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Abstract
We propose TrendSegment, a methodology for detecting multiple change-points cor-
responding to linear trend changes in one dimensional data. A core ingredient of
TrendSegment is a new Tail-Greedy Unbalanced Wavelet transform: a conditionally
orthonormal, bottom-up transformation of the data through an adaptively constructed
unbalanced wavelet basis, which results in a sparse representation of the data. Due
to its bottom-up nature, this multiscale decomposition focuses on local features in
its early stages and on global features next which enables the detection of both long
and short linear trend segments at once. To reduce the computational complexity, the
proposed method merges multiple regions in a single pass over the data. We show the
consistency of the estimated number and locations of change-points. The practical-
ity of our approach is demonstrated through simulations and two real data examples,
involving Iceland temperature data and sea ice extent of the Arctic and the Antarc-
tic. Our methodology is implemented in the R package trendsegmentR, available
from CRAN.

Keywords Change-point detection · Bottom-up algorithms · Piecewise-linear signal ·
Wavelets

1 Introduction

Multiple change-point detection is a problem of importance in many applications;
recent examples include automatic detection of change-points in cloud data tomaintain
the performance and availability of an app or a website (James et al. 2016), climate
change detection in tropical cyclone records (Robbins et al. 2011), detecting exoplanets
from light curve data (Fisch et al. 2018), detecting changes in the DNA copy number
(Olshen et al. 2004; Jeng et al. 2012; Bardwell et al. 2017), estimation of stationary
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intervals in potentially cointegrated stock prices (Matteson et al. 2013), estimation of
change-points inmulti-subject fMRI data (Robinson et al. 2010) and detecting changes
in vegetation trends (Jamali et al. 2015).

This paper considers the change-point model

Xt = ft + εt , t = 1, . . . , T , (1)

where ft is a deterministic and piecewise-linear signal containing N change-points,
i.e. time indices at which the slope and/or the intercept in ft undergoes changes. These
changes occur at unknown locations η1, η2, . . . , ηN . In this article, we assume that the
εt ’s are iid N(0, σ 2) and in the supplementary material, we show how our method can
be extended to dependent and/or non-Gaussian noise such as εt following a stationary
Gaussian AR process or t-distribution. The true change-points {ηi }Ni=1 are such that,

ft = θ�,1 + θ�,2 t for t ∈ [η�−1 + 1, η�], � = 1, . . . , N + 1

where fη�
+ θ�,2 �= fη�+1 for � = 1, . . . , N .

(2)

This definition permits both continuous and discontinuous changes in the linear trend.
Our main interest is in the estimation of N and η1, η2, . . . , ηN under some assump-

tions that quantify the difficulty of detecting each ηi ; therefore, our aim is to segment
the data into sections of linearity in ft . In detail, a change-point located close to its
neighbouring ones can only be detected when it has a large enough size of linear trend
change, while a change-point capturing a small size of linear trend change requires
a longer distance from its adjacent change-points to be detected. Detecting linear
trend changes is an important applied problem in a variety of fields, including climate
change, as illustrated in Sect. 5.

The change-point detection procedure proposed in this paper is referred to as Trend-
Segment; it is designed to work well in the presence of either long or short spacings
between neighbouring change-points, or a mixture of both. The engine underlying
TrendSegment is a newTail-GreedyUnbalancedWavelet (TGUW) transform: a condi-
tionally orthonormal, bottom-up transformation for univariate data sequences through
an adaptively constructed unbalancedwavelet basis, which results in a sparse represen-
tation of the data. In this article, we show that TrendSegment offers good performance
in estimating the number and locations of change-points across a wide range of sig-
nals containing constant and/or linear segments. TrendSegment is also shown to be
statistically consistent and computationally efficient.

In earlier related work regarding linear trend changes, Bai and Perron (1998) con-
sider the estimation of linear models with multiple structural changes by least-squares
and present Wald-type tests for the null hypothesis of no change. Kim et al. (2009)
and Tibshirani et al. (2014) consider ‘trend filtering’ with the L1 penalty and Fearn-
head et al. (2019) detect changes in the slope with an L0 regularisation via a dynamic
programming algorithm. Spiriti et al. (2013) study two algorithms for optimising the
knot locations in least-squares and penalised splines. Baranowski et al. (2019) propose
a multiple change-point detection device termed Narrowest-Over-Threshold (NOT),
which focuses on the narrowest segment among those whose contrast exceeds a pre-
specified threshold. Anastasiou and Fryzlewicz (2022) propose the Isolate-Detect (ID)
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approach which continuously searches expanding data segments for changes. Yu et al.
(2022) propose a two-step algorithm for detectingmultiple change-points in piecewise
polynomials with general degrees.

Keogh et al. (2004) mention that sliding windows, top-down and bottom-up
approaches are three principal categories which most time series segmentation algo-
rithms can be grouped into. Keogh et al. (2004) apply those three approaches to the
detection of changes in linear trends in 10 different signals and discover that the
performance of bottom-up methods is better than that of top-down methods and slid-
ing windows, notably when the underlying signal has jumps, sharp cusps or large
fluctuations. Bottom-up procedures have rarely been used in change-point detection.
Matteson and James (2014) use an agglomerative algorithm for hierarchical clustering
in the context of change-point analysis. Keogh et al. (2004) merge adjacent segments
of the data according to a criterion involving the minimum residual sum of squares
(RSS) from a linear fit, until the RSS falls under a certain threshold; but the lack of
precise recipes for the choice of this threshold parameter causes the performance of
this method to be somewhat unstable, as we report in Sect. 4.

As illustrated later in this paper, our TGUW transform, which underlies TrendSeg-
ment, is designed to work well in detecting frequent change-points or abrupt local
features in which many existing change-point detection methods for the piecewise-
linear model fail. The TGUW transform constructs, in a bottom-up way, an adaptive
wavelet basis by consecutively merging neighbouring segments of the data starting
from the finest level (throughout the paper, we refer to a wavelet basis as adaptive
if it is constructed in a data-driven way). This enables it to identify local features at
an early stage, before it proceeds to focus on more global features corresponding to
longer data segments.

Fryzlewicz (2018) introduces theTail-GreedyUnbalancedHaar (TGUH) transform,
a bottom-up, agglomerative, data-adaptive transformation of univariate sequences that
facilitates change-point detection in the piecewise-constant sequence model. The cur-
rent paper extends this idea to adaptive wavelets other than adaptive Haar, which
enables change-point detection in the piecewise-linear model (and, in principle, to
higher-order piecewise polynomials, where the details can be found in Section G of
the supplementary material). We emphasise that this extension from TGUH to TGUW
is both conceptually and technically non-trivial, due to the fact that it is not a pri-
ori clear how to construct a suitable wavelet basis in TGUW for wavelets other than
adaptive Haar; this is due to the non-uniqueness of the local orthonormal matrix trans-
formation for performing each merge in TGUW, which does not occur in TGUH.
We solve this issue by imposing certain guiding principles in the way the merges are
performed, which enables detecting not only long trend segments, but also frequent
change-points including abrupt local features. The computational cost of TGUW is
the same as TGUH. Important properties of the TGUW transform include orthonor-
mality conditional on the merging order, nonlinearity and “tail-greediness", and will
be investigated in Sect. 2. The TGUW transform is the first step of the TrendSegment
procedure, which involves four steps.

The remainder of the article is organised as follows. Section2 gives a full description
of the TrendSegment procedure and the relevant theoretical results are presented in
Sect. 3. The supporting simulation studies are described in Sect. 4 and ourmethodology
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is illustrated in Sect. 5 through climate datasets. The proofs of our main theoretical
results are in Appendix 1. The supplementary material includes theoretical results
for dependent and/or non-Gaussian noise, extension to piecewise-quadratic signal,
details of robust threshold selection and extra simulation and data application results.
The TrendSegment procedure is implemented in the R package trendsegmentR,
available from CRAN.

2 Methodology

2.1 Summary of TrendSegment

The TrendSegment procedure for estimating the number and the locations of change-
points includes four steps. We give the broad picture first and outline details in later
sections.

1. TGUW transformation. Perform the TGUW transform, a bottom-up unbalanced
adaptive wavelet transformation of the input data X1, . . . , XT , by recursively
applying local conditionally orthonormal transformations. This produces a data-
adaptive multiscale decomposition of the data with T − 2 detail-type coefficients
and 2 smooth coefficients. The resulting conditionally orthonormal transform of
the data hopes to encode most of the energy of the signal in only a few detail-
type coefficients arising at coarse levels (see Fig. 1 for an example output). This
representation sparsity justifies thresholding in the next step.

2. Thresholding. Set to zero those detail coefficients whose magnitude is smaller
than a pre-specified threshold as long as all the non-zero detail coefficients are
connected to each other in the tree structure. This step performs “pruning” as a
way of deciding the significance of the sparse representation obtained in step 1.

3. Inverse TGUW transformation.Obtain an initial estimate of ft by carrying out the
inverse TGUW transformation of the thresholded coefficient tree. The resulting
estimator is discontinuous at the estimated change-points. It can be shown to be
l2-consistent, but not yet consistent for N or η1, . . . , ηN .

4. Post-processing. Post-process the estimate from step 3 by removing some change-
points perceived to be spurious, which enables us to achieve estimation consistency
for N and η1, . . . , ηN .

Figure2 illustrates the first three steps of the TrendSegment procedure. We devote the
following four sections to describing each step above in order.

2.2 TGUW transformation

2.2.1 Key principles of the TGUW transform

In the initial stage, the data are considered smooth coefficients and the TGUW trans-
form iteratively updates the sequence of smooth coefficients by merging the adjacent
sections of the data which are the most likely to belong to the same segment. The
merging is done by performing an adaptively constructed orthonormal transformation
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Fig. 1 Multiscale decomposition of the data through the TGUW transform when the data has no change-
points (a, b) or one change-point (c, d). s1 and s2 are the smooth coefficients obtained through the TGUW
transform and dk is the detail coefficient obtained in the kth merge. When the data has no noise (a, c),
dk = 0 for all k in a while two non-zero coefficients d6 and d7 encode the single change in c

Fig. 2 Illustration of the first three steps of the TrendSegment procedure with the observed data Xt (dots),
the true signal ft (grey line) and the tree of mergings; a TGUW transform constructs a tree by merging
neighbouring segments, b In thresholding, surviving coefficients (solid line in the tree) are chosen by a
pre-specified threshold, which decides the location of the estimated change point (red), c Inverse TGUW
transform gives the estimated signal (green) based on the estimated change points obtained in thresholding
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Table 1 Notation

X p pth element of the observation vector
X = {X1, X2, . . . , XT }�

s0p,p pth initial smooth coefficient of the vector s0 where
X = s0

dp,q,r detail coefficient obtained from {X p, . . . , Xr } (merges of
Types 1 or 2)

s[1]
p,r , s

[2]
p,r smooth coefficients obtained from {X p, . . . , Xr }, paired

under the “two together" rule

d[1]
p,q,r , d

[2]
p,q,r paired detail coefficients obtained by merging two

adjacent subintervals, {X p, . . . , Xq} and
{Xq+1, . . . , Xr }, where r > q + 2 and q > p + 1
(merge of Type 3)

s data sequence vector containing the (recursively updated)
smooth and detail coefficients from the initial input s0

See Sect. 2.2.4 for formulae for the terms listed

to the chosen triplet of the smooth coefficients and in doing so, a data-adaptive unbal-
anced wavelet basis is established. The TGUW transform is completed after T − 2
such orthonormal transformations and each merge is performed under the following
principles.

1. In each merge, three adjacent smooth coefficients are selected and the orthonormal
transformation converts those three values into onedetail and two (updated) smooth
coefficients. The size of the detail coefficient gives information about the strength
of the local linearity and the two updated smooth coefficients are associated with
the estimated parameters (intercept and slope) of the local linear regression per-
formed on the raw observations corresponding to the initially chosen three smooth
coefficients.

2. “Two together” rule. The two smooth coefficients returned by the orthonormal
transformation are paired in the sense that both contain information about one
local linear regression fit. Thus,we require that any such pair of smooth coefficients
cannot be separated when choosing triplets in any subsequent merges. We refer to
this recipe as the “two together” rule.

3. To decide which triplet of smooth coefficients should be merged next, we compare
the corresponding detail coefficients as their magnitude represents the strength of
the corresponding local linear trend; the smaller the (absolute) size of the detail,
the smaller the local deviation from linearity. Smooth coefficients corresponding
to the smallest detail coefficients have priority in merging.

As merging continues under the “two together" rule, all mergings can be classified
into one of three forms:
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Fig. 3 Construction of tree for the example in Sect. 2.2.2; each diagram shows all merges performed up to
the given scale with the data (dot), true signal (grey) and true change point (red)

• Type 1: merging three initial smooth coefficients,
• Type 2: merging one initial and a paired smooth coefficient,
• Type 3: merging two sets of (paired) smooth coefficients,

where Type 3 is composed of two merges of triplets and more details are given in
Sect. 2.2.2.

2.2.2 Example

We now provide a simple example of the TGUW transformation; the accompanying
illustration is in Fig. 3. The notation for this example and for the general algorithm
introduced later is in Table 1. This example shows single merges at each pass through
the data when the algorithm runs in a purely greedy way. We will later generalise it
to multiple passes through the data, which will speed up computation (this device is
referred to as “tail-greediness" as the algorithm merges those triplets corresponding
to the lower tail of the distribution of local deviation from linearity in X). We refer
to j th pass through the data as scale j . Assume that we have the initial input s0 =
(X1, X2, . . . , X8), so that the complete TGUW transform consists of 6 merges. We
show 6 example merges one by one under the rules introduced in Sect. 2.2.1. This
example demonstrates all three possible types of merges.

Scale j = 1. From the initial input s0 = (X1, . . . , X8), we consider 6 triplets
(X1, X2, X3), (X2, X3, X4), (X3, X4, X5), (X4, X5, X6), (X5, X6, X7), (X6, X7, X8)

and compute the size of the detail for each triplet, where the formula can be found in
(7). Suppose that (X2, X3, X4) gives the smallest size of detail, |d2,3,4|, then merge
(X2, X3, X4) through the orthogonal transformation formulated in (8) and update
the data sequence into s = (X1, s

[1]
2,4, s

[2]
2,4, d2,3,4, X5, X6, X7, X8). We categorise this

transformation into Type 1 (merging three initial smooth coefficients).
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Scale j = 2. From now on, the “two together” rule is applied. Ignoring any
detail coefficients in s, the possible triplets for next merging are (X1, s

[1]
2,4, s

[2]
2,4),

(s[1]
2,4, s

[2]
2,4, X5), (X5, X6, X7), (X6, X7, X8). We note that (s[2]

2,4, X5, X6) cannot be
considered as a candidate for next merging under the “two together” rule as this
triplet contains only one (not both) of the paired smooth coefficients returned by
the previous merging. Assume that (X5, X6, X7) gives the smallest size of detail
coefficient |d5,6,7| among the four candidates, then we merge them through the
orthogonal transformation formulated in (8) and now update the sequence into
s = (X1, s

[1]
2,4, s

[2]
2,4, d2,3,4, s

[1]
5,7, s

[2]
5,7, d5,6,7, X8). This transformation is also Type 1.

Scale j = 3. We now compare four candidates for merging, (X1, s
[1]
2,4, s

[2]
2,4),

(s[1]
2,4, s

[2]
2,4, s

[1]
5,7), (s[2]

2,4, s
[1]
5,7, s

[2]
5,7) and (s[1]

5,7, s
[2]
5,7, X8). The two triplets in middle,

(s[1]
2,4, s

[2]
2,4, s

[1]
5,7) and (s[2]

2,4, s
[1]
5,7, s

[2]
5,7), are paired together as they contain two sets of

paired smooth coefficients, (s[1]
2,4, s

[2]
2,4) and (s[1]

5,7, s
[2]
5,7), and if we were to treat these

two triplets separately, we would be violating the “two together” rule. The summary
detail coefficient for this pair of triplets is obtained as d2,4,7 = max(|d[1]

2,4,7|, |d[2]
2,4,7|),

which is compared with those of the other triplets. Now suppose that (X1, s
[1]
2,4, s

[2]
2,4)

has the smallest size of detail; we merge this triplet and update the data sequence into
s = (s[1]

1,4, s
[2]
1,4, d1,1,4, d2,3,4, s

[1]
5,7, s

[2]
5,7, d5,6,7, X8). This transformation is of Type 2.

Scale j = 4. We now have two pairs of paired coefficients: (s[1]
1,4, s

[2]
1,4) and

(s[1]
5,7, s

[2]
5,7). Therefore, with the “two together” rule in mind, the only possible options

formerging are: tomerge the twopairs into (s[1]
1,4, s

[2]
1,4, s

[1]
5,7, s

[2]
5,7), or tomerge (s[1]

5,7, s
[2]
5,7)

with X8. Suppose that the secondmerging is preferred. Thenwe performType 2merge
andupdate thedata sequence into s = (s[1]

1,4, s
[2]
1,4, d1,1,4, d2,3,4, s

[1]
5,8, s

[2]
5,8, d5,6,7, d5,7,8).

Scale j = 5. The only remaining step is merging (s[1]
1,4, s

[2]
1,4) and (s[1]

5,8, s
[2]
5,8)

into (s[1]
1,4, s

[2]
1,4, s

[1]
5,8, s

[2]
5,8). This transformation is Type 3 and performed in two

stages as follows. In the first stage, we merge (s[1]
1,4, s

[2]
1,4, s

[1]
5,8) and then update the

sequence temporarily as s = (s[1′]
1,8 , s[2′]

1,8 , d1,1,4, d2,3,4, d
[1]
1,4,8, s

[2]
5,8, d5,6,7, d5,7,8). In

the second stage, we merge (s[1′]
1,8 , s[2′]

1,8 , s[2]
5,8), which gives the updated sequence

s = (s[1]
1,8, s

[2]
1,8, d1,1,4, d2,3,4, d

[1]
1,4,8, d

[2]
1,4,8, d5,6,7, d5,7,8). The transformation is now

completed with the updated data sequence which contains T − 2 = 6 detail and 2
smooth coefficients.

2.2.3 Some important features of TGUW transformation

Before formulating the TGUW transformation in generality, we describe how it
achieves sparse representation of the data. Sometimes, we will be referring to a
detail coefficient d ·

p,q,r as d( j,k)
p,q,r or d( j,k), where j = 1, . . . , J is the scale of the

transform (i.e. the consecutive pass through the data) at which d ·
p,q,r was computed,

k = 1, . . . , K ( j) is the location index of d ·
p,q,r within all scale j coefficients, and

d ·
p,q,r is d

[1]
p,q,r or d

[2]
p,q,r or dp,q,r , depending on the type of merge.
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The TGUW transform eventually converts the input data sequence X of length T
into the sequence containing 2 smooth and T − 2 detail coefficients through T − 2
orthonormal transforms as follows,

⎛
⎜⎜⎜⎝

s[1]
1,T

s[2]
1,T(

d( j,k)
j=1,...,J ,k=1,...,K ( j)

)

⎞
⎟⎟⎟⎠ =

⎛
⎜⎜⎜⎜⎝

ψ(0,1)

ψ(0,2)⎛
⎝ψ( j,k)

j=1,...,J ,k=1,...,K ( j)

⎞
⎠

⎞
⎟⎟⎟⎟⎠

⎛
⎜⎜⎜⎝

X1
X2
...

XT

⎞
⎟⎟⎟⎠

= �T×T

⎛
⎜⎜⎜⎝

X1
X2
...

XT

⎞
⎟⎟⎟⎠ , (3)

where� is a data-adaptively chosenorthonormal unbalancedwavelet basis forRT . The
detail coefficients d( j,k) can be regarded as scalar products between X and a particular
unbalanced wavelet basisψ( j,k), where the formal representation is given as {d( j,k) =
〈X , ψ( j,k)〉, j=1,...,J ,k=1, ...,K ( j) } for detail coefficients and s[1]

1,T = 〈X , ψ(0,1)〉, s[2]
1,T =

〈X , ψ(0,2)〉 for the two smooth coefficients.
The TGUW transform is nonlinear, but it is also conditionally linear and orthonor-

mal given the order in which the merges are performed. The orthonormality of the
unbalanced wavelet basis, {ψ( j,k)}, implies Parseval’s identity:

T∑
t=1

X2
t =

J∑
j=1

K ( j)∑
k=1

(d( j,k))2 + (s[1]
1,T )2 + (s[2]

1,T )2. (4)

Furthermore, the filters (ψ(0,1), ψ(0,2)) corresponding to the two smooth coefficients
s[1]
1,T and s[2]

1,T form an orthonormal basis of the subspace {(x1, x2, . . . , xT ) | x1− x2 =
x2 − x3 = · · · = xT−1 − xT } of RT ; see Section E of the supplementary materials for
further details. This implies

T∑
t=1

X2
t − (s[1]

1,T )2 − (s[2]
1,T )2 =

T∑
t=1

(Xt − X̂t )
2 (5)

where X̂ = s[1]
1,Tψ(0,1) + s[2]

1,Tψ(0,2) is the best linear regression fit to X achieved by
minimising the sum of squared errors. This, combined with the Parseval’s identity
above, implies

T∑
t=1

(Xt − X̂t )
2 =

J∑
j=1

K ( j)∑
k=1

(d( j,k))2. (6)

By construction, the detail coefficients |d( j,k)| obtained in the initial stages of the
TGUW transform tend to be small in magnitude. Then the Parseval’s identity in (4)
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implies that a large portion of
∑T

t=1(Xt−X̂t )
2 is explained byonly a few large |d( j,k)|’s

arising in the later stages of the transform; in this sense, the TGUW transform provides
sparsity of signal representation.

2.2.4 TGUW transformation: general algorithm

In this section, we formulate in generality the TGUW transformation illustrated in
Sect. 2.2.2 by showing how an adaptive orthonormal unbalanced wavelet basis, � in
(3), is constructed. One of the important principles is “tail-greediness” (Fryzlewicz
2018) which enables us to reduce the computational complexity by performing mul-
tiple merges over non-overlapping regions in a single pass over the data. More
specifically, it allows us to perform up to max{2, �ρα j	} merges at each scale j ,
where α j is the number of smooth coefficients in the data sequence s and ρ ∈ (0, 1)
(the lower bound of 2 is essential to permit a Type 3 transformation, which consists
of two merges).

We now describe the TGUW algorithm.

1. At each scale j , find the set of triplets that are candidates for merging under the
“two together” rule and compute the corresponding detail coefficients. Regardless
of the type of merge, a detail coefficient d ·

p,q,r is, in general, obtained as

d ·
p,q,r = as1p:r + bs2p:r + cs3p:r , (7)

where p ≤ q < r , skp:r is the kth smooth coefficient of the subvector s p:r with a
length of r − p + 1 and the constants a, b, c are the elements of the detail filter
h = (a, b, c)�. We note that (a, b, c) also depends on (p, q, r), but this is not
reflected in the notation, for simplicity. The detail filter is a weight vector used in
computing theweighted sumof a triplet of smooth coefficientswhich should satisfy
the condition that the detail coefficient is zero if and only if the corresponding raw
observations over the merged regions have a perfect linear trend. If (X p, . . . , Xr )

are the raw observations associated with the triplet of the smooth coefficients
(s1p:r , s2p:r , s3p:r ) under consideration, then the detail filter h is obtained in such a
way as to produce zero detail coefficient only when (X p, . . . , Xr ) has a perfect
linear trend, as the detail coefficient itself represents the extent of non-linearity
in the corresponding region of data. This implies that the smaller the size of the
detail coefficient, the closer the alignment of the corresponding data section with
linearity.

2. Summarise all d ·
p,q,r constructed in step 1 to a (equal length or shorter) sequence

of dp,q,r by finding a summary detail coefficient dp,q,r = max(|d[1]
p,q,r |, |d[2]

p,q,r |)
for any pair of detail coefficients constructed by Type 3 merges.

3. Sort the size of the summarised detail coefficients |dp,q,r | obtained in step 2 in
non-decreasing order.

4. Extract the (non-summarised) detail coefficient(s) |d ·
p,q,r | corresponding to the

smallest (summarised) detail coefficient |dp,q,r | e.g. both |d[1]
p,q,r | and |d[2]

p,q,r |
should be extracted only if dp,q,r = max(|d[1]

p,q,r |, |d[2]
p,q,r |). Repeat the extrac-

tion until max{2, �ρα j	} (or all possible, whichever is the smaller number) detail
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coefficients have been obtained, as long as the region of the data corresponding to
each detail coefficient extracted does not overlap with the regions corresponding
to the detail coefficients already drawn.

5. For each |d ·
p,q,r | extracted in step 4, merge the corresponding smooth coefficients

by updating the corresponding triplet in s through the orthonormal transform as
follows,

⎛
⎝

s[1]
p,r

s[2]
p,r

d ·
p,q,r

⎞
⎠ =

⎛
⎝

��
1

��
2

h�

⎞
⎠
⎛
⎝
s1p:r
s2p:r
s3p:r

⎞
⎠ = �

⎛
⎝
s1p:r
s2p:r
s3p:r

⎞
⎠ . (8)

The key step is finding the 3 × 3 orthonormal matrix, �, which is composed of
one detail and two low-pass filter vectors in its rows. Firstly the detail filter h� is
determined to satisfy the condition mentioned in step 1, and then the two low-pass
filters (��

1 , ��
2 ) are obtained by satisfying the orthonormality of �. There is no

uniqueness in the choice of (��
1 , ��

2 ), but this has no effect on the transformation
itself. The details of thismechanismcan be found in SectionEof the supplementary
materials.

6. Go to step 1 and repeat at new scale j = j + 1 as long as we have at least three
smooth coefficients in the updated data sequence s.

More specifically, when Type 1merge is performed in step 1 (i.e. sp:r in (7) consists
of three initial smoothing coefficients, which implies r = p + 2), the corresponding
detail filter h is obtained as a unit normal vector to the plane {(x, y, z)|x − 2y + z =
0}, thus the detail coefficient d presents the projection of three initial smoothing
coefficients to the unit normal vector. In the same manner, due to the orthonormality
of � in (8), the two low-pass filters (��

1 , ��
2 ) form an arbitrary orthonormal basis of

the plane {(x, y, z)|x−2y+ z = 0}. In practice, the detail filter h in Step 1 is obtained
by updating so-called weight vectors of constancy and linearity in which the initial
inputs have a form of (1, 1, . . . , 1)� and (1, 2, . . . , T )�, respectively. The details can
be found in Section F of the supplementary materials.

We now comment briefly on the computational complexity of the TGUWtransform.
Assume that α j smooth coefficients are available in the data sequence s at scale j and
we allow the algorithm tomerge up to

⌈
ρα j

⌉
many triplets (unless their corresponding

data regions overlap) where ρ ∈ (0, 1) is a constant. This gives us at most (1 −
ρ) j T smooth coefficients remaining in s after j scales. Solving for (1 − ρ) j T ≤ 2

gives the largest number of scales J as
⌈
log(T )/ log

(
(1 − ρ)−1

)+ log(2)/ log(1 −
ρ)
⌉
, at which point the TGUW transform terminates with two smooth coefficients

remaining.Considering that themost expensive step at each scale is sortingwhich takes
O(T log(T )) operations, the computational complexity of the TGUW transformation
is O(T log2(T )).
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Fig. 4 The tree ofmergings in the example of Sect. 2.2.2. Left-hand trees show the examples of tree obtained
from initial hard thresholding, the right-hand trees come from processing the respective left-hand ones by
applying a the “connected” rule and b the “two together” rule, respectively, described in Sect. 2.3. The
circled detail coefficients are the surviving ones

2.3 Thresholding

Because at each stage, the TGUW transform constructs the smallest possible detail
coefficients, but it is at the same time orthonormal and so preserves the l2 energy of
the input data, the variability (= deviation from linearity) of the signal tends to be
mainly encoded in only a few detail coefficients computed at the later stages of the
transform. The resulting sparsity of representation of the input data in the domain of
TGUW coefficients justifies thresholding as a way of deciding the significance of each
detail coefficient (which measures the local deviation from linearity).

We propose to threshold the TGUW detail coefficients under two important rules,
which should simultaneously be satisfied; we refer to these as the “connected” rule
and the “two together” rule. The “two together” rule in thresholding is similar to the
one in the TGUW transformation except it targets pairs of detail rather than smooth
coefficients, and only applies to pairs of detail coefficients arising fromType 3merges.
Figure4b shows one such pair in the example of Sect. 2.2.2, (d[1]

1,4,8, d
[2]
1,4,8), and the

“two together” rule means that both such detail coefficients should be kept if at least
one survives the initial thresholding. This is a natural requirement as a pair of Type 3
detail coefficients effectively corresponds to a single merge of two adjacent regions.

The “connected” rule which prunes the branches of the TGUW detail coefficients
if and only if the detail coefficient itself and all of its children coefficients fall below a
certain threshold in absolute value. This is illustrated in Fig. 4a along with the example
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of Sect. 2.2.2; if both d2,3,4 and (d[1]
1,4,8, d

[2]
1,4,8) were to survive the initial thresholding,

the “connected” rule would mean we also had to keep d1,1,4, which is the child of
(d[1]

1,4,8, d
[2]
1,4,8) and the parent of d2,3,4 in the TGUW coefficient tree.

Through the thresholding, we wish to estimate the underlying signal f in (1) by
estimating μ( j,k) = 〈 f , ψ( j,k)〉 where ψ( j,k) is an orthonormal unbalanced wavelet
basis constructed in the TGUW transform from the data. Throughout the entire thresh-
olding procedure, the “connected” and “two together” rules are applied in this order.
We firstly threshold and apply the “connected” rule, which gives us μ̂

( j,k)
0 , the initial

estimator of μ( j,k), as

μ̂
( j,k)
0 = d( j,k)

p,q,r · I
{

∃( j ′, k′) ∈ C j,k
∣∣d( j ′,k′)

p′,q ′,r ′
∣∣ > λ

}
, (9)

where I is an indicator function and

C j,k = {( j ′, k′), j ′ = 1, . . . , j, k′ = 1, . . . , K ( j ′) : d( j ′,k′)
p′,q ′,r ′

is such that [p′, r ′] ⊆ [p, r ]}. (10)

Now the “two together” rule is applied to the initial estimators μ̂
( j,k)
0 to obtain the

final estimators μ̂( j,k). We firstly note that two detail coefficients, d( j,k)
p,q,r and d

( j ′,k+1)
p′,q ′,r ′

are called “paired” when they are formed by Type 3 mergings and when ( j, p, q, r) =
( j ′, p′, q ′, r ′). The “two together” rule is formulated as below,

μ̂( j,k) =

⎧⎪⎪⎪⎨
⎪⎪⎪⎩

μ̂
( j,k)
0 , if d( j ,k)

p,q,r is not paired,

μ̂
( j,k)
0 , if d( j ,k)

p,q,r is paired with d( j ,k′)
p,q,r and both μ̂

( j,k)
0 and μ̂

( j,k′)
0 are zero or nonzero,

d( j,k), if d( j ,k)
p,q,r is paired with d( j ,k′)

p,q,r and μ̂
( j,k′)
0 �= 0 and μ̂

( j,k)
0 = 0. (11)

It is important to note that the application of the two rules ensures that f̃ is a
piecewise-linear function composed of best linear fits (in the least-squares sense) for
each interval of linearity. As an aside, we note that the number of survived detail
coefficients does not necessarily equal the number of change-points in f̃ as a pair of
detail coefficients arising from a Type 3 merge are associated with a single change-
point.

2.4 Inverse TGUW transformation

The estimator f̃ of the true signal f in (1) is obtained by inverting (= transposing)
the orthonormal transformations in (8) in reverse order to that in which they were
originally performed. This inverse TGUW transformation is referred to as TGUW−1,
and thus

f̃ = TGUW−1{ μ̂( j,k), j = 1, . . . , J , k = 1, . . . , K ( j) ‖ s[1]
1,T , s[2]

1,T

}
, (12)

where ‖ denotes vector concatenation.
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2.5 Post processing for consistency of change-point detection

As will be formalised in Theorem 1 of Sect. 3, the piecewise-linear estimator f̃ in
(12) possibly overestimates the number of change-points. To remove the spurious
estimated change-points and to achieve the consistency of the number and the locations
of the estimated change-points, we adopt the post-processing framework of Fryzlewicz
(2018). Lin et al. (2017) show that we can usually post-process l2-consistent estimators
in this way as a fast enough l2 error rate implies that each true change-point has an
estimator nearby. The post-processing methodology includes two stages, i) execution
of three steps, TGUW transform, thresholding and inverse TGUW transform, again to
the estimator f̃ in (12) and ii) examination of regions containing only one estimated
change-point to check for its significance.

Stage 1. We transform the estimated function f̃ in (12) with change-points (η̃1, η̃2,

. . . , η̃Ñ ) into a new estimator ˜̃f with corresponding change-points ( ˜̃η1, ˜̃η2, . . . , ˜̃η ˜̃N ).

Using f̃ in (12) as an input data sequence s, we perform the TGUW transform as
presented in Sect. 2.2.4, but in a greedy rather than tail-greedy way such that only one
detail coefficient d( j,1) is produced at each scale j , and thus K ( j) = 1 for all j . We
repeat to produce detail coefficients until the first detail coefficient such that |d( j,1)| >

λ is obtained where λ is the parameter used in the thresholding procedure described
in Sect. 2.3. Once the condition, |d( j,1)| > λ, is satisfied, we stop merging, relabel the

surviving change-points as ( ˜̃η1, ˜̃η2, . . . , ˜̃η ˜̃N ) and construct the new estimator ˜̃f as

˜̃ft = θ̂i,1 + θ̂i,2 t for t ∈ [ ˜̃ηi−1 + 1, ˜̃ηi
]
, i = 1, . . . , ˜̃N , (13)

where ˜̃η0 = 0, ˜̃η ˜̃N+1
= T and (θ̂i,1, θ̂i,2) are the OLS intercept and slope coefficients,

respectively, for the corresponding pairs {(t, Xt ), t ∈ [ ˜̃ηi−1 + 1, ˜̃ηi
]}. The exception

is when the region under consideration only contains a single data point Xt0 , in which

case fitting a linear regression is impossible. We then set ˜̃ft0 = Xt0 .

Stage 2. From the estimator ˜̃ft in Stage 1, we obtain the final estimator f̂ by pruning

the change-points ( ˜̃η1, ˜̃η2, . . . , ˜̃η ˜̃N ) in ˜̃ft . For each i = 1, . . . , ˜̃N , compute the corre-

sponding detail coefficient dpi ,qi ,ri as described in (7), where pi =
⌊ ˜̃ηi−1+˜̃ηi

2

⌋
+1, qi =

˜̃ηi and ri =
⌈ ˜̃ηi+˜̃ηi+1

2

⌉
. Now prune by finding the minimiser i0 = argmini |dpi ,qi ,ri |

and removing ˜̃ηi0 and setting ˜̃N := ˜̃N − 1 if |dpi0 ,qi0 ,ri0
| ≤ λ where λ is same as in

Sect. 2.3. Then relabel the change-points with the subscripts i = 1, . . . , ˜̃N under the
convention ˜̃η0 = 0, ˜̃η ˜̃N+1

= T . Repeat the pruningwhile we can find i0 which satisfies

the condition
∣∣dpi0 ,qi0 ,ri0

∣∣ < λ. Otherwise, stop, denote by N̂ the number of detected

change-points and by η̂i – the change-points in increasing order for i = 0, . . . , N̂ + 1
where η̂0 = 0 and η̂N̂+1 = T . The estimated function f̂ is obtained by simple linear
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regression for each region determined by the final change-points η̂1, . . . , η̂N̂ as in (13),
with the exception for the case of single data point as described in Stage 1 above.

Through these two stages of post processing, the estimation of the number and
the locations of change-points become consistent, and further details can be found in
Sect. 3.

3 Theoretical results

We study the l2 consistency of f̃ and ˜̃f , and the change-point detection consistency of
f̂ , where the estimators are defined in Sect. 2. The l2 risk of an estimator f̃ is defined
as
∥∥ f̃ − f

∥∥2
T = T−1∑T

i=1( f̃i − fi )2, where f is the underlying signal as in (1). We

firstly investigate the l2 behaviour of f̃ . The proofs of Theorems 1-3 can be found in
Appendix 1.

Theorem 1 Xt follows model (1) with σ = 1 and f̃ is the estimator in (12). If the
threshold λ = C1{2 log(T )}1/2 with a constant C1 ≥ √

3, then we have

P

(
‖ f̃ − f ‖2T ≤ C2

1
1

T
log(T )

{
4 + 8N � log(T )/ log(1 − ρ)−1 	

} )
→ 1,

(14)
as T → ∞ and the piecewise-linear estimator f̃ contains Ñ ≤ CN log(T ) change-
points where C is a constant.

Thus, f̃ is l2 consistent under the strong sparsity assumption (i.e. if N is finite) or even
under the relaxed condition that N has the order of log T . The crucial mechanism of l2
consistency is the “tail-greediness” which allows up to K ( j) ≥ 1 smooth coefficients
to be removed at each scale j . In other words, consistency is generally unachievable
if we proceed in a greedy (as opposed to tail-greedy) way, i.e. if we only merge one
triplet at each scale of the TGUW transformation.

We now move onto the estimator ˜̃f obtained in the first stage of post-processing.

Theorem 2 Xt follows model (1) with σ = 1 and ˜̃f is the estimator in (13). Let the

threshold λ be as in Theorem 1. Then we have
∥∥ ˜̃f − f

∥∥2
T = O

(
NT−1 log2(T )

)
with probability approaching 1 as T → ∞ and there exist at most two estimated
change-points between each pair of true change-points (ηi , ηi+1) for i = 0, . . . , N,

where η0 = 0 and ηN+1 = T . Therefore ˜̃N ≤ 2(N + 1).

We see that ˜̃f is l2 consistent, but inconsistent for the number of change-points. Now
we investigate the final estimators, f̂ and N̂ .

Theorem 3 Xt follows model (1) with σ = 1 and ( f̂ , N̂ ) are the estimators obtained
in Sect.2.5. Let the threshold λ be as in Theorem 1 and suppose that the number of

true change-points, N , has the order of log T . Let 
T = mini=1,...,N

{(
¯
f iT

)2/3 · δiT
}

where
¯
f iT = min

(
| fηi+1 −2 fηi + fηi−1 |, | fηi+2 −2 fηi+1 + fηi |

)
and δiT = min

(
|ηi −
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ηi−1|, |ηi+1 − ηi |
)
. Assume that T 1/3R1/3

T = o
(

T

)
where

∥∥ ˜̃f − f
∥∥2
T = Op(RT ) is

as in Theorem 2. Then we have

P

(
N̂ = N , max

i=1,...,N

{
|η̂i − ηi | ·

(
¯
f iT

)2/3} ≤ CT 1/3R1/3
T

)
→ 1, (15)

as T → ∞ where C is a constant.

Our theory indicates that when mini ¯
f iT ∼ T−1, the change-point detection rate of

the TrendSegment procedure is Op(T 2/3 log T ). If the number of true change-points,
N , is finite, then the detection accuracy becomes Op(T 2/3(log T )2/3). Comparing it
with the rate of Op(T 2/3(log T )1/3) derived by Baranowski et al. (2019) and Anasta-
siou and Fryzlewicz (2022) and also with the rate of Op(T 2/3) derived by Raimondo
(1998), our detection accuracy is different by only a logarithmic factor. In the case
in which mini ¯

f iT is bounded away from zero, the consistent estimation of the num-

ber and locations of change-point is achieved by assuming T 1/3R1/3
T = o(δT ) where

δT = mini=1,...,N+1 |ηi − ηi−1| and RT = NT−1 log2(T ). In addition, when there
exists a separate data segment containing only one data point, then the two consecutive
change-points, ηk−1 and ηk , linked via ηk−1 = ηk −1 under the definition of a change-
point in (2) can be detected exactly at their true locations only if the corresponding

¯
f iT s satisfy the condition min

(
¯
f kT ,

¯
f k−1
T

)
� log(T ).

In the supplementary material, the assumptions of the Gaussianity and the inde-
pendence on εt are relaxed and the corresponding Theorems B.1-B.3 are presented in
a setting in which the noise is dependent and/or non-Gaussian.

4 Simulation study

4.1 Parameter choice and setting

4.1.1 Post-processing

In what follows, we disable Stages 1 and 2 of post-processing by default: our empirical
experience is that Stage 1 rarely makes a difference in practice but comes with an
additional computational cost, and Stage 2 occasionally over-prunes change-point
estimates.

4.1.2 Choice of the “tail-greediness" parameter

ρ ∈ (0, 1) is a constant which controls the greediness level of the TGUW transfor-
mation in the sense that it decides how many merges are performed in a single pass
over the data. A large ρ can reduce the computational cost but it makes the procedure
less adaptive, whereas a small ρ gives the opposite effect. Based on our empirical
experience, the best performance is stably achieved in the range ρ ∈ (0, 0.05] and we
use ρ = 0.04 as a default in the simulation study and data analyses.
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4.1.3 Choice of the minimum segment length

We can give a condition on the minimum segment length of the estimated signal
returned by the TrendSegment algorithm. If it is set to 1, two consecutive data-points
can be detected as change-points. As theoretically shown in the supplementary mate-
rial, the minimum length of the estimated segment should have an order of log(T ) to
achieve estimation consistency in the case of dependent and/or non-Gaussian errors.
To avoid too short segments, and to cover non iid Gaussian noise, we set the minimum
segment length to C log(T ) and use the default C = 0.9 in the remainder of the paper,
otherwise we are not able to detect those short segments in (M6). This constraint can
be adjusted by users in the R package trendsegmentR.

4.1.4 Continuity at change-points

As described in Sect. 2, the TrendSegment algorithm works by detecting change-
points first (in thresholding) and then estimating the best linear fit (in the least-squares
sense) for each segment (in the inverse TGUW transform). These procedures normally
ensure discontinuity at change-points, however our R package trendsegmentR has
an option for ensuring continuous change-points by approximating f using the linear
spline fit with knots at detected change-points.

4.1.5 Choice of threshold �

Motivated by Theorem 1, we consider the simplest naïve threshold of the form

λNaïve = Cσ
√
2 log T , (16)

where σ can be estimated in different ways depending on the type of noise. Under
iid Gaussian noise, we can estimate σ using the Median Absolute Deviation (MAD)
estimator (Hampel 1974) defined as σ̂ = Median(|X1 − 2X2 + X3|, . . . , |XT−2 −
2XT−1 + XT |)/(�−1(3/4)

√
6) where �−1 is the quantile function of the Gaussian

distribution. We found that under iid Gaussian noise C = 1.3 empirically leads to the
best performance over a sequence of C , where the details and the relevant results for
non-Gaussian and/or dependent errors can be found in Section C of the supplementary
material. For completeness, we now present an algorithm for a threshold that works
well in all circumstances. When the noise is not generated from iid Gaussian, it is
reasonable to assume that the threshold is affected by the serial dependence structure
and/or the extent of heavy-tailedness of noise, which motivates us to use threshold of
the form:

λRobust = CIg(K)
√
2 log T , (17)

where I is the long-run standard deviation, K is kurtosis and g is a function. To
estimate the unknown parameters in (17), we follow Algorithm 1.
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Algorithm 1 Robust threshold selection

INPUT: X , λNaïve, C , ηmax
1. Pre-estimate the fit, f̂t , via the TrendSegment algorithm with ηmax, where ηmax is

a pre-specified maximum number of estimated change-points.
2. Compute the empirical residuals, ε̂t , from the pre-fit obtained in 1.
3. From ε̂t , compute the sample kurtosis (K̂) and the long-run standard deviation

estimator (Î) based on AR(1) model. See comments underneath the algorithm for
details of this step.

4. Plug in Î and K̂ into the threshold formula in (17) with a pre-specified C .
5. To estimate the function g, find a non-parametric regression fit with X = K̂

and Y = λNaïve

CÎ√
2 log T

, where λNaïve is chosen as the best performing threshold by

repeating the simulations with a range of threshold constant C over different types
of noise.

6. Obtain the threshold in (17) based on the set of estimators, (Î, K̂, ĝ).
OUTPUT: The robust threshold λRobust.

We now describe the details of each step in Algorithm 1.

Pre-estimated fit in Step 1. In (17), the heavy-tailedness and dependent structure
of the noise are captured by K and I, respectively. In practice, estimating I and
K is challenging as the observation includes change-points in its underlying signal.
One of the most straightforward way is pre-estimating the fit f̂t via TrendSegment
algorithm with a parameter ηmax, the maximum number estimated change-points. As
long as ηmax is not too large, some extent of overestimation would be acceptable,
and we use ηmax = �0.15T 	 as a default in practice, as it empirically led to the
best performance and the simulation results do not vary by much over the range
ηmax ∈ [�0.1T 	, �0.2T 	]. The pre-fitting gives us the estimated noise ε̂t = Xt − f̂t ,
from which we can estimate both I and K.

Pre-specified constant C in Step 4. We set C = 1.3 as it empirically led to the best
performance for iid Gaussian noise with the naive approach in (16). Thus we hope to
have both Î and ĝ(K̂) close to 1 under iid Gaussian noise, but larger than 1 when the
noise has serial dependence and/or heavy-tailedness.

I and K in Step 4. I and K capture dependency and heavy-tailedness of noise,
respectively. First, kurtosis is estimated from the estimated noise as follows:

K̂ =
∑T

t=1(ε̂t − ¯̂ε)4
T ŝ4

ε̂

, (18)

where ¯̂ε and ŝε̂ are sample mean and sample standard deviation of ε̂, respectively.
For estimating I, we consider the case when Gaussian noise has dependent structure.
Then the dependencies increase the marginal variance of CUSUM statistic and one
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way of solving this issue is inflating the threshold by the following factor

I = √
(1 + φ)/(1 − φ), (19)

where φ is the true parameter of a AR(1) process (Fearnhead and Fryzlewicz 2022).
We can estimate φ by fitting AR(1) model to the estimated noise ε̂t = Xt − f̂t , and this
gives us the estimated long-run standard deviation Î. Although in theory the inflation
factor in (19) is valid only for Gaussian noise, we use the estimator of (19) as an
estimated long-run standard deviation even when the noise has both serial dependence
and heavy-tailedness, hoping that the heavy-tailedness is captured reasonably well by
K.

Kurtosis function g in Step 5.We fit a non-parametric regression as described in step
5 of Algorithm 1 over different models and noise scenarios. We found that g(K̂) has
no particular functional form in K̂, and is scattered between 0.9 and 1.6 over all noise
scenarios and all simulations models considered in the paper. Therefore, the resulting
non-parametric fit ĝ(K̂) also has a flat shape over a range of K̂, and we use this in
finding the robust threshold in practice. This is due to the condition on the minimum
segment length described earlier which helps the method to be robust to spikes.

The detailed procedure of estimating g is presented in Section C.2 of the supple-
mentary material. Also, the simulation results using Algorithm 1 for dependent and/or
heavy-tailed noise can be found in Tables C.1 - C.10 in Section C.1 of the supplemen-
tary material. The proposed robust threshold selection algorithm can also be applied
to iid Gaussian noise without any knowledge on type of noise and the corresponding
simulation results are given in Sect. 4.3.

We consider iid Gaussian noise and simulate data from model (1) using 8 signals,
(M1) wave1, (M2) wave2, (M3) mix1, (M4) mix2, (M5) mix3, (M6) lin.sgmts, (M7)
teeth and (M8) lin, shown in Fig. 5. (M1) is continuous at change-points, while (M2)
has discontinuities. (M3) contains both constant and linear segments and is continuous
at change-points, whereas (M4) is of the similar type but has a mix of continuous and
discontinuous change-points. (M5) has three particularly short segments containing
12, 9 and 6 data points, respectively and (M6) has isolated spike-type short segments
containing 6 data points each. (M7) is piecewise-constant, and (M8) is a linear signal
without change-points. The signals and R code for all simulations can be downloaded
from our GitHub repository (Maeng and Fryzlewicz 2021) and the simulation results
under dependent or heavy-tailed errors can be found in Section C of the supplementary
materials.

4.2 Competingmethods and estimators

We perform the TrendSegment procedure based on the parameter choice in Sect. 4.1
and compare the performancewith that of the following competitors: Narrowest-Over-
Threshold detection [NOT, Baranowski et al. (2019)] implemented in the R package
not from CRAN, Isolate-Detect [ID, Anastasiou and Fryzlewicz (2022)] available in
the R package IDetect, trend filtering [TF, Kim et al. (2009)] available from https://
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Fig. 5 Examples of data with its underlying signal studied in Sect. 4. a–h data series Xt (light grey) and
true signal ft (black)

github.com/glmgen/genlasso, Continuous-piecewise-linear PrunedOptimal Partition-
ing [CPOP, Fearnhead et al. (2019)] available from https://www.maths.lancs.ac.uk/
~fearnhea/Publications.html and a bottom-up algorithm based on the residual sum
of squares (RSS) from a linear fit [BUP, Keogh et al. (2004)]. The TrendSegment
methodology is implemented in the R package trendsegmentR.

As BUP requires a pre-specified number of change-points (or a well-chosen stop-
ping criterion which can vary depending on the data), we include it in the simulation
study (with the stopping criterion optimised for the best performance using the knowl-
edge of the truth) but not in data applications. We do not include the methods of
Spiriti et al. (2013) and Bai and Perron (2003) implemented in the R packages
freeknotsplines and strucchange as we have found them to be particularly
slow. For instance, the minimum segment size in strucchange can be adjusted to
be small as long as it is greater than or equal to 3 for detecting linear trend changes.
This is suitable for detecting very short segments (e.g in (M6) lin.sgmts), however this
setting is accompanied by extremely heavy computation: with this minimum segment
size in place, a single signal simulated from (M6) took us over three hours to process
on a standard PC.
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Out of the competing methods tested, ID, TF and CPOP return continuous
change-points, while the estimated signals of Trendsegment and BUP is in princi-
ple discontinuous at change-points. For NOT, we use the contrast function for not
necessarily continuous piecewise-linear signals. Regarding the tuning parameters for
the competing methods, we follow the recommendation of each respective paper or
the corresponding R package.

4.3 Results

The summary of the results for all models and methods can be found in Tables 2
and 3. We run 100 simulations and as a measure of accuracy of estimators, we use
Monte-Carlo estimates of the Mean Squared Error of the estimated signal defined as
MSE=E{(1/T )

∑T
t=1( ft − f̂t )2}. The empirical distribution of N̂ −N is also reported

where N̂ is the estimated number of change-points and N is the true one. In addition
to this, for comparing the accuracy of the locations of the estimated change-points η̂i ,
we show estimates of the scaled Hausdorff distance given by

dH = 1

T
Emax

{
max
i

min
j

∣∣ηi − η̂ j
∣∣, max

j
min
i

∣∣η̂ j − ηi
∣∣
}

(20)

where i = 0, . . . , N + 1 and j = 0, . . . , N̂ + 1 with the convention η0 = η̂0 =
0, ηN+1 = η̂N+1 = T and η̂ and η denote estimated and true locations of the change-
points. The smaller theHausdorff distance, the better the estimationof the change-point
locations. For each method, the average computation time in seconds is shown.

We first emphasise that the results with both the naïve and the robust thresholds
(λNaïve in (16) and λRobust in (17)) are reported for TrendSegment, and the perfor-
mances are nearly the same except (M7). For simplicity, we call both methods as
TrendSegment in the remainder of this section.

The results for (M1) and (M2) are similar. TrendSegment shows comparable perfor-
mance toNOT, ID andCPOP in terms of the estimation of the number of change-points
while it is less attractive in terms of the estimated locations of change-points. TF tends
to overestimate the number of change-points throughout all models. When the sig-
nal is a mix of constant and linear trends as in (M3) and (M4), TrendSegment, NOT
and ID still perform well in terms of the estimation of the number of change-points.
CPOP tends to overestimate in (M4) when there exists discontinuity at change-points,
however it shows the best performs in terms of localisation (i.e. the smallest mean of
Hausdorff distance) as it tends to estimate more than one (and somewhat frequent)
change-points at discontinuous change-points. As TrendSegment and NOT deal with
the piecewise-linear signals that is not necessarily continuous at change-points, they
performs better than others in (M2) and (M4).

We see that TrendSegment has a particular advantage over the other methods espe-
cially in (M5) and (M6), when frequent change-points composed of the isolated
spike-type short segments of length 6 exist. This is due to the bottom-up nature of
TrendSegment which focuses on local features in the early stage ofmerges and enables
TrendSegment to detect those short segments. TrendSegment shows its relative robust-
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Table 2 Distribution of N̂ − N for models (M1)–(M4) and all methods listed in Sect. 4.1 and 4.2 over 100
simulation runs

Model Method N̂ − N MSE dH (×102) time
≤-3 -2 -1 0 1 2 ≥3

(M1) TS(λNaïve) 0 0 2 98 0 0 0 0.23 2.96 0.22

TS(λRobust) 0 0 2 97 1 0 0 0.23 2.97 0.09

NOT 0 0 0 98 2 0 0 0.19 2.28 0.22

ID 0 0 0 97 3 0 0 0.14 1.52 0.02

TF 0 0 0 0 0 0 100 0.11 4.50 3.18

CPOP 0 0 0 97 2 1 0 0.09 1.09 0.05

BUP 100 0 0 0 0 0 0 2.65 10.75 0.35

(M2) TS(λNaïve) 0 0 2 98 0 0 0 0.11 1.90 0.50

TS(λRobust) 0 0 4 96 0 0 0 0.11 1.91 0.24

NOT 0 0 2 98 0 0 0 0.09 1.56 0.35

ID 0 0 0 94 6 0 0 0.09 1.44 0.23

TF 0 0 0 0 0 0 100 0.06 2.31 31.34

CPOP 0 0 0 93 7 0 0 0.06 1.15 2.09

BUP 100 0 0 0 0 0 0 0.75 4.69 2.21

(M3) TS(λNaïve) 0 0 0 99 1 0 0 0.03 3.33 0.61

TS(λRobust) 0 0 0 100 0 0 0 0.03 3.33 0.29

NOT 0 0 0 100 0 0 0 0.02 2.70 0.33

ID 0 0 0 100 0 0 0 0.02 1.86 0.02

TF 0 0 0 0 0 0 100 0.01 5.41 28.89

CPOP 0 0 0 100 0 0 0 0.01 1.02 17.38

BUP 0 0 0 2 22 48 28 0.03 5.46 2.20

(M4) TS(λNaïve) 0 0 0 100 0 0 0 0.09 3.24 0.31

TS(λRobust) 0 0 0 100 0 0 0 0.09 3.24 0.09

NOT 0 0 0 99 1 0 0 0.08 2.71 0.23

ID 0 0 0 97 3 0 0 0.07 2.04 0.02

TF 0 0 0 0 0 0 100 0.05 5.47 8.50

CPOP 0 0 0 97 3 0 0 0.04 1.83 0.39

BUP 7 64 27 2 0 0 0 0.52 10.66 0.56

Also the average MSE (Mean Squared Error) of the estimated signal f̂t defined in
Sect. 4.3, the average Hausdorff distance dH given by (20) and the average computa-
tional time in seconds using an Intel Core i5 2.9 GHz CPU with 8 GB of RAM, all
over 100 simulations. Bold: methods within 10% of the highest empirical frequency
of N̂ − N = 0 or within 10% of the lowest empirical average dH (×102). Note that
TrendSegment is shortened to TS
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Table 3 Distribution of N̂ − N for models (M5)-(M8) and all methods listed in Sect. 4.1 and 4.2 over 100
simulation runs

Model Method N̂ − N MSE dH (×102) time
≤-3 -2 -1 0 1 2 ≥3

(M5) TS(λNaïve) 0 0 0 90 10 0 0 0.03 1.40 1.30

TS(λRobust) 0 0 0 89 11 0 0 0.03 1.41 0.32

NOT 0 12 9 75 3 0 1 0.05 0.73 0.25

ID 0 0 0 1 5 25 69 0.29 8.09 0.03

TF 0 0 0 0 0 0 100 0.14 6.15 28.53

CPOP 0 0 0 8 27 31 34 0.03 1.42 3.50

BUP 0 0 0 41 44 13 2 0.10 4.72 2.25

(M6) TS(λNaïve) 0 0 0 99 1 0 0 0.01 0.05 0.90

TS(λRobust) 0 3 1 96 0 0 0 0.02 0.64 0.34

NOT 2 13 37 45 2 1 0 0.07 1.74 0.25

ID 0 0 0 0 0 1 99 0.07 0.17 0.04

TF 0 0 0 0 0 0 100 0.13 9.87 30.72

CPOP 0 0 0 21 28 40 11 0.03 0.22 3.02

BUP 0 0 0 0 0 0 100 0.12 9.29 2.70

(M7) TS(λNaïve) 0 5 21 40 28 6 0 0.10 7.02 0.31

TS(λRobust) 1 10 38 31 16 4 0 0.13 8.64 0.13

NOT 1 1 8 56 31 3 0 0.06 2.62 0.25

ID 3 0 16 14 26 13 28 0.32 10.87 0.12

TF 0 0 0 0 0 0 100 0.10 6.11 23.19

CPOP 0 0 1 1 3 17 78 0.05 3.37 1.19

BUP 70 25 5 0 0 0 0 0.28 11.89 1.58

(M8) TS(λNaïve) 0 0 0 100 0 0 0 0.00 0.00 0.43

TS(λRobust) 0 0 0 100 0 0 0 0.00 0.00 0.19

NOT 0 0 0 100 0 0 0 0.00 0.00 0.17

ID 0 0 0 100 0 0 0 0.00 0.00 0.59

TF 0 0 0 78 5 2 15 0.00 9.08 35.79

CPOP 0 0 0 100 0 0 0 0.00 0.00 12.96

BUP 0 0 0 0 0 0 100 0.01 46.34 2.63

Also the average MSE (Mean Squared Error) of the estimated signal f̂t defined in
Sect. 4.3, the average Hausdorff distance dH given by (20) and the average computa-
tional time in seconds using an Intel Core i5 2.9 GHz CPU with 8 GB of RAM, all
over 100 simulations. Bold: methods within 10% of the highest empirical frequency
of N̂ − N = 0 or within 10% of the lowest empirical average dH (×102). Note that
TrendSegment is shortened to TS
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ness in estimating the number and the location of change-points while NOT, ID and
CPOP significantly underperform.

For the estimation of the piecewise-constant signal (M7), no methods show good
performances and NOT, ID and TrendSegment tend to underestimate the number of
change-points while CPOP and TF overestimate. In the case of the no-change-point
signal (M8), allmethods estimatewell except TF andBUP. In summary, TrendSegment
is never among the worst methods, is almost always among the best ones, and is par-
ticularly attractive for signals containing frequent change-points with short segments.
With respect to computation time, NOT and ID are very fast in all cases, TrendSeg-
ment is slower than these two but is faster than TF, CPOP and BUP, especially when
the length of the time series is larger than 2000.

5 Data applications

5.1 Average January temperatures in Iceland

We analyse a land temperature dataset available from https://www.kaggle.com/
berkeleyearth/climate-change-earth-surface-temperature-data, consisting of average
temperatures in January recorded in Reykjavik recorded from 1763 to 2013. Figure6
shows the data; the point corresponding to 1918 appears to be an anomalous point.
This is sometimes called point anomaly which can be viewed as a separate data seg-
ment containing only one datapoint. Regarding the 1918 observation,Moore and Babij
(2017) report that “[t]he winter of 1917/1918 is referred to as the Great Frost Win-
ter in Iceland. It was the coldest winter in the region during the twentieth century. It
was remarkable for the presence of sea ice in Reykjavik Harbour as well as for the
unusually large number of polar bear sightings in northern Iceland.”

Out of the competing methods tested, ID, TF and CPOP are in principle able to
classify two consecutive time point as change-points, and therefore they are able to
detect separate data segments containing only one data point each. NOT and BUP are
not designed to detect two consecutive time point as change-points as their minimum
distance between two consecutive change-points is restricted to be at least two. In the
TrendSegment algorithm, the minimum segment length can flexibly set by the users
as described in Sect. 4. Figures6a and b show that the change-point estimators depend
on the type of threshold we use (λNaïve or λRobust) and also vary over conditions on
the minimum segment length. Regardless of the minimum segment length, the robust
threshold selection tends to detect more change-points than the naïve threshold. When
the minimum segment length is set to 1, with both naïve and robust thresholds, Trend-
Segment commonly identifies change-points in 1917 and 1918, where the temperature
in 1918 is fitted as a single point. As shown in Fig. 6d, out of the competing methods,
only CPOP detects the temperature in 1918 as an anomalous point. Figures6b–d show
that TrendSegment with λRobust, NOT and CPOP detect the change of slope in 1974,
ID returns an increasing function with no change-points and TF reports 6 points with
the most recent one in 1981, but none of them detect the point in 1918 as a sepa-
rate data segment. When setting the minimum segment length equals to the default
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Fig. 6 Change-point analysis for January average temperature in Reykjavik from 1763 to 2013 in Sect. 5.1.
The data series (grey dots) and estimated signal with change-points returned by a TrendSegment using

λNaïve in (16) with minimum segment length equals to 1 (black solid) and equals to �0.9 log(T )� (red
dashed), b TrendSegment using λRobust in (17) with minimum segment length equals to 1 (black solid) and
equals to �0.9 log(T )� (red dashed), c NOT and ID, d TF and CPOP

(�0.9 log(T )�) in TrendSegment with λNaïve in Fig. 6a, it returns no change-points as
ID does. This example illustrates the flexibility of the TrendSegment as it detects not
only change-points in linear trend but it can identify a separate data segment at the
same time, which the competing methods do not achieve.

5.2 Monthly average sea ice extent of Arctic and Antarctic

We analyse the average sea ice extent of the Arctic and the Antarctic available from
https://nsidc.org to estimate the change-points in its trend. As mentioned in Serreze
andMeier (2018), sea ice extent is the most commonmeasure for assessing the feature
of high-latitude oceans and it is defined as the area covered with an ice concentration
of at least 15%. Here we use the average ice extent in February and September as it
is known that the Arctic has the maximum ice extent typically in February while the
minimum occurs in September and the Antarctic does the opposite.

Serreze and Meier (2018) indicate that the clear decreasing trend of sea ice extent
of the Arctic in September is one of the most important indicator of climate change.
In contrast to the Arctic, the sea ice extent of the Antarctic has been known to be
stable in the sense that it shows a weak increasing trend in the decades preceding 2016
(Comiso et al. 2017; Serreze and Meier 2018). However, Rintoul et al. (2018) warn
of a possible collapse of the past stability by citing a significant decline of the sea ice
extent in 2016. We now use the most up-to-date records (to 2020) and re-examine the
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Fig. 7 The TrendSegment estimate of piecewise-linear trend for the monthly average sea ice extent from

1979 to 2020 in Sect. 5.2. a the data series (grey dots); the TrendSegment estimate using λNaïve in (16)
(solid black) and TrendSegment estimate using λRobust (red dashed) for average sea ice extent of the Arctic
in February, b Antarctic in February, c Arctic in September, d Antarctic in September

concerns expressed in Rintoul et al. (2018) with the help of our change-point detection
methodology.

In this example, the condition on the minimum segment length does not affect
the change-point estimation results, thus Fig. 7 shows the results obtained from the
default minimum segment length. Also, as shown in Fig. 7, TrendSegment estimate
with λRobust identifies no change-point over all four datasets, thus we focus on giving
interpretations for the TrendSegment estimate with λNaïve in the following.

Figures 7a and c show the well-known decreasing trend of the average sea ice
extent in the Arctic both in its winter (February) and summer (September). In Figs. 7a
and c, the TrendSegment detects a sudden drop in 2006 and 2004 respectively, which
does not clearly differentiate the decreasing speed of ice extent in the Arctic before
and after the change-point. As observed in the above-mentioned literature, the sea ice
extent of the Antarctic shows a modest increasing trend up until recently (Figs. 7b,
d); however, TrendSegment procedure estimates change-point in 2015 which detects
a sudden drop during 2015–2017 for the Antarctic summer (February) and estimates
two change-points in 2000 and 2014 for the Antarctic winter (September), which is in
line with the message of Rintoul et al. (2018). The results of other competing methods
can be found in Section D.1 of the supplementary materials.
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6 Extension to non-Gaussian and/or dependent noise

Our TrendSegment algorithm can be extended to more realistic settings e.g. when the
noise εt is possibly dependent and/or non-Gaussian. The extension is performed by

slightly altering the estimators f̃ , ˜̃f and f̂ and keeping the rate of threshold the same
as the one used in Theorems 1-3 (i.e. λ = O((log T )1/2)) that is established under the
iid Gaussian noise. We add an additional step to ensure that only the detail coefficients
d( j,k)
p,q,r corresponding to a long enough interval [p, r ] survive, as this step enables us

to apply strong asymptotic normality of
∑r

t=p εt . Under dependent or non-Gaussian
noise, Theorems 1-3 presented in Sect. 3 still hold with a larger rate that is different by
only a logarithmic factor, where the corresponding theories and proofs can be found
in Section B of the supplementary material.

In Algorithm 1 in Sect. 4.1.5, we propose a robust way of threshold selection that
works well in all circumstances including iid Gaussian noise. To demonstrate the
robustness of our threshold selection in case the noise has serial dependence and/or
heavy-tailedness, additional simulations are performed for five distributions of the
noise; (a) εt ∼ i.i.d. scaled t5 distribution with unit-variance, (b) εt follows a stationary
AR(1) process with φ = 0.3 and Gaussian innovation, (c) the same setting with (b)
but with φ = 0.6, (d) εt follows a stationary AR(1) process with φ = 0.3 and t5
innovation and (e) the same setting with (d) but with φ = 0.6, where the results are
summarised in Tables C.1-C.10 in Section C.1 of the supplementary material. Lastly,
in Section D.2 of the supplementary material, we demonstrate that our TrendSegment
algorithm shows a good performance on London air quality data that possibly has
some non-negligible autocorrelation.

Supplementary Information The online version contains supplementary material available at https://doi.
org/10.1007/s00362-023-01458-5.
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Appendix A: Technical proofs

The proof of Theorems 1-3 are given below and Lemmas 1 and 2 can be found in
Section A of the supplementary materials.

Proof of Theorem 1 LetS1
j andS0

j as inLemma2. From the conditional orthonormality
of the unbalanced wavelet transform, on the set AT defined in Lemma 1, we have

‖ f̃ − f ‖2T = 1

T

J∑
j=1

K ( j)∑
k=1

(
d( j ,k) · I{ ∃( j ′, k′) ∈ C j ,k |d( j ′,k′)| > λ

}− μ( j,k)
)2 + T−1(s[1]1,T
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− μ(0,1))2 + T−1(s[2]1,T − μ(0,2))2

≤ 1

T

J∑
j=1

( ∑

k∈S0
j

+
∑

k∈S1
j

)(
d( j ,k) · I{ ∃( j ′, k′) ∈ C j,k |d( j ′,k′)| > λ

}

− μ( j ,k)
)2 + 4C2

1T
−1 log T

=: I + II + 4C2
1T

−1 log T , (A1)

where μ(0,1) = 〈 f , ψ(0,1)〉 and μ(0,2) = 〈 f , ψ(0,2)〉. We note that
(
s[1]
1,T − μ(0,1)

)2 ≤
2C2

1 log T is simply obtained by combining Lemma 2 and the fact that s[1]
1,T −μ(0,1) =

〈ε, ψ(0,1)〉, which can also be applied to obtain
(
s[2]
1,T − μ(0,2)

)2 ≤ 2C2
1 log T . By

Lemma 2, I
{ ∃( j ′, k′) ∈ C j,k |d( j ′,k′)| > λ

} = 0 for k ∈ S0
j and also by the

fact that μ( j,k) = 0 for j = 1, . . . , J , k ∈ S0
j , we have I = 0. For II , we denote

B = { ∃( j ′, k′) ∈ C j,k |d( j ′,k′)| > λ
}
and have

(
d( j,k) · I{B}− μ( j,k))2 = (

d( j ,k) · I{B}− d( j ,k) + d( j ,k) − μ( j,k))2

≤ (
d( j ,k))2

I
(|d( j ′,k′)| ≤ λ

)+ 2|d( j,k)| I(|d( j ′,k′)| ≤ λ
) |d( j,k) − μ( j,k)|

+ (
d( j ,k) − μ( j ,k))2

≤ λ2 + 2λC1{2 log T }1/2 + 2C2
1 log T . (A2)

Combiningwith the upper bound of J , �log(T )/ log((1−ρ)−1)+log(2)/ log(1−ρ)	,
and the fact that |S1

j | ≤ N , we have II ≤ 8C2
1NT−1�log(T )/ log((1 − ρ)−1) +

log(2)/ log(1 − ρ)	 log T , and therefore ‖ f̃ − f ‖2T ≤ C2
1 T−1 log(T )

{
4 +

8N �log(T )/ log((1−ρ)−1)+ log(2)/ log(1−ρ)	
}
. As the estimated change-points

are obtained through those detail coefficients, thus at each scale, up to N estimated
change-points are added. Combining it with the largest scale J whose order is log T ,
the number of change-points in f̃ returned from the inverse TGUW transformation is
up to CN log T where C is a constant.

Proof of Theorem 2 Let B̃ and ˜̃B the unbalanced wavelet basis corresponding to f̃ and
˜̃f , respectively. As the change-points in ˜̃f are a subset of those in f̃ , establishing ˜̃f can
be considered as applying the TGUW transform again to f̃ which is just a repetition

of procedure done in estimating f̃ in the greediest way. Thus ˜̃B is classified into two
categories, 1) all basis vectors ψ( j,k) ∈ B̃ such that ψ( j,k) is not associated with the
change-points in f̃ and |〈X, ψ( j,k)〉| = |d( j,k)| < λ and 2) all vectorsψ( j,1) produced
in Stage 1 of post-processing.

We now investigate how many scales are used for this particular transform. First,
the detail coefficients d( j,k) corresponding to the basis vectors ψ( j,k) ∈ B̃ live on no
more than J = O(log T ) scales and we have |S1

j | ≤ N by the argument used in the

proof of Theorem 1. In addition, the vectors ψ( j,1) in the second category correspond
to different change-points in f̃ and there exist at most Ñ = O(N log T ) change-points
in f̃ which we examine one at once (i.e. |S1

j | ≤ 1), thus at most Ñ scales are required
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for d( j,1). Combining the results of two categories, the equivalent of quantity II in

the proof of Theorem 1 for ˜̃f is bounded by II ≤ C3NT−1 log2 T and this completes

the proof of the l2 result,
∥∥ ˜̃f − f

∥∥2
T = O

(
NT−1 log2(T )

)
where C3 is a positive

constant large enough.

Finally, we show that there exist at most two change-points in ˜̃f between true
change-points (η�, η�+1) for � = 0, . . . , N where η0 = 0 and ηN+1 = T . Consider
the case where three change-point for instance ( ˜̃ηl , ˜̃ηl+1, ˜̃ηl+2) lie between a pair of
true change-point, (η�, η�+1). In this case, by Lemma 2, the maximum magnitude
of two detail coefficients computed from the adjacent intervals, [ ˜̃ηl + 1, ˜̃ηl+1] and
[ ˜̃ηl+1+1, ˜̃ηl+2], is less than λ and ˜̃ηl+1 would be get removed from the set of estimated

change-points. This satisfies ˜̃N ≤ 2(N + 1).

Proof of Theorem 3 From the assumptions of Theorem 3, the followings hold.

• Given any ε > 0 and C > 0, for some T1 and all T > T1, it holds that P
(∥∥ ˜̃f −

f
∥∥2
T > C3

4 RT

)
≤ ε where ˜̃f is the estimated signal specified in Theorem 2.

• For some T2, and all T > T2, it holds that C1/3T 1/3R1/3
T (

¯
f �
T )−2/3 < δ�

T for all
� = 1, . . . , N .

Following the argument used in the proof of Theorem 19 in Lin et al. (2016), we
take T ≥ T ∗ where T ∗ = max{T1, T2} and let r�,T = �C1/3T 1/3R1/3

T (
¯
f �
T )−2/3� for

� = 1, . . . , N . Suppose that there exist at least one η� whose closest estimated change-
point is not within the distance of r�,T . Then there are no estimated change-points in
˜̃f within r�,T of η� which means that ˜̃f j displays a linear trend over the entire segment
j ∈ {η� − r�,T , . . . , η� + r�,T }. Hence

1

T

η�+r�,T∑
j=η�−r�,T

( ˜̃f j − f j
)2 ≥ 13r3�,T

24T

(
¯
f �
T

)2
>

C3

4
RT . (A3)

The first inequality holds by Lemma 20 of Lin et al. (2016), and the second one holds
by the definition of r�,T . Assuming that at least one η� does not have an estimated
change-point within the distance of r�,T implies that the estimation error exceeds
C3

4 RT which is a contradiction as it is an event that we know occurs with probability
at most ε. Therefore, there must exist at least one estimated change-point within the
distance of r�,T from each true change point η�.

Throughout Stage 2 of post-processing, ˜̃η�0 is either the closest estimated change-
point of any η� or not. If ˜̃η�0 is not the closest estimated change-point to the nearest
true change-point on either its left or its right, by the construction of detail coef-
ficients in Stage 2 of post-processing, Lemma 2 guarantees that the corresponding
detail coefficient has the magnitude less than λ and ˜̃η�0 gets removed. Suppose ˜̃η�0

is the closest estimated change-point of a true change-point η� and it is within the
distance of CT 1/3R1/3

T

(
¯
f �
T

)−2/3 from η�. If the corresponding detail coefficient has

the magnitude less than λ and ˜̃η�0 is removed, there must exist another ˜̃η� within the
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distance ofCT 1/3R1/3
T

(
¯
f �
T

)−2/3 from η�. If there are no such ˜̃η�, then by the construc-
tion of the detail coefficient, the order of magnitude of

∣∣dp�0 ,q�0 ,r�0

∣∣ would be such

that
∣∣dp�0 ,q�0 ,r�0

∣∣ > λ thus ˜̃η�0 would not get removed. Therefore, after Stage 2 of
post-processing is finished, each true change-point η� has its unique estimator within
the distance of CT 1/3R1/3

T

(
¯
f �
T

)−2/3.
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