ(x) = hμ(x), σ(x) = softplus(hσ(x)), 

respectively, where α(x), hα(x), μ(x), hμ(x), σ(x), and hσ(x) are all G-dimensional vectors, and the 
activation functions are applied in an element-wise fashion. Finally, all these components are com-
bined to parametrise f (y|x) according to (7) with a total of W parameters. 

Next, we propose a new MDN architecture to model the conditional density of a multivariate 
response variable Y ∈ Rdy . The main idea is to factorise the joint conditional density function 
f (y|x) as the product of dy conditional densities, each with a univariate response, 

f (y|x) = f1(y1|x)f2(y2|x, y1) · · · fdy
(ydy
|x, y1, y2, . . . , ydy−1). (8) 

It then suffices to model each fj(yj|x, y1, . . . , y j−1) separately. When the individual component of Y 
is a continuous variable, we use the MDN model (7) to estimate the conditional density, whereas 
when it is a categorical variable, we use a supervised learning method, such as a random forest 
(Breiman, 2001), or a DNN (LeCun et al., 2015) to estimate the probability mass function. We brief-
ly note that, Bishop (1994) also considered a version of MDN for the multivariate response, by ex-
tending (7) to a mixture of multivariate normal densities. However, such an extension does not work 
well when the components of the response have mixed type of continuous and categorical variables. 

We also comment that, most of the existing MDN literature study i.i.d. data. In our setting, the 
observed data are time-dependent. We later show that MDN is equally applicable, as long as the 
time series satisfies some mixing conditions such as β-mixing (Wu & Shao, 2004). 

Figure 1. Structure of the MDN.   
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3.2 Testing Markov property 
Next, we develop a testing procedure for the hypotheses in (1), where the key idea is to build upon 
the doubly robust test statistic (6) and estimate the CCFs using MDN. Moreover, to avoid requir-
ing the estimators of the CCFs to satisfy some restrictive metric entropy conditions, we employ 
the sample splitting and cross-fitting strategy. We first summarise our testing procedure in 
Algorithm 1, then discuss the main steps in detail. 

In Step 1 of the algorithm, we divide the time series into L nonoverlapping chunks of similar 
sizes. For simplicity, suppose the length T of the observed time series is a multiple of L, and let 
n = T/L. Let I (ℓ) = {(ℓ − 1)n + 1, (ℓ − 1)n + 2, . . . , ℓn} denote the indices of the ℓth chunk of 

the time series, and let I̅ (ℓ)= ∪ℓj=1 I
(j) denote the union of indices of the first ℓ chunks, 

ℓ = 1, . . . , L. Data splitting allows us to use part of the data, i.e. the data I̅ (ℓ) up to chunk ℓ, to 
train the MDN model, and another part, i.e. I (ℓ+1), to construct the test statistic. We then aggre-
gate the estimates over all chunks to improve the estimation efficiency. 

In Step 2, we employ MDN to estimate the CCFs. Specifically, for each subset ℓ = 1, . . . , L − 1, 

we first apply MDN to the data I̅ (ℓ) up to the ℓth chunk to obtain the estimates of two conditional 

probability density functions, a forward generator 􏽢f (ℓ)
Xt |Xt−1

, and a backward generator 􏽢f (ℓ)
Xt−1|Xt

. For 

the forward generator, the ‘predictor’ for the MDN model (8) is (X1, X2, . . . , Xℓn−1)⊤ and the ‘re-
sponse’ is (X2, X3, . . . , Xℓn)⊤, whereas for the backward generator, the ‘predictor’ for (8) is 
(X2, X3, . . . , Xℓn)⊤ and the ‘response’ is (X1, X2, . . . , Xℓn−1)⊤. Given the two estimated density 

functions 􏽢f (ℓ)
Xt |Xt−1 

and 􏽢f (ℓ)
Xt−1|Xt

, we then randomly sample M copies of d-dimensional time series ob-

servations {X∗m,f }
M
m=1 and {X∗m,b}M

m=1, respectively. Next, we consider different combinations of 
(μ, ν) for the test statistic S(q, μ, ν) in (6). Toward that end, we randomly sample B i.i.d. pairs 
of {(μb, νb)}B

b=1 from a multivariate normal distribution with zero mean and identity covariance 
matrix. Finally, by noting that φ∗(μ|x) = E{exp (iμ⊤Xt)|Xt−1 = x} and ψ∗(ν|x) = 
E{exp (iμ⊤Xt−1)|Xt = x}, we obtain the Monte Carlo estimators of φ∗(μ|x) and ψ∗(ν|x) for each 

Algorithm 1 Testing procedure for the Markov property 

Input: Data {Xt}t=1,...,T , the number of data chunks L, the number of pairs B, the largest number of lags Q, and the 
number of samples from the generators M. 

Step 1: Divide the time series data into L nonoverlapping chunks, where n = T/L, 

I (ℓ) = {(ℓ − 1)n + 1, (ℓ − 1)n + 2, . . . , ℓn}, and I̅ (ℓ)= ∪ℓj=1 I
(j), ℓ = 1, . . . , L. 

Step 2: Deep conditional forward–backward generative learning. 

(2a) Obtain the estimators of a forward generator 􏽢f (ℓ)
Xt |Xt−1

, and a backward generator 􏽢f (ℓ)
Xt−1 |Xt

, using the 
data I̅ (ℓ) up to chunk ℓ, ℓ = 1, . . . , L − 1. 

(2b) Randomly sample M copies of d-dimensional time series observations {X∗m,f }
M
m=1 and {X∗m,b}M

m=1 from 
each generator. 

(2c) Randomly sample B pairs {(μb, νb)}1≤b≤B from a multivariate normal distributions with zero mean and 
identity covariance matrix. 

(2d) Compute the CCF estimators 􏽢φ(ℓ)(μb|x) and 􏽢ψ(ℓ)(νb|x) according to (9), for ℓ = 1, . . . , L − 1, and 
b = 1, . . . , B. 

Step 3: Construct the test statistic. 

(3a) Compute 􏽢S(q, μb, νb) according to (10), for q = 2, . . . , Q, b = 1, . . . , B. 

(3b) Construct the test statistic 􏽢S according to (11). 

Step 4: Compute the critical value. 

(4a) Compute the covariance matrix 􏽢Σ(q) according to (12), for q = 2, . . . , Q. 

(4b) Compute the critical value according to (13). 

Step 5: Reject H0 if 􏽢S is greater than 􏽢cα.   
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pair of (μb, νb) as 

􏽢φ(ℓ)(μb|x) =
1
M

􏽘M

m=1

exp (iμ⊤
b X∗m,f ), 􏽢ψ(ℓ)(νb|x) =

1
M

􏽘M

m=1

exp (iν⊤
b X∗m,b). (9) 

Due to the use of both forward and backward generators and DNNs, we refer to this step as deep 
conditional forward–backward generative learning. 

In Step 3, we construct our final composite test statistic given the estimates of 􏽢φ(ℓ)(μb|x) and 
􏽢ψ(ℓ)(νb|x). We first compute S(q, μ, ν) in (6) using the cross-fitting strategy, i.e. 

􏽢S(q, μb, νb) =
1

T − n − (q − 1)(L − 1)

􏽘L−1

ℓ=1

􏽘n−q+1

t=1

exp (iμ⊤
b Xℓn+t+q−1)

􏼈

−􏽢φ(ℓ)(μb|Xℓn+t+q−2)
􏼉

exp (iν⊤
b Xℓn+t−1) −􏽢ψ(ℓ)(νb|Xℓn+t)

􏼈 􏼉
,

(10) 

for a given q = 2, . . . , Q, and Q denotes the largest number of lags to consider in the test. We note 
that, for any given ℓ = 1, . . . , L − 1, the set of random variables {Xℓn+t}1≤t≤n that appear in (10) are 
from the (ℓ + 1)th chunk of the data, and are, under H0, independent of 􏽢φ(ℓ) and 􏽢ψ(ℓ) given Xℓn+1. 
This allows us to avoid imposing certain entropy growth condition that limits the growth rate of 
the VC dimension of the MDN model with respect to the sample size (Chernozhukov et al., 2018). 
A similar cross-fitting procedure has also been utilised by Luedtke and Van Der Laan (2016) and  
Shi et al. (2022) for evaluation of an optimal policy, as well as by Luedtke and Van Der Laan 

(2018) and Shi et al. (2021) for high-dimensional statistical inference. Next, since 􏽢S(q, μb, νb) is 

complex-valued, we use 􏽢SR(q, μb, νb) and 􏽢SI(q, μb, νb) to denote its real and imaginary part, re-
spectively. We construct our final test statistic as 

􏽢S = max
b∈{1,...,B}

max
q∈{2,...,Q}

��������������������������
T − n − (q − 1)(L − 1)

􏽰
max |􏽢SR(q, μb, νb)|, |􏽢SI(q, μb, νb)|

􏼐 􏼑
. (11) 

In (11), we take the maximum absolute value over multiple combinations of (q, μb, νb) to construct 
the test statistic, while we generate μb and νb from a Gaussian or uniform distribution. This way, 
we do not have to impose a bounded support for (μb, νb), and avoid grid search that can be com-
putationally intensive in a high-dimensional setting. 

In Step 4, we compute the critical value of the test statistic 􏽢S. A key observation is that, under H0, 

each 􏽢SR(q, μb, νb) and 􏽢SI(q, μb, νb) corresponds to a sum of martingale difference sequences. Since 
the sum of martingale difference is a martingale (Hamilton, 2020), it follows from the high- 

dimensional martingale central limit theorem that 􏽢S converges in distribution to a maximum of 
some Gaussian random variables. This allows us to employ the high-dimensional multiplier boot-
strap method of Belloni and Oliveira (2018) to estimate the critical value. Specifically, we stack 
􏽢SR(q, μb, νb) and 􏽢SI(q, μb, νb) for a given q and all b = 1, . . . , B together to form a 2B-dimensional 
vector, and estimate the covariance matrix of this vector by 

􏽢Σ(q) =
􏽘L−1

ℓ=1

􏽘n−q+1

t=1

(λ⊤
R,ℓ,q,t, λ⊤

I,ℓ,q,t)
⊤(λ⊤

R,ℓ,q,t, λ⊤
I,ℓ,q,t)

(T − n − (q − 1)(L − 1))
, (12) 

where λR,ℓ,q,t, λI,ℓ,q,t, ℓ = 1, . . . , L − 1, t = 1, . . . , n − q + 1, are both B-dimensional vectors, 
whose bth element is, respectively, the real and imaginary part of 

exp (iμ⊤Xt+q−1+ℓn) −􏽢φ(−ℓ)(μ|Xt+q−2+ℓn)
􏼈 􏼉

exp (iν⊤Xt−1+ℓn) −􏽢ψ(−ℓ)(ν|Xt+ℓn)
􏼈 􏼉

.

We then compute the critical value 􏽢cα by simulating the upper (α/2)th critical value of 

max
q∈{2,...,Q}

{􏽢Σ(q)}1/2Zq

􏼍
􏼍
􏼍

􏼍
􏼍
􏼍

∞
, (13) 

using Monte Carlo, where Z0, . . . , ZQ are i.i.d. 2B-dimensional standard normal vectors.  
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In Step 5, we reject H0, if 􏽢S >􏽢cα, under a given significance level α > 0. 
We make a few remarks. First, in terms of the computational cost, step 2(a) is the most intensive 

step in Algorithm 1, as it involves fitting multiple MDN models. Second, there are a number of 
hyper-parameters in our test, including the number of mixture components G, the number of 
data chunks L, the number of pairs B of (μ, ν), the number of samples M from the forward and 
backward generators, and the largest number of lags Q considered in the test. We proposed to 
choose G using cross-validation, and take the rest as the input parameters. We further discuss their 
theoretical choices in Section 4, and their empirical choices in Section 5. 

3.3 Determining Markov order 
The proposed test can be used to determine the order of the Markov model. Specifically, let X(k)

t = 
(X⊤

t , . . . , X⊤
t+k−1)⊤ denote the multivariate time series that concatenates the most recent k obser-

vations at each time point. Suppose the data follows a Kth order Markov model. Then the null 
hypothesis H0 holds for the concatenated time series X(k)

t for any k ≥ K, but does not hold for 
any k < K. This suggests we can sequentially test the Markov property on the concatenated 
time series X(k)

t for k = 1, 2, . . .. We set the estimated order to be the first integer k by which we 
fail to reject H0. We also briefly remark that K is different from Q. The former denotes the largest 
possible order of the underlying Markov model, whereas the latter denotes the largest number of 
lags considered in our test for a series of conditional dependences. 

4 Theory 
4.1 Convergence rate of MDN 
We first establish the error bound of the MDN estimator, then establish the consistency of the pro-
posed test. We begin with some regularity conditions, and argue they are relatively mild and 
reasonable. 

Let f ∗Xt+1|Xt
( · |x) and f ∗Xt |Xt+1

( · |x) denote the true conditional density function of Xt+1 given 
Xt = x, and that of Xt given Xt+1 = x, respectively. A key observation is that 
f ∗Xt+1|Xt

= arg maxf E[ log {f (Xt+1|Xt)}], and f ∗Xt |Xt+1
= arg maxf E[ log {f (Xt|Xt+1)}], where f belongs 

to a Sobolev ball with the smoothness γ ∈ N+ : {f : maxν,‖ν‖1≤γ supx |D
νf (x)| < +∞}. Given the 

data I̅ (ℓ) up to chunk ℓ, the estimated density functions are 

􏽢f (ℓ)
Xt+1|Xt

= arg max
f

􏽘T−1

t=1

log {f (Xt+1|Xt)}, 􏽢f (ℓ)
Xt |Xt+1

= arg max
f

􏽘T−1

t=1

log {f (Xt|Xt+1)}, 

based on the maximum likelihood. In the following, we focus on establishing the statistical prop-

erties of 􏽢f (ℓ)
Xt+1|Xt

. The properties of 􏽢f (ℓ)
Xt|Xt+1 

can be derived in similar manner. 

Assumption 1 Suppose the following conditions hold for the time series Xt.  

(i) Let Xt be stationary, and its β-mixing coefficient satisfy the that β(t) ≤ 
c1 exp (−c2t) for some constants c1, c2 > 0.  

(ii) Let X denote the support of Xt, and X be a compact subset of Rd. 

Assumption 1(i) requires the β-mixing coefficient to decay exponentially with respect to t. Under 
the Markov property, it is equivalent to the geometric ergodicity condition (Bradley, 2005). Such a 
condition is commonly imposed in the time series literature (see, e.g. Cline & Pu, 1999; Liebscher, 
2005; Wu & Shao, 2004). We also note that the β-mixing condition is not limited to a Markov 
process. For instance, Neumann (2011) considered a class of observation-driven Poisson count 
process, which is β-mixing but non-Markovian. 

Assumption 2 Suppose the following conditions hold for the true density function f ∗Xt+1|Xt
.  

(i) Suppose f ∗Xt+1|Xt
(y|x) can be well approximated by a conditional 

Gaussian mixture model with G components, in that, there exists  
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some constant ω1 > 0, such that 

f ∗Xt+1|Xt
(y|x) −

􏽘G

g=1

α∗g(x)
���
2π
√

σ∗g(x)
exp −

(y − μ∗g(x))2

2σ∗g2(x)

􏼨 􏼩􏼌
􏼌
􏼌
􏼌
􏼌
􏼌

􏼌
􏼌
􏼌
􏼌
􏼌
􏼌

= O(G−ω1 ), 

where the big-O term is uniform in x and y. 
(ii) Suppose {μ∗g}G

g=1 and {σ∗g}G
g=1 are uniformly bounded away from infin-

ity, and there exist a constant C0 > 0, ω2 ≥ 0, such that σ∗g(x) ≥ 
C0G−ω2 for any g and x.  

(iii) Suppose α∗g(·), μ∗g(·), and σ∗g(·), g = 1, . . . , G, all lie in the Sobolev ball 
with the smoothness γ ∈ N+ : {f : maxν,‖ν‖1≤γ supx |D

νf (x)| < +∞}, 
where the maximum is taken over all d-dimensional non-negative 
integer-valued vectors ν the sum of whose elements is no greater 
than γ, and Dαf is the weak derivative (Giné & Nickl, 2015).  

(iv) Suppose f ∗Xt+1|Xt
( · | · ) is uniformly bounded away from zero on X × X . 

Assumption 2(i) requires the true conditional density function f ∗Xt+1|Xt 
can be well approximated 

by a conditional Gaussian mixture model, with a sufficiently large number of components G. This 
is reasonable, since the Gaussian mixture model can approximate any smooth density function, 
and the conditional Gaussian mixture model can approximate any smooth conditional density 
function (Dalal & Hall, 1983). Assumption 2(ii) to (iv) impose certain boundedness and smooth-
ness conditions on the mean, variance, and weight functions used in the approximation of f ∗Xt+1|Xt

, 
as well as on f ∗Xt+1|Xt 

itself. All these conditions are reasonably mild and hold under numerous set-
tings. We consider three examples to further illustrate. 

Example 1 Suppose the true conditional density function f ∗Xt+1|Xt 
follows a finite condi-

tional Gaussian mixture model with bounded and smooth mean, variance, 
and weight functions. Then Assumption 2 trivially holds. 

Example 2 Suppose f ∗Xt+1|Xt 
follows an infinite conditional Gaussian mixture model, i.e. 

f ∗Xt+1|Xt
(y|x) = ∫g(y0|x)ϕσ(y − y0)dy0, (14) 

where g denotes a certain conditional density function, and ϕσ denotes the 
probability density function of a Gaussian random variable with mean zero 
and variance σ2. Then under some mild conditions on g, the next lemma 
show that Assumption 2 holds. 

Lemma 1 Suppose (14) holds, with a conditional density function g bounded away from 
infinity. Suppose the support of g( · |x) is a subset of [ − C1, C1] for any x. It fol-
lows that 

f ∗Xt+1|Xt
(y|x) −

􏽘G

g=1

α∗g(x)ϕσ y + C1 −
2C1(g − 1)

G

􏼒 􏼓
􏼌
􏼌
􏼌
􏼌
􏼌
􏼌

􏼌
􏼌
􏼌
􏼌
􏼌
􏼌

≤ c4G−1, 

where α∗g(x) = ∫−C1+2C1g
G

−C1+2C1(g−1)
G

g(z|x)dz, and c4 is a positive constant independent of x 

and y. 

According to Lemma 1, the mean {μ∗g(x)}G
g=1 and variance {σ∗g(x)}G

g=1 are constant functions of x, 
which are equal to 2C1(g − 1)/K − C1 and σ. Then Assumption 2(i) holds with ω1 = 1, and 
Assumption 2(ii) holds with ω2 = 0. When g lies in the Sobolev ball with the smoothness parameter 
γ, so are the weight functions {α∗g}G

g=1, and Assumption 2(iii) holds. Assumption 2(iv) holds as g is  
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bounded away from zero. Besides, the approximation error rate obtained in Lemma 1 is O(G−1) in 
L∞ norm, which is shaper than the O(G−1/2) rate in L2 norm obtained in Barron (1993, Lemma 1), 
as we focus on the Gaussian mixture and one-dimensional case. 

Example 3 Suppose f ∗Xt+1|Xt 
satisfies Assumption 2(iv), and is Lipschitz continuous, i.e. 

|f ∗(y1|x) − f ∗(y2|x)| = O(|y1 − y2|) where the big-O-term is uniform in x. It 
follows from Nguyen and McLachlan (2019, Theorem 9) that f ∗ can be 
well approximated by an infinite conditional Gaussian mixture model speci-
fied in (14) with g = f ∗, with the approximation error O(σ). In addition, simi-
lar to Lemma 1, we can show that this infinite conditional Gaussian mixture 
model can be approximated by the finite conditional Gaussian mixture model, 
with the approximation error O(σ−1G−1). By setting σ = G−1/2, Assumption  
2(i) holds with ω1 = 1/2. The mean and variance are both constant functions 
of x, and the variance is lower bounded by G−1/2. Assumption 2(ii) thus holds 
with ω2 = 1/2. When f ∗ lies in the Sobolev ball with the smoothness param-
eter γ, so are the weight functions α∗g, and Assumption 2(iii) holds. 

Assumption 3 Suppose the following conditions hold for the MDN model.  

(i) Suppose the MDN function class is given by, for some sufficiently large 
constant C2, 

F = f (y|x) =
􏽘G

g=1

αg(x)
���
2π
√

σg(x)
exp −

(y − μg(x))2

2σ2
g(x)

􏼨 􏼩

: inf
x,y

f (y|x) ≥ C−1
2 ,

􏼨

sup
x,g
|μg(x)| ≤ C2, C−1

2 G−ω2 ≤ inf
x,g

σg(x) ≤ sup
x,g

σg(x) ≤ C2

􏼩

, 

where αg, μg and σg are parametrised via DNNs.  
(ii) The total number of parameters W in the MDN model is proportional 

to G(d+γ)/γTd/(2γ+d) log (GT), where γ is the smoothness parameter spe-
cified in Assumption 2(iii). 

Assumption 3(i) is mainly to simplify the technical proof, since the estimated functions are 
bounded when both the model parameters and the data support are bounded. It is easy to enforce 
Assumption 3(i) in practice, by imposing range constraints on the model parameters. Assumption  
3(ii) specifies the total number of parameters W, which represents a trade-off. On one hand, since 
we model {αg}G

g=1, {μg}G
g=1 and {σg}G

g=1 via DNNs, their approximation errors decay as W increases. 
On the other hand, the estimation error of MDN increases with W. We require W to be propor-
tional to G(d+γ)/γTd/(2γ+d) log (GT) to balance the bias-variance trade-off, and optimise the conver-
gence rate of the MDN estimator. See the proof of Theorem 3 in the Online Supplementary 
Material, Appendix, for more details. 

Next, we establish the error bound of the MDN estimator 􏽢f (ℓ)
Xt+1|Xt

. The bound of 􏽢f (ℓ)
Xt |Xt+1 

is the 
same and can be derived similarly. 

Theorem 3 Suppose Assumptions 1 and 2 hold. Then, there exist a certain MDN function 

class satisfying Assumption 3, such that the resulting MDN estimator 􏽢f (ℓ)
Xt+1|Xt 

satisfies that 

􏽢f (ℓ)
Xt+1|Xt

− f ∗Xt+1|Xt

􏼍
􏼍
􏼍

􏼍
􏼍
􏼍

2
=

������������������������������������������

∫x,y |
􏽢f (ℓ)

Xt+1|Xt
(y|x) − f ∗Xt+1|Xt

(y|x)|2dxdy
􏽱

≤ cd G−ω1 + G
γ+d
2γ +4ω2 T− γ

2γ+d log3 (TG)
􏽮 􏽯

,
(15) 

for some constant c > 0, and any ℓ = 1, . . . , L, with probability at least 
1 − O(T−1).  
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We remark that the first term of the error bound in (15) is due to the approximation error of the 
conditional Gaussian mixture model, while the second term is due to the approximation error of 
the DNNs and the estimation error of the MDN estimator. In general, the error bound increases 
with d and ω2, and decreases with γ and ω1. We next revisit Examples 1 to 3, and discuss the cor-
responding rate of convergence. 

Example 1 revisited. In this example, the finite conditional Gaussian mixture model holds. As a re-
sult, G is finite and ω1 can be chosen arbitrarily large. The error bound is then of the same order of mag-
nitude as dT−γ/{2γ+d} log3 (T). If the mean, variance, and weight functions are infinitely differentiable, i.e. 
γ = +∞, then the MDN estimator achieves a convergence rate of dT−1/2 up to some logarithmic term. 

Example 2 revisited. In this example, the infinite conditional Gaussian mixture model holds. As 
a result, ω1 = 1 and ω2 = 0. By setting G to be proportional to T2γ2/{(2γ+d)(3γ+d)}, the error bound is 
minimised and is proportional to dT−2γ2/{(2γ+d)(3γ+d)} log3 (T). If γ = +∞, then the MDN estimator 
achieves a convergence rate of dT−1/3 up to some logarithmic term. 

Example 3 revisited. In this example, we have ω1 = ω2 = 1/2. The error bound is minimised 
when G is proportional to T2γ2/{(2γ+d)(6γ+d)}, and the resulting convergence rate is 
dT−γ2/{(2γ+d)(6γ+d)} log3 (T). If γ = +∞, then the MDN estimator achieves a convergence rate of 
dT−1/12 up to some logarithmic term. 

Finally, we remark on the problem of determining the order of a Markov model. In this case, we are 
interested in estimating the conditional density function of Xt+K given X(K)

t and Xt−1 given X(K)
t . Similar 

to Theorem 3, we can show that the corresponding error bound is of the same order of magnitude as 

d[G−ω1 + G(γ+dK)/(2γ)+4ω2 T−γ/{2γ+dK} log3 (TG)].

We note that this upper bound depends on the order K only through the exponents of G and T. 

4.2 Consistency of the proposed test 
Given the error bound of the MDN estimator, we now establish the consistency, i.e. the size and 
power properties of our proposed test. We first show the bias of 􏽢S(q, μ, ν) converges at a faster rate 
than the forward and backward generators. 

Assumption 4 Suppose 􏽢f (ℓ)
Xt+1|Xt 

and 􏽢f (ℓ)
Xt|Xt+1 

converge at a rate of O(T−κ0 ) for some κ0 > 0. 
More specifically, suppose 

��������������������������������������������

E ∫x,y |
􏽢f (ℓ)

Xt+1|Xt
(y|x) − f ∗Xt+1|Xt

(y|x)|2dxdy
􏽱

= O(T−κ0 ),
��������������������������������������������

E ∫x,y |
􏽢f (ℓ)

Xt |Xt+1
(y|x) − f ∗Xt+1|Xt

(y|x)|2dxdy
􏽱

= O(T−κ0 ), 

where the expectation is taken with respect to 􏽢f (ℓ)
Xt+1|Xt 

and 􏽢f (ℓ)
Xt |Xt+1

. 

Theorem 4 Suppose Assumption 4 holds. Then under the null hypothesis H0, 

sup
q,μ,ν

E􏽢S(q, μ, ν)
􏼌
􏼌
􏼌

􏼌
􏼌
􏼌 = O fmaxT−2κ0

( 􏼁
, 

where fmax = supx max1≤t≤T fXt (x), and fXt denotes the marginal density func-
tion of Xt. 

We note that, when the marginal density functions are uniformly bounded, Theorem 4 formally 
verifies the faster convergence rate of the bias of 􏽢S(q, μ, ν). 

Next, we establish the size property of the proposed test. 

Assumption 5 Suppose the following conditions hold.  

(i) The convergence rates for 􏽢f (ℓ)
Xt+1|Xt 

and 􏽢f (ℓ)
Xt|Xt+1 

are both O(T−κ0 ) for 
some κ0 > 1/4.  
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(ii) Suppose there exists some ϵ > 0, such that the real and imaginary parts 
of {exp (iμ⊤Xt+q) −φ∗(μ|Xt+q−1)}{exp (iν⊤Xt) − ψ∗(ν|Xt+1)} have their 
variances greater than ϵ, for any μ, ν and q ∈ {0, . . . , Q}.  

(iii) Suppose M = κ1Tκ2 for some κ1 > 0, κ2 ≥ 1/2, and Q ≤ 
max (ρ0T, T − 2) for some constant 0 < ρ0 < 1.  

(iv) Suppose B grows polynomially fast with respect to T. 

Assumption 5(i) requires the convergence rates of 􏽢f (ℓ)
Xt+1|Xt 

and 􏽢f (ℓ)
Xt |Xt+1 

to be o(T−1/4), which allows 
us to derive the size property of the test based upon Theorem 3. This condition is reasonable. For 
instance, when the time series dimension d is fixed, this corresponds to requiring that γ > d/2 for 
Example 1, and γ > 2.69d for Example 2. Meanwhile, we may also relax this condition, by using 
the theory of higher-order influence functions (Robins et al., 2017). Assumption 5(ii) is a technical 
condition to help simplify the theoretical analysis. Essentially, it is used to guarantee that the diag-
onal elements of the asymptotic covariance matrix are bounded away from zero. When the fitted 
MDN is consistent, it follows that the diagonal elements of the estimated covariance matrix are 
bounded away from zero as well, with probability tending to 1. This allows us to apply Theorem 
1 of Chernozhukov et al. (2017) to establish the size property. This condition automatically holds 
when the conditional density functions f ∗Xt+1|Xt

, f ∗Xt |Xt+1
, ‖μb‖2s and ‖νb‖2s are uniformly bounded 

away from zero. Meanwhile, if we truncate the diagonal elements of the estimated covariance matrix 
from below by some small positive constant, then this condition is not needed, and the subsequent 
test remains valid to control the type-I error. Finally, Assumption 5(iii) and (iv) impose some require-
ments on the parameters M, Q and B. In particular, B is allowed to diverge with T. Therefore, the 
classical weak convergence theorem is not applicable to show the asymptotic equivalence between 
the distribution of the test statistic and that of the bootstrap samples given the data. To overcome 
this issue, we employ the high-dimensional martingale central limit theorem recently developed 
by Belloni and Oliveira (2018). 

Theorem 5 Suppose Assumptions 1 and 5 hold. Then, as T→∞, P(􏽢S >􏽢cα) = α + o(1) 
under the null hypothesis. 

Next, we establish the power property of the proposed test. 

Assumption 6 Suppose the following conditions hold.  

(i) Suppose supq,μ,ν S0(q, μ, ν) ≫ T−1/2 log1/2 (T), where S0(q, μ, ν) = 
|E{exp (iμ⊤Xt+q) − φ∗(μ|Xt+q−1)}{exp (iν⊤Xt) − ψ∗(ν|Xt+1)}|.  

(ii) Suppose B = κ3Tκ4 for some κ3 > 0, κ4 ≥ 1/2. 

Assumption 6(i) measures the degree to which the alternative hypothesis deviates from the null. 
This is because, for q = 1, . . . , Q, the quantity 

sup
f ,g

E f (Xt+q) − E{f (Xt+q)|Xt+q−1}
􏼂 􏼃

g(Xt) − E{g(Xt)|Xt+1}
􏼂 􏼃􏼌

􏼌
􏼌
􏼌 (16) 

measures the weak conditional dependence between Xt+q and Xt given Xt+q−1 and Xt+1 (Daudin, 
1980). Here, the supremum is taken with respect to the class of all squared integrable functions of 
X, i.e. L2(X). According to the Weierstrass approximation theorem, the class of trigonometric pol-
ynomials are dense in L2(X). As such, (16) is equal to zero if and only if supμ,ν S0(q, μ, ν) = 0. 
Therefore, supq,μ,ν S0(q, μ, ν) measures the degree to which the alternative hypothesis deviates 
from the null, and we require it to be lower bounded. Assumption 6(ii) is mild as B is user-specified. 

Theorem 6 Suppose Assumptions 1, 5(i) to (iii), and 6 hold. Then, as T→∞, P(􏽢S > 
􏽢cα)→ 1 under the alternative hypothesis. 

We remark that our proposed test is built on weak conditional independence, and thus is not 
consistent against all alternatives. There are cases when (16) equals zero but (2) does not hold, 
since weak conditional independence does not fully characterise conditional independence. In 
those cases, our test becomes powerless. A possible remedy is to consider an alternative doubly  
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robust test statistics based on 

E exp (iμ⊤Xt+q) − φ∗(μ|Xt+q−1)
􏼈 􏼉

exp (iν⊤Xt) − ψ∗(iν⊤Xt+1)
􏼈 􏼉

exp {i(X⊤
t+1, . . . , X⊤

t+q−1)}ωq

􏽨 􏽩
.

The above expectation equals zero for any q ≥ 2, μ, ν ∈ Rd, and ωq ∈ Rd(q−1), and the resulting 
supremum type test is consistent against all alternative hypotheses. However, it is computationally 
more expensive, since a large number of Monte Carlo samples {(μb, νb, ωq,b)}b are needed to ap-

proximate the supremum over the space of R × R × Rd(q−1) when q is large. In addition, our numer-
ical analysis finds this test less powerful compared to our proposed test. This agrees with the 
observation in the literature that, even though the test based on weak conditional dependence is 
not consistent against all alternatives, it may benefit from a simple procedure, and thus a better 
power property (Li & Fan, 2020). 

We also note that Theorems 5 and 6 have suggested some theoretical choices of the parameters 
L, B, M, Q. In practice, we recommend to set L fixed, and set M to be proportional to the sample 
size. Besides, we choose a large value for Q that is proportional to T, and also choose a large B. We 
discuss their empirical choices in the next section. 

5 Simulations 
We study the empirical performance of our proposed test through simulations. We consider three 
different Markov time series models, each with order K = 3, dimension d = 3, and varying length 
T = {500, 1000, 1500, 2000}. We apply the proposed sequential testing procedure for 
k = 1, 2, . . . , 5, and report the percentage of times out of 500 data replications when the null hy-
pothesis is rejected. When k < K, this percentage reflects the empirical power of the test, and when 
k ≥ K, it shows the empirical size. 

We consider a linear type VAR model, a nonlinear type threshold model, and a nonlinear type 
GARCH model, all of which are commonly used in the time series literature (e.g. Auestad & 
Tjøstheim, 1990; Cheng & Tong, 1992; Tschernig & Yang, 2000).  

Model 1: VAR model 

A1 =
0.5 −0.2 −0.2

−0.2 0.5 −0.2

−0.2 −0.2 0.5

⎛

⎜
⎝

⎞

⎟
⎠, A2 =

−0.5 0.2 0.2

0.2 −0.5 0.2

0.2 0.2 −0.5

⎛

⎜
⎝

⎞

⎟
⎠, A3 =

0.4 −0.1 −0.1

−0.1 0.4 −0.1

−0.1 −0.1 0.4

⎛

⎜
⎝

⎞

⎟
⎠,

Xt = A1Xt−1 + A2Xt−2 + A3Xt−3 + εt, 

where Xt, εt ∈ R3, and εt,1, εt,2, εt,3 ∼iid Normal(0, 0.5).  

Model 2: Threshold model 

A1 =
0.5 −0.2 −0.2

−0.2 0.5 −0.2

−0.2 −0.2 0.5

⎛

⎜
⎝

⎞

⎟
⎠, A2 =

−0.5 0.2 0.2

0.2 −0.5 0.2

0.2 0.2 −0.5

⎛

⎜
⎝

⎞

⎟
⎠, A3 =

0.4 −0.1 −0.1

−0.1 0.4 −0.1

−0.1 −0.1 0.4

⎛

⎜
⎝

⎞

⎟
⎠,

B1 =
0.3 −0.1 −0.1

−0.1 0.3 −0.1

−0.1 −0.3 0.3

⎛

⎜
⎝

⎞

⎟
⎠, B2 =

−0.3 0.1 0.1

0.1 −0.3 0.1

0.1 0.1 −0.3

⎛

⎜
⎝

⎞

⎟
⎠, B3 =

0.25 −0.05 −0.05

−0.05 0.25 −0.05

−0.05 −0.05 0.25

⎛

⎜
⎝

⎞

⎟
⎠,

Xt = A1Xt−1 + A2Xt−2 + A3Xt−3 + ϵt if
􏽐3

j=1 Xt−1,j ≤ 0,

Xt = B1Xt−1 + B2Xt−2 + B3Xt−3 + ϵt if
􏽐3

j=1 Xt−1,j > 0,

􏼨

where Xt, εt ∈ R3, and εt,1, εt,2, εt,3 ∼iid Normal(0, 0.5).  
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Model 3: Multivariate ARCH model 

Xt = AX̃t, X̃t = (X̃t,1, X̃t,2, X̃t,3)⊤, X̃t,j = h
1
2
t,jεt,j, j = 1, 2, 3

ht,1 = 0.1 + 0.6X̃
2
t−1,1 + 0.35X̃

2
t−3,1

ht,2 = 0.2 + 0.8X̃
2
t−1,2 + 0.05X̃

2
t−2,2 + 0.1X̃

2
t−3,2

ht,3 = 0.1 + 0.3X̃
2
t−1,3 + 0.65X̃

2
t−3,3

⎧
⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎩

A =
1 0.2 0.2

0.2 1 0.2
0.2 0.2 1

⎛

⎝

⎞

⎠, 

where Xt, εt ∈ R3, and εt,1, εt,2, εt,3 ∼iid Normal(0, 0.5). 

We apply the proposed test. For the hyper-parameters, we propose to select the number of mix-
ture components G using cross-validation, as its choice is important to the empirical performance. 
When G is small, the fitted MDN model may suffer from a large bias, leading to an inflated type-I 
errors, whereas when G is large, the model may be overfitted, yielding a more variable test statistic. 
For the number of pairs B, a larger value of B generally improves the power of the test, but also 
increases the computational cost. We thus fix it at B = 1000 to achieve a trade-off between the 
power and the computational cost. For the rest of parameters, including the number of data 
chunks L, the number of pseudo samples M, and the largest number of lags Q, we conduct a sen-
sitivity analysis in Section B.1 of the Online Supplementary Material, Appendix. We find that the 
proposed test is not overly sensitive to the choice of these parameters, as long as they are in a rea-
sonable range. We thus set L = 3, M = 100, and Q = 10 in our numerical studies. For MDN, we fix 
the number of layers H = 1, and vary the number of nodes U per hidden layer to vary the total 
number of parameters, and correspondingly the overall complexity of MDN. We carry out an-
other sensitivity analysis for U in Online Supplementary Material, Section B.1, and again find a 
similar performance of the test in a range of values of U, so we fix U = 20 for the first two models, 
and U = 40 for the last model, as the last one is more complex. We estimate the parameters of 
MDN through maximum likelihood, where the derivative of the likelihood function with respect 
to each parameter is derived and the back-propagation is employed. In our implementation, we 
employ the Adam algorithm (Kingma & Ba, 2015), and use Python and Tensorflow (Dillon 
et al., 2017). We publish our code on GitHub.1 

We compare our proposed test with two baseline tests for the Markov property, including the 
test by Chen and Hong (2012), which used LPFs to estimate the CCFs, and a version of the random 
forest-based test by Shi et al. (2020), which was designed for reinforcement learning, and is modi-
fied and adapted to our setting. In addition, Chen and Hong (2012) suggested two methods to 
compute the p-value for their test. The first method estimates the asymptotic variance of the 
test and uses a normal approximation. The second method employs bootstrap. In our settings, 
we find that the bootstrap procedure is extremely slow for a large T. As such, we calculate the 
p-value based on the normal approximation. 

Table 1 reports the empirical rejection rate of each test under the significance level α = 0.05, ag-
gregated over 500 data replications. It can be seen that the proposed test effectively controls the 
type-I error when k ≥ 3, and is very powerful when k < 3. To the contrary, both the two baseline 
tests suffer from inflated type-I errors for large T. For instance, when T ≥ 1000, the type-I error of 
the test of Chen and Hong (2012) exceeds 0.09 in all cases. This is probably due to that the LPR 
tends to suffer with a larger dimension in the multivariate setting (Taylor & Einbeck, 2013). The 
test of Shi et al. (2020) has considerably large type-I errors when applied to the multivariate ARCH 
model. This is likely due to the fact that their test was not designed for time series data. 

Finally, we report the computation time of the proposed test. We ran all simulations on savio2 
htc node of the UC Berkeley Computing Platform, with 12 CPUs and 128 GB RAM, and it took 
around 2 min on average for a single data replication. We also run an example on a regular laptop 
computer with a single CPU and 8 GB memory RAM, and it took around 20 min on average for 
one data replication. 

1 https://github.com/yunzhe-zhou/markov_test.  
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6 Real data applications 
We illustrate our method with three datasets: the temperature dataset (Example 1 of Chang et al., 
2018), the PM2.5 dataset (Example 4 of Chang et al., 2018), and the diabetes dataset (Marling & 
Bunescu, 2018). 

The first dataset consists of the monthly temperature of seven cities in Eastern China from 
January 1954 to December 1998. To remove the seasonal trend, we subtract the average across 
the same month of the year. This ensures that the resulting time series is stationary. The resulting 
time series has dimension d = 7 and length T = 528. 

The second dataset consists of the daily average PM2.5 concentration readings, in the logarith-
mic scale, at 74 monitoring stations in Beijing and nearby areas of China from January 1, 2015 to 
December 31, 2016. PM2.5 refers to the mix of solid and liquid particles whose diameters are 
smaller than 2.5 micrometers, and is a key measure of air quality and pollution. We again subtract 
the average across the same day of the year. The resulting times series has dimension d = 74 and 
length T = 731. 

The third dataset consists of measurements, recorded every 5 min, involving blood glucose level, 
meal, exercise and insulin treatment from six patients with type-I diabetes over eight weeks. We 
divide each day into 1-h intervals, and compute the average blood glucose level, the carbohydrate 
estimate for the meal, the exercise intensity, and the amount of insulin received during the 1-h 
interval. For each patient, the resulting time series has dimension d = 4 and length T = 1100. 

Table 1. Percentage of times out of 500 data replications when the null hypothesis is rejected under the significance 
level α = 0.05  

T = 500 T = 1000 T = 1500 

k MDN RF LPF MDN RF LPF MDN RF LPF  

Model 1: VAR model 

1  0.952  0.980  0.010  1.000  1.000  0.280  1.000  1.000  0.722 

2  0.258  0.508  0.016  0.856  0.954  0.116  0.992  1.000  0.204 

3  0.052  0.422  0.020  0.042  0.762  0.132  0.060  0.934  0.200 

4  0.042  0.060  0.020  0.044  0.048  0.112  0.058  0.048  0.200 

5  0.056  0.052  0.032  0.044  0.050  0.134  0.048  0.044  0.220 

Model 2: Threshold model 

1  0.614  0.704  0.000  0.998  0.998  0.168  1.000  1.000  0.484 

2  0.160  0.246  0.028  0.716  0.692  0.122  0.976  0.966  0.278 

3  0.062  0.126  0.026  0.056  0.128  0.118  0.066  0.234  0.170 

4  0.040  0.070  0.028  0.036  0.042  0.112  0.048  0.052  0.188 

5  0.060  0.068  0.030  0.056  0.038  0.096  0.034  0.038  0.146    

T = 1000 T = 1500 T = 2000 

k MDN RF LPF MDN RF LPF MDN RF LPF  

Model 3: Multivariate ARCH model 

1  0.368  0.842  0.244  0.648  0.966  0.552  0.846  1.000  0.840 

2  0.332  0.826  0.240  0.642  0.960  0.528  0.838  1.000  0.734 

3  0.064  0.398  0.098  0.044  0.520  0.210  0.058  0.794  0.284 

4  0.042  0.286  0.090  0.050  0.356  0.202  0.054  0.554  0.236 

5  0.064  0.252  0.094  0.058  0.328  0.154  0.064  0.484  0.228 

Note: The true order of the Markov model is K = 3 in all examples. Three methods are compared: our proposed test 
(MDN), Shi et al. (2020)’s method (RF), and Chen and Hong (2012)’s method (LPF).   
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We note that the third data example is different from the other two examples as well as the set-
ting of our problem in several ways. First, for each d0-dimensional time series, there are N = 6 rep-
lications corresponding to six patients. Second, for the d0 = 4 variables, it is of interest to test the 
Markov property for three of them, but not the insulin amount, because the amount of insulin is 
determined by the patients themselves. In addition, the insulin amount should be included in the 
conditioning set, because it directly affects the blood glucose level. Finally, for the carbohydrate 
estimate of the meal and the exercise intensity, a good portion of the measurements are zero, be-
cause no meal or exercise was taken in those time intervals. We modify the test in Algorithm 1 to 
accommodate these differences. Specifically, in Step 1, to tackle multiple replications, instead of 
splitting a single time series into multiple chunks, we now randomly split N replications into mul-
tiple chunks of similar sizes. In Step 2, to test the Markov property of a subset of variables of the 

multivariate time series, instead of estimating 􏽢f (ℓ)
Xt |Xt−1

, we now estimate the forward generator 
􏽢f (ℓ)

X̃t |Xt−1
, where 􏽥Xt only includes those variables to test about. Meanwhile, we still estimate the 

backward generator 􏽢f (ℓ)
Xt|Xt−1 

as before. Also in Step 2, to tackle the issue that some observed 
time series involve many zeros, we fit a logistic regression to estimate the conditional densities, 
while we still use MDN for other continuous time series. The rest of steps remain essentially the 
same as in Algorithm 1. 

We apply the proposed test, as well as the two alternative tests of Chen and Hong (2012) and Shi 
et al. (2020), for k = 1, 2, . . . , 12 sequentially, to the three datasets. Table 2 reports the corre-
sponding p-values. For both the temperature and PM2.5 datasets, our test suggests the Markov 
property holds. This result is consistent with the findings in the literature, as a simple vector au-
toregressive model of order 1 is sufficient to model these high-dimensional datasets (see, e.g.  
Chang et al., 2018). For the diabetes data, the test suggests the order of the Markov model is 4, 
which is consistent with the finding of Shi et al. (2020). By contrast, the test of Chen and Hong 
(2012) yields a large p-value when k = 2 then a very small p-value when k = 4 for the diabetes data-
set. The test of Shi et al. (2020) tends to select a large value of k for both the temperature dataset 
and the PM2.5 dataset. 
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