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Abstract
Given a probability space (X ,B,m), measure preserving transformations g1, . . . , gk
of X , and a colour set C , a colouring rule is a way to colour the space with C such
that the colours allowed for a point x are determined by that point’s location in X and
the colours of the finitely many g1(x), . . . , gk(x) (called descendants). We represent
a colouring rule as a correspondence F defined on X × Ck with values in C . A
function f : X → C satisfies the rule at x if f (x) ∈ F(x, f (g1x), . . . , f (gkx)).
A colouring rule is paradoxical if it can be satisfied in some way almost everywhere
with respect to m, but not in any way that is measurable with respect to a finitely
additive measure that extends the probability measure m defined on B and for which
the finitelymany transformations g1, . . . , gk remainmeasure preserving.We show that
a colouring rule can be paradoxical when the g1, . . . , gk are members of a semi-group
G, the probability space X and the colour set C are compact sets, C is convex and
finite dimensional, and the colouring rule says if c : X → C is the colouring function
then the colour c(x)must lie (m a.e.) in F(x, c(g1(x)), . . . , c(gk(x))) for a non-empty
upper-semi-continuous convex-valued correspondence F . Furthermore we show that
this colouring rule has a stability property—there is a positive ε small enough so that
if the expected deviation from the rule does not exceed ε then the colouring cannot
be measurable in the same finitely additive way. As a consequence, there is a two-
person Bayesian game with equilibria, but all ε-equilibria for small enough ε are not
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measurable according to any finitely additive measure that respects the information
structure of the game.

1 Introduction

In [7], we introduced colouring rules. We demonstrated several paradoxical colouring
rules and proved that if there are finitely many colour classes and the measure preserv-
ing transformations belong to a group then any colouring of a paradoxical colouring
rule has colour classes that jointly, with the measure preserving transformations and
the Borel sets, define a measurably G-paradoxical decomposition (for the group G
generated by the measure preserving transformations). We mean by this the existence
of two measurable sets of different measures that are G-equidecomposable (see [7,
Thm. 1]).

In the conclusion of [7], we asked whether a colouring rule could be paradoxical if
the colour classes belonged to a finite dimensional convex set and the colouring rule
was defined by an upper-semi-continuous convex-valued non-empty correspondence,
as described above. We call such colouring rules probabilistic colouring rules. This
means, among other things, that the choosing of colours could be according to a
maximisation or minimisation of a continuous and affine evaluation of options, with
indifference between two options implying indifference between all of their convex
combinations.

Our main inspiration is the question whether measure theoretic paradoxes, such
as the Banach Tarski Paradox, have any applications to areas beyond mathematics,
such as physics or economics (see [8] for more details). A colouring rule could repre-
sent natural forces, and the lack of any measurable solution could represent a radical
inability to predict their behaviour. A particular inspiration is the widely held belief
in economic theory that although one cannot always accomplish optimisation goals
through behaviour that is measurable with respect to a countably additive measure,
one can do so with some finitely additive option. The problem with this belief is that
there may be knowledge structures to the optimisation that cannot be altered when
extending to a finitely additive measure. If those knowledge structures are defined
through the use of ergodic operators, measure invariance of those ergodic operators
may be required. Among other motivations, we wanted to show that there are some
Bayesian games with equilibria but without measurable ε-equilibria for small enough
positive ε according to any reasonable understanding of measurable.

The Kakutani Fixed Point Theorem is relevant to probabilistic colouring rules. If X
is compact and the correspondence is independent of the location of x , meaning that the
correspondence F is defined entirely on g1(x), . . . , gk(x), then the fixed point theorem
shows there exists a constant colouring function (a fixed distribution) satisfying the
colouring rule, hence it cannot be paradoxical. This is done bymapping a colour c inC
to the k copies of C , namely (c, c, . . . c) ∈ Ck , and then following the colouring rule
back down to C via the correspondence F . Therefore we have to consider colouring
rules that are dependent on the location in the space.

In Simon and Tomkowicz [6] we demonstrated a probabilistic colouring rule with a
one dimensional continuum of colours such that after the correspondence is approxi-

123



Ameasure theoretic paradox from a…

mated by any small enough positive ε the colouring rule still had no Borel measurable
solution. It was formulated as aBayesian game forwhich there are equilibria, but a pos-
itive ε such that no ε-equilibrium is Borel measurable. In this paper, we demonstrate a
Bayesian game whose information structure is defined by the action of a semi-group
G such that the game does have equilibria, but there is a positive ε such that there is
no finitely additive G-invariant measure μ extending the Borel measure together with
an ε-equilibrium that is μ measurable.

In the next section we describe the probabilistic colouring rule and show that it
is paradoxical. In Sect. 3 we look at approximating the colouring rule. In Sect. 4
we discuss Bayesian games and explain how they motivated us. We translate our
paradoxical colouring rule to a two player Bayesian game and show how it does not
have approximate equilibria that are measurable with respect to any finitely additive
measure that respects the information structure of the game. In conclusion we consider
related problems.

2 A probabilistic paradoxical colouring rule

Let T1 and T2 be two non-invertible generators (each generating a semi-group isomor-
phic to N). We assume that T 3

1 T2 = T2T 3
1 and there are no other relations. Let G be

the cancellative semi-group with identity generated by T1 and T2. Let X be the set
{0, 1}G . We extend X to X ′ = X × {a, b, c} and let the symmetric group S3 act on
the three elements {a, b, c}. We assume that S3 commutes with G and define G ′ to be
the semi group G × S3. We need to include S3 for the definition of the colouring rule.
However it is mostly the colouring of X × {a} that matters.

For any x ∈ X and g ∈ G, xg stands for the g coordinate in x . With e the identity
in G, the e coordinate of x is xe. There is a canonical right semi-group action on X ,
namely g(x)h = xgh for every g, h ∈ G. We use the canonical product topology on X .
For every cylinder determined by particular choices of {0, 1}we assign the probability
( 12 )

k where k is the number of those choices determining the cylinder. With the Borel
probability measure the semi-group G acts measure preserving on X (meaning that
the measure of T−1(A) is equal to the measure of A, for any Borel set A and T
in G). Any semi-group element acts measure preserving on any cylinder, due to the
cancellation law, and this can be extended to any Borel set through approximation via
cylinders. Likewise we give X ′ the Borel probability measure where each element in
{a, b, c} is given equal probability when paired with a Borel set in X . The probability
of A×{a, b, c} in X ′ is given the same probability at that given to A in X , In this way
G ′ acts measure preserving on X ′. With m the canonical Borel measure of X , let m′
be its extension to X ′.

Where g �= h implies that gx �= hx is a Borel subset of measure one. This follows
from the fact that the semi-group is countable. Without loss of generality, we will be
interested only in this subset, and we ignore the set of measure 0 where this doesn’t
hold.

The set of colours C is �({1, 2, 3}) := {p = (p1, p2, p3) | ∀i pi ≥ 0, p1 + p2 +
p3 = 1} where δi is perceived to be all weight to the colour ci . We represent the
extremal colours ci modulo 3, with i = 1, 2, 3 rather than 0, 1, 2.
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Now we show how to colour each x ∈ X ′ with a point in the simplex �({1, 2, 3}),
with p = (p1, p2, p3) ∈ �({1, 2, 3}) standing for the weights given to the three
extremal colours. We colour according to the optimisation of a continuous function,
and the resulting optimal solutions are represented by a correspondence F , defined
on X × C2, where each x ∈ X has two descendants T1x and T2x . The continuous
functions are defined by matrix multiplications.

For every x ∈ X we define a matrix Ax =
⎛
⎝

1 r x1,2 r x1,3
r x2,1 1 r x2,3
r x3,1 r x3,2 1

⎞
⎠ such that |r xi, j | ≤

1
100 for every choice of x and i, j . The r xi, j are continuous functions of x in X , and
are chosen such that for every p ∈ �({1, 2, 3}) the set of x such that two or three
rows maximise Ax p is a set of Borel measure zero. The following is one way to do
that. There are six entries of the r xi, j to determine. We place the elements of G into six
infinite ordered collections. For each l = 1, 2, . . . and gl the lth semi-group elements
corresponding to r xi, j we define r xi, j := 1

100

∑∞
l=1 2

−l xgl . where the structure of X
requires that xg ∈ {0, 1} for all g ∈ G.

We colour a point (x, b) by any convex combination of the ci with the i = 1, 2, 3
whose rows maximise AT2T1T2(x) p, where p is the colour given to (T1x, a).

We colour a point (x, c) by any convex combination of the ci with the i = 1, 2, 3
whose rows maximise AT1T2T1(x) p, where p is the colour given to (T2x, a).

The conceptionally complex part of the rule is how to colour a point (x, a).
We define two three dimensional matrices B0 and B1. The matrix B0 is used when

xe = 0 and thematrix B1 is usedwhen xe = 1. Bothmatrices have entries (bi, j,k) only
in {0, 1} such that for each pair of columns j, k there is only one non-zero bi, j,k and it is
equal to 1. There are two sets of columns and one row; the columns j and k correspond
to the weights given to the colours c j and ck of (x, b) and (x, c) respectively.

A row i = 1, 2, 3 of B1 or B0 is evaluated in the following way. If p ∈ �({1, 2, 3})
is the colour given to (x, b) and q ∈ �({1, 2, 3}) is the colour given to (x, c) then the
i th row is given the value

∑3
j=1

∑3
k=1 p jqkbi, j,k . The colouring rule requires that

any convex combination of rows is chosen that maximise this row evaluation.
To define these matrices, we determine when the bi, j,k entry is 1. The first j th

column represents the extremal colour c j of (x, b) and the second kth column the
extremal colour ck of (x, c).

The matrix B1, the case of xe = 1, is easy to define. The bi, j,k entry is 1 if and only
if i = j + 1.

The matrix B0, the case of xe = 0, is more complex.
If k �= 1, and j �= 3, then the bi, j,k entry is 1 if and only if i = j .
If k �= 1, then the bi,3,k entry is 1 if and only if i = 1.
If j �= 3, then the bi, j,1 entry is 1 if and only if i = j + 1.
The bi,3,1 entry is 1 if and only if i = 3.
This completes the definition of the correspondence F . We will also refer to F as

the colouring rule. Notice that when xe = 0 then the matrix B0 has similarity to the
conditions of theHausdorff paradox, requiring that if the colour of x is an advancement
by one on the colour of T1x then the two points x and T2x are coloured differently,
one of these two points is coloured c1 and the other takes a colour in {c2, c3}.
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When (x, a), (x, b) or (x, c) gives all weight to an extremal colour, namely δci for
some i ∈ {1, 2, 3}, then it is called pure.

A colouring c : X ′ → C satisfies the colouring rule F if the rule holds almost
everywhere with respect to the probability distribution m′.

Lemma 1 A colouring that satisfies the colouring rule F is pure almost everywhere
with respect to the Borel measure m′.

Proof There is no relation between T2T1T2 and T1, likewise between T1T2T1 and T2.
Therefore for every choice of x the matrices at (T−1

1 x, b) and at (T−1
2 x, c) defining

the colouring rule F are the matrices Ay for all y ∈ X . The conditional probability on
those matrices is the same as the distribution on X . It follows by the construction of
these matrices that regardless of the colour p at (x, a) the set of colours at (T−1

1 x, b)
and (T−1

2 x, c) that are not pure with respect to m′ is a subset of conditional measure
0 (here we identify the points in T−1

i x with the matrices Ay). By the definition of
conditional probability, the conclusion follows for all (x, b) and (x, c). And therefore
it follows for (x, a) also. 
�

Lemma 1 allows us to perceive a colouring of X ′ as being primarily a colouring of
X×{a}. With purity, the colours of (x, b) and (x, c) are merely conveying to (x, a) the
colours of (T1x, a) and (T2x, a) in a way that those two colours are determining the
colour of (x, a). From now on, by a colouring of X we mean a colouring of X × {a},
where by the colour for x we mean the colour for (x, a). If a point is coloured purely
with δi we will also write that it is coloured with ci . Our main aim is to prove the
following theorem:

Theorem 1 For any finitely additive G-invariant measure μ on X ′ extending m′ there
exists no colouring c : X ′ → C that is μ measurable and satisfies the colouring rule
F.

Definition Semi-group elements g1, g2, . . . , gk ∈ G are called independent if there
are no relations between them. Two points x, x ′ are called twins if T1x = T1x ′ and
T2x = T2x ′, meaning that the differ only by xe �= (x ′)e. A point x ∈ X is coloured
randomly if x , the twin of x , T1x , and T2x are all pure and x and its twin are coloured
differently (meaning that for the twins x, x ′ the colour of T1x is advanced by one to
define the colour of x where xe = 1 and the colour of T1x is not advanced to define
the colour of x ′ where (x ′)e = 0). A colouring that is measurable with respect to some
G-invariant finitely additive measure μ is called measurable.

Lemma 2 If there is a positive measure of points that are coloured randomly for a
measurable colouring satisfying the colouring rule F, and g1, g2, . . . , gk are inde-
pendent, then the probability of {x | gi x is coloured cni , i = 1, 2, . . . , k} is the product∏k

i=1 qni where qn is the probability of {x | x is coloured cn} for n = 1, 2, 3.

Proof First we show that if there is a positive probability of random colouring, then
from the stochastic matrix representing the transition of the distribution of colours
of x to the colouring of T−1

1 x there is a unique eigenvector in �({1, 2, 3}) with the
eigenvalue 1 and the other eigenspaces correspond to eigenvalues with norms less than
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1. Since by measure invariance we can assume that the probability distribution of the
colours is the same at x and T−1

1 x for the collection of all x ∈ X , this implies that the
distribution is determined by this eigenvector.

Let p, q, r be half the probabilities for the random colouring conditioned on the
colours c1, c2, c3 respectively, with the half referring to the non-advancement of the
colours which happens when xe = 0. We assume that at least one of the p, q, r are
positive and none are greater than 1

2 . The stochastic matrix in question is

⎛
⎝

p 0 1 − r
1 − p q 0
0 1 − q r

⎞
⎠ .

It has the characteristic polynomial (p− x)(q − x)(r − x)+ (1− r)(1−q)(1− p) =
(1−r)(1−q)(1− p)+ pqr − (qr +qp+ pr)x + (p+q+r)x2− x3. The degree one
polynomial 1 − x divides this characteristic polynomial, leaving the second degree
polynomial 1 − r − p − q + rp + rq + qp + (1 − r − p − q)x + x2 as a factor.

Letting b = 1− r − p − q and d = rp + rq + qp we have the roots −b+
√

b2−4(b+d)

2

and −b−
√

b2−4(b+d)

2 . Assuming that b2 − 4(b + d) is not positive, the norm squared
of these roots is equal to b + d, which is less than 1 because one of p, q, r must be
positive and if, for example, r > 0 then r > rp. b2 − 4b cannot be positive if b is

not negative. Since b ≥ − 1
2 and 1

2 +
√
2 + 1

4 = 2, the only way for the norm of

−b−√
b2−4b
2 or −b+√

b2−4b
2 to reach 1 is if b = − 1

2 and therefore r = p = q = 1
2 . But

then the roots are really
− 1

2+
√

− 3
4

2 and
− 1

2−
√

− 3
4

2 , with norms of 1
2 .

Due to the lack of any relation between the gi , with respect to the Borel probability
distribution whether the (gi x)e are equal to 0 or 1 are independent choices over all the
x ∈ X , hence also with any finitely additive measure extending the Borel measure.
Assuming invariance of joint distributions of colour combinations before and after
applying T−1

1 , using induction on the number of the gi , and that the independence of
the gi implies the independence of the T n

1 gi for all positive n, we complete the proof
with the following claim: 
�
Claim Assume that there are two one-stage stochastic processes on two finite sets S
and T respectively and a stochastic process defined on S× T such that the transitions
are defined independently by transitions on S and T . Assume for each of the S and T
processes that there is only one unique invariant distribution/eigenvector correspond-
ing to an eigenvalue of norm 1. Furthermore assume that for each s ∈ S and t ∈ T
that there is a positive probability that there is a transition to something other than
s and t respectively. Then there is one unique invariant joint distribution on S × T
defined by the independent distributions on S and T respectively.

Proof of Claim: Let (s, t) be any pair of states in S× T ; we want to prove that any
invariant probability for (s, t) is the same as ab where a is the invariant probability
for s and b is the invariant probability for t . Let q be an invariant probability for
(s, t); we want to show that q = ab. Let la be the probability, conditioned on the
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state being at a, of leaving a on the next stage. Let lb be the same probability for
the state b. Let ra be the probability of not being at a and returning to a on the
next stage. Let rb be the same probability for the state b. We can calculate q by
q = q−laq−lbq+lalbq+(1−a)ra(1−lb)b+(1−b)rb(1−la)a+(1−b)rb(1−a)ra .
If these distributions on S and T are invariant independently, then q = ab is another
solution for an invariant probability for (s, t). Therefore we can also write ab =
ab−laab−lbab+lalbab+(1−a)ra(1−lb)b+(1−b)rb(1−la)a+(1−b)rb(1−a)ra , the
same formula but with q replaced by ab. But then we can write 0 = q(la +lb−lalb) =
ab(la + la − lalb). With la > 0 and lb > 0 we have la + la − lalb > 0 and q = ab.
q.e.d.

Notice that if h = jg for semi-group elements g, h, j then the choice of gx for any
x ∈ X will determine the hx , including the value of (hx)e, and therefore the (gx)e

and (hx)e are dependent for the various choices of x ∈ X in the maximal way that two
variables can be dependent. If kh = jg for some semi-group elements g, h, j, k, then
starting at kh(x) = jg(x) the dependence from kh and jg can have residual influences
on the joint colour distribution at the set {(gx, hx) | x ∈ X} before they reach their
limit distributions. This residual dependence implies that the joint colour distribution
at {(T1x, T2x) | x ∈ X} should have some dependence coming from T 3

1 T2 = T2T 3
1 .

However from a different perspective they should be independent! This contradiction
drives our proof of Theorem 1.

Lemma 3 There is no measurable colouring satisfying the colouring rule F such that
there is a positive measure of points that are coloured randomly.

Proof Let Cz be the stochastic matrix Cz =
⎛
⎝

1−z
2 0 2−z

2
z+1
2

1−z
2 0

0 z+1
2

z
2

⎞
⎠. Given an independent

distribution of colours for the pair T1x and T2x , the matrix determines the distribution
of colours at x where z is the probability for the colour c1 at T2x . Thus the entry ci j
of Cz determines the probability that x is coloured ci given that T1x is coloured c j .

First consider the pair of independent elements T2T1 and T 2
2 and let (y1, y2, y3) be

the global probabilities for the colours c1, c2, c3, respectively. FromLemma 2 the joint
distribution of the colours of T2T1x and T 2

2 x are that determined by the products of
the yi , meaning that the probability of T2T1x and T 2

2 x coloured ci and c j respectively
are yi · y j . But as the colouring is measurable, using that T2 is measure preserving, we
have to assume that the probability of the T1x and T2x coloured ci and c j respectively
is also yi · y j . Applying the matrix Cz with z = y1 for Cy1(y1, y2, y3)

t = (y1, y2, y3)t

we get the following three equations with three variables:

y1 = 1

2
(y3) + 1

2
((1 − y1)y1 + (1 − y1)y3)

y2 = 1

2
(y1) + 1

2
((1 − y1)y2 + y21 )

y3 = 1

2
(y2) + 1

2
(y1y3 + y1y2).
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This solves to y1 = 3 − √
7, y2 = 3 − √

7, and y3 = 2
√
7 − 5. These are the

global probabilities for the colours c1, c2, c3 respectively. Approximately this is the
triple (.35425, .35425, .2915). The reason for a smaller probability for the colour c3
results from the tendency to move away from this colour with greater probability than
toward it.

Second consider the seven semi-group elements.

g1 := T 4
2 T1T

3
2 ,

g2 := T 4
2 T1T

2
2 T1T2,

g3 := T 4
2 T1T

2
2 T

2
1 T2,

g4 := T 4
2 T1T

2
2 T

3
1 ,

g5 := T 4
2 T1T2T

4
1 ,

g6 := T 4
2 T1T

2
2 T

2
1 ,

g7 := T 4
2 T1T

2
2 T1.

We show that they are independent, meaning that there is no relations between them.
Make the revision that T1 is invertible and T 3

1 is the identity. If the resulting elements
still have no relations between them, there was no relation before this revision. We
can now proceed with the assumption that there are no relations other than T 3

1 = e.
We have the reductions

h1 := T 4
2 T1T

3
2 ,

h2 := T 4
2 T1T

2
2 T1T2,

h3 := T 4
2 T1T

2
2 T

2
1 T2,

h4 := T 4
2 T1T

2
2 ,

h5 := T 4
2 T1T2T1,

h6 := T 4
2 T1T

2
2 T

2
1 ,

h7 := T 4
2 T1T

2
2 T1.

Notice that any combinations of the hi are separated by T 4
2 or a higher power of T2, so

that we can identifywhen one element ends and the next begins. Removing these book-
ends of T 4

2 , T
5
2 , T

6
2 , or T

7
2 , we are left with the interiors T1, T1T

2
2 T1, T1T

2
2 T

2
1 , T1T2T1.

All but the T1T2T1 (from h5) are repeated twice. The two uses of T1 are distinguished
by the powers of T2 succeeding them (T 7

2 vs T 6
2 ). Likewise the two uses of T1T 2

2 T1
can be distinguished by the power of T2 succeeding them (T 5

2 vs T 4
2 ) and the same is

true of T1T 2
2 T

2
1 ( T 5

2 vs T 4
2 ). It follows that all seven elements g1, . . . , g7 also must

be independent.
By Lemma 2 the probability of {x | gi x coloured cni } for any choice of n1, . . . , n7 is

equal to the product
∏7

i=1 yni . Due to the measure preserving property of T 4
2 T1T2, we

can assume that the probability of {x | g′
i x coloured cni } for any choice of n1, . . . , n7

is equal to the product
∏7

i=1 yni for the elements
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g′
1 := T 2

2 ,

g′
2 := T2T1T2,

g′
3 := T2T

2
1 T2,

g′
4 := T2T

3
1 ,

g′
5 := T 4

1 ,

g′
6 := T2T

2
1 ,

g′
7 := T2T1.

Now consider the defining condition that g′
4x = T 3

1 T2x = T2T 3
1 x for all x . For each

of the three colour choices at T 3
1 T2x we determine the distribution on the colours of

x by building up to a joint distribution for T1x , T2x , and x through the two pathways,
the left pathway going through three applications of T−1

1 and the right pathway going
first through T−1

2 followed by two applications of T−1
1 . Due to the above mutual

independence of colour distributions of the g′
i x and their locations in relation to the

twopathwayswe can use thematricesCz to determine these distributions, including the
last step of determining the colour distribution of x (as pointed out at the beginning of
the proof), conditioned on the colour of T 3

1 T2x . There are three matrices most relevant
to our calculations, C1, C0, and Cy1 .

The distribution of colours for T2x , conditioned on a choice of colour for T 3
1 T2(x)

is determined by

C3
y1 =

⎛
⎜⎝

1
8 (50

√
7 − 129) 1

4 (23 − 8
√
7) 1

8 (19
√
7 − 49)

1
8 (216 − 81

√
7) 1

8 (50
√
7 − 129) 1

4 (23 − 8
√
7)

1
8 (31

√
7 − 79) 1

8 (91 − 34
√
7) 1

8 (11 − 3
√
7)

⎞
⎟⎠ .

To determine the distribution of colours for T1x we need to calculateC2
y1C0(y1, y2, y3)

and C2
y1C1(y1, y2, y3), the former for what happens when T 3

1 T2x is coloured c2 or c3
and the latter for T 3

1 T2x coloured c1. For the former we get

⎛
⎜⎝

1
4 (11 − 4

√
7) 1

4 (5
√
7 − 11) 1

4 (
√
7 − 1)

1
2 (6

√
7 − 15) 1

4 (11 − 4
√
7) 1

4 (5
√
7 − 11)

1
4 (23 − 8

√
7) 1

4 (4 − √
7) 1

2 (8 − 3
√
7)

⎞
⎟⎠

⎛
⎜⎝

3
2

√
7 − 7

2

3 − √
7

3
2 −

√
7
2 )

⎞
⎟⎠

=
(
1

8
(117

√
7 − 307),

1

4
(258 − 97

√
7),

1

8
(77

√
7 − 201

)
.
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For the latter we get

⎛
⎜⎝

1
4 (11 − 4

√
7) 1

4 (5
√
7 − 11) 1

4 (
√
7 − 1)

1
2 (6

√
7 − 15) 1

4 (11 − 4
√
7) 1

4 (5
√
7 − 11)

1
4 (23 − 8

√
7) 1

4 (4 − √
7) 1

2 (8 − 3
√
7)

⎞
⎟⎠

⎛
⎜⎝

√
7 − 5

2

3 − √
7

1
2

⎞
⎟⎠

=
(
1

8
(95

√
7 − 248),

1

8
(429 − 161

√
7),

1

8
(66

√
7 − 173)

)
.

For each of the three possibilities, T 3
1 T2x = T2T 3

1 x coloured c1, c2, or c3, we do
the calculations for the three colours at T 3

1 T2x separately and recombine the results,
using the law of total probability, according to (y1, y2, y3).

ForT 3
1 T2x coloured c1,wehave to calculateC 1

8 (50
√
7−129)(

1
8 (95

√
7−248), 1

8 (429−
161

√
7), 1

8 (66
√
7 − 173)t =

⎛
⎜⎜⎝

1
16 (137 − 50

√
7) 0 1

16 (145 − 50
√
7)

1
16 (50

√
7 − 121) 1

16 (137 − 50
√
7) 0

0 1
16 (50

√
7 − 121) 1

16 (50
√
7 − 129)

⎞
⎟⎟⎠

⎛
⎜⎜⎝

1
8 (95

√
7 − 248)

1
8 (429 − 161

√
7)

1
8 (66

√
7 − 173)

⎞
⎟⎟⎠

=
(

1

128
(43635

√
7 − 115411),

1

128
(178381 − 67402

√
7),

1

128
(23767

√
7 − 62842)

)

For T 3
1 T2x coloured c2, we have to calculateC 1

4 (23−8
√
7)(

1
8 (117

√
7−307), 1

4 (258−
97

√
7), 1

8 (77
√
7 − 201)t =

⎛
⎜⎝

1
8 (8

√
7 − 19) 0 1

8 (8
√
7 − 15)

1
8 (27 − 8

√
7) 1

8 (8
√
7 − 19) 0

0 1
8 (27 − 8

√
7) 1

8 (23 − 8
√
7)

⎞
⎟⎠

⎛
⎜⎝

1
8 (117

√
7 − 307)

1
4 (258 − 97

√
7)

1
8 (77

√
7 − 201)

⎞
⎟⎠

=
(

1

32
(9856 − 3721

√
7),

1

64
(13429

√
7 − 35509),

1

64
(15861 − 5987

√
7)

)
.

ForT 3
1 T2x coloured c3,wehave to calculateC 1

8 (19
√
7−49)(

1
8 (117

√
7−307), 1

4 (258−
97

√
7), 1

8 (77
√
7 − 201)t =

⎛
⎜⎝

1
16 (57 − 19

√
7) 0 1

16 (65 − 19
√
7)

1
16 (19

√
7 − 41) 1

16 (57 − 19
√
7) 0

0 1
16 (19

√
7 − 41) 1

16 (19
√
7 − 49)

⎞
⎟⎠

⎛
⎜⎝

1
8 (117

√
7 − 307)

1
4 (258 − 97

√
7)

1
8 (77

√
7 − 201)

⎞
⎟⎠

=
(

1

64
(10663

√
7 − 28183),

1

64
(41681 − 15746

√
7),

1

64
(5083

√
7 − 13434)

)
.

Combining these three vectors according to the distribution (3−√
7, 3−√

7, 2
√
7−

5) of the three colours at T 3
1 T2x we get a different distribution for the colours at x ,
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namely ( 1
64 (75588−28561

√
7), 1

128 (95189
√
7−251801), 1

128 (100753−38067
√
7)),

a contradiction. In decimals this corresponds approximately to (.35464, .35486, .29050),
(different from the original (.35425, .35425, .2915) = (3− √

7, 3 − √
7, 2

√
7 − 5)).


�
The source of the discrepancy in the final distribution at the top comes fromdifferent

starting distributions at T2T 3
1 x and T 3

1 T2x . If there was no commuting of T 3
1 and T2,

there would be two different points and the probability of a start of ci at T 3
1 T2x and

c j at T2T 3
1 x would be yi y j with (y1, y2, y3) = (3− √

7, 3− √
7, 2

√
7− 5). But with

the commuting there are no mixed starts.
Finally with the above lemmas, we can prove Theorem 1.

Proof of Theorem 1 By the three lemmata, a measurable colouring satisfying the
colouring rule must have no positive subset of points coloured randomly. That means,
with any probability approaching 1, that the colours cycle through with x coloured
ci+1 whenever T1 is coloured ci . So with the measure preserving application of T1
we see that 1

3 of the space is coloured c1. On the other hand, by T2 being measure
preserving, as with the Hausdorff paradox, this implies that the probability of the space
coloured c1 must be arbitrarily close to 1

2 , a contradiction. 
�
There is of course a non-measurable colouring of the space. Start at some x . Let

the colours cycle through ci by the repeated application of T
−1
1 , increasing the colour

by one, and T1, decreasing the colour by one. Choose some y already coloured this
way and colour T2y so that that T2y is coloured c1 if and only if y is not coloured
c1. Extend this choice for T2y with the repeated application of T−1

1 and T1 to T2y.
Notice that the commuting of T 3

1 and T2 does not get in the way of this pattern. This
can be continued, but there is a general solution to the existence of a non-measurable
colouring which includes this type of colouring. This general solution is presented in
the next theorem. It demonstrates the other half of the argument that F is a paradoxical
colouring rule, that the colouring rule F can be satisfied.

Let X∗ be the x in X where g �= h implies that gx �= hx .

Theorem 2 There are pure colourings of X∗ that satisfy the colouring rule F.

Proof Let a subset A of X be called closed if whenever T1(x) ∈ A and T2(x) ∈ A then
also x is in A. Let A stand for the closure of A. A subset A of X is called pyramidic
if whenever x ∈ A then the semi-group orbit Gx is in A. Notice that the closure of a
pyramidic set is pyramidic.

For any pyramidic set B and any pure colouring of B consistent with the colouring
rule there is a deterministic way to colour the closure B according to the colouring
rule. We define a partially ordered set on the pairs (B, c) where B is a pyramidic and
closed set and c is a colouring of B according to the rule. We say that (B, c) ≥ (B ′, c′)
if B contains B ′ and c restricted to B ′ is c′.

With Zorn’s lemma there is a maximal element to any tower of the partial order.
We observe that it is not possible for a closed and pyramidic B to be maximal and
also that there is some x ∈ X∗ such that x /∈ B. So it is enough to show that one can
always extend the colouring form (B ′, c′) to some (B, c) in a consistent way.
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Consider the orbit Gx and the sequence Al where Al is the subset of Gx such that
y ∈ Al if and only if y = gx with g aword of length l and y /∈ B. In anywaywe colour
Al , the colouring rule extends to a colouring of the closure of Al ∪ B that follows
the rule and does not change the colours of B. Indeed, let fl be a sequence of such
colourings of Al ∪ B. As Gx is a countable set, we can observe that a subsequence
of the fl converges point-wise to a colouring function f on Gx ∪ B. We then extend
this function f to a pure colouring on the closure of Gx ∪ B. 
�

3 Optimality and stability

The colouring rule F is already formulated as a problem of local optimisation accord-
ing to an objective function. We can relax the rules, so that for some given δ > 0 it is
required that the colours chosen at all points are within δ of optimality. We call this
pointwise δ-optimality. But that is only one concept of approximate optimality, that
at each individual point there is no gain by more than δ through a different choice of
colour. We seek a broader concept. For each x ∈ X let t(x) be the possible improve-
ment in the objective function at x , keeping the colouring for all other y �= x fixed.
Let μ be a G-invariant finitely additive extension. A colouring is γ -stable if the μ-
expectation of t(x) is no more than γ ≥ 0, meaning that there is no finite disjoint
collection A1, . . . , An of μ measurable sets such that the objection function can be
improved by at least ti at all points in Ai and

∑
i=1 μ(Ai )ti is greater than γ .

Another way of understanding γ -stability is that X is an uncountable space of
human society ormolecules, and the solution is γ -stable if the gains from the individual
deviations do not add up to an expectation of γ .

There are two ways that a measurable colouring must obey γ -stability. First, the set
where there is significant divergence from optimality must be small. Second, where
divergence from optimality exists in a subset of large measure, that divergence must
be small (the first concept we presented). That can be formalised in the following way:
if a colouring is ε · δ-stable, then the subset where it diverges from optimality by more
than δ cannot be of measure more than ε.

By the continuity of Borel measure, with p ∈ �({1, 2, 3}) fixed and as δ goes down
to 0 the set of x where two rows of Ax have expectations within δ of the optimal choice
falls in Borel measure to 0. As the finitely additive measure must be an extension of
the Borel measure, the same is true for the finitely additive measure. This allows the
following corollary, whose proof is a refinement of the proof of Theorem 1.

Corollary 1 For small enough γ there is no finitely additive G-invariant measure
extending the Borel measure with a γ -stable measurable colouring for the colour-
ing rule F, and hence there is a paradoxical colouring rule defined by a continuous
function.

Proof Let δ > 0 be fixed, and consider the subset Xδ of X where only one row of Ax

is optimal and the other two are not within δ of being optimal. As δ goes to zero the
probability (according to m) of X\Xδ goes to zero. Let ρ(δ) be a function of δ such
that ρ(δ) goes to 0 as δ goes to 0 and ρ(δ) is greater than the probability of X\Xδ for
all positive δ.
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We break the measurable colourings of X ′ into two cases, (1) those involving at
least 1

100 of the space coloured randomly and (2) those with less than 1
100 of the space

coloured randomly. For every ε > 0 require that the probability for not having a pure
colour or that the one extremal colour chosen is not optimal is less than ε. We have
only to determine a positive ε and positive δ small enough so that ρ(δ) < ε and ε is
small enough to assure, for both cases, a discrepancy in the measure of the set where
purity holds and c1 is chosen. For the latter case (2) this is easy, ε < 1

1000 suffices
for a contradiction (as the subset coloured c1 would have to be simultaneously below
3
8 and above 11

24 ). For the former case (1), due to the continuity of the determinant,
and therefore also the characteristic polynomial, following the argument in the proof
of Lemma 2 the 1

100 of the space using random generation implies the existence of a
d > 0 and an ε > 0 such that the other eigenvalues (other than 1) in the transition
matrix of the colours have norms less than 1 − d for all 0 < ε < ε.

Due toG-invariance of any proposed finitely additivemeasure, and assuming ε < ε,
starting at any distribution on colours and applying T−1

1 there is uniform minimal
convergence rate to a unique invariant distribution, meaning that at each stage the
difference between the distribution and the limit distribution is no more than 1 − d
times what it was on the previous stage. As the transitions from the random process
determined by ye = 0 or ye = 1 they will remain independent at the various y =
gi x for independent elements g1, . . . , gk and they will dominate any distributional
dependency from a small set of measure less than ε of not following the colouring
rule F , we can repeat the arguments of Lemma 2, showing that the joint distributions
of the g′

i x for the seven g′
i are independent in the limit as ε goes to 0. The same can

be done for the colour distribution on the whole space, that there is convergence to
independent distributions of colours with T1 and T2, using the independence of T2T1
and T 2

2 and measure invariance.
Due to the constant d and the existence of unique invariant distributions, as ε goes

to 0 the convergence to equalities of the three equations with three variables y1, y2, y3
from Lemma 3 implies that the unique invariant distributions on colours converges to
the same fixed point distribution (y1, y2, y3) = (3−√

7, 3−√
7, 2

√
7−5). Although

the calculations by which one determines the distribution of colours at x from the
point T 3

1 T2x = T2T 3
1 x don’t hold perfectly due to a subset of size up to ε where the

colour rule does not hold, nevertheless with ε small enough they show a persistent
1

5000 discrepancy in the probability given to the colour c1. Having determined positive
ε < ε and ρ(δ) < ε small enough for both cases, we choose δ small enough to
guarantee ρ(δ) < ε. The lack of 2δε-stability follows.

Because the matrices Ax change continuously on the Cantor set X and the two
matrices B0 and B1 are defined on disjoint clopen sets (hence together change con-
tinuously), and because the T1 and T2 are continuous functions, two points close to
each other are close in terms of the consequences of colour choice. With the colour-
ing rule F defined through the optimisation of a continuous function, optimised at
the correspondence F , and with uniform continuity of the optimising functions (from
X ′ and C compact), any sequence of colouring rule correspondences F1, F2, . . . that
approximate the colouring rule F are also approximating its optimisation. With the
correspondence F non-empty, upper-semi-continuous and convex valued, for every
sequence of positive γ1, γ2, . . . converging to 0 there is a sequence of continuous func-
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tions fi : X ′ × C2 → C that approximate the correspondence F and the satisfaction
of fi implies point-wise γi optimality with respect to the correspondence F . By the
above, there is a positive γ where satisfaction of fi through measurable colouring is
no longer possible when γi < γ . Therefore we get eventually paradoxical colouring
rules defined by continuous functions. 
�

We don’t use the full force of γ -stability in showing that there are paradoxical
colouring rules from continuous functions. However there is one application of γ -
stability that does use that the probability of significant deviation from optimality is
limited in probability.

4 Bayesian games

An important part of economic theory is the study of incomplete information. The idea
is that some economic agent has some information that the others do not have, and
this private information has to be used carefully to that player’s advantage. It could
be only one player with private information or it could be all the players. Often this
situation can be modelled as a Bayesian game.

The connection to the above colouring rule F is that there is a Bayesian game
played on the same probability space X ′ for which local optimising behaviour by a
player is equivalent to satisfaction of the colouring rule F at an appropriate point
and equilibrium behaviour is equivalent to satisfaction of the colouring rule F almost
everywhere. Furthermore, a γ -equilibrium of the game is equivalent to a colouring
with the γ -stability property.

Our interest in paradoxical colouring rules came originally from game theory, from
the desire to show thatall, not just some, equilibria of a gameare notmeasurable. Simon
[5] showed that there is a Bayesian game which had no Borel measurable equilibria,
though it had non-measurable equilibria. The infinite dihedral group, an amenable
group, acted on the equilibria in a way that prevented any equilibrium from being
measurable. Simon and Tomkowicz [6] showed that there is a Bayesian game with
non-measurable equilibria but no Borel measurable ε-equilibrium for small enough
positive ε. That construction involved the action of a non-amenable semi-group.

A few words are necessary concerning the way a Bayesian game is played. There
is a probability space (�,F ,m); nature chooses a point x in the space � according to
the probability distributionm defined on a sigma algebraF . There are two approaches
to defining the information, strategies and payoffs of a player j .

In one approach, for each player j there is a sigma algebra F j smaller than F such
that the strategy of player j is a function measurable with respect to F j .

With the other approach we assume that a player j has a partition P j of the space
�—if nature chooses some x ∈ � the player j learns that nature’s choice lies in the
B ∈ P j such that x ∈ B. If two points x, y belong to the same partition member B
then player j cannot distinguish between x and y and must act identically at x and y.

The different approaches result in different ways to understand what is the strategy
and payoff of a player.
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With the measurable function approach the evaluation of a player’s strategy is
determined by the strategies of the other players doing the same, and because all
their sigma algebras are contained in F , the evaluation of the result goes through the
probability distribution m. We call this the Harsanyi approach.

The partition approach we call the Bayesian approach. With the Bayesian approach
each player j has a probability distribution on each set in P j and evaluates its actions
according to the actions of other players inside of the appropriate member of P j .
Notice that the Bayesian approach doesn’t really need a probability measurem for the
whole space, though we include it because we want to link up the two approaches.

Though the two approaches are different, they can be related. If every member of
P j is in F , we may move from the Bayesian approach to the Harsanyi approach. A
sigma algebra F j for player j is defined in the canonical way; a set A ∈ F is in F j if
and only for every set B ∈ P j , A ∩ B is either B or the empty set. If additionally the
player j’s probability distributions on each member of P j form a regular conditional
probability with respect to m and the F j are generated as above, we complete the
move to the Harsanyi approach.

Throughout we assume that the payoff of each player is affine with respect to
changes in any one player’s strategy, both with the Harsanyi measurable perspective
and with the local Bayesian perspective. With the Harsanyi perspective one could
say that the payoff functions are multi-linear in the potentially infinite dimensional
space of measurable strategies; when there are finitely many players and the strategy
spaces are finite dimensional the payoff for each player is represented by a multi-
dimensional matrix. One can also consider more complex payoff structures, but even
in themost trivial information structures (for example games of complete information)
the existence of an equilibrium is not guaranteed when optimality doesn’t occur in a
convex set.

Both approaches to what defines a strategy and a payoff have their strengths and
weaknesses. The Bayesian approach is more inclusive because it does not require that
strategies are measurable. But in general, the Bayesian approach is more problematic.
With the Bayesian approach, an evaluation of an action by player j in some A ∈ P j

may be impossible because within A the strategies of the other players may not be
measurable with respect to the probability distribution player j has in the set A. But if
each member in P j is finite there is not a problem. Also if there is sufficient structure
to the collectionP j , and we have not yet determined the local probability distributions
for each player, we can determine a probability distribution on each member B in P j

as a regular conditional probability with support on B (see [1]), and therefore add a
link between the Hansanyi approach to the Bayesian approach.

When the Harsanyi and Bayesian approaches are linked by a regular conditional
probability, the importance of measure preserving invariance to finitely additive exten-
sions can be observed. A regular conditional probability on some A ∈ P j must respect
(almost everywhere) any measure preserving transformations taking place within the
set A. By this we mean that if B is a measurable subset in A ∈ P j such that T−1(B) is
also contained in A, then (almost everywhere) the regular conditional probability for
that player at that set must give B and T−1(B) the same measure. If a finitely additive
measure on� that extends the original measurem doesn’t respect the local probability
distributions of the players, the game is distorted and the players’ interests would be
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no longer represented. If these local probability distributions are defined by measure
preserving transformations then it makes sense that the finitely additive measure must
keep those transformations measure preserving.

An ergodic game, (full definition in [5]), is one where the most important properties
are that for each player j each member of P j are finite and the player’s local belief at
each such member of P j form a regular conditional probability. With ergodic games,
neither the Bayesian approach nor the Harsanyi approach is problematic. Strictly
speaking, the Bayesian game we present below is not ergodic because the partition
members of P j for one of the players are not finite. We define a semi-ergodic game to
have all the same properties of an ergodic gamewith the relaxation that somemembers
B ofP j may be infinite, however for every such infinite B there a finite subset B ′ ⊆ B
such that inside the set B\B ′ no player (including Player j) has influence over the
payoff of Player j . A quasi-ergodic game has the further relaxation that inside the set
B\B ′ no player other than Player j has influence over the payoff of Player j . In a
quasi-ergodic game there is no problem with a player evaluating its actions locally, as
long as the the payoffs in B\B ′ are not problematic as functions of Player j’s actions.
In a semi-ergodic game, a player can concentrate entirely on the finite subset B ′. Our
Bayesian game described below is semi-ergodic.

The difference between the two approaches, their different types of strategies and
evaluations, gives an added depth to optimisation and stability. In [5] and [6]we defined
aHarsanyi ε-equilibrium for a positive ε: all players in aHarsanyi ε-equilibriumchoose
measurable strategies with respect to their sigma algebras as defined above and there
is no measurable deviation by some player to another measurable strategy resulting
in an expected gain of more than ε in global evaluation. But there is another type of
equilibria, the Bayesian. ABayesian ε-equilibrium is a way for each player to play that
is ε-optimal for each set in its partition with respect to its local probability distribution
on that set. Because the Bayesian equilibrium concept does not require measurable
strategies (only that strategies are constant for a player on each set in its partition),
there can be Bayesian equilibria where there are no Harsanyi equilibria. This is true
for the example in [5], which is also an ergodic game.

There is an added complication to the relation between Harsanyi and Bayesian
equilibria when moving to approximate equilibria. Hellman [3] showed that there
is a two person ergodic game without a Borel-measurable Bayesian ε-equilibria for
sufficiently small positive ε. For a positive ε, a Harsanyi ε-equilibrium can be much
easier to find than a Harsanyi equilibrium. If the Bayesian game is defined with an
amenable structure (for example through the actions of an amenable group or semi-
group) there will be a Harsanyi ε-equilibrium for every ε > 0 even though there may
be no Harsanyi equilibrium [4] (as happens with Hellman’s example). This is because
a Harsanyi ε-equilibrium could employ a very small set where the deviation from local
ε-equilibrium is significant, for example of measure less than ε

B where the deviation in
payoff optimality can be no more than B. By performing this deviation the measurable
behaviour elsewhere of a Harsanyi ε-equilibrium could be supported. The existence
of such a small set and its role in supporting a Harsanyi ε-equilibrium is related to
Folner’s condition for amenability.

When moving to finitely additive measures, there are structures to a Bayesian game
that enable paradoxical decompositions. To understand this, we take the Bayesian
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approach and an ergodic game where the information sets of the players are defined as
the orbits of finite groups that generate a non-amenable group G and whose elements
are measure preserving. There are two intermediate levels between the whole proba-
bility space and individual points in that space. One level is the beliefs of the players as
defined by the partitions P j and the probability distributions on each partition mem-
ber. As all sets in all P j are finite, this level is very close to the individual points.
The other and higher level (involving larger sets) is the collection of subsets that the
players know in common, the join partition of the P j , the largest partition smaller
than each of the P j . The subset that the players know in common, the join partition,
is the orbit of G. There may be no probability distribution supported on this set, not
even a finitely additive one, that is G-invariant. With the Bayesian approach, the game
is played out on these orbits of G. The partitions forming each player’s knowledge
may be countably generated (the result of countably many refinements of finite par-
titions of the space) while the join partition may fail to be countably generated. This
could frustrate any attempt to create Hansanyi equilibria from Bayesian equilibria,
including the broader context of finitely additive measures. Herein lies the special
contribution of Bayesian games to measure theoretic paradoxes. Nothing pathological
about the information and payoff structures of the individual players (from the finite
group actions) is necessary for the game to be paradoxical with respect to equilibria
and finitely additive measures.

A Bayesian Game

The following two player Bayesian game has equilibria, yet fails to have measurable
ε-equilibria for sufficiently small ε > 0, where we mean by measurable with respect
to any finitely additive extension of the Borel measure that is invariant with respect to
the semi-group used to define the information structure of the game.

The most important connection between the information structure of a game and
colouring rules is stated above, that if x, y belong to the same information set of a
player, then that player must behave identically at x and y. It is this transmission of
behaviour over an overlapping system of partitions defined by ergodic operators that
connects a colouring rule to equilibrium behaviour.

We use the same space X ′ = X × {a, b, c} as above. We define two overlapping
partitions of � = X ′ corresponding to two players I and I I .

The information sets of Player I are the sets of the form {(x, a)}∪(T−1
1 (x)×{b})∪

(T−1
2 (x)×{c}). The information sets of Player I I are the sets of size three of the form

{x} × {a, b, c}. Player I considers each of these three sets equally likely. Likewise
Player I I consider each of the three points equally likely.

The matrices B0 and B1 and the Ax remain the same, with the same entries bi, j,k
of the B0 or B1, which B0 or B1 determined by xe, also as above with the F colouring
rule.

The payoffs to Player I I take place at the points (x, b) and (x, c), with a separate
analysis for these two points. Player I I has nine actions to choose from the set of
( j, k) corresponding to j = 1, 2, 3 and k = 1, 2, 3. The payoff for Player I I is
the sum of the payoffs resulting from (x, b) and (x, c); one applies the matrix Ay for
y = T1T2T1x to the behaviour of Player I at (x, b) and the matrix Az for z = T2T1T2x
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to the behaviour of Player I at (x, c). The maximising of the sum for Player I I is
accomplished independently. If p ∈ �({1, 2, 3}) is chosen by Player I at (x, b) and
q ∈ �({1, 2, 3}) is chosen by Player I at (x, c) (usually different because they come
from different information sets of Player I ), and Player I I chooses the distribution
t = (t j,k) ∈ �({1, 2, 3} × {1, 2, 3}) then the payoff for Player I I is r Ay pt + s Azqt ,
where y, z are defined as above, r j = ∑

k t j,k is Player I I ’s marginal distribution
on the first coordinate j and sk = ∑

j t j,k is Player I I ’s marginal distribution on the
second coordinate k.

The payoff to Player I takes place entirely at the point labeled a. The payoff for
Player I at the i th row is

∑3
j=1

∑3
k=1 t j,kbi, j,k , where as above t j,k is the probabil-

ity that Player I I chooses the combination of j with k. In other words, only the j
coordinates are relevant at (x, b) and only the k coordinates are relevant at (x, c). The
3 × 3 × 3 matrix is replaced by a 3 × 9 matrix.

Notice how the causation of players’ actions follows through the space. However
Player I behaves at a point (x, a) this behaviour gets translated identically to T−1

1 x ×
{b} and to T−1

2 x ×{c}. Player I I follows suit at T−1
1 x ×{b} and at T−1

2 x ×{c}with an
attempt to copy Player I ’s action. However these points belong in uncountably many
different information sets of Player I I .When these various actions of Player I I happen
at a common point (y, a) (translated from both (y, c) and (y, b)), Player I responds
accordingly and transmits this response further to T−1

1 (y) × {b} and T−1
2 (y) × {c}.

The structure of the informations sets mirrors precisely the structure of descendants
used to define the colouring rule F (of Theorem 1 and Theorem 2).

Any measureμ conforming to the local beliefs of the players (making them regular
conditional probabilities) must be G ′ invariant. For all six elements of S3 this follows
from the beliefs of Player I I . Given anyμmeasurable set A,μ(A×{a}) = μ(T−1

1 (A×
{b})) follows from the beliefs of Player I followed by μ(A×{b}) = μ(A×{a}) from
the beliefs of Player I I . Together with S3 measure preservingwe get that T1 is measure
preserving. A similar argument shows that T2 must be measure preserving.

Corollary 2 For small enough positive ε the above Bayesian game does not have an ε-
equilibrium that is measurable with respect to any finitely additive measure invariant
with respect to the semi-groups G.

Proof The colouring rule F (of Theorem 1 and Theorem 2) is already formulated as
a three player Bayesian game, once we identity the three players to the three types of
points (x, a), (x, b) (x, c) and their evaluations. With these three players, the satis-
faction of the rule F is equivalent to an equilibrium and the ε-stability property of a
colouring is equivalent to an ε-equilibrium, so we have already proved the claim for a
three player Bayesian game. The difference is that we have a two player game with the
evaluation by Player I I on two separate points replacing the two separate evaluations.
As evaluating and maximising for Player I I occurs independently at these two points,
maximisation occurs for both points together if and only if it occurs for each one
separately, and ε-optimality for Player I I is equivalent to ε-optimality for the collec-
tion of points labelled (x, b) and (x, c) in a colouring. Corollary 1 concerns only the
colouring of the points (x, a), once any significant deviation from pure colouring of
the points (x, b) and (x, c) are marginalised in probability. Therefore that this game
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does not have such measurable γ -equilibria for sufficiently small positive γ follows
also from Corollary 1. 
�

5 Conclusion

We conjecture that paradoxical probabilistic colouring rules exist when defined with
group action. The difficulty seems to lie with the analysis of a stochastic process that
isn’t reducible to a combinatorial argument via purity.

Does every colouring satisfying our colouring rule F , or every colouring satisfy-
ing a paradoxical colouring rule, imply the existence of a measurably G-paradoxical
decomposition [7] using sets of the sigma algebra generated by the colour classes,
the Borel sets, and the action of the semi-group generated by the measure preserving
transformations defining the descendants?

Our colouring rule F concerns finitely additive invariant measures that extend the
Borel measure. Does there exist a paradoxical probabilistic colouring rule such that
every colouring that satisfies it is not measurable with respect to any finitely additive
invariant probability measure. The existence of such a rule in the case of group actions
would lead to weak paradoxical decompositions (see [7, Thm. 1])

There is a problem with applying our above colouring rule F to the group action
context. We could revise the colouring rule to one on X = {0, 1}G with the groupG =
C2∗C3, the context of theHausdorff paradox. The problem is that the colouring of each
point could be so cleverly balanced as to allow for the non-purity of colours throughout
the countable orbits of G. Putting these various orbits together may still result in a
failure of finitely additive measurability, but the argument for this, if true, is opaque.
Surrounding a three-cycle with points coloured purely does not stop the colouring of
the three-cycle with non-pure colours, as by Brouwer’s Fixed Point Theorem there
would always be a colouring, not necessarily pure, satisfying the rule inside the three
cycle. Onewould have to argue that such a colouring inside the cyclemust influence the
colouring of the three points surrounding that cycle, and as a consequence other cycles,
such that completion of the colouring throughout the orbit would not be possible in a
measurable way. Such an argument is plausible, however seems very difficult.

The above use of the relation T 3
1 T2 = T2T 3

1 was introduced due to the trouble caused
by the Brouwer Fixed Point Theorem. Assume there is a probabilistic colouring rule
where the colours belong to an r − 1 dimensional simplex of r extremal colours, the
colour is determined by independent elements (no relations) g1, . . . , gk of a semi-
group G of measure preserving transformations, and between the identity and any gi
there are only finitely many elements meaning that for every gi the set Hgi = {h | gi =
hg∗ or gi = g∗h for some g∗ ∈ G} is finite. We define Hgi so that it always contains
the identity.Assume further that the colouring rule forces the purity (anduniqueness) of
a colour function almost everywhere and the rule breaks down into finitely many parts
defined by finitely many clopen sets A1, . . . , Al that partition X . Let H be the union
of the Hgi with |H | = n. For any y ∈ X consider all the possible joint distributions
on the colours of hy for all the h ∈ H . If there are relations between the gi , some
joint distribution starting at some y = gi x could conflict with another starting at some
y′ = g j x , and therefore this approach could lead nowhere (as happens with our main
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example). Let H ′ be the minimal members of H , meaning the non-identity members
h such that h �= h1h2 for any two other non-identity members of H . Given no relation
between the gi and given any start x ∈ X , from the joint distributions on the colours
of hx for all the h ∈ H ′ a joint distribution on the colours of hx for all the h ∈ H
would be determined continuously by the colouring rule and the membership of x in
the various A j (according to their probabilities). The Euclidean space on which we
then apply Brouwer’s fixed point theorem would have dimension l · (rn − 1) where
r is the number of extremal colours. Though that dimension could be very large, it
is still finite. A fixed point of joint distributions, each conditioned on membership
in the A1, . . . , Al would result. We would be robbed of our best tool to demonstrate
that a colouring rule is paradoxical. Is there a way around the Brouwer fixed point
theorem that allows for probabilistic paradoxical colouring rules while maintaining
free generation by non-invertible generators?

Another approach is to single out one non-invertible semi-group element T and
interpret T−1 as the passage of one unit of time. The idea is that with every passage of
a unit of time there are uncountable variations for continuation, with some conditional
probability distribution governing these variations. In this context one could study
how colouring develops over time. Is there a paradoxical colouring rule such that
with high probability, with respect non-measurable random starts at colourings that
don’t satisfy the rule, the process will move toward paradoxical colourings? Non-
amenability means that there is a large boundary to any rule obedient area that has
the potential to destroy rule compliance quickly. On the one hand, local obedience
to the rule could be conformistic and self perpetuating. With our above example of
a paradoxical colouring rule, we show that if there is global satisfaction of the rule,
it cannot be measurable. We don’t provide an understanding of how that paradoxical
structure could come into existence.

We conjecture that there are two-player ergodic Bayesian games without finitely
additive approximate equilibria (note that our example is semi-ergodic). The discovery
of such a Bayesian game would answer all the open problems in the conclusion of [6].

In the context of group actions we asked in [7] about the following: if for a finite
sequence of sets A1, A2, . . . , An there is noG-invariant measure for which all the sets
are measurable, does this imply that one of these sets is absolutely non-measurable,
meaning that there is no finitely additive G-invariant measure such that this set is
measurable? This is a very relevant question to game theory. We would like to know
whether the non-existence of a joint measure for the behaviour of all the players in
equilibrium implies that for at least one player its behaviour cannot bemeasurable with
respect to any private measure (not shared with the other players) that is consistent
with the information structure of the game.

One could raise an objection to our above Bayesian game and our conclusion of no
G ′-invariant equilibria; why does the finitely additivemeasure need to beG ′-invariant?
Why does the measure need to respect the local beliefs of the players? Why should
those beliefs be regular conditional probabilities? Indeed the question can be asked in
more generality against the colouring rule F on which the game is based, but it can
be addressed most efficiently in the game context. Indeed Player I receives a non-
zero payoff at only one point in each of its information sets and Player I I evaluates
actions independently at two different points in each of its corresponding information
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sets. The observation supporting the objection is that the local optimisation process
remains intact when switching to a finitely additive measure that makes all subsets
measurable. The problem with this perspective is that the resulting global expected
payoff for a player from such a measure would bear no relation to an integration over
the space of the expected payoffs as perceived locally by the players. In the context
of game theory, the paradox of our Bayesian game is that one can have equilibria or
one can have payoffs as player expectations of measurable functions, but not both
simultaneously.

There is another answer to the above objection, observed from a simple change
to the payoffs of the game, a change that makes the game quasi-ergodic. Let M be a
very large positive number. For the (x, a) point the payoff for Player I from the action
corresponding to the colour c2 could be increased for all combinations of columns by
M and likewise the action corresponding to c2 decreased by M uniformly at the set
T−1
1 x ×{b}. At the same point, the payoff for Player I for the action corresponding to

c3 could be decreased uniformly at (x, a) by M and likewise the action corresponding
to c3 increased by M uniformly at the set T−1

2 x × {c}. Lastly so increase the payoff
for Player I uniformly by M for the action corresponding to c1 at T−1

1 x × {b} and
decrease it uniformly by M at T−1

2 x × {c}. Likewise we do something similar to the
actions of Player I I ; at (x, a), (x, b) and (x, c) with the result that nothing is changed
strategically as long as the players have the same local probability distributions on
their information sets, but if a measure is not G ′ invariant then the strategic choices
of the game are changed. In what way can a measure μ be the basis of an ε-equilibria
when the local beliefs of the players are not regular conditional probabilities with
respect to μ? This question could be explored with our example in mind.

We could consider the following three examples of colouring rules, all three based
on the action of the same group and the same space. Let G = C2 ∗ C3 be the group
freely generated by τ and σ with σ 2 = e and τ n = e for n ≥ 3. There are n colours
c1, . . . , cn , represented modulo n. The space is X = {0, 1}G .

Rule 1:
xe = 0:

(1) if τ−1x is coloured with ci , i �= n, and σ x is not coloured c1 then x is coloured ci ,
(2) if τ−1x is coloured with ci and either i = n or σ x is coloured c1 then x is coloured

ci+1.

xe = 1:
if τ−1x is coloured with ci then x is coloured ci+1.

Rule 2:
If xe = 1 and τ−1x is coloured with ci then colour x with ci+1,
Given xe = 0 and τ−1x coloured ci :

(1) if σ x is not coloured c1 then colour x with c1,
(2) if σ x is coloured c1 then colour x with ci+1.

Rule 3:
The number n is 3.
Given τ−1x is coloured ci and τ x is coloured c j :

(1) if i = j then colour x with ci+1,
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(2) if i = j + 1, i + 1 �= 1 and σ x is coloured c1 then colour x with ci+1,
(3) if i = j + 1, i + 1 = 1 and σ x is not coloured c1 then colour x with ci+1,
(4) in all other cases, colour x with c j .

All three rules are very interesting, but we are not sure how they could lead to
probabilistic paradoxical colouring rules or other interesting colouring structures. It
is relatively easy to show that Rule 1 is paradoxical for n ≥ 5 (from a discrepancy for
the probability of the colour c1). The third rule, defined in [2] and proven there to be
paradoxical, would need to be revised to a rule dependent on location in order for it
to be the basis of a probabilistic colouring rule.
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