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Estimating the Effects of Regulation when Treated and Control

Firms Compete: A New Method with Application to the EU ETS
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Abstract

This paper presents a method for estimating treatment effects of regulations when
treated and control firms compete on the output market. We develop a GMM estima-
tor that recovers reduced-form parameters consistent with a model of differentiated
product markets with multi-plant firms, and use these estimates to evaluate coun-
terfactual revenues and emissions. Our procedure recovers unbiased estimates of
treatment effects in Monte Carlo experiments, while difference-in-differences estima-
tors and other popular methods do not. In an application, we find that the European
carbon market reduced emissions at regulated plants without undermining revenues
of regulated firms, relative to an unregulated counterfactual.

Keywords: regulation , spillovers, environment, energy, firms
JEL Classification: Q48, L1, L5

∗Centre de Recherche en Économie et de Statistiques (CREST), CNRS, École polytechnique,
GENES, ENSAE Paris, Institut Polytechnique de Paris, 91120 Palaiseau, France. Email: geoffrey-
masters.barrows@polytechnique.edu.

†McCourt School of Public Policy, Georgetown University, USA. Email: raphael.calel@georgetown.edu.
‡Swedish University of Agricultural Sciences, Economics department, Uppsala, Sweden. Email: mar-

tin.jegard@slu.se.
§Paris School of Economics – CNRS, 48 Boulevard Jourdan 74014 Paris, France. Email: he-

lene.ollivier@psemail.eu.
¶We thank Antoine Dechezleprêtre, Robert Elliot, Elia Lapenta, Isabelle Méjean, Erich Muehlegger,

Ariell Reshef, Gregor Singer, Farid Toubal, Francesco Vona, and seminar participants at École Poly-
technique, CEPII, The Frankfurt School of Finance and Management, CESifo, Sustainable Development,
Environment and Energy seminar of the University of Paris-Nanterre, Power to Empower Emerging Africa,
The Toulouse School of Economics, EEME workshop Zurich, PSE Annual Conference on Global Issues,
and The Occasional Workshop in Environmental and Resource Economics UCSB for useful comments
and discussion. Barrows acknowledges support from the grant Investissements d’Avenir (ANR-11-IDEX-
0003/Labex Ecodec/ANR-11-LABX-0047). Ollivier acknowledges support from the EUR grant ANR-17-
EURE-0001. The authors also acknowledge support from the Grantham Foundation for the Protection of
the Environment and the Economic and Social Research Council in publishing this working paper.



1 Introduction

Governments often regulate particular firms differently from other firms in the same indus-
try. For example, governments impose stricter environmental standards for firms in regions
with higher pollution (Greenstone, 2002; Fowlie et al., 2016; Martin et al., 2014), incen-
tivize employment for firms in distressed neighborhoods (Neumark & Simpson, 2015), and
offer special protections and subsidies for smaller firms (Martin et al., 2017; Rotemberg,
2019). When evaluating the effects of these policies, researchers frequently compare the
evolution of outcomes for regulated firms to those of unregulated firms within the same
industry, controlling flexibly for common trends in input prices, productivity, and demand.
But if firms compete in the output market, then virtually any model of imperfect compe-
tition would predict that the effects of industrial regulation spill over from regulated to
unregulated firms through output prices. This core insight from microeconomic theory im-
plies that conventional difference-in-differences (DD) estimators fail to identify treatment
effects, as the outcomes of control firms are contaminated by the very policy of interest.1

In this paper, we propose a new method for estimating treatment effects of an incom-
plete regulation in the presence of interfirm spillovers. We start by specifying a model
of supply and demand for differentiated goods in which the government taxes the inputs
of a subset of firms in the economy. We rely on standard assumptions of producer and
consumer behaviors from industrial organization and international trade theory – CES
demand, Cobb-Douglas production, heterogeneous productivities, and monopolistic com-
petition.2 We show that, in this framework, the evolution of firm-level inputs and outputs
between a pre-regulation period and a post-regulation period depends on a firm’s own
regulation status (through unit costs), as well as on the regulation status of all firms in
the sector (through the industry- and sector-wide price indices). Ignoring these across-firm
dependencies leads to biased estimates of average and aggregate treatment effects. To
overcome this problem, we develop a Generalized Method of Moments (GMM) procedure
that leverages model-based exclusion restrictions to estimate reduced-form coefficients. We

1Formally, across-firm dependencies represent a violation of the stable unit treatment value assumption
(SUTVA), which is a necessary assumption in DD estimation, and more generally, two-way fixed effect
models.

2These assumptions are standard for models of the manufacturing sector as a whole (see for example
Atkeson & Burstein 2008 and Shapiro & Walker 2018). When researchers study a single industry, flexible
patterns of across-firm price elasticities can be estimated structurally using detailed output price and
product characteristic information (Berry et al., 1995). However, data of this sort are only available
for specific industries, hence this method is not well-suited to estimating aggregate effects of regulation
(De Loecker & Syverson, 2021).
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show that estimates of these reduced-form coefficients are sufficient to compute counter-
factual outcomes, and hence, average and aggregate treatment effects of the policy.3

We use our method to provide a new assessment of the European Union’s Emissions
Trading System’s (EU ETS) effect on French manufacturers’ revenues and CO2 emissions.
The EU launched the world’s first major cap-and-trade program for carbon emissions in
2005, regulating the emissions of over 10,000 producers across all manufacturing sectors.
A key feature of the EU ETS is that it only regulates large emitting installations, which
means that regulation typically varies within industries, and even across plants within a
firm. Given this feature, we explicitly model the behavior of multi-plant firms in order
to derive a microfounded method for aggregating plant-level regulation assignments to the
firm level. We then implement our new GMM procedure using administrative data on
French manufacturers’ revenues and CO2 emissions and compare to existing estimation
methods.

Analytically, we show that the regulation’s true effects on revenues and emissions can-
not, in general, be signed based on the underlying structural parameters alone. The effect
will depend on how parameters, like the endogenous technological response of regulated
firms, interact with the pre-existing distribution of market shares. Moreover, we show that
the DD estimates can be biased towards zero or away from zero, and can even deliver the
wrong sign, in expectation. The common intuition that the DD estimator exaggerates the
effect of regulation on firm-level revenues holds only in a world exclusively populated by
single-plant firms.

Given our data generating process, we can also evaluate the performance of existing
alternatives to conventional DD estimators. A handful of papers augment the conventional
DD estimation equation with controls for treatment density within a market, where a
market is usually defined by a contiguous geographical unit (Cai & Szeidl, 2022; Muehlegger
& Sweeney, 2021; Rotemberg, 2019). We show that this approach amounts to taking a
local approximation around the pre-treatment equilibrium – henceforth, we refer to this
as the local approximation (LA) estimator. This approximation is valid as long as market
shares do not change much over time. We derive an analytical expression for the bias in

3In some contexts, when structural parameters of supply and demand are available in the literature,
it may be possible to estimate treatment effects using computable general equilibrium models. However,
in this case, the structural assumptions imposed in estimating parameters may not be consistent with the
assumptions required for computing counterfactuals. Additionally, oftentimes parameters are estimated on
samples that differ from the context of the study, and hence may not be valid. In the method we propose,
all parameters can be estimated from the data in a way that is consistent with standard microfoundations
that are made explicit.
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the general case, and document in Monte Carlo experiments that this local approximation
can lead to biases in either direction. By contrast, we document that our GMM procedure
delivers unbiased estimates of treatment effects even in finite samples. Relative to the
local approximation method, our approach also generalizes by allowing for non-random
assignment of regulation, non-random-walk productivity growth, and imported goods.

Empirically, we find that, even though the regulation raised the cost of energy, the EU
ETS did not disadvantage regulated firms. On the contrary, we estimate that regulated
firms increased their annual sales between 6-9% as a result of the EU ETS. Critically,
we find evidence of interfirm spillover effects of the regulation – the revenue growth of
individual firms was affected by the density of regulated firms in the same industry. At the
same time, we find that CO2 emissions fell between 5-25% on average at regulated plants,
depending on the year. These results are consistent with the Porter hypothesis: by investing
in emissions-reducing technologies, regulated firms lowered emissions and lowered costs at
the same time (Porter & van der Linde, 1995; Ambec et al., 2013). This mechanism is also
supported by evidence that the EU ETS has spurred greater R&D and green innovation
among regulated firms (Calel & Dechezlepretre, 2016; Calel, 2020).

In aggregate, we find that the EU ETS reduced CO2 emissions generated by French
manufacturers in the production of goods for the domestic market by 0.9-4.6 million tonnes
annually, or between 3-16% of observed domestic emissions, relative to an unregulated
counterfactual. By contrast, we find that the DD estimator overstates the effect on revenues
and understates the effect on plant-level and aggregate emissions, while the LA estimator
understates the effect on revenues and overstates the effect on emissions.

This paper contributes to at least four strands of research. First, we contribute to recent
literature on the estimation of treatment effects with DD techniques. Several recent papers
demonstrate that DD estimators – and more broadly, two-way fixed effect estimators – may
yield biased estimates of average treatment effects when a policy’s effect is heterogeneous
across groups or over time (see de Chaisemartin & D’Haultfoeuille 2022 for a review). Like
this heterogeneous treatment effect literature, we present a new method for estimating
treatment effects when an assumption of the DD framework fails – SUTVA, in our case.

Second, we contribute to a small group of papers that explicitly account for across-
unit spillovers when estimating treatment effects (Borusyak et al., 2022; Adao et al., 2020;
Franklin et al., 2021; Bergquist et al., 2022). These papers mostly study the effect of
demand or technology shocks on local labor supply in the context of mobile workers. By
focusing on output market competition, we study a different mechanism. Our paper is
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similar in spirit to Borusyak et al. (2022), who document the bias in conventional DD
estimates of the elasticity of migration to demand shocks, and then propose a model-based
approach.

Third, we contribute to a literature that structurally estimates the effects of envi-
ronmental policies on emissions and competitiveness (Fowlie et al., 2016; Muehlegger &
Sweeney, 2021; Hintermann, 2017; Ganapati et al., 2020; Fabra & Reguant, 2014). Most
of this literature studies homogeneous product markets and often focuses on pass-through
from input prices to output prices. A notable exception is Shapiro & Walker (2018),
who study the effects of environmental regulations on aggregate emissions from US man-
ufacturing. Our model shares many features with theirs, but the context and empirical
strategy are quite different. Shapiro & Walker (2018) back out the implied homogeneous
environmental tax from aggregate data on sector-level emissions and revenues, while we
study the effect of a particular (incomplete) regulation on a discrete set of firms. Since the
regulation status of particular firms matters in our context, we solve counterfactuals firm
by firm, while Shapiro & Walker (2018) aggregate over firms in the industry to solve for
counterfactuals.

Finally, our paper contributes to the literature evaluating the effect of the EU ETS on
firm-level emissions and revenues. Most of the studies so far have used DD estimators at the
firm- or plant-level, comparing firms with a regulated plant to those without (Löschel et al.,
2019; Colmer et al., 2021; Dechezleprêtre et al., 2018; Jaraite & Di Maria, 2016).4 Our
analysis uncovers evidence of interfirm spillover effects of the regulation, however, which
violates SUTVA.5 Our analytical results demonstrate that, under these conditions, the DD
estimator cannot in general identify either the sign or the magnitude of the treatment
effects. In the special case of single-plant firms, the DD estimator can only recover the sign
of the effect on revenues. Our empirical findings, then, even where they appear similar to
earlier estimates, provide a more credible basis for assessing the effects of the European
carbon market.

4See Martin et al. (2015) and Joltreau & Sommerfeld (2018) for reviews of the literature.
5Other studies of the EU ETS investigate productivity and cost pass-through directly using production

function estimation techniques (Calligaris et al., 2022). In most models, productivity is not conditioned by
the choices of other firms in the economy, in which case the SUTVA holds. Still, revenues and emissions
are determined in equilibrium, and hence depend on the strategic interaction of firms. While regulation
may have important effects on productivity and pass-through, it is still necessary to model and estimate
the demand side of the market in order to compute treatment effects on revenues and emissions.
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2 Model

This section presents a model of supply and demand for differentiated goods in which the
government regulates production at a subset of firms in the economy. Given our empirical
application, we refer to the regulated output as “emissions,” but the model could be used
to study the effects of a wide array of industrial policies and shocks. We initially describe
an economy populated by single-plant firms and derive expressions for the effects of an
incomplete regulation on revenues and emissions. We then extend the model to include
multi-plant firms, and consider a regulation that targets a subset of plants in the economy.

2.1 Demand

Consider an economy in which a representative consumer divides expenditures between a
set of differentiated products, which we refer to as “manufacturing” products, and a single
homogeneous good, which we refer to as the “outside” good. The representative consumer’s
preferences over varieties from manufacturing sectors s = {1, ...S} and the outside sector
s = 0 are described by the following three-tiered utility function:

Ut = (Q0t)
a0
∏
s

[(∑
i∈Υs

(Qist)
ν

)1/ν
]as

where Qist =

( ∑
f∈Ωist

(Qfist)
ρ

)1/ρ

(1)

where Q0t, Qist, and Qfist denote the consumption at time t of the outside good, aggregate
consumption in industry i, and consumption of individual variety f , respectively. The first
tier aggregates consumption in a Cobb-Douglas function across sectors, which implies that
expenditures on each sector s, Yst, are determined as fixed shares of total expenditures, Yt:
Yst = asYt. The second and third tiers aggregate consumption via Constant Elasticity of
Substitution (CES) functions across the set of industries within a sector s, Υs, and across
the set of varieties available in each industry i at time t, Ωist. We assume varieties are im-
perfect substitutes within an industry, industry-wide aggregates are imperfect substitutes
within a sector, and varieties within an industry are closer substitutes than varieties from
other industries, implying 0 < ν < ρ < 1.6

Utility maximization implies that expenditures on variety f at time t can be written
6This demand system (or very near versions of it) is a workhouse model of consumer demand in

industrial organization and international trade theory (see for example Shapiro & Walker 2018 and Atkeson
& Burstein 2008). An important feature of this demand system for our purpose is that it is general enough
to allow revenue gains from one set of firms to crowd out sales of other firms in the same industry, though
the crowding out is not necessarily complete.
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as a function of the price of variety f at time t, pfist, the price index for industry i, Pist,
the price index for sector s, Ψst, and sector-wide expenditures:

yfist = (pfist)
ρ

ρ−1 (Pist)
ν−ρ

(ν−1)(1−ρ) (Ψst)
ν

1−ν Yst (2)

with

Pist ≡
( ∑

k∈Ωist

(pkist)
ρ

ρ−1

) ρ−1
ρ

, Ψst ≡
( ∑

m∈Υs

(Pmst)
ν

ν−1

) ν−1
ν

. (3)

Given the parameter restrictions, expenditures on variety f from industry i and sector s

are decreasing in variety f ’s own price, but increasing as a function of industry i’s price
index, sector s’s price index, and sector-wide expenditures.

2.2 Production and Emissions

Each manufacturing firm produces a single differentiated variety, so f can be used inter-
changeably to index both varieties and firms. Manufacturing firms combine two variable
inputs – labor, L, and energy, E – to produce output, Q, using Cobb-Douglas technology
with constant returns to scale.7

Firms are heterogeneous with respect to productivity, which we allow to evolve over
time according to a flexible Markov process:

ωfist = g(ωfist−1) + ufist, (4)

where g(·) is an arbitrary function of past firm-level productivity and ufist is an i.i.d.
shock with mean zero. If g(ωfist−1) = ωfist−1, then productivity follows a random walk.
Otherwise, productivity is path dependent. If g′(ωfist−1) < 1, more productive firms grow
slower, whereas more productive firms grow faster if g′(ωfist−1) > 1.

Production generates emissions, Z, in proportion to the amount of energy input: Zfist =

κtEfist, where κt is the quantity of emissions per unit of energy, which may vary over time.
7The Cobb-Douglas assumption ensures that the effects of the regulation on input prices and the

productivity combine linearly in the expression for revenues. If the regulation only affected productivity,
we could allow for more flexible production technologies. We omit any fixed factor because we estimate
the model in long differences over a long enough time horizon to assume labor and energy inputs are
freely adjustable. When factor adjustment costs are important, the model could be extended to include
a fixed factor, but then the investment decision would need to be modeled explicitly. The assumption
of constant returns to scale could be relaxed with little change to the estimation procedure, but with
additional notation and complexity. Additionally, since all inputs are flexibly chosen, constant returns to
scale is a natural assumption.

6



The government sets an environmental regulation that raises the cost of emissions for
a subset of firms. We express the price on emissions as a proportion of the exogenous
energy price, wZt ≡ wEt(e

µz
tRfist − 1)/κt, where wEt indicates the per-unit price of energy,

Rfist ∈ {0, 1} indicates whether firm f is subject to this regulation or not at time t, and
µz
t > 0 summarizes the regulation’s effect on the price of energy.8 Energy supply is assumed

to be perfectly elastic, which is consistent with a situation in which a state-owned company
supplies energy at a controlled price.

The production function can then be written as:

Qfist = (Lfist)
1−γ (Efist)

γ exp(ωfist + γµe
tRfist), (5)

where µe
t reflects any endogenous adjustment of the energy efficiency (and hence, emissions

efficiency) made in response to the regulation. Under the Porter Hypothesis, one would
expect that firms increase energy efficiency in response to the regulation, i.e. µe

t > 0. But
we need not impose this response. It is ultimately an empirical question whether or not
firms adjust efficiency as a result of the regulation.

The outside good is produced with constant returns to scale in a single input – labor
– under perfect competition. Designating the outside good as numeraire, the wage rate
is pinned down by labor productivity in the outside good sector: wLt = A0t, where A0t

indicates unit labor requirements in the outside sector at time t. Since labor is mobile
across sectors, manufacturing firms hire labor at an exogenous wage rate wLt, which does
not respond to the environmental regulation.9

Cost minimization then yields the following unit cost function:

cfist = (1− γ)−(1−γ)γ−γ (wLt)
1−γ (wEt)

γ exp[−ωfist + γ (µz
t − µe

t )Rfist]. (6)

The regulation’s effect on unit cost depends on the net regulation cost, τt ≡ γ(µz
t − µe

t ).
The regulation increases a regulated firm’s unit cost if the energy price effect dominates
the energy efficiency effect, i.e. µz

t > µe
t , but otherwise decreases its unit cost.

8Note that µz
t is a reduced form parameter whose purpose is simply to make the regulation expressible

as a proportional increase in the cost of energy for regulated firms. However, µz
t can in principle vary with

exogenous energy price changes and changes in κt, so a higher energy price or lower emissions intensity in
one period need not imply a higher emissions price.

9Essentially, we assume perfectly elastic labor supply to the manufacturing sector. We could allow for
endogenous labor supply, but then we would need to estimate structural parameters of the labor market,
which is beyond the scope of this paper. Additionally, we are not aware of any evidence that the EU ETS
affected the wage schedules offered by firms, so we believe it is a benign assumption in the present context.
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2.3 Profit Maximization and Equilibrium

We assume there exists a finite set of firms operating in each industry each year, Ωist.
The set of active firms can vary over time, as exogenous industrial dynamics lead some
incumbent firms to exit and some new entrants to appear, but we assume no fixed costs of
operating, and do not impose zero expected profit. Hence, entry and exit are exogenous
in the model.10

Each active firm in industry i at time t then chooses a price that maximizes its profits
Πfist, given productivity, input prices, and regulatory status. Its objective function is:

max
pfist

Πfist ≡ pfistQfist − cfistQfist =
[
(pfist)

ρ
ρ−1 − cfist (pfist)

1
ρ−1

]
(Pist)

ν−ρ
(ν−1)(1−ρ) (Ψst)

ν
1−ν Yst. (7)

We assume that firms are monopolistic competitors, and therefore solve this maximization
program without regard for how their decision affects the price index.11 Due to constant
returns to scale in production, the equilibrium prices of each variety f depends only on the
firm’s production costs and the standard Dixit-Stiglitz mark-up:

pfist =
cfist
ρ

. (8)

Finally, to close the model, we assume that consumer expenditures on sector s at time
t is equal to the sum of sales, and that national income is exogenous, as in Helpman et al.
(2008).

10The assumption of exogenous entry and exit is not required for the estimation of reduced-form pa-
rameters, but it is necessary for solving counterfactuals with discrete firms, absent estimates of fixed costs
of production. Models with endogenous entry and exit usually aggregate over a continuum of firms and
perform counterfactuals at the industry level, in which case individual firms play no role, as in for example,
Shapiro & Walker (2018). We deviate from this approach because we study a discrete set of firms that are
observed over time. We show in auxiliary regressions, reported in Appendix Figure A.1, that entry and
exit do not generally correlate with industry-wide regulation density in our empirical context.

11Models of monopolistic competition usually feature a continuum of firms, so that market shares are
infinitesimally small by construction. With a finite set of firms, though, a large firms’ price decision may
have a non-trivial effect on the industry-wide price indices. We maintain the monopolistic competition
assumption because we believe it is a better description of the behavior of the overwhelming majority
of firms, and because it simplifies the analysis quite a lot. In Appendix C.2, we consider the case of
Bertrand-Nash pricing, as in Atkeson & Burstein (2008), and use this alternative assumption to perform
an adversarial test of our estimation strategy. Even in that setting, our estimator reliably outperforms the
alternatives.
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2.4 The Effect of Regulation on Revenues

Substituting equations (6) and (8) into (2), we see that the revenues of any given firm
depends on the firm’s own regulation status – through the firm’s own unit cost and price –
and the regulation status of all other firms in the sector – through the industry and sector
price indices. Taking the log change of revenues over time between pre-regulation period
t0 and post-regulation period t, we have

∆yfist =
ρτt
ρ− 1

Rfist +
ν − ρ

(ν − 1) (1− ρ)
∆Pist +

ν

1− ν
∆Ψst

+
ρ (1− γ)

ρ− 1
∆wLt +

ργ

ρ− 1
∆wEt +∆Yst +

ρ

1− ρ
∆Afist (9)

where the ∆-operator denotes the log difference between t and t0 and ∆Afist ≡ ωfist−ωfist0 .
If ∆Pist and ∆Ψst were observed, equation (9) could be estimated by OLS, which

would identify structural parameters τt, ρ, and ν.12 However, these parameters alone would
not be enough to identify the treatment effects of the regulation, since the price indices
themselves would be different in the counterfactual unregulated equilibrium. Thus, to
evaluate counterfactuals and compute treatment effects, we also need to know how ∆Pist

and ∆Ψst depend on the regulation.13

Leveraging results from price index theory, we can express the log change in the price
indices between year t0 and t as a weighted average of log changes in individual firm prices:

∆Pist =
∑

k∈Ω∗
ist

ϕkist∆pkist +
1− ρ

ρ
∆λist (10)

∆Ψst =
∑
m∈Υs

Φmst∆Pmst (11)

where Ω∗
ist denotes the set of varieties from industry i that are sold in both t0 and t (also re-

ferred to as the continuing good set), and ∆λit indicates the log change in the market share
of the continuing good set between t0 and t, with λist ≡

(∑
ℓ∈Ω∗

ist
yℓist

)
/
(∑

ℓ∈Ωist
yℓist

)
and

λist0 ≡
(∑

ℓ∈Ω∗
ist

yℓsit0

)
/
(∑

ℓ∈Ωist0
yℓist0

)
.14 The terms ϕkist and Φmst denote the weights

12Endogeneity of price indices could be addressed by instrumental variables. See Costinot et al. (2016).
13Baier & Bergstrand (2009) make a similar point with respect to estimating counterfactual outcomes

in the context of international trade. They observe that consistent estimation of trade elasticities requires
controlling for multilateral resistance terms, which are similar to the industry-wide price indices in our
context. They also argue that, in a counterfactual scenario in which trade costs change, the multilateral
resistance terms would update as well, and hence need to be recomputed for the counterfactual scenario.

14Appendix B.1 derives these expressions for the changes in CES price indices, following Feenstra (1994).
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applied to the price changes for firm k and industry m in sector s. As shown by Sato (1976)
and Vartia (1976), these weights can be solved for analytically as functions of market shares
in both periods t0 and t.15

Substituting expressions for price-index changes (10) and (11) into equation (9) yields

∆yfist =
ρτt
ρ− 1

Rfist +
(ν − ρ) τt

(ν − 1) (1− ρ)

∑
k∈Ω∗

ist

ϕkistRkist +
(ν − ρ)

(ν − 1) (ρ− 1)

∑
k∈Ω∗

ist

ϕkist∆Akist

+
ντ

1− ν

∑
m∈Υs

Φmst

∑
ℓ∈Ω∗

mst

ϕℓmstRℓmst +
ν

ν − 1

∑
m∈Υs

Φmst

∑
ℓ∈Ω∗

mst

ϕℓmst∆Aℓmst

+
(ν − ρ)

ρ (ν − 1)
∆λist +

ν (1− ρ)

ρ (1− ν)

∑
m∈Υs

Φmst∆λmst +∆Yst +
ρ

1− ρ
∆Afist. (12)

This equation will serve as the basis for estimation in Section 3. The first term on the
right hand side captures the direct effect of the regulation on revenues (i.e. holding price
indices constant). This term can be positive or negative, depending on the net regulation
cost, τt. The second and third terms capture the regulation’s indirect effect through the
price index of the continuing good set within an industry. The second term depends on the
combined market share of regulated firms within the industry. The larger the market share
of regulated firms, the larger the indirect effect.16 The third term depends on the regulation
through the Sato-Vartia weights, ϕkist, associated to firm-level productivity shocks. The
fourth and fifth terms are just sector-level analogues of the previous two terms. The last
line of equation (12) captures the effect on revenues of entry and exit, exogenous movements
in aggregate expenditures, and the firm’s own idiosyncratic productivity shock.17

15Following Sato (1976) and Vartia (1976), we can solve for the weights as follows:

ϕkist ≡ ϑkist − ϑkist0

lnϑkist − lnϑkist0

/ ∑
ℓ∈Ω∗

ist

ϑℓist − ϑℓist0

lnϑℓist − lnϑℓist0

Φmst ≡ Θmst −Θmst0

lnΘmst − lnΘmst0

/ ∑
h∈Υs

Θhst −Θhst0

lnΘhst − lnΘhst0

with term ϑkist ≡ ykist/
∑

ℓ∈Ω∗
ist

yℓist denotes the market share of firm k in the continuing good set of all
varieties from industry i at time t, and Θmst denotes the market share of industry m in sector s at time t
(assuming that the set of industries does not change over time).

16To the extent that other types of spillover effects also break down along industrial categorization, our
approach will pick up some of these effects too. For example, if technological adoption at one firm in the
industry encourages other firms in the same industry to adopt, these effects will to some degree be reflected
in our industry-wide treatment density terms.

17Input prices wLt and wEt drop out of the equation, by virtue of being common to all firms. Take any
component of costs x, like input prices, that are the same for all firms. This component will cancel out of
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2.5 The Effect of Regulation on Emissions

The first order conditions for cost minimization yields the following expression for firm f ’s
emissions at time t:

Zfist = ργκtyfist
(
wEte

µz
tRfist

)−1
. (13)

From this equation, we see that the emission intensity of revenue (Zfist/yfist) is constant
within the sector for firms with the same regulatory status, Rfist. However, the emission
intensity of output (Zfist/Qfist) is declining in productivity. Hence, more productive firms
tend to emit less pollution per unit of physical output.18

The change in emissions from the base year t0 to period t can thus be written as:

∆Zfist = ∆κt +∆yfist −∆wEt − µz
tRfist, (14)

where ∆yfist is given by equation (12). From this expression, we see that the regulation
affects the firm’s emissions both by altering the scale of economic output, ∆yfist, and by
encouraging substitution away from the polluting input, through −µz

t . We will refer to
these as the “scale” and “technique” effects, respectively. The terms ∆κt and ∆wEt are not
affected by the regulation, and thus adjust exogenously.

2.6 Extension to Multi-plant Firms

We now extend our theoretical framework to allow for multi-plant firms. There are three
reasons this extension is important in our context. First, the regulation we study distin-
guishes between plants within the firm. Hence, it is necessary to map plant-level regulation
indicators to firm-level sales outcomes, which requires some assumption on how multi-plant
firms behave. Second, the emissions data are observed at the plant level, and only for a
subset of plants. Hence, we need to model the emissions outcomes of individual plants, not
firms. Finally, identification in the EU ETS literature is often based on variation in the
internal distribution of economic activity across firms, which inherently relies on a multi-
plant structure. With this extension, we specify microfoundations that make it possible to

equation (12) since

ρx

1− ρ
+

(ν − ρ)
∑

k∈Ω∗
ist

ϕkistx

(ν − 1) (ρ− 1)
+

ν
∑

m∈Υs
Φmst

∑
ℓ∈Ω∗

mst
ϕℓmstx

ν − 1
= x

[
ρ

1− ρ
+

(ν − ρ)

(ν − 1) (ρ− 1)
+

ν

ν − 1

]
= 0

18Evidence of the negative relationship between economic productivity and emission intensity can be
found in many empirical contexts (Holladay, 2016; Forslid et al., 2018; Barrows & Ollivier, 2018).
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assess the assumptions implicit in this standard identification strategy.
In the multi-plant version of the model, firm f still produces a unique variety f , but now

owns Jfist plants at time t. These plants produce intermediate outputs using Cobb-Douglas
combinations of labor and energy, and the intermediate outputs are then aggregated into
a final output.19 We assume that the Hicks-neutral productivity, ωfist, is common to all
plants j ∈ {1, 2, ...Jfist} within the firm. Regulation, however, can be plant-specific, with
Rjfist = 1 indicating that plant j is subject to regulation at time t, and zero otherwise.
Firm f ’s output is then given by:

Qfist =

Jfist∏
j=1

(
α
−αjfist

jfist

)1−σ [
(Ljfist)

1−γ (Ejfist)
γ exp(ωfist + γµeRjfist)

]αjfist
, (15)

where αjfist denotes the contribution of plant j to firm f ’s total output, with
∑

j αjfist = 1.
The parameter σ captures the relationship between overall production and the degree of
dispersion across plants. If dispersing economic activity mainly increases cost and reduces
production, then σ > 0. On the other hand, if dispersing economic activity creates suffi-
ciently large economies of scope that reduce the unit cost and increase production, then
σ < 0.

Cost minimization yields the following firm-level unit cost function:

cfist = (1−γ)−(1−γ)γ−γ

Jfist∏
j=1

α
−αjfist

jfist

σ

(wLt)
1−γ (wEt)

γ exp

−ωfist − γ (µe − µz)
∑
j

αjfistRjfist

 .

(16)

This expression is almost identical to equation (6), except that we now account for vari-
ation in regulatory status across each firm’s plants and that we include a term to capture
the relationship between unit cost and the dispersion of economic activity across plants,∏Jfist

j=1 (α
−αjfist

jfist )σ. Cost minimization implies Ljfist = αjfistLfist, thereby allowing us to
compute firm-level treatment density Rfist ≡

∑
j αjfistRjfist =

∑
j
Ljfist

Lfits
Rjfist and disper-

sion measure αfist ≡
∏Jfist

j=1 α
−αjfist

jfist =
∏Jfist

j=1

(
Ljfist

Lfist

)−(
Ljfist
Lfist

)
as functions of plant-level

19This mapping of intermediate outputs to the final product is reminiscent of the approach of aggregating
tasks to produce a final good, as in Acemoglu & Autor (2011). Presumably, firms own multiple plants
because there exists complementarities across plants, which could stem from economies from vertical
integration that improve productivity and lower overall costs of production (Alfaro et al., 2016), or from
complementarities in intangible inputs, such as high-quality management, marketing know-how, or R&D
capital (Atalay et al., 2014).
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labor shares.20

Collecting structural parameters into reduced-form parameters, the changes in firm-
level revenues between a pre-regulation period t0 and a post-regulation period t can be
written as

∆yfist = β0,tRfist + β1∆αfist + β2,t

∑
k∈Ω∗

ist

ϕkistRkits + β3

∑
k∈Ω∗

ist

ϕkist∆αkist + β4∆λist

+ β5,t

∑
m∈Υs

Φmst

∑
ℓ∈Ω∗

mst

ϕℓmstRℓmst + β6

∑
m∈Υs

Φmst

∑
ℓ∈Ω∗

mst

ϕℓmst∆αℓmst + β7

∑
m∈Υs

Φmst∆λmst

+ β8

∑
k∈Ω∗

ist

ϕkist∆Akist + β9

∑
m∈Υs

Φmst

∑
ℓ∈Ω∗

mst

ϕℓmst∆Aℓmst +∆Yst + ξfist, (17)

with ξfist =
ρ

1−ρ
∆Afits.21 Compared to equation (12), our multi-plant extension adds three

terms: the exogenous change in firm f ’s dispersion of activities, and their industry- and
sector-level counterparts.

Moving to the environmental effect of the regulation, cost minimization at the plant
level implies

∆Zjfist = −µz
tRjfist +∆αjfist +∆κt −∆wEt +∆yfist. (18)

The changes in plant-level emissions between pre-period t0 and period t are thus affected
by a firm-level scale effect, ∆yfist, a plant-level technique effect, −µz

t , and a change in
plant-specific labor share, ∆αjfist.

2.7 Average and Aggregate Treatment Effects

As long as a regulation affects energy prices (µz
t ̸= 0) and the unit cost of production

(τt ̸= 0), it will influence the revenues and emissions of both regulated and unregulated
firms. The magnitude of treatment effects vary across firms, though, due to differences in
the density of regulated firms across industries. With multi-plant firms, treatment effects
also vary because of differences in labor shares of treated plants within regulated firms.
Our main objective is to estimate the averages and aggregates of these firm-level effects.

20Although fixed capital does not enter explicitly in our model, these plant-level labor shares are effec-
tively a proxy for capital shares—the fixed capital at each plant determines the optimal allocation of labor
across plants.

21Other parameters are defined as β0,t ≡ ρτt
ρ−1 , β1 ≡ ρσ

ρ−1 , β2,t ≡ (ν−ρ)τt
(ν−1)(1−ρ) , β4 = (ν−ρ)

ρ(ν−1) , β3 ≡
(ν−ρ)σ

(ν−1)(1−ρ) β5,t ≡ ντt
1−ν β6 ≡ νσ

1−ν , β7 ≡ ν(1−ρ)
ρ(1−ν) , β8 ≡ (ν−ρ)

(ν−1)(ρ−1) , β9 ≡ ν
ν−1 .
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At the firm level, we define the treatment effect for outcome v ∈ {y, Z} as the log dif-
ference between the observed post-regulation outcome and the unregulated counterfactual
outcome: ln

(
vfist
v′fist

)
= ∆vfist−∆v′fist, where v′fist indicates the estimated outcome for firm

f in year t in the case that no firm was regulated. We then define the average treatment
effect for treated (T ) and control (C) firms, respectively, with X ∈ {T,C}, as follows:

ATXv
t ≡ 1

NX
t

∑
f∈ΩX

t

ln

(
vfist
v′fist

)
=

1

NX
t

∑
f∈ΩX

t

(
∆vfist −∆v′fist

)
(19)

where NX
t and ΩX

t denotes the total number of firms and the set of firms in group X at
time t, respectively.

At the plant level, we distinguish between three groups: regulated plants (denoted TT ,
for treated plants in treated firms), unregulated plants owned by firms that also operate
regulated plants (CT ), and unregulated plants owned by firms without any regulated plant
(CC). Then, for any group of plants, X ∈ {TT,CT,CC}, we define the average treatment
effect on emissions as:

ATXZ
t =

1

NX
t

∑
j∈ΩX

t

ln

(
Zjfist

Z ′
jfist

)
, (20)

where NX
t and ΩX

t denote the number and set of plants in year t for group X.
We are also interested in estimating the effect on aggregate emissions.22 We define the

aggregate effect as:

ATZt = ln

(∑
f Zfist∑
f Z

′
fist

)
. (21)

3 Estimation and Monte Carlo Evidence

In this section, we present our strategy for estimating the effects of regulation on firm-level
revenues and plant-level emissions based on equations (17) and (18), alongside commonly
used alternative strategies. Finally, we evaluate the finite sample properties of these esti-
mators in Monte Carlo experiments.

22There are no effects of the regulation on aggregate manufacturing sales by assumption.
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3.1 Our GMM Procedure

Estimating Reduced-Form Parameters. The model implies that the change in firm-
level revenues between a pre-regulation period and a post-regulation period can be ex-
pressed as a linear function of regulation assignments, market shares, and unobserved pro-
ductivity shocks. Collecting all sector-wide variables from equation (17) into sector-time
fixed effects, δst, yields the following simplified expression:23

∆yfist = β0Rfist + β1∆αfist + β2

∑
k∈Ω∗

ist

ϕkistRkist + β3

∑
k∈Ω∗

ist

ϕkits∆αkist + β4∆λist

+ β8

∑
k∈Ω∗

ist

ϕkist∆Akist + δst +
ρ

1− ρ
∆Afist. (22)

All variables in the first line of (22) are observed, while variables in the second line are not.
If productivity follows a random walk, then ∆Afist would be uncorrelated with the

regulation and with pre-period characteristics. In this case, it would be tempting to group
∆Afist and

∑
k∈Ω∗

ist
ϕkist∆Akist into the error term and estimate (22) by OLS. However,

even with random-walk productivity growth, two identification problems remain. First, the
overall market share of regulated firms within industries,

∑
k∈Ω∗

ist
ϕkistRkist, is correlated

with the unobserved weighted sum of productivity shocks,
∑

k∈Ω∗
ist

ϕkist∆Akist. To see this,
imagine an industry with no regulated firms. In this industry, the market shares ϕkist

depend exclusively on firms’ productivities, As, and on the dispersion of their economic
activities, αs. But, as regulation density in the industry increases, the market shares will
increasingly depend on regulation, and less on As and αs. Hence, industries with higher
regulation density (high

∑
k∈Ω∗

ist
ϕkistRkist) will have lower correlations between ∆Akist and

ϕkist, and hence low values of
∑

k∈Ω∗
ist

ϕkist∆Akist.24

The second identification problem comes from the fact that industries with higher
weighted-average productivity growth of continuing firms (high values of

∑
k∈Ω∗

ist
ϕkits∆Akist)

will mechanically have higher revenue share growth of continuing firms. Hence, we would
expect ∆λist to correlate with

∑
k∈Ω∗

ist
ϕkist∆Akist as well.

23For simplicity, we drop the time index from parameters βs, which originates from the time-varying τt,
in the estimation equation. Yet, we will estimate parameters in long differences for each period, so these
parameters are allowed to vary over time.

24This relationship is likely non-linear, as the market shares in an industry with all regulated firms
would also depend purely on As and αs. Note that this endogeneity problem cannot be solved simply by
instrumenting

∑
k∈Ω∗

ist
ϕkistRkist with base-year weighted average regulation. This is because base-year

weighted average regulation would correlate with
∑

k∈Ω∗
ist

ϕkist∆Akist as well. Rather, we would need an
instrument that does not depend on the regulation.
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To address these identification problems, we build a GMM estimator to simultaneously
estimate β0, β1, and β2. The first step is to re-write (22) as a system of equations:

∆yfist = β0Rfist + β1∆αfist + ηist + ξfist

ηist = β2

∑
k∈Ω∗

ist

ϕkistRkist + β1
β2

β0

∑
k∈Ω∗

ist

ϕkist∆αkist −
β2

β0

(
∆λist −

∑
k∈Ω∗

ist

ϕkistξfist

)
+ δst + ςist,

with ξfist ≡ ρ
1−ρ

(
Afist −∆Aist

)
and ςist ≡ ν

1−ν

(
∆Aist −∆Ast

)
, and where we exploit the

following relationships: β3 = β1β2/β0, β4 = −β2/β0, and β8 = −(β2/β0)ρ/(1−ρ).25 Notice
that the first of these equations is specified at the firm level, and the second one is specified
at the industry level. Then, for any candidate vector β∗ = (β∗

0 , β
∗
1 , β

∗
2), we can compute

the following residuals:

ξ̂fist = ∆yfist − β∗
0Rfist − β∗

1∆αfist −
[ 1

N∗
ist

∑
k∈Ω∗

ist

∆ykist − β∗
0Rkist − β∗

1∆αkist

]
(23)

and

ς̂ist =
[ 1

N∗
ist

∑
k∈Ω∗

ist

∆ykist − β∗
0Rkist − β∗

1∆αkist

]
− β∗

2

∑
k∈Ω∗

ist

ϕkistRkist

− β∗
1

β∗
2

β∗
0

∑
k∈Ω∗

ist

ϕkist∆αkist +
β∗
2

β∗
0

(
∆λist −

∑
k∈Ω∗

ist

ϕkistξ̂fist

)
− δst, (24)

where N∗
ist represents the number of continuing firms in industry i in sector s in post-

regulation period t.26

To evaluate a candidate vector β∗, we exploit the following moment conditions: (1)
E
[
ξfistRfist

]
= 0, (2) E

[
ξfist∆αfist

]
= 0, (3) E

[
ςist

(∑
k∈Ω∗

ist
ϕkistRkist

)]
= 0, and (4)

E
[
ςist

(∑
k∈Ω∗

ist
ϕkist∆αkist

)]
= 0. The first and third moment conditions state that the

firm-level and industry-level residuals, respectively, are uncorrelated with the regulation
coverage at the corresponding levels. Both of these moment conditions will hold auto-

25Other parameters are also functions of {β0, β1, β2} since β5 = −(β0 + β2), β6 = −(β1 + β3), β7 =
(β0 + β2)/β0, and β9 = (1 + β2/β0)ρ/(1− ρ).

26To control for the sector-year fixed effects, we first compute

[ 1

Nist

∑
k∈Ω∗

ist

∆ykist − β
∗
0Rkist − β

∗
1∆αkist

]
− β

∗
2

∑
k∈Ω∗

ist

ϕkistRkist − β
∗
1

β∗
2

β∗
0

∑
k∈Ω∗

ist

ϕkist∆αkist +
β∗
2

β∗
0

(
∆λist −

∑
k∈Ω∗

ist

ϕkistξ̂fist

)
,

then regress this quantity on a vector of sector-by-year indicator variables and extract the residual.
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matically if productivity follows a random walk, since past productivity growth, even if
it predicts regulation, would not predict future productivity growth. If productivity does
not follow a random walk, however, future productivity growth will be correlated with
pre-period characteristics, which may also predict firm-level and industry-level regulation
coverage. In this case, these moment conditions would still hold for an appropriately
matched sample of firms and industries (we provide details on how to operationalize this
in Section 4.2). This is because, for any subset of regulated and unregulated firms with
the same pre-period productivity, future productivity growth would be uncorrelated with
the regulation, absent a treatment effect. The second and fourth moment conditions follow
from the exogeneity of αfist.

Using estimated residuals (23) and (24), we build the following empirical moments:

Γ (β∗
0 , β

∗
1 , β

∗
2) =


∑

t

∑
f,i ξ̂fist (β

∗
0 , β

∗
1)Rfist∑

t

∑
f,i ξ̂fist (β

∗
0 , β

∗
1)∆αfist∑

t

∑
i ς̂ist (β

∗
0 , β

∗
1 , β

∗
2)
(∑

k∈Ω∗
ist

ϕkistRkist

)
∑

t

∑
i ς̂ist (β

∗
0 , β

∗
1 , β

∗
2)
(∑

k∈Ω∗
ist

ϕkist∆αkist

)


and we choose β to minimize the usual GMM criterion function:

βSTR = min
β∗
0 ,β

∗
1 ,β

∗
2

Γ (β∗
0 , β

∗
1 , β

∗
2)

′ WΓ (β∗
0 , β

∗
1 , β

∗
2)

where the weighting matrix W is estimated optimally using the two-step GMM estimator.
Finally, we estimate µz from plant-level emissions data. Moving ∆yfist and ∆αjfist to

the left hand side of equation (18), we have:

∆
( Zjfist

αjfistyfist

)
= βzRjfist + δist + ϵjfist, (25)

where δist absorbs all determinants of emissionintensity that are common across plants
within an industry and ϵjfist captures measurement error in emissions, which we assume
is uncorrelated with Rjfist. Hence, we have E

[
β̂z

]
= −µz, the input price effect of the

regulation on emissions, where β̂z results from estimating 25 by OLS.

Counterfactuals and Treatment Effects. Once we have unbiased estimates of the
four crucial reduced-form parameters—β0, β1, β2, and βz—the final step is to compute the
average and aggregate treatment effects, relative to the counterfactual equilibrium where
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no firms are regulated. This calculation allows all endogeneous terms to update. To see
this, we can derive the counterfactual revenues at time t for a firm with positive revenues
in the post-regulation period using equation (17):

ln
(
y′fist

)
= ln (yfist)− β̂0Rfist − β̂2

∑
k∈Ω∗

ist

ϕkistRkist +
(
β̂0 + β̂2

) ∑
m∈Υs

Φmst

∑
ℓ∈Ω∗

mst

ϕℓmstRℓmst

+
β̂2

β̂0

∑
k∈Ω∗

ist

(
ϕ′
kist − ϕkist

)
ξ̂kist −

β̂2

β̂0

(
∆λ′

ist −∆λist

)
+ β̂1

β̂2

β̂0

∑
k∈Ω∗

ist

(
ϕ′
kist − ϕkist

)
∆αkist

+
β̂0 + β̂2

β̂0

( ∑
m∈Υs

Φ′
mst∆λ′

mst −
∑
m∈Υs

Φmst∆λmst

)
−
∑
m∈Υs

(
Φ′
mst − Φmst

)
ς̂mst

− β̂0 + β̂2

β̂0

∑
m∈Υs

∑
ℓ∈Ω∗

mst

(
Φ′
mstϕ

′
ℓmst − Φmstϕℓmst

) (
ξ̂ℓmst + β̂1∆αℓmst

)
, (26)

where ϕ′
fist, Φ′

ist and ∆λ′
ist respectively indicate counterfactual Sato-Vartia weights and

continuing-good share growth, which must be solved for endogenously. Terms ς̂mst and
ξ̂kist are computed according to (23) and (24), whereas β̂0, β̂1 and β̂2 result from the GMM
procedure.

Since equation (26) holds for each firm f , this system of non-linear equations can be
solved for the vector of counterfactual revenues. The equilibrium can be found with either
a numerical solver or a fixed-point algorithm.27 Once we have estimates of y′fist, counterfac-
tual emissions at the plant level are easily computed as Z ′

jfist = Zjfiste
−̂βzRjfist(y′fist/yfist),

which can be aggregated at the firm level, Z ′
fist =

∑
j Z

′
jfist.

From the vectors of actual and counterfactual revenues and emissions, it is straight-
forward to compute treatment effects at the firm level, plant level, and aggregate level
following the expressions (19), (20), and (21), respectively.

3.2 Evaluating Treatment Effects With Existing Estimators

Previous literature typically estimates the effects of incomplete regulation using either the
difference-in-differences estimator (DD), or what we refer to as the local approximation
estimator (LA) (see for example Rotemberg 2019; Muehlegger & Sweeney 2021; Cai &
Szeidl 2022). Both approaches are valid under special cases of our data generating process,
but neither estimator delivers unbiased estimates of treatment effects in general.

27In the fixed point algorithm, we first set y′fist = yfist for each f , compute ϕ′
fist, Φ

′
ist and λ′

ist under
this assumption, compute the right hand side of (26), and then update y′fist. The process then repeats
until the vector {y′fist} converges.
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Difference-in-Differences Estimation. In the multi-plant model, we can collect vari-
ables into industry-year fixed effects and express the changes in outcome v ∈ {y, Z} between
pre-regulation and a post-regulation periods as:

∆vfist = βv,DD
0 Rfist + βv,DD

1 ∆αfist + δist + ϵfist (27)

where Rfist ≡
∑

j αjfistRjfist.28 This expression resembles a conventional two-way fixed
effect model with continuous treatment (expressed in long differences), with an additional
control for the dispersion of economic activity within firms. According to the assumed
data generating process, δist absorbs all effects of the regulation on the industry and
sector-wide price indices, as well as all other industry-wide effects, and the error term
is ϵfist ≡ ρ

1−ρ
∆Afist. Hence, if regulation is orthogonal to productivity growth, conditional

on industry-year, we have E

[
β̂y,DD
0

]
= ρτ

ρ−1
and E

[
β̂z,DD
0

]
= −µz + ρσ

τ−1
. Researchers of-

ten rely on matched samples to justify the assumption that the regulation is orthogonal to
firms’ productivity growth. When this condition holds, the DD estimator delivers unbiased
estimates of the direct effect of the regulation on firm-level revenues and emissions.29

Nevertheless, even under conditions where βv,DD
0 is an unbiased estimator of the direct

effect of the regulation, β0, this estimate ought not be interpreted as an average treatment
effect. If cost shocks are passed through to firm-level prices, the regulation will affect price
indices, and the direct effect of regulation will diverge from the average treatment effect,
ATT v

t .
When each firm operate a single plant, we can characterize the discrepancy between

the DD estimator and the true ATT v
t analytically. With single-plant firms, Rfist becomes

binary and ∆αfist drops out because it equals zero for all firms. In this case, we can show

that the E

[
β̂y,DD
0

]
is greater in magnitude than the true ATT y

t (see propositions 1 and

2 in Appendix B.3). For firm-level emissions, by contrast, we generally cannot sign the
difference between the DD estimator and the true ATTZ

t .
These analytical results are depicted in Figure 1. The solid black line in Figure 1 (left

28To allow regression coefficients to vary by year, we suppose that this regression is run in long differences
year by year. Our specification in long differences eliminates any bias that would be generated by a
correlation between time-invariant firm characteristics and the regulation status.

29In practice, researchers typically simplify equation (27) by representing regulation with a binary in-
dicator for whether the firm operates any regulated plants, i.e. Rfist ≡ max{Rjfist}, and ignoring the
dispersion of economic activity within firms, as captured by ∆αfist. When treatment is not randomly
assigned to plants, the dispersion measure may correlate with treatment, which generates omitted variable
bias, according to our multi-plant model.
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panel) plots the true ATT for revenues as a function of µe
t . When the energy price effect,

µz
t , is larger than the energy efficiency effect, µe

t , the ATT for revenues is negative, and
vice versa when µe

t > µz
t . The dashed black line, which represents the DD estimate of the

ATT y
t , passes through zero for µe

t = µz
t , but has a steeper slope than the solid line because

the DD estimate of ATT y
t ignores the spillovers (propositions 1 and 2). Hence, the DD

estimator exaggerates the magnitude of the true ATT y
t .

The relationship between the true ATTZ
t and the DD estimate of ATTZ

t is not as
straightforward. The true ATT and the DD estimator for emissions, depicted by the solid
and dashed blue lines, respectively, have the same relationship to µe

t as do their counterparts
for revenues, but are shifted downwards by µz

t . Even at the point where µe
t = µz

t , where
there is no scale effect, the true ATTZ

t is negative because firms substitute away from
energy (µz

t > 0). As µe
t gets larger, the scale effect increases, even to the point where it can

dominate (right of C), in which case the ATT for emissions will be positive. This creates
three distinct possibilities. For points to the left of A or right of C, the DD estimator
will exaggerate the magnitude of the true ATTZ

t . For points between A and B, the DD
estimator will understate the true ATTZ

t . And for intermediate values of µe
t , between B

and C, the DD estimator would have the opposite sign of the true ATTZ
t . It is because

of this third possibility that we cannot infer the sign of the treatment effect from the DD
estimator.

To translate the DD estimate into an effect on aggregate emissions, we compute coun-
terfactuals by subtracting out the DD coefficient from the emissions of regulated firms and
sum over all firms (dashed blue line, right panel). The true ATZt (solid blue line, right
panel) remains negative even when the firm-level ATTZ

t is positive (right of C). This is
because, as the regulated firms become more efficient, they capture greater market share
(propositions 1 and 2). The DD estimator could therefore yield the correct sign of the
average treatment effect, but still get the sign wrong for the aggregate effect on emissions
(right of C).

The firm-level and aggregate analytical results discussed so far do not carry over to
multi-plant firms. More specifically, in multi-plant settings, according to our model, we
cannot say analytically if the DD estimator of ATT y

t , ATTZ
t , or ATZt is biased up or down

or even has the right sign (see Appendices B.5, B.6 and B.7). The intuition for this result
is that, in a multi-plant world, the sign of the true effect of regulation can vary even across
firms that own regulated plants, but the DD estimator is still biased up when τt < 0, and
biased downward otherwise. Hence, cases can arise when the true ATT is negative, but
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Figure 1: True Values and DD Estimates of Firm-level ATTs and Aggregate Effects
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Notes: The graph on the left shows true ATT (solid lines) and DD estimates (dashed lines) of ATT for
single-plant firm-level revenues (in blue) and emissions (in black). The graph on the right shows true (solid
line) aggregate effects on emissions, ATZ, and the ones estimated by DD (dashed line). The grey vertical
line indicates when µe = µz = 0.2. When µe < µz, then τ > 0, whereas τ < 0 when µe > µz.

the DD estimator is biased up, so the DD estimator is biased towards zero, for example.
We discuss these results at length in appendices B.5, B.6 and B.7.

In multi-plant settings, researchers also use DD to estimate effects of regulation on
different subsets of plants – for instance, unregulated plants owned by firms that also
operate regulated plants. In this situation, researchers typically estimate a plant-level DD
regression, comparing these indirectly regulated plants with control plants owned by firms
that own no regulated plants, just as one would normally compare directly regulated plants
with unregulated controls (see for example Bartram et al. 2022; Gibson 2019; Soliman
2020). For each group of plants, X ∈ {TT,CT}, such plant-level DD estimators can be
written as:

∆Zjfist = βZ,DD,X
0 RX

jfist + δist + ϵjfist, (28)

where RX
jfist is one of two indicator variables: (1) RX

jfist ≡ Rjfist when estimating the effect
on directly regulated plants (TT), or (2) RX

jfist ≡ max{Rkfist}Jk=1 when estimating the
effect on indirectly regulated plants (CT).30

The coefficient βZ,DD,X
0 in equation (28) is meant to capture the effect of the regulation

30We assume revenues are only observed at the firm-level, as they are in our empirical setting. So we
only specify these plant-level regressions for emissions. But of course, when revenues are observed by plant,
one could also estimate versions of (28) taking the change in plant-level revenues as the outcome variable.

21



at the plant level. However, our multi-plant data generating process indicates that firm-
level regulation, Rfist, contributes to plant-level emissions through the scale effect (see
equation 18). When one plant becomes regulated, it affects Rfist as well as the firm-wide
unit cost, which alters the optimal scale of production across all plants. Hence, omitting
firm-level regulation from (28) would lead us to expect E [Rjfistϵjfist] ̸= 0. In appendix B.7,
we show that, when firms operate multiple plants, we cannot sign the difference between
the DD estimator and the true ATT or ATZ.

Estimation via Local Approximation. A handful of papers extend the DD model to
take into account spillover effects across firms (Cai & Szeidl, 2022; Muehlegger & Sweeney,
2021; Rotemberg, 2019). In these papers, the conventional DD regression is augmented with
controls for density of treatment within a neighborhood of each firm (where neighborhood
often refers to geographical proximity and is meant to proxy for a market). There is an
intuitive appeal to this approach: if regulation increases costs and prices, then firms should
benefit from having a high share of regulated competitors.

In our context, where competitors are defined as firms in the same industry, this aug-
mented DD regression would take the form:

∆vfist = βv,LA
0 Rfist + βv,LA

1 ∆αfist + βv,LA
2

∑
k∈Ωist0

θkist0Rkist

+βv,LA
3

∑
k∈Ωist0

θkist0∆αkist + δst + ϵfist. (29)

where δst represents a sector-year fixed effect and θkist0 denotes the market share of firm k in
industry i in pre-regulation year t0. In a simplified setting with single-plant firms, the ∆α-
terms would drop out. The spillover effect βv,LA

2 is identified from variation in regulation
density across industries. Since the spillover term only involves pre-period weights, which
are exogenous to the regulation under a random walk assumption (or in a matched sample),
we could estimate (29) via OLS, and compute firm-level treatment effects as follows:31

ln

(
vfist

vLA′
fist

)
= β̂v,LA

0 Rfist + β̂y,LA
2

∑
k∈Ωist0

θkist0Rkist − (β̂y,LA
0 + β̂y,LA

2 )
∑
m∈Υ

Θmt0

∑
k∈Ωist0

θkist0Rkist(30)

We refer to (29)-(30) as the “local approximation” (LA) method because these equations
can be derived by taking a local approximation of the change in the price index around

31The third term in the expression of ln
(

vfist

vLA′
fist

)
follows from the fact that ντt

1−ν = −
[

ρτt
ρ−1 + (ν−ρ)τt

(ν−1)(1−ρ)

]
.
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the pre-regulation equilibrium (see Appendix B.4 for a proof). As shown in Appendices
B.4 and B.8, the LA estimator yields unbiased estimates of the average treatment effects
on the regulated and unregulated firms’ outcomes, as well as on aggregate emissions, as
long as (1) there is no entry and exit of firms and (2) individual market shares remain
approximately at their pre-regulation period values. However, if market shares adjust over
time, the LA yields biased estimates of treatment effects, and the bias can be up or down.

3.3 Monte Carlo Experiments

We now perform a series of Monte Carlo experiments in order to demonstrate three im-
portant features of our GMM estimator relative to the alternative methods. First, our
GMM estimator performs well in finite samples. Second, alternative estimators produce
non-negligible biases. Third, our estimator still perform well even when the exclusion
restrictions do not hold exactly.

To evaluate the finite sample properties of our GMM estimator and the two main al-
ternatives, we generate simulated data sets as follows. A fixed number of firms could
potentially operate in each of two periods – a pre-regulation period and a post-regulation
period. Sector-wide expenditures are drawn randomly each period, as well as firm-level
entry and exit decisions. In the first period, firms draw their productivity, number of
plants, and αjfist terms randomly. These variables completely determine unit cost, and
hence prices and revenues, given the monopolistic competition assumption. We solve for
plant-level emissions using the first order conditions (13). In the second period, we set
Rjfist = 1 for all plants with pre-period emissions above a given threshold. Productivity
updates according to a first-order Markov process. Revenues, market shares and plant-level
emissions are solved again. We simulate the model for 24 different parameter combina-
tions, varying ρ ∈ {.8, .9, .95}, µe ∈ {0, .3, .5, .8}, and ϱ ∈ {0, .1}.32 For each parameter
combination, we simulate 100 replications, with 10 sectors, 50 industries, and 500 firms
per replication.

We then implement our estimation procedure, as well as multi-plant versions of the
DD and LA estimators, on the simulated data.33 For each estimation strategy, we com-
pute firm-level ATT and ATC, plant-level ATTT, ATCT, ATCC, and aggregate effects on
emissions for each simulated data set. Since we control the data generating process, we

32In all combinations, we set ν = .3, γ = .8, µz = .2, and σ = −0.1.
33To compute plant-level and aggregate effects on emissions for the LA method, we combine regression

coefficients from the firm-level revenues regression (29) with the plant-level emissions regression (25).
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can also compute the true treatment effect of the regulation on any given firm or plant,
for any set of exogenous parameters. For each replication and estimator, we compute the
difference between the estimated treatment effect and the true treatment effect and plot
the interquartile range of this distribution in Figure 2.

Figure 2: Bias in Average Treatment Effects in Monte Carlo Experiments
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Notes: Subfigures plot the interquartile range of the distribution of estimation errors by estimator and
parameter combination for average and aggregate treatment effects across 100 replications. On the x-axis,
parameter combinations are ordered by β0 = ρτt

ρ−1 . GMM and LA estimation biases are measured on
the left axis, while DD estimation biases are measured on the right axis. In all subfigures, parameter
combinations to the left (right) of the vertical dashed line indicate simulations for which τt > 0 (< 0).

Our GMM procedure does recover unbiased estimates of treatment effects in our simu-
lations. Figure 2 shows that our GMM procedure (plotted in red, measured on the left axis)
yields small errors that are symmetrically centered on zero. This applies for all average
and aggregate effects and across all parameter combinations.

By contrast, in Figure 2, we find that the DD and LA estimators produce substantial
biases that can go in either direction, and even get the sign of the effect wrong. The DD
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estimator (plotted in black, measured on the right axis) substantially underestimates the
treatment effects on revenues when µe

t < µz
t , and overestimates it otherwise. Indeed, for

most parameter combinations, the interquartile range of the errors does not contain zero at
all. The errors for the LA estimator (plotted in blue, measured on the left axis) are smaller
in magnitude. For some parameter combinations, the interquartile range covers zero, and
even appears nearly centered. Indeed, when market shares move very little between the
pre-regulation and post-regulation periods, a local approximation is appropriate. But in
general, the LA method can yield substantially biased estimates, and the bias could go in
either direction.

Finally, to provide an adversarial test of our GMM estimator, we generated compara-
ble simulated data sets assuming firms engage in Bertrand-Nash pricing, as in Atkeson &
Burstein (2008). Our GMM estimator, by contrast, relies on the assumption of monopolis-
tic competition. The results, summarized in Appendix C.2, show that our GMM procedure
continues to exhibit superior performance even in this setting, compared to DD and LA
methods.

4 Application to the EU Emissions Trading System

In this section, we demonstrate our method by estimating the effect of the EU ETS on the
revenues and emissions of French manufacturing firms.

4.1 Background and Data

The EU ETS is the European Union’s flagship climate policy. An EU-wide carbon market
was first proposed in 2000, passed into law in 2003, and launched in 2005. The program
would cap the combined carbon emissions of over 10,000 large power and manufacturing
plants across Europe, while allowing inter-plant trading of emissions permits to keep com-
pliance costs low. In manufacturing, the program included all combustion installations with
a rated thermal input greater than 20MW, and other productive processes with capacity
or output greater than predetermined industry-specific thresholds.

The EU ETS was implemented in three distinct trading phases, which differ somewhat
in ambition and rules. Phase I, from 2005 to 2007, was designed as a trial period—the
emissions cap was more generous, permits were allocated on the basis of historical emis-
sions, but those permits could not be banked for future compliance. Phase II, from 2008 to
2012, ran concurrently with the first commitment period under the Kyoto Protocol, and the
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emissions cap was set to meet the EU’s collective emission reductions commitment. Phase
III, from 2012 to 2020, centralized the permit allocation process from national regulators
to the European Commission, and increasingly allocated permits by auction.

Starting in Phase III, the European Commission created an integrated registry to keep
track of the whole market. We retrieved the address of each regulated installation in
France from this registry, as well as the initial date of regulation and the unique French
tax identifier of the firm that owns the installation. We then matched EU ETS installations
to plants using tax identifiers and street addresses (see Appendix D.3 for details). In total,
we count 1,415 installations in France ever regulated under the EU ETS across 1,264 plants
and 846 firms (note, a large plant may include multiple installations).

To build proxies for the CES price indices in our model and to estimate treatment
effects, we need data on the revenues of the universe of firms. For this purpose, we use
data reported to the French tax authority.34 We classify firms into “industries” using a
4-digit activity code declared by the firms, and use the first 2 digits of the activity codes
to define “sectors,” following Harrigan et al. (2018a). We report descriptive statistics for
sales, employment, and number of plants for the year 2004 – the last pre-regulation year –
in panel A of Table 1, in columns (1) and (2). Panel B reports emissions and employment
at the plant level. The number of employees for each plant comes from the Stock of
Establishments, while plant-level emissions are based on detailed fuel-consumption surveys
(EACEI). The fuel-consumption data are collected annually for plants with more than 250
employees, while smaller plants are sampled randomly. More details about all of the data
sets and processing can be found in Appendix D.

4.2 Joining Model With Data

Because our model necessarily portrays a somewhat simplified reality, there are three prac-
tical issues that must be addressed in joining the model with the data: (i) treatment
endogeneity, (ii) foreign markets, and (iii) unobserved emissions for small plants.

Treatment endogeneity. From columns (1) and (2) of Table 1, we can see that the
policy is incomplete – only 0.1% of French manufacturing firms operate any EU ETS
regulated plants. We can also see that the policy targeted large firms – regulated firms

34France’s statistical agency INSEE record these data in the FICUS database (for years 1994 - 2007) and
the FARE database (2008 - 2016). Firms are identified with a unique tax identifier across both data sets.
These data are confidential and access is subject to authorization by the Comité du Secret Statistique.
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Table 1: Descriptive Statistics in 2004

Full Sample Matched Sample

regulated unregulated p-val regulated unregulated p-val
(1) (2) (3) (4) (5) (6)

Panel A: Firm Level Dataset

Sales (Millions euros)
Domestic 251.4 4.053 0.000 109.6 103.0 0.718
Export 98.65 1.033 0.000 68.50 52.76 0.172
Total 350.1 5.086 0.000 178.1 155.8 0.370

Market Share 0.066 0.001 0.000 0.033 0.029 0.336
# Workers 846.8 22.77 0.000 568.0 502.1 0.455
# Plants 3.625 1.160 0.000 2.353 2.624 0.279
α2004 0.513 0.050 0.000 0.376 0.404 0.573
∆y 0.210 0.114 0.002 0.203 0.175 0.437

# Firms 363 149188 255 255

Panel B: Plant Level Dataset

CO2 Emissions (’000 Kg) 76.92 4.722 0.000 58.52 76.62 0.748
# Workers 403.4 172.3 0.000 392.1 422.7 0.702

# Firms 301 6657 156 157
# Plants 606 7918 173 173

Notes: Values indicate mean of annual observations for 2004 – the last pre-regulation year – by
regulation status. Columns 1 and 2 includes all firms in all industries with 2-digit codes between 15
- 37 in the NAFRev.1, while columns 4 and 5 include only firms from the matched sample. Columns
3 and 6 report p-values from t-tests of difference in means between regulated and unregulated firms.

operate more plants, employ more workers, and have higher sales. If productivity followed
a random walk around this period, then there would be no reason to expect changes in
revenues to correlate with 2004 levels, and the association between pre-regulation size and
treatment would not be a cause for concern. More generally, however, one might be worried
that the outcomes for regulated and unregulated firms would have followed different trends
even without the policy, given the clear correlation with pre-regulation size.

To address this concern, we match regulated firms to unregulated firms within each
industry based on pre-regulation characteristics. Following Calel & Dechezlepretre (2016),
most studies of the EU ETS match on revenues within industries, and assume variation
in the dispersion of economic activity across firms’ plants generates exogenous variation
in regulation status. In particular, it is usually assumed that firms with fewer, but larger,
plants are more likely to be regulated under the EU ETS, and that this variation does not
independently influence revenues. However, our model indicates precisely the opposite:
unless σ = 0, the dispersion of economic activity across firms’ plants directly influences
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revenues. Hence, we would expect that two firms with the same pre-regulation revenues but
different pre-regulation dispersion measures would grow at different rates post regulation,
even if there were no treatment effect. For this reason, we match firms both on pre-
regulation revenues and the pre-regulation dispersion measure αfis,2004. We also match on
2004 workers , 2004 domestic market share, and log export sales. While the model does not
indicate that we need to match on these variables, in reality, one could imagine that firms
with more workers (similarly, market share, export sales) grow at different rates compared
to firms with less workers (market share, export sales), so we prefer to match on these
variables as well to control as flexibly as possible for differential trends.35

The descriptive statistics for the matched sample are reported in columns (4) and
(5) of Table 1. We match 255 out of 363 regulated firms, each to a single unregulated
firm. Because the EU ETS regulates many firms in the upper tail of the distribution, it is
sometimes impossible to find closely matched unregulated firms within the same industries.
The ones we match are therefore substantially smaller than the typical EU ETS firm, with
an average 2004 market share of 3% instead of 6%. The matched regulated and unregulated
firms are balanced in terms of the key variables: revenues, revenue growth, and dispersion.
They are less well-balanced in terms of exports, but we show later that our results are
robust to re-matching on exports (see Section 4.5).

Given that EU ETS regulation is based on plant size, it might seem that matching
on both firm-level revenues and economic dispersion across plants would eliminate all
identifying variation. The critical insight is that the model requires only that we condition
on a particular measure of economic dispersion. The identification strategy remains valid
as long as there exists some alternative measure of dispersion that predicts treatment,
conditional on αfis,2004. Appendix Table A.1 shows that, in fact, across-plant concentration
as measured by the Herfindahl index,

∑
j∈Ωfis,2004

α2
jfis,2004, correlates with future regulation

status, even conditional on αfis,2004.36 Thus, even after matching on both revenues and
economic dispersion, there remains variation in treatment that can be used to identify the
effect of the policy.

To estimate µZ , we estimate equation (25) by OLS. Having taken ∆yfist to the left hand
35In practice, we use the coarsened exact matching program from Blackwell et al. (2009), matching

exactly on industry, and within strata on revenues in 2004, αfis,2004, market share in 2004, total number
of workers in 2004, and average revenue growth prior to 2004.

36An obvious alternative measure of concentration, in this context, would be to measure the difference
between each plant’s capacity and the activity-specific regulation thresholds – this would directly capture
that aspect of concentration that is the basis of treatment. Unfortunately, data on these plant-specific
capacities are not available.
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side, the model indicates that no further matching is necessary to address endogeneity of
the regualtion at the plant level. Hence, restricting the sample to matched regulated and
unregulated plants is not necessary. Even so, we evaluate the robustness of our findings to
using a sample of plants matched on their pre-period CO2 emission levels and growth rates.
As shown in Panel B of Table 1, regulated plants have more employees and higher emissions.
Yet, because the regulation is based on production capacity rather than emissions, some
high-emitting plants are not regulated. Figure D.10 plots the average regulation status by
2004 CO2 emissions levels, and shows there is no clear threshold above which regulation is
complete. This is what allows us to match at the plant level.

Foreign markets. Our empirical strategy relies on constructing empirical counterparts
to the theoretical CES price index, which requires information on all competing firms.
While the model references a single market, in reality French firms compete in an interna-
tional economy. Firms export some of their output into foreign markets, and they compete
with imports from those foreign markets. We need some way of accounting for these ex-
ports and imports in our price indices, without radically expanding the data requirements
to include all firms in the world.

To account for exports, we distinguish between domestic and foreign sales. For most
of the analyses below, we take domestic sales of French firms as the outcome variable.
Domestic sales represents about 75% of total French-firm revenues, depending on the year
of the sample (see Figure D.13, left). We can only compute counterfactual revenues using
our method for domestic sales, but we also sometimes present estimates on total sales for
comparison with other methods. We also mostly restrict our analysis to CO2 emissions
generated in production for domestic sales, which we compute by multiplying total emis-
sions by the domestic revenue share. Figure D.13 (right) shows that our measures of both
total and domestic emissions track trends in the National Emissions Inventory reasonably
well.

Imports present a greater challenge. Imports account for roughly one third of French
consumption of manufacturing goods (see Figure D.11), but we do not observe the market
shares of individual foreign sellers in the French market – information needed to build
the CES price indices. To sidestep this missing data problem, we use the bilateral trade
flows recorded in the BACI dataset (Gaulier & Zignago, 2010), and assume that each
origin-country-industry is associated with only one firm exporting to France. We then
investigate the sensitivity of our findings to the alternative assumption that we can leave
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foreign imports out of the computation of treatment effects entirely. This alternative would
be valid if there is separability between the CES price index for domestic varieties and the
one for foreign varieties.

Imputing emissions for small plants. One quantity of interest is how the regula-
tion affected aggregate CO2 emissions from French manufacturing. However, the fuel-
consumption EACEI survey only includes 10% of all plants each year, omitting many
unregulated plants especially (see Figure D.9). To estimate the aggregate effect based on
this sample, we need two further assumptions.

First, we assume there are no systematic differences between surveyed and unsurveyed
plants, conditional on observables. This implies that the treatment effects estimated on
the sample are valid for the whole population of plants.

Second, we impute the emissions for unsurveyed plants by multiplying the plant-level
revenue by the median sector-year emissions per unit of revenue. This imputation relies
on taking literally the modelling assumption that the emission intensity of revenues does
not vary across plants within a sector-year, absent the regulation.37 See Appendix D.6
for details on this imputation. We will report results for the EU ETS’s effect on total
emissions based on surveyed data only and on these imputed data. In the latter case, we
remain alert to the fact that the estimated aggregate effect on emissions relies on stronger
assumptions than the rest.

4.3 Evaluating the Underlying Assumptions of our Model

Our GMM procedure generalizes prior approaches in at least three important ways – it
accounts for firms’ multi-plant structure, it accounts for spillovers due to imperfect com-
petition, and it accounts for market shares varying over time (including from entry and
exit). Before reporting on our results, we first discuss why each of these generalizations is
particularly valuable for studying a policy like the EU ETS.

Multi-plant firms. We have explicitly modelled the multi-plant structure of firms and
argued that this is critical for causal identification. If firms optimize production over their
entire set of plants, representing regulation as a simple binary variable will give rise to
omitted variable bias. In particular, our estimating equation for firm-level outcomes ought

37In practice, the observed emission intensity of revenues does vary, but this could be due to measurement
error.
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to include a continuous treatment intensity variable, as well as a measure of dispersion
of activities across plants (see equation 22). It is easy to verify that this multi-plant
model provides additional explanatory power over a model with only a binary treatment
variable.38

We can further assess the importance of the multi-plant structure as well as match-
ing by estimating the multi-plant DD model (equation 27). Figure 3 reports estimates of
β0 and β1 resulting from estimating this model via OLS. We also add firm-level controls
for pre-treatment revenues, revenue growth, and dispersion. The model is estimated in
long differences relative to the base year 2004.39 In the left panel of Figure 3 (using the
full sample), we find that β0 is positive and statistically distinguishable from zero in the
pre-treatment periods, and negative in the post-regulation period (though not statistically
significant). Firms that had grown faster, and were therefore larger by 2005, were more
likely to be regulated. If productivity follows a general autoregressive process, past produc-
tivity would also predict future revenues. The negative β0s in the post-treatment period
could therefore be the result of a negative effect of regulation, or of larger firms tending to
grow slower.

The right panel of Figure 3, which reports on the matched sample, helps to resolve this
ambiguity. We verify that β0 is not significantly different from zero in the pre-period and
find that it tends to be positive in the post-treatment period. Having addressed selection
on productivity through matching, these unbiased post-treatment estimates of β0 indicate
a positive direct effect of the regulation. Therefore, the negative β0s in the full sample
are best explained by productivity not following a random walk. This demonstrates the
necessity of matching.

The coefficients on economic dispersion, β1, are non-zero, both in the full and matched
samples. Even conditional on treatment, firms with more dispersed production tended to
grow faster. Since the measure of dispersion is correlated with regulation by construction
– the labor shares appear in both terms – failing to control for it will result in omitted
variable bias.

The multi-plant structure is also important for studying plant-level outcomes, such as
38The multi-plant model is associated with lower values for the AIC and BIC, and higher values for R2,

for all three phases of the EU ETS.
39We pool years to estimate β0 and β1 once for each period—the pre-announcement period (1994-1999),

the post-announcement period, which is still prior to implementation (2000-2003), and each of the three
trading phases. For ease of interpretation, we invert the outcome variable for years prior to 2004, so that
the dependent variable represents the growth rate between a pre-period year and 2004. We similarly invert
the ratio for ∆αfist for pre-2004 years. All regressions include industry-by-year fixed effects, and standard
errors are clustered on the industry.
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Figure 3: Firm-level DD Estimates for Revenues
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includes all (matched) firms. For each period, we estimate a pooled regression, combining all years included
in the period. The vertical line indicates the beginning of the regulation period. All regressions include
industry-by-year fixed effects. Standard errors are clustered on the industry.

emissions. When we estimate a simple DD model for emissions at the plant-level (equation
28), it appears as though the regulation not only affected regulated plants (Figure 4, left
panel), but also unregulated plants operated by regulated firms (Figure 4, right panel).
Estimating the response only for regulated plants, and ignoring the spillovers on other
plants owned by the same firms, will not be able to identify the true environmental effect
of the policy.40

Spillovers. Another critical feature of our model is the presence of spillovers from reg-
ulated to unregulated firms. Spillovers will be negligible in some applications, such as
when the outcome variable is not strongly affected by competition, or when the treated
firms account for a small share of the market. These conditions clearly do not hold when
studying the EU ETS’ effects on revenues and emissions. Our model – indeed, any model
of imperfect competition – shows that firms’ revenues and emissions are inter-dependent.

40These estimates reveal similar “reallocation effects” as estimated by Gibson (2019) and Soliman (2020),
showing counterbalancing changes in emissions across regulated and unregulated plants owned by regulated
firms in the US context of the Clean Air Act amendments.
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Figure 4: Plant-level DD Estimates for Emissions
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All regressions include industry-by-year fixed effects. Standard errors are clustered on the industry.

Moreover, EU ETS firms in our sample command, on average, over 6% of the market in
their industry (in 2004). In this setting, the independence condition required for the DD
estimator to identify the effects of an incomplete regulation (i.e. SUTVA) is violated.

Both our GMM estimator and the LA estimator are flexible enough to allow for
spillovers within an industry and across industries. Figure 5 presents the GMM estimates
(in red) and the LA estimates (in blue) for the matched sample.41 The estimated values
of β0 are consistently positive, indicating a positive direct effect of regulation. Meanwhile,
β2 tends to be negative, and more precisely estimated with GMM than the LA method,
which indicates that firms grow slower when there is a higher share of regulated firms in

41As before, we also control for the vector of firm characteristics, Xfist0 , which includes the pre-period
level and growth rate of revenues and economic concentration at the firm-level. For the moment conditions
at the industry-level, we control for a vector of industry pre-period characteristics, including total sales in
level and growth rate and average concentration at t0. Standard errors are clustered to allow for arbitrary
correlation within the industry and over time.
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their industry. This is a tell-tale sign of within-industry spillovers.4243

Figure 5: Reduced-Form Coefficients β0, β1, β2, and βz
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Notes: Left panel presents the estimates of β0, β1, and β2 from our GMM estimator (in red) and from the
LA model (in blue). Right panel presents estimates of βz derived from OLS estimation of equation (25).
Bars indicate 95% confidence intervals. For each period, we estimate a pooled regression, combining all
years included in the period. The vertical line indicates the beginning of the regulation period.

Market share stability. The LA method can be shown to be a local approximation of
our GMM estimator around the pre-treatment equilibrium. This local approximation has
one key advantage – it can be estimated without knowing market shares of all firms in the
market (just the combined market share of regulated firms). Moreover, our Monte Carlo ex-
periments show that the LA estimator performs well in situations where the market shares
are fairly stable. The LA method could therefore be a valuable tool in data-constrained
environments with a fairly stable set of firms, and where the incomplete regulation is
expected to have a moderate treatment effect.

In our application, as in many developed country contexts, we observe revenues for the
entire universe of French firms. We are also interested in the effects of a substantial policy
experiment, over a long enough time period, that one may prefer not to assume a priori
that market shares are stable. Indeed, Figure A.2 shows substantial differences between
pre-treatment market shares θfi,2004, and the theoretically-consistent Sato-Vartia weights

42β2 ̸= 0 is sufficient, but not necessary, to indicate the existence of spillovers. Spillovers within industries
could exactly counterbalance spillovers across industries, which would result in β2 = 0, or equivalently,
ρ = ν. Across-industry spillovers may be small in our application, as indicated by the sum of β0 and β2

(β0 + β2 = ντt
1−ν ) being close to zero.

43Note, also, that both the GMM and LA methods return negative estimates of βz, consistent with the
assumption in our model that µz > 0.
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ϕfit, indicating that market shares indeed move substantially over time.44

4.4 Results

Revenues. Figure 6 summarizes the estimated treatment effects for the revenues and
emissions of French manufacturing firms using our GMM estimator (in red), alongside the
results for the DD (in black) and LA (in blue) estimators for comparison. We estimate
these effects in long differences relative to 2004, which is the last pre-regulation year. The
underlying model parameters are estimated separately for each of the three EU ETS trading
phases (see figure 5), then used to compute firm-level counterfactuals under the scenario
that Rjfist = 0 for all plants, and finally aggregated into average treatment effects for each
year.

The top-left panel of Figure 6 plots the EU ETS’s average effects on the domestic
sales of regulated firms. With the GMM estimator, we find that the EU ETS increased
domestic sales for the average regulated firm by 6-9% annually, relative to the unregulated
counterfactual. The DD estimator overstates this effect by 1-2 percentage points, and the
LA estimator understates the effect by 2-5 percentage points, depending on the year. In
the aggregate, our GMM estimates imply that the EU ETS increased domestic revenues
for regulated firms between 1-3% as a group.

We also find a negative effect of the regulation on the domestic sales of the average
unregulated firm (see top-right panel of Figure 6). Our GMM estimates imply a 0.2-0.7%
reduction in domestic revenues for unregulated firms, as a group. By contrast, with the
LA model, we estimate that regulation had almost no effect on the sales of unregulated
firms through phase I, and then a modest positive effect in phases II and III. For the DD
estimator, the effect on unregulated firms is fixed at zero by assumption.

Our results suggest that previous estimates of the EU ETS’s effect on revenues have
probably been off by a few percentage points, errors that may be meaningful to a social
planner. However, we learn a lot more from our new estimates than this difference in
magnitude. We have shown that the DD and LA estimators are subject to substantial and
unpredictable biases, even to the extent they can get the incorrect sign of the treatment
effects. Even if the GMM procedure had yielded identical results in the present application,
then, it would not be possible to judge the credibility of prior estimates except by reference
to our findings.

44Looking directly at market shares, we find that fully three quarters of firm-year observations differ
from 2004 by more than 10%, and half differ by more than 25%.
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Emissions. The middle and lower panels in Figure 6 summarize the EU ETS’s estimated
effects on domestic emissions.45 Our GMM estimates indicate that the EU ETS reduced
emissions at the average regulated plant between 5 -25%, depending on the year (see
middle-left panel). These findings suggest that the technique effect dominated in all three
phases, resulting in a decrease in emissions. The LA estimator provides broadly similar
results, but systematically overstates the emissions reductions by a few percentage points.
The DD estimator, by contrast, generates smaller effects on emission reductions during
phases I and II, and a modest increase in emissions in phase III.

We also find an increase in emissions at the control plants operated by treated firms
(middle-right panel). This suggests that regulation-induced cost reductions at regulated
plants increased revenues of regulated firms, and thereby emissions at unregulated plants
owned by regulated firms. The LA and DD estimators sometimes overstates these effects
and sometimes understates them, relative to our GMM esitmator. Furthermore, all three
estimators agree that regulation had practically no effect on the emissions of plants owned
by unregulated firms (bottom-left panel). Yet, we observe a slight negative effect using our
GMM estimator.

Finally, the bottom-right panel of Figure 6 plots the aggregate observed CO2 emissions
generated in the production of goods for the French market, along with the counterfactual
levels computed using the GMM, LA, and DD estimators. The bottom set of trajectories
only includes plants observed in the fuel-consumption surveys, whereas the top set of
trajectories includes all plants with imputed emissions for small unsurveyed plants.

Without imputing, we find that the regulation lowered domestic emissions between
0.9-4.6 million tonnes annually, or between 3-16% of total (non-imputed) emissions. For
robustness, we compare our aggregate results to the ones obtained with imputing emissions
for unsurveyed plants. With imputing, we find that the regulation lowered emissions
between 1.0-4.6 million tonnes annually, depending on the year, or between 2-12% of total
emissions. By comparison, we find that the LA estimator is biased upward, while the DD
estimator is biased downward, the latter yielding virtually zero effect during phases I and II
and a small increase in phase III. In aggregate, we find that the EU ETS reduced emissions
generated in the production of goods for domestic consumption between 2005 and 2015 by
28.0 (29.1) million tonnes without (with) imputing.

45Note that our results here refer to the portion of emissions associated with production for the domestic
market.
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Figure 6: Treatment Effects on Domestic Firm-Level Revenues, Plant-Level Emissions and
Aggregate Emissions
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4.5 Robustness Checks

In this section, we explore the robustness of our results to the various data choices that
were made to accommodate factors outside of our model.

First, lacking data on firm-level imports to France, we have assumed so far that the set
of foreign firms shipping to France within an industry-country-of-origin is always singleton.
We conduct a robustness test under the alternative assumption that we can leave foreign
imports out of the computation of treatment effects entirely. This exercise amounts to
assuming Cobb-Douglas aggregation between domestic consumption and foreign consump-
tion at the sector level, so that the share of expenditures on domestic goods would be
fixed. Under this assumption, industry-level CES price indices on the French market can
be separated into a CES price index for domestic varieties and a CES price index for for-
eign varieties, and the two are completely independent. As a result, we could construct the
CES price index for domestic varieties using only French firms and ignoring international
imports. This is implicitly the approach taken by previous work based on local approxi-
mations (Cai & Szeidl, 2022; Muehlegger & Sweeney, 2021; Rotemberg, 2019). Appendix
Figures A.3-A.4 show that results are robust to this alternative assumption.

Second, we explore the robustness of our results to alternative matching criteria. We
prefer to match on as many covariates as possible, but the model indicates that only
revenues and across plant dispersion need to be controlled for when choosing a matched
sample. We repeat the exercise matching only on those variables that the model indicates
should be match on. Not surprisingly, covariate balance deteriorates in this alternative
matching procedure, but results remain broadly consistent with our preferred specification
(Appendix Figure A.5).

Finally, we explore robustness to alternative definitions of competitors sets. In our
baseline specification, we treat the 4-digit NAFRev.1 classification of the firm as the firms
“industry”. It seems reasonable that firms that declare the same 4-digit industry code
compete with each other, but it certainly could be possible that firms directly compete
with firms that declare other codes as well. To explore this hypothesis, we define the
industry alternatively as the 3-digit NAFRev.1 code. Sectors are defined as above. In
Figure A.6, we find that treatment effects on emissions are broadly similar to the baseline
specification, though effects on domestic revenues are smaller.
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5 Conclusion

When firms compete imperfectly, changes in the production costs of one firm affect the out-
put decisions of other firms. These across-firm dependencies are inconsistent with a neces-
sary assumption in difference-in-differences estimation – namely, the stable unit treatment
value assumption. We show that, if the data generating process coincides with standard
modeling assumption from industrial organization and international trade, the DD estima-
tor tends to be informative about the sign of the cost effect of regulation, but neither the
sign nor the magnitude of the average effects on firm-level revenues and emissions. In our
view, this result implies that DD should not be relied upon for inference with respect to
average treatment effects of regulation – and more broadly, cost shocks – on firms’ revenues
and emissions.

We build an estimation process that is consistent with standard modeling assumptions
and allows researchers to recover average and aggregate treatment effects of regulation,
relying purely on panel data information on market shares (and emissions, if so desired),
and the vector of regulation. The procedure allows for endogenous technological adoption,
the effect of which would be hard to predict ex ante. The procedure generalizes previous
work based on local approximations around the pre-regulation equilibrium. Hence, our
procedure can be applied even if market shares move substantially over the study period.
We also show how to account for multi-plant production, non-random regulation, and
general productivity growth processes.

We find that, contrary to fears of being put at a competitive disadvantage, the flagship
EU climate policy did not increase the costs of regulated French manufacturers. Rather,
we find that revenues of regulated French manufacturers increased between 6% and 9%
as a result of the EU regulation, and that emissions at regulated plants fell between 5%
and 25%, depending on the year. Unregulated plants owned by regulated firms increased
emissions slightly, but not enough to counteract the emissions reductions at regulated
plants. Aggregate emissions generated in France for the French market fell between 3%
and 16% relative to the unregulated counterfactual.

Though regulated firms increased market share, this does not necessarily mean that
regulated firms benefited from the policy. Firm-level benefits are measured in profits, not
sales. We do not know the investment costs incurred to lower costs. A revealed preference
argument would lead one to believe that, if firms did not undertake these cost-reducing
investments ex ante to the regulation, then they were not expected to be profitable. Hence,
it is possible that total profits of regulated firms fell due to investment costs. Conversely,
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it is also possible that x-inefficiencies or other forms of inertia kept managers from making
profitable investments until the regulation took effect. Without detailed data on investment
and a dynamic model, we cannot discriminate between these two explanations and we leave
this investigation for further research.

The results are consistent with a Porter effect, in which regulation induces technological
improvements that lower both emission intensity and costs. This outcome may have been
triggered by specific measures taken at the European and national levels to avoid hurting
domestic firms’ competitiveness and to favor technological adoption. This does not mean
that the EU ETS will continue to produce both revenue growth and emissions reductions in
the future, of course, nor that environmental regulations more generally can be expected
to trigger Porter effects. In general, the environmental benefits of regulation should be
weighed against the economic costs, which could include erosion of domestic industry and
distributional effects on consumer welfare.
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A Appendix: Further Empirical Results

Table A.1: Predicting Regulation Status

Probit OLS

everR everR everR everR maxR maxR
(1) (2) (3) (4) (5) (6)

ln y2004 0.614∗∗∗ 0.610∗∗∗ .0041∗∗∗ .0039∗∗∗ .0035∗∗∗ .0024∗∗∗
(0.030) (0.030) (0.00009) (0.00009) (0.00008) (0.00008)

∆ypre2004 0.220∗∗∗ 0.222∗∗∗ .0035∗∗∗ .0034∗∗∗ .0029∗∗∗ .0028∗∗∗
(0.075) (0.074) (0.00024) (0.00024) (0.00021) (0.00021)

αf,2004 0.282 0.0412∗∗∗ 0.0154∗∗∗
(0.075) (0.248) (0.0019)∑

j∈Ωf,2004
α2
jf,2004 0.336∗∗ 0.899∗ -0.0167∗∗∗ 0.0554∗∗∗ -0.0042∗∗∗ 0.0227∗∗∗

(0.155) (0.521) (0.0011) (0.0039) (0.0009) (0.0035)

# obs 25,871 25,871 139,950 139,950 139,950 139,950

Notes: Table reports probit (columns 1 and 2), and OLS (columns 3-6) estimation of correlations
between firm-level characteristics in 2004 and future regulation. Outcome variable in columns 1-4 is
indicator variable for whether a firm ever operates a regulated plant. Outcome variable in columns
5-6 is the maximum value of Rfist ∈ [0, 1] observed for the firm. All regressions include industry fixed
effects. Columns 1-2 include only industries with some ever-regulated firms. Columns 3-6 include all
industries. Standard errors are clustered at the industry level.
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Figure A.1: Entry and Exit
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Notes: Markers indicate point estimates resulting from OLS estimation of the effect of base-year-weighted
industry treatment density on the log difference in the number of firms entering (white) or exiting (black)
an industry in year t relative to 2004. Bars indicate 95% confidence intervals. We estimate long difference
regressions year by year, with sector-by-year fixed effects. Standard errors are clustered on the sector.
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Figure A.2: Market Share Stability

Notes: Left Figure plots Sato-Vartia weight ϕfit against market share in 2004, θfi,2004. Right Figure plots
the cumulative distribution of the ratio ϕfit/θfi,2004. The right tail of the figure has been truncated for
ease of viewing.
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Figure A.3: Point Estimates, LA Excluding Foreign Imports
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Notes: Markers indicate point estimates resulting from OLS estimation of equation 29, excluding foreign
imports, taking total sales (red) and domestic sales (blue) as outcomes. Bars indicate 95% confidence
intervals. For each period, we estimate a pooled regression, combining all years included in the period.
All regressions include sector-by-year fixed effects. Standard errors are clustered on the industry.
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Figure A.4: Robustness Check, Excluding Foreign Imports
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Notes: Figure presents the average effects on revenues for treated T (top left) and control C (top right)
firms, excluding foreign imports, and on plant-level emissions for TT plants (middle left), CT plants
(middle right) and CC plants (bottom left) generated for the domestic market (using plants in the EACEI
surveys). Bottom right panel presents observed total CO2 emissions generated for the domestic market
(solid black) along with counterfactual emissions computed using GMM, LA and DD methods. Lower
trajectories include only plants observed in the EACEI survey, while top trajectories impute emissions for
small missing plants.
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Figure A.5: Robustness Check, Alternative Matching Procedure
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Notes: Figure presents the average effects on revenues for treated T (top left) and control C (top right)
firms, using an alternative matching procedure, and on plant-level emissions for TT plants (middle left),
CT plants (middle right) and CC plants (bottom left) generated for the domestic market (using plants
in the EACEI surveys). Bottom right panel presents observed total CO2 emissions generated for the
domestic market (solid black) along with counterfactual emissions computed using GMM, LA and DD
methods. Lower trajectories include only plants observed in the EACEI survey, while top trajectories
impute emissions for small missing plants.
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Figure A.6: Robustness Check, Alternative Industry Definition
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Notes: Figure presents the average effects on revenues for treated T (top left) and control C (top right)
firms, defining industries at the 3 digit level, and on plant-level emissions for TT plants (middle left),
CT plants (middle right) and CC plants (bottom left) generated for the domestic market (using plants
in the EACEI surveys). Bottom right panel presents observed total CO2 emissions generated for the
domestic market (solid black) along with counterfactual emissions computed using GMM, LA and DD
methods. Lower trajectories include only plants observed in the EACEI survey, while top trajectories
impute emissions for small missing plants.
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B Theoretical Appendix

B.1 Proof of the exact CES price index change

In this section, we derive the change in CES price indices between t and t0 as described in
(3) with the definition of Sato-Vartia weights. The proof builds upon Feenstra (1994).

Using the expressions for price indices (3) and consumers’ optimal expenditures (2), we
can show that, for any firm f in the set Ωist of firms from industry i and sector s:

yfist∑
ℓ∈Ωist

yℓist
= p

ρ
ρ−1

fistP
− ρ

ρ−1

ist ,

where the LHS represents the market share of firm f within its industry at time t. For any
pair of two periods t0 and t, we define the set of continuing firms as Ω∗

ist ≡ Ωist ∩Ωist0 . We
can write:

yfist∑
ℓ∈Ω∗

ist
yℓist︸ ︷︷ ︸

≡ϑfist

∑
ℓ∈Ω∗

ist
yℓist∑

ℓ∈Ωist
yℓist︸ ︷︷ ︸

≡λist

= p
ρ

ρ−1

fistP
− ρ

ρ−1

ist .

In log differences between periods t0 and t, we obtain

log
ϑfist

ϑfist0

+ log
λist

λist0

=
ρ

ρ− 1

(
log

pfist
pfist0

− log
Pist

Pist0

)
,

which we rearrange and multiply on both sides by ϑfist − ϑfist0 to get:

ρ− 1

ρ
(ϑfist − ϑfist0) =

ϑfist − ϑfist0

log
ϑfist

ϑfist0

log
pfist
pfist0

−ϑfist − ϑfist0

log
ϑfist

ϑfist0

log
Pist

Pist0

+
1− ρ

ρ

ϑfist − ϑfist0

log
ϑfist

ϑfist0

log
λist

λist0

.

Summing over firms from the continuing set Ω∗
ist, we obtain:( ∑

ℓ∈Ω∗
ist

ϑℓist − ϑℓist0

log ϑℓist

ϑℓist0

)
log

Pist

Pist0

=
∑
ℓ∈Ω∗

ist

ϑfist − ϑfist0

log
ϑfist

ϑfist0

log
pfist
pfist0

+
1− ρ

ρ

( ∑
ℓ∈Ω∗

ist

ϑℓist − ϑℓist0

log ϑℓist

ϑℓist0

)
log

λist

λist0

,

which yields the first part of (11) and the definition of firm-specific Sato-Vartia weights:

ϕfist ≡
ϑfist − ϑfist0

log ϑfist − log ϑfist0

/ ∑
ℓ∈Ω∗

ist

ϑℓist − ϑℓist0

log ϑℓist − log ϑℓist0

.

Similarly, using (3) and (2) yields, for any industry i in the set Υs of industries from
sector s:

Θist = P
ν

ν−1

ist Ψ
− ν

ν−1

st .

52



Taking the log differences between t0 and t yields:

log Pist

Pist0
− log Ψst

Ψst0

log Θist

Θist0

=
1− ν

ν
.

Multiplying each side of the equation by Θist −Θist0 gives:

Θist −Θist0

log Θist

Θist0

log
Pist

Pist0

− Θist −Θist0

log Θist

Θist0

log
Ψst

Ψst0

=
1− ν

ν
(Θist −Θist0) .

Summing over industries that belong to the stable set Υs from sector s, we obtain:∑
i∈Υs

Θist −Θist0

log Θist

Θist0

log
Pist

Pist0

=

( ∑
h∈Υs

Θhst −Θhst0

log Θhst

Θhst0

)
log

Ψst

Ψst0

.

which yields to the second part of (11) and the definition of industry-specific Sato-Vartia
weights:

Φist ≡
Θist −Θist0

log Θist − log Θist0

/∑
h∈Υs

Θhst −Θhst0

log Θhst − log Θhst0

.

B.2 Analytical Results on the True Treatment Effects for Single-
Plant Firms

The average treatment effect can be expressed as the weighted average of sector-specific
ATXv

st’s as follows:

ATXv
t =

∑
s

NX
st

NX
t

ATXv
st , for X ∈ {T,C} and v ∈ {y, Z} (B.1)

where NX
st and NX

t denote the number of firms in group X at time t in sector s and the
whole economy, respectively. Given the Cobb-Douglas assumption with respect to across-
sector aggregation in the utility function, regulation in any given sector s has no effect on
the ATXv

s′t for any other sector s′. In order to sign ATXv
t , it is thus sufficient to sign

ATXv
st, for any given s.

In this section, we demonstrate that:

Proposition 1. When all firms operate a single plant,

i/ The average treatment effect on regulated (unregulated) firms’ revenues is positive
(negative) if and only if τt < 0;

ii/ The average treatment effect on regulated firms’ emissions is negative if τt > 0, but
can be either positive or negative if τt < 0, depending on the aggregate market share

53



of regulated firms. The average treatment effect on unregulated firms’ emissions is
positive if and only if τt > 0;

iii/ The treatment effect on aggregate emissions is negative if and only if µz
t > 0.

Average Treatment Effects for Revenues. Developing ATXy
st first, we have

ATXy
st =

1

NX
st

∑
i∈Υs

∑
f∈ΩX

ist

ln
yfist
y′fist

=
1

NX
st

∑
i∈Υs

∑
f∈ΩX

ist

(
ln

θfist
θ′fist

+ ln
Θist

Θ′
ist

)
, (B.2)

where θfist and Θist denote the within-industry market share of firm f and the within-
sector market share of industry i at time t,respectively. The terms θ′fist and Θ′

ist represent
counterfactuals market shares in the unregulated equilibrium.

Using (3) and (2), we rewrite

θfist
θ′fist

=

(
pfist
Pist

) ρ
ρ−1

/

(
p′fist
P ′
ist

) ρ
ρ−1

(B.3)

We relate observed (regulated) price to counterfactual price as follows: pfist = p′fiste
τtRfist .

Substituting in the pricing rules yields

θfist
θ′fist

=
e

ρτt
ρ−1

Rfist

[∑
j∈ΩT

t

(
p′jist

) ρ
ρ−1 +

∑
k∈ΩC

t
(p′kist)

ρ
ρ−1

]
∑

j∈ΩT
t

(
p′jist

) ρ
ρ−1 e

ρτt
ρ−1

Rjist +
∑

k∈ΩC
t
(p′kist)

ρ
ρ−1

(B.4)

Taking logs and simplifying yields

ln
θfist
θ′fist

= ln e
ρτt
ρ−1

Rfist − ln

[ ∑
k∈Ωist

θ′kiste
ρτt
ρ−1

Rkist

]
(B.5)

Similarly, we develop

ln
Θist

Θ′
ist

=
ν(1− ρ)

(1− ν)ρ
ln

[ ∑
k∈Ωist

θ′kiste
ρτt
ρ−1

Rkist

]
− ln

∑
m∈Υs

Θ′
mst

[ ∑
k∈Ωmst

θ′kmste
ρτt
ρ−1

Rkist

] ν(ρ−1)
(ν−1)ρ

(B.6)
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Adding the two terms yields

ln
yfist
y′fist

= ln e
ρ

ρ−1
τtRfist − ρ− ν

(1− ν)ρ
ln

[ ∑
k∈Ωist

θ′kiste
ρτt
ρ−1

Rkist

]

− ln
∑
m∈Υs

Θ′
mst

[ ∑
k∈Ωmst

θ′kmste
ρτt
ρ−1

Rkist

] ν(ρ−1)
(ν−1)ρ

. (B.7)

Plugging this expression into B.2 yields for treated firms

ATT y
st =

ρτt
ρ− 1

Rst −
ρ− ν

(1− ν)ρ

∑
i∈Υs

NT
ist

NT
st

ln

[ ∑
k∈ΩT

ist

θ′kist

(
e

ρτt
ρ−1

Rkist − 1
)
+ 1

]

− ln
∑
i∈Υs

Θ′
ist

[ ∑
k∈ΩT

ist

θ′kist

(
e

ρτt
ρ−1

Rkist − 1
)
+ 1

] ν(ρ−1)
(ν−1)ρ

(B.8)

where Rst ≡ 1
NT

st

∑
i∈Υst

∑
f∈ΩT

ist
Rfist, the average regulation value among regulated firms

in the sector.
For single-plant firms, we set Rfist = 1 for all regulated plants. Equation B.8 simplifies

to

ATT y
st = ln e

ρτt
ρ−1 − ρ− ν

(1− ν)ρ

∑
i∈Υs

NT
ist

NT
st

ln

[
ζ ′ist

(
e

ρτt
ρ−1 − 1

)
+ 1

]
− ln

∑
i∈Υs

Θ′
ist

[
ζ ′ist

(
e

ρτt
ρ−1 − 1

)
+ 1

] ν(ρ−1)
(ν−1)ρ

=
ρ− ν

ρ(1− ν)︸ ︷︷ ︸
>0

∑
i∈Υs

NT
ist

NT
st

ln

[
e

ρτt
ρ−1

ζ ′ist

(
e

ρτt
ρ−1 − 1

)
+ 1

]
︸ ︷︷ ︸

−sign(τt)

− ln

∑
i∈Υs

Θ′
ist

[ζ ′ist (e ρτt
ρ−1 − 1

)
+ 1

e
ρτt
ρ−1

] ν(ρ−1)
(ν−1)ρ


︸ ︷︷ ︸

−sign(τt)

(B.9)

where ζ ′ist ≡
∑

k∈ΩT
ist

θ′kist , the combined market share within industry i of regulated firms.
Hence, we find that ATT y

st > 0 ⇐⇒ τt < 0. If µe
t = µz

t , then τt = 0 and ATT y
st = 0. Iff

µe
t > µz

t then τt < 0 and ATT y
st > 0. We find that ATT y

st is monotonically increasing in µe
t .

For control firms, using B.7, we can write

ATCy
st = −

{
ρ− ν

(1− ν)ρ︸ ︷︷ ︸
>0

∑
i∈Υs

NC
ist

NC
st

ln

[ ∑
k∈ΩT

ist

θ′kist

(
e

ρτt
ρ−1

Rkist − 1
)
+ 1

]
︸ ︷︷ ︸

−sign(τt)

+ ln
∑
i∈Υs

Θ′
ist

[ ∑
k∈ΩT

ist

θ′kist

(
e

ρτt
ρ−1

Rkist − 1
)
+ 1

] ν(ρ−1)
(ν−1)ρ

︸ ︷︷ ︸
−sign(τt)

}
. (B.10)
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Hence, we find that ATCy
st > 0 ⇐⇒ τt > 0. Aggregating over sectors yields sign (ATT y

t ) =
−sign (ATCy

t ) = −sign (τt).

Average Treatment Effect for Emissions. Second, developing ATXz
st yields

ATXz
st =

1

NX
st

∑
i∈Υs

∑
f∈ΩX

ist

ln
Zfist

Z ′
fist

=
1

NX
st

∑
i∈Υs

∑
f∈ΩX

ist

[
ln e−µZ

t Rfist + ln

(
yfist
y′fist

)]
.(B.11)

Using B.7 yields

ATXz
st =

1

NX
st

∑
i∈Υst

∑
f∈ΩX

ist

ln e(−µZ+
ρτt
ρ−1)Rfist

− ρ− ν

(1− ν)ρ

∑
i∈Υs

NX
ist

NX
st

ln

[ ∑
k∈ΩT

ist

θ′kist

(
e

ρτt
ρ−1

Rkist − 1
)
+ 1

]

− ln
∑
i∈Υs

Θ′
ist

[ ∑
k∈ΩT

ist

θ′kist

(
e

ρτt
ρ−1

Rkist − 1
)
+ 1

] ν(ρ−1)
(ν−1)ρ

. (B.12)

For single-plant firms, we set Rfist = 1 for all regulated plants. For treated firms,
equation B.12 simplifies to

ATT z
st =

ρ− ν

ρ(1− ν)

∑
i∈Υs

NT
ist

NT
st

ln

[
e

(
−µZ+

ρτt
ρ−1

)
ζ ′ist

(
e

ρτt
ρ−1 − 1

)
+ 1

]
− ln

∑
i∈Υs

Θ′
ist

[ζ ′ist (e ρτt
ρ−1 − 1

)
+ 1

e

(
−µZ+

ρτt
ρ−1

) ] ν(ρ−1)
(ν−1)ρ

 .(B.13)

We obtain

ATT z
st > 0 ⇐⇒ e(−µZ+

ρτt
ρ−1)

ζ ′ist

(
e

ρτt
ρ−1 − 1

)
+ 1

> 1.

As a result, if τt > 0, then e(−µZ+
ρτt
ρ−1)

ζ′ist

(
e

ρτt
ρ−1−1

)
+1

< 1 and we conclude that ATT z
st < 0. By contrast,

if τt < 0, then the sign of the term e(−µZ+
ρτt
ρ−1)

ζ′ist

(
e

ρτt
ρ−1−1

)
+1

−1 depends on ζ ′ist, the aggregate market

share of regulated firms in the unregulated counterfactual. The sign of ATT z
st is thus

ambiguous if τt < 0. Furthermore, if µe
t = µz

t then τt = 0 and ATT z
st = −µz

t . Given that
ATT z

st = −µz
t + ATT y

st, then ATT z
st is monotonically increasing in µe

t .
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For control firms, equation B.12 simplifies to

ATCz
st = −

{
ρ− ν

(1− ν)ρ

∑
i∈Υs

NC
ist

NC
st

ln

[ ∑
k∈ΩT

ist

θ′kist

(
e

ρτt
ρ−1

Rkist − 1
)
+ 1

]

+ ln
∑
i∈Υs

Θ′
ist

[ ∑
k∈ΩT

ist

θ′kist

(
e

ρτt
ρ−1

Rkist − 1
)
+ 1

] ν(ρ−1)
(ν−1)ρ

}
(B.14)

which is positive if and only if τt > 0.

Aggregate effects on emissions. We define ATZt as the log difference between the
sum of observed and counterfactual firm-level emissions. Using (13), we express

ATZt ≡ ln

[∑
f∈Ωt

Zfist∑
f∈Ωt

Z ′
fist

]
= ln

∑f∈Ωt

Zfist

yfist
yfist∑

f∈Ωt

Z′
fist

y′fist
y′fist

 = ln

∑f∈Ωt
e−µZ

t Rfisty′fist
yfist
y′fist∑

f∈Ωt
y′fist


(B.15)

Using (B.7), we obtain

ATZt = ln


∑
s

ast


∑

i∈Υs
Θ′

ist

[∑
k∈Ωist

θ′kiste
(
ρτt
ρ−1

−µZ
t )Rkist

] [∑
k∈Ωist

θ′kiste
ρτt
ρ−1

Rkist

]− (ρ−ν)
(1−ν)ρ

∑
i∈Υs

Θ′
ist

[∑
k∈Ωist

θ′kiste
ρτt
ρ−1

Rkist

] ν(ρ−1)
(ν−1)ρ


(B.16)

Assuming single-plant firms, this expression simplifies to

ATZt = ln


∑
s

ast


∑

i∈Υs
Θ′

ist

[
ζ ′ist

(
e(

ρτt
ρ−1

−µZ
t ) − 1

)
+ 1
] [

ζ ′ist

(
e

ρτt
ρ−1 − 1

)
+ 1

]− (ρ−ν)
(1−ν)ρ

∑
i∈Υs

Θ′
ist

[
ζ ′ist

(
e

ρτt
ρ−1 − 1

)
+ 1
] ν(ρ−1)

(ν−1)ρ


 .(B.17)

From this expression, we see that ATZt = 0 if µz
t = 0. Furthermore, we have ATZt < 0

for any µz
t > 0.

B.3 Analytical Results on the Bias from the DD Estimator for
Single-Plant Firms

In this appendix, we demonstrate that

Proposition 2. When all firms operate a single plant, the DD estimator
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i/ exaggerates the magnitude of ATT y
t ,

ii/ exaggerates the magnitude of ATTZ
t if τt > 0, but is biased upwards if τt < 0. In the

latter case, the E

[
̂ATTZ,DD

t

]
could be biased towards zero or away from zero, and

could even yield the opposite sign from the true effect.

iii/ exaggerates the magnitude of ATZt if τt + ϵ > 0, but is biased upwards if τt + ϵ < 0.
In the latter case, the E

[
ÂTZDD

t

]
could yield the opposite sign from the true effect.

Bias in ATT y from the DD estimator. After estimating the DD regression (27), we
define the ATT in revenues as

̂ATT y,DD
t =

1

NT
t

∑
f∈ΩT

t

β̂y,DD
0,t Rfist (B.18)

where β̂y,DD
0,t is the estimated coefficient. In the case that all firms own a single plant,

̂ATT y,DD
t = β̂y,DD

0,t . We thus compute the bias in the DD estimate of the ATT on revenues
for the case of single-plant firms as

Biasy,DD
t = E

[
̂ATT y,DD

t

]
− ATT y

t =
ρτt
ρ− 1

− ATT y
t (B.19)

where E

[
β̂y,DD
0,t

]
= ρτt

ρ−1
if regulation is orthogonal to unobserved productivity growth.

Using (B.9)

Biasy,DD
st =

ρ− ν

(1− ν)ρ

∑
i∈Υs

NT
ist

NT
st

ln

[
ζ ′ist

(
e

ρτt
ρ−1 − 1

)
+ 1

]
+ ln

∑
i∈Υs

Θ′
ist

[
ζ ′ist

(
e

ρτt
ρ−1 − 1

)
+ 1

] ν(ρ−1)
(ν−1)ρ

.(B.20)

We obtain Biasy,DD
st > 0 ⇐⇒ τt < 0. By proposition 1, this implies that Biasy,DD

st >
0 ⇐⇒ ATT y

st > 0, i.e., the DD estimator is biased upward in magnitude for a given
sector. Aggregating over sectors implies that the DD estimate of ATT y

t is biased upward
in magnitude.

Bias in ATTZ from the DD estimator. We define the ATT in emissions computed
via the DD method as

̂ATTZ,DD
t =

1

NT
t

∑
f∈ΩT

t

β̂Z,DD
0,t Rfist (B.21)

where β̂Z,DD
0,t is the coefficient estimated from the DD regression (27). In the case that all

firms own a single plant, ̂ATTZ,DD
t = β̂Z,DD

0,t . We thus compute the bias in the DD estimate
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of the ATT on emissions for the case of single-plant firms as

BiasZ,DD
t = E

[
̂ATTZ,DD

t

]
− ATTZ

t = −µZ
t +

ρτt
ρ− 1

− ATTZ
t (B.22)

where E

[
β̂Z,DD
0,t

]
= −µZ

t + ρτt
ρ−1

if regulation is orthogonal to unobserved productivity

growth.
Using (B.13), we express the bias for a given sector s as

BiasZ,DD
st =

ρ− ν

(1− ν)ρ

∑
i∈Υs

NT
ist

NT
st

ln

[
ζ ′ist

(
e

ρτt
ρ−1 − 1

)
+ 1

]
+ ln

∑
i∈Υs

Θ′
ist

[
ζ ′ist

(
e

ρτt
ρ−1 − 1

)
+ 1

] ν(ρ−1)
(ν−1)ρ

.(B.23)

Comparing (B.20) and (B.23) reveals that BiasZ,DD
st = Biasy,DD

st . Hence, BiasZ,DD
st >

0 ⇐⇒ τt < 0. By proposition 1, this implies that if τt > 0, then E

[
̂ATTZ,DD

t

]
<

ATTZ
t < 0; hence, the DD estimator overstates the negative treatment effect on emissions.

By contrast, if τt < 0, then BiasZ,DD
st > 0, but since the sign of ATTZ

st is ambiguous in

this case, given proposition 1, ̂ATTZ,DD
t could be biased towards 0 (if ATTZ

st < 0) or away

from 0 (if ATTZ
st > 0). When ATTZ

st < 0, ̂ATTZ,DD
t could be biased upwards so much that

it would take the opposite sign of the true ATT on emissions in expectation.

Bias in ATZ from the DD estimator. The DD estimate of the aggregate effect on
emissions can be written as

ÂTZDD
t = ln

 ∑
f∈Ωt

Zfist∑
f∈Ωt

Zfiste
−β̂Z,DD

0,t Rfist

 (B.24)

where β̂Z,DD
0,t is the coefficient estimated from the DD regression (27). For single -plant

firms, we can rewrite it as

ÂTZDD
t = ln


∑
s

as


∑

i∈Υs
Θ′

ist

[
ζ ′ist

(
e(

ρτt
ρ−1

−µZ
t ) − 1

)
+ 1
] [

ζ ′ist

(
e

ρτt
ρ−1 − 1

)
+ 1

]− (ρ−ν)
(1−ν)ρ

∑
i∈Υs

Θ′
ist

[
ζ ′ist

(
e

ρτt
ρ−1 − 1

)
+ 1
] ν(ρ−1)

(ν−1)ρ




− ln


∑
s

as


∑

i∈Υs
Θ′

ist

[
ζ ′ist

(
e(

ρτt
ρ−1

−µZ
t −β̂Z,DD

0,t ) − 1

)
+ 1

] [
ζ ′ist

(
e

ρτt
ρ−1 − 1

)
+ 1

]− (ρ−ν)
(1−ν)ρ

∑
i∈Υs

Θ′
ist

[
ζ ′ist

(
e

ρτt
ρ−1 − 1

)
+ 1
] ν(ρ−1)

(ν−1)ρ


 .(B.25)
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Due to Jensen inequality, we have

E[ÂTZDD(β̂Z,DD
0,t )]− ATZt ≤ ÂTZDD(E[β̂Z,DD

0,t ])− ATZt, (B.26)

where the left hand side of the inequality corresponds to the bias from the DD esti-
mator and the right hand side to the approximation of the bias that we can compute.

Since E

[
β̂Z,DD
0,t

]
= −µZ

t + ρτt
ρ−1

if regulation is orthogonal to unobserved productivity

growth, we have ÂTZDD(E[β̂Z,DD
0,t ]) − ATZt = 0 when τt = 0. Furthermore, we obtain

sign(ÂTZDD(E[β̂Z,DD
0,t ])− ATZt) = −sign(τt).

As a result, when τt+ϵ > 0 (due to Jensen inequality), the bias from the DD estimator is
negative, thereby implying that the DD estimator overstates the fall in aggregate emissions.
When τt + ϵ < 0, the DD estimator underestimates the fall in aggregate emissions, and
might even predict the wrong sign of the effect.

B.4 Analytical Results on the Bias from the LA Estimator for
Single-Plant Firms

LA model as a local approximation. We first show that estimation equation (29)
follows from taking a local approximation of changes around an equilibrium set at time t0.

For any vector of infinitesimal changes in firm-level prices relative to the equilibrium
obtained at time t0, noted {dpfist0}f∈Ωist0

, the change in the industry price index Pist is
given by:

dPist0 =
∑

f∈Ωist0

∂Pist

∂pfist |t=t0

dpfist0 . (B.27)

Given (3), we have that, at any period t:

∂Pist

∂pfist
=

( ∑
f∈Ωist

(pfist)
ρ

ρ−1

) ρ−1
ρ

−1

(pfist)
ρ

ρ−1
−1 = θfist

Pist

pfist
,

which we can plug in (B.27) to obtain:

dPist0 =
∑

f∈Ωist0

θfist0dpfist0 . (B.28)

As a result, if we approximate small variation in firms’ prices with infinitesimal changes
around t0 equilibrium, we obtain ∆Pist0 ≈

∑
f∈Ωist0

θfist0∆pfist0 for the change in industry
i’s price index. We could similarly build ∆Ψst0 ≈

∑
i∈Υst0

Θfist0∆Pist0 for the change in
sector s’s price index, but controlling for sector-time fixed effects absorbs these spillovers.
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In the rest of the section, we demonstrate that

Proposition 3. When all firms operate a single plant, the LA estimator

i/ yields unbiased estimates of the average treatments on the regulated and unregulated
firms’ revenues and emissions, as well as of the effect on aggregate emissions, if
there is no entry and exit of firms and if market shares remain at their pre-regulation
values;

ii/ otherwise, it yields estimates of average and aggregate effects that can be biased up
or down and can even have the opposite sign from the true effects.

LA model under the condition that the approximation is valid. Under the joint
condition that

ϑfist0 ≈ ϑfist ≈ ϑ′
fist, Θist0 ≈ Θist ≈ Θ′

ist, ∆λit ≈ ∆λ′
it ≈ 0 (B.29)

then denoting βy
0,t =

ρτt
ρ−1

and βz
0,t = −µZ

t + ρτt
ρ−1

, (12) can be written as

∆vfist = βv
0,tRfist +

(ν − ρ) τt
(ν − 1) (1− ρ)

∑
k∈Ωist

θkist0Rkist +
ντ

1− ν

∑
m∈Υs

Θmst0

∑
ℓ∈Ωmst

θℓmst0Rℓmst

+
(ν − ρ)

(ν − 1) (ρ− 1)

∑
k∈Ωist

θkist0∆Akist +
ν

ν − 1

∑
m∈Υs

Θmst0

∑
ℓ∈Ω∗

mst

θℓmst0∆Aℓmst +∆Yst +
ρ

1− ρ
∆Afist

where we have substituted base-year market shares θs for firm-level Sato-Vartia weights
ϕs, and base-year industry-level market shares Θs for industry-level Sato-Vartia weights
Φs.

In this case, the last line is orthogonal to firm-level regulation Rfist and industry-
level regulation

∑
k∈Ωist

θkist0Rkist. Hence, the OLS regression (29) identifies βy
0,t, βz

0,t and

βy
2,t, i.e., E

[
β̂y,LA
0,t

]
= ρτt

ρ−1
, E

[
β̂Z,LA
0,t

]
= −µZ

t + ρτt
ρ−1

and E

[
β̂y,LA
2,t

]
= (ν−ρ)τt

(ν−1)(1−ρ)
, and

firm-level estimated treatment effects coincide with the true firm-level treatment effects in
expectation:

E

[
ln

(
vfist
vLA′
fist

)]
= βv

0,tRfist +
(ν − ρ) τt

(ν − 1) (1− ρ)

∑
k∈Ωist0

θkist0Rkist

−
(

ρτt
ρ− 1

+
(ν − ρ) τt

(ν − 1) (1− ρ)

) ∑
m∈Υs

Θmt0

∑
k∈Ωmst0

θkmst0Rkmst

= ln

(
vfist
v′fist

)
.

Since the LA model yields unbiased estimates of firm-level treatment effects, in expectation,
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aggregating over firms, we have E

[
̂ATT v,LA

t

]
= ATT v

t and E
[
ÂTZLA

t

]
= ATZt.

LA model under the condition that the approximation is not valid. Conversely,
if condition (B.29) does not hold, then the bias in the estimate of average treatment effects
on outcome v ∈ {y, Z} for firms in group X ∈ {T,C} in sector s for the LA model relative
to (B.9) can be computed as:

Biasv,LA,X
st = E

[
β̂v,LA
0,t

]
Rst1 (X = T ) + E

[
β̂y,LA
2,t

] ∑
i∈Υs

NX
ist

NX
st

ζist0 − E

[(
β̂y,LA
0,t + β̂y,LA

2,t

)]
ζst0

−

{
βv
0,tRst1 (X = T ) +

ρ− ν

ρ(1− ν)

∑
i∈Υs

NX
ist

NX
st

ln

[ ∑
k∈ΩT

ist

θ′kist

(
e

ρτt
ρ−1Rkist − 1

)
+ 1

]

+ ln

∑
i∈Υs

Θ′
ist

[ ∑
k∈ΩT

ist

θ′kist

(
e

ρτt
ρ−1Rkist − 1

)
+ 1

] ν(ρ−1)
(ν−1)ρ

}, (B.30)

where β̂v,LA
0,t and β̂y,LA

2,t are computed from regression equation (29) and where ζist0 ≡∑
k∈Ωist

θ′kist0Rkist corresponds to the weighted market share of regulated firms in base-
year t0 in industry i, and ζst0 ≡

∑
m Θmstζmst0 its counterpart for sector s, and Rst ≡

1
NT

st

∑
k∈ΩT

ist
Rkist is the average regulation among regulated firms. In the single-plant case,

Rst = 1.
The bias can be decomposed as follows:

Biasv,LA,X
st = Reg-Biasv,LA,X

st + Approx-BiasLA,X
st (B.31)

with

Reg-Biasv,LA,X
st =

(
E

[
β̂v,LA
0,t

]
− βv

0,t

)
Rst1 (X = T ) +

(
E

[
β̂y,LA
2,t

]
− βy

2,t

)∑
i∈Υs

NX
ist

NX
st

ζist0

−
(
E

[
β̂y,LA
0,t

]
+ E

[
β̂y,LA
2,t

]
−
(
βy
0,t + βy

2,t

))
ζst0 (B.32)

and

Approx-BiasLA,X
st =

βy
2,t

βy
0,t

∑
i∈Υs

NX
ist

NX
st

ln

[
eβ

y
0,tζist0∑

k∈ΩT
ist

θ′kist

(
eβ

y
0,tRkist − 1

)
+ 1

]

− ln

∑
i∈Υs

Θ′
ist

[
eβ

y
0,tζst0∑

k∈ΩT
ist

θ′kist

(
eβ

y
0,tRkist − 1

)
+ 1

](β
y
2,t+β

y
0,t

β
y
0,t

)(B.33)

The term Reg-Biasv,LA,X
st represents the bias in the estimated treatment effect resulting

from using biased coefficients in the computation of firm-level treatment effects (30). This
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bias arises because the error term in the regression (29) includes Sato-Vartia-weighted
productivity growth at the industry level, which correlates with industry-average regulation
density. The additional term Approx-BiasLA,X

st represents the bias resulting from using a
linear approximation to the CES price index at t0.

In the single-plant case, Approx-BiasLA,X
st simplifies to

Approx-BiasLA,X
st =

βy
2,t

βy
0,t

∑
i∈Υs

NX
ist

NX
st

ln

[
eβ

y
0,tζist0

ζ ′ist

(
eβ

y
0,t − 1

)
+ 1

]
− ln

∑
i∈Υs

Θ′
ist

[
eβ

y
0,tζst0

ζ ′ist

(
eβ

y
0,t − 1

)
+ 1

]( β
y
2,t+β

y
0,t

β
y
0,t

)(B.34)

with ζ ′ist =
∑

k∈ΩT
ist

θ′kist, the market share of regulated firms in the counterfactual equilib-
rium at t. This term is positive if, for all industries i,

eβ
y
0,tζist0 − 1 < ζ ′ist

(
eβ

y
0,t − 1

)
(B.35)

and

eβ
y
0,tζst0 − 1 < ζ ′ist

(
eβ

y
0,t − 1

)
. (B.36)

If ζist0 = ζ ′ist = ζst0 , then these conditions hold for any ζst. To see this, observe that the
function F

(
βy
0,t, ζst

)
≡ eβ

y
0,tζst − 1 − ζst

(
eβ

y
0,t − 1

)
has a global maximum at 0. Hence,

conditions (B.35) and (B.36) hold, so Approx-BiasLAst is positive, if ζist0 = ζ ′ist = ζst0 .
Generally, conditions (B.35) and (B.36) may or may not hold, depending on the values

of ζist0 , ζ ′ist, ζst0 . For example, suppose ζist0 = ζ ′ist = ζst0 = .5 and βy
0,t = 2, then eβ

y
0,tζist0 −

1 − ζ ′ist

(
eβ

y
0,t − 1

)
= −1.47 < 0, but if ζist0 = ζst0 = .5 and ζ ′ist = .1 and βy

0,t = 2,

then eβ
y
0,tζist0 − 1 − ζ ′ist

(
eβ

y
0,t − 1

)
= 1.08 > 0. Hence, (B.35) may or may not hold, and

Approx-BiasLAst may be positive or negative, conditional on the same set of parameters.
Thus, in the single plant case, we cannot sign Biasv,LA,X

st analytically.
The LA estimate of the aggregate effect on emissions can be written as

ÂTZLA
t = ln

 ∑
f∈Ωt

Zfist∑
f∈Ωt

Zfiste
−
[
β̂Z,LA
0,t Rfist+β̂Z,LA

2,t ζist0−
(
β̂Z,LA
0,t +β̂Z,LA

2,t

)
ζst0

]
 (B.37)

where β̂Z,LA
0,t and β̂Z,LA

2,t are computed from regression model (29). As above, we can de-
compose the bias from the LA estimator into two components: the first component arises
because the error term in this model includes Sato-Vartia-weighted productivity growth at
the industry level, which generates an omitted variable bias, and the second component
results from using a linear approximation to the CES price index at t0. As before, these
components have an indeterminate sign given the structural parameters. Hence, we cannot
sign the bias in the estimated ATZ from the LA model analytically.
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B.5 Analytical Results on the True Firm-Level Treatment Effects
for Multi-Plant Firms

In this section, we start by demonstrating that

Proposition 4. When firms operate multiple plants,

i/ The average treatment effect on revenues for regulated firms could be positive or nega-
tive, whatever the sign of τt. The average treatment effect on revenues for unregulated
firms is positive if and only if τt > 0;

ii/ The average treatment effect on emissions for regulated firms could be positive or
negative, whatever the sign of τt. The average treatment effect on emissions for
unregulated firms is positive if and only if τt > 0;

iii/ Aggregate emissions decreases if and only if µZ
t > 0 .

Average Treatment Effect on Revenues. The general expression for ATT y
st is given

by (B.8) with a continuous measure of treatment, Rfist ∈ [0, 1], which can rewritten as

ATT y
st =

ρ− ν

(1− ν)ρ

∑
i∈Υs

NT
ist

NT
st

ln

[
e

ρτt
ρ−1

Rst∑
k∈ΩT

ist
θ′kist

(
e

ρτt
ρ−1

Rkist − 1
)
+ 1

]

− ln
∑
i∈Υs

Θ′
ist

[∑
k∈ΩT

ist
θ′kist

(
e

ρτt
ρ−1

Rkist − 1
)
+ 1

e
ρτt
ρ−1

Rst

] ν(ρ−1)
(ν−1)ρ

(B.38)

whose sign depends on the following inequality:

e
ρτt
ρ−1

Rst − 1 ≶
∑

k∈ΩT
ist

θ′kist

(
e

ρτt
ρ−1

Rkist − 1
)
, ∀i. (B.39)

If the inequality in (B.39) can be signed, conditional on parameters, then so can the ATT y
st

and ATT y
t . Conversely, if the direction of the inequality in (B.39) can vary for given

parameters, then the ATT y
st cannot be signed analytically. In this case, the sign of the

ATT y
st depends on the entire vector of regulation {Rfist}.

A simple example provides an illustration of the ambiguity of the sign in ATT y
st. Sup-

pose there is a single industry with two treated firms and several control firms. The
regulation of the first regulated firm is R1 = 1, and the regulation of the second regulated
firm is R2 = ϵ. The ATT is written as:

ATT y
t =

ρτt
ρ− 1

1 + ϵ

2
− ln

[
θ′1

(
e

ρτt
ρ−1 − 1

)
+ θ′2

(
e

ρτt
ρ−1

ϵ − 1
)
+ 1
]

Suppose θ′1 = θ′1 = 0.4, ρτt
ρ−1

= 2, and ϵ = 0.1. Then the ATT y
t = −0.193. But if ϵ = 0.4,

then ATT y
t = 0.002. Now suppose θ′1 = .7 and θ′1 = 0.25, ρτt

ρ−1
= −1, and ϵ = 0.1. Then the
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ATT y
t = 0.077. But if ϵ = 0.7, then ATT y

t = −0.010. This example shows that whatever
the sign of τt, the ATT can be positive or negative, depending on the entire vector of
regulation.

The expression (B.10) for ATCy
st is general, as it allows for continuous treatment Rfist ∈

[0, 1]). Hence, the result for control firms in the multi-plant case is immediate: ATCy
t >

0 ⇐⇒ τt > 0.

Average Treatment Effect on Emissions. The general expression for ATTZ
st is given

by (B.12) for a continuous treatment Rfist ∈ [0, 1], which can be rewritten as

ATTZ
st =

ρ− ν

(1− ν)ρ

∑
i∈Υs

NT
ist

NT
st

ln

[
e(−µZ

t +
ρτt
ρ−1)Rst∑

k∈ΩT
ist

θ′kist

(
e

ρτt
ρ−1

Rkist − 1
)
+ 1

]

− ln
∑
i∈Υs

Θ′
ist

[∑
k∈ΩT

ist
θ′kist

(
e

ρτt
ρ−1

Rkist − 1
)
+ 1

e(−µZ
t +

ρτt
ρ−1)Rst

] ν(ρ−1)
(ν−1)ρ

(B.40)

whose sign depends on the following inequality

e(−µZ
t +

ρτt
ρ−1)Rst − 1 ≶

∑
k∈ΩT

ist

θ′kist

(
e

ρτt
ρ−1

Rkist − 1
)
, ∀i. (B.41)

If the inequality in (B.41) can be signed, conditional on parameters, then so can the
ATTZ

st , and ATTZ
t . Conversely, if the direction of the inequality in (B.41) can vary for

given parameters, then the ATTZ
st cannot be signed analytically, as its sign depends on the

full vector of regulation.
A simple example provides an illustration of the ambiguity of the sign in ATTZ

st . Sup-
pose there is a single industry with two treated firms and several control firms. The
regulation of the first regulated firm is R1 = 1, and the regulation of the second regulated
firm is R2 = ϵ. The ATTZ is written as:

ATTZ
t =

(
−µZ

t +
ρτt
ρ− 1

)(
1 + ϵ

2

)
− ln

[
θ′1

(
e

ρτt
ρ−1 − 1

)
+ θ′2

(
e

ρτt
ρ−1

ϵ − 1
)
+ 1
]

Suppose θ′1 = θ′1 = 0.4, ρτt
ρ−1

= 2, and µZ
t = .05. If ϵ = 0.1, then ATTZ

t = −0.221, whereas,
if ϵ = 0.5, ATT y

t = 0.017. Now suppose θ′1 = .7 and θ′1 = 0.25, ρτt
ρ−1

= −1, and µZ
t = .05. If

ϵ = 0.1, then ATTZ
t = 0.050, whereas if ϵ = 0.7, then ATTZ

t = −0.052. This shows that
whatever the sign of τt, the ATTZ can be positive or negative, depending on the entire
vector of regulation.

The expression (B.14) for ATCZ
st is general; hence, the result for control firms in the

multi-plant case is immediate: ATCZ
t > 0 ⇐⇒ τt > 0.
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Treatment Effect on Aggregate Emissions. The proof from section B.2 is general,
(i.e., allows for Rfist ∈ [0, 1]). Hence, the result is immediate: ATZt < 0 ⇐⇒ µZ

t > 0.

B.6 Analytical Results on the True Plant-Level Treatment Effects
for Multi-Plant Firms

In this section, we demonstrate that

Proposition 5. When firms operate multiple plants,

i/ The average treatment effect on emissions for regulated plants could be positive or
negative, whatever the sign of τ ;

ii/ The average treatment effect on emissions for unregulated plants owned by firms that
own regulated plants could be positive or negative, whatever the sign of τ ;

iii/ The average treatment effect on emissions for unregulated plants owned by unregulated
firms increases if and only if τt > 0.

The average treatment effect on emissions at plants from group X ∈ {TT,CT,CC}
within sector s can be rewritten as as

ATXZ
st =

1

NX
st

∑
i∈Υs

∑
j∈ΩX

ist

[
ln e−µZ

t Rjfist + ln

(
yfist
y′fist

)]
. (B.42)

Average Treatment Effect on Emissions from Regulated Plants. Using B.7, we
have

ATTTZ
st =

(
−µZ

t

)
NTT

st

∑
i∈Υst

∑
j∈ΩTT

ist

Rjfist +
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NTT
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i∈Υst

∑
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∑
j∈ΩTT
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(1− ν)ρ
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st

ln
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k∈ΩT
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θ′kist

(
e

ρτt
ρ−1

Rkist − 1
)
+ 1

]

− ln
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ist
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(
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+ 1
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. (B.43)
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Defining Rst
TT ≡ 1

NTT
st

∑
i∈Υst

∑
f∈ΩT

ist

∑
j∈ΩTT

fist
Rfist, simplifying the expression and com-

bining terms yields

ATTTZ
st =

ρ− ν

(1− ν)ρ

∑
i∈Υs

NTT
ist

NTT
st

ln
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e
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ρτt
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θ′kist

(
e

ρτt
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Rkist − 1
)
+ 1

]

− ln
∑
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(B.44)

Hence, ATTTZ
st > 0 if, for all industries i,

e

(
−µZ

t +
ρτt
ρ−1

Rst
TT

)
− 1 >

∑
k∈ΩT

ist

θ′kist

(
e

ρτt
ρ−1

Rkist − 1
)

(B.45)

A simple example provides an illustration of the ambiguity of the sign in ATTTZ
st .

Suppose there is a single industry with two treated firms and several control firms. Each
regulated firm owns one regulated plant and one unregulated plant. The ATTT is written
as:

ATTTZ
t = −µZ

t +

(
ρτt
ρ− 1

)(
R1 +R2

2

)
− ln

[
θ′1

(
e

ρτt
ρ−1

R1 − 1
)
+ θ′2

(
e

ρτt
ρ−1

R2 − 1
)
+ 1
]

(B.46)

Suppose θ′1 = .7 and θ′2 = 0.25, ρτt
ρ−1

= 2, and µz
t = .05. If the plants are such that α11 = .1,

α21 = .9, α12 = α22 = .5, R11 = R12 = 1, R21 = R22 = 0, then ATTTZ
t = 0.089, whereas

if α11 = α21 = .5, then ATTTZ
t = −0.017. Furthermore, suppose that θ′s and µz

t are the
same, but ρτt

ρ−1
= −1. Assuming α11 = .9, α21 = .1, α12 = .2, α22 = .8, R11 = R12 = 1, and

R21 = R22 = 0 yields ATTTZ
t = 0.017, whereas if α11 = α21 = .5, then ATTTZ

t = −0.013.
This shows that whatever the sign of τt, the ATTT can be positive or negative, depending
on the full vector of regulation.

Average Treatment Effect on Emissions from Unregulated Plants owned by
Firms that own Regulated Plants. Defining Rst

CT ≡ 1
NCT

st

∑
i∈Υst

∑
f∈ΩT

ist

∑
j∈ΩCT

fist
Rfist,

we have

ATCTZ
st =

ρ− ν

(1− ν)ρ

∑
i∈Υs

NCT
ist

NCT
st

ln

[
e

(
ρτt
ρ−1

Rst
CT

)
∑

k∈ΩT
ist

θ′kist

(
e

ρτt
ρ−1

Rkist − 1
)
+ 1

]

− ln
∑
i∈Υs

Θ′
ist

[∑
k∈ΩT

ist
θ′kist

(
e

ρτt
ρ−1

Rkist − 1
)
+ 1

e

(
ρτt
ρ−1

Rst
CT

)
] ν(ρ−1)

(ν−1)ρ

(B.47)
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Hence, ATCTZ
st > 0 if, for all industries i,

e

(
ρτt
ρ−1

Rst
CT

)
− 1 >

∑
k∈ΩT

ist

θ′kist

(
e

ρτt
ρ−1

Rkist − 1
)

(B.48)

This is essentially the same condition as the condition (B.39) for ATT y
st in the multi-plant

case, except for the definition of Rst. The same example from Appendix B.5 indicates that,
whatever the sign of τt, the ATCT can be positive or negative, depending on the full vector
of regulation.

Average Treatment Effect on Emissions from Plants owned by Untreated Firms.
Using B.7, we have

ATCCZ
st = −
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ist

NCC
st

ln

[ ∑
k∈ΩT

ist

θ′kist

(
e

ρτt
ρ−1

Rkist − 1
)
+ 1

]

+ ln
∑
i∈Υs

Θ′
ist

[ ∑
k∈ΩT

ist

θ′kist

(
e

ρτt
ρ−1

Rkist − 1
)
+ 1

] ν(ρ−1)
(ν−1)ρ

}
. (B.49)

If τt < 0 (> 0), then the right hand side of (B.49) if negative (positive). Hence, ATCCZ
st <

0 ⇐⇒ τt < 0.

B.7 Analytical Results on Bias in DD Estimator for Multi-Plant
Firms

Average Treatment Effect on Firm-Level Outcomes for Regulated Firms. The
DD estimate of ATT v

t for v ∈ {y,X} in the multi-plant case can be computed as ̂ATT v,DD
st =

1
NT

st

∑
f∈ΩT

st
β̂v,DD
0,t Rfist = β̂v,DD

0,t Rst, where β̂v,DD
0,t is the coefficient resulting from estimating

(27) via OLS, and Rst ≡ 1
NT

st

∑
f∈ΩT

st
Rfist.

Using (B.38), we can express the bias for a given sector s as

Biasv,DD
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, (B.50)

which is positive if and only if τt < 0.
Proposition 4 established that whatever the sign of τt, ATT v

st can be positive or negative.
(B.50) implies that, when τt < 0, the DD estimator is biased up, which translates into a
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bias away from zero if ATT v
st > 0 and a bias towards zero if ATT v

st < 0. By contrast, when
τt > 0, the DD estimator is biased down, which translates into a bias away from zero if
ATT v

st < 0 and a bias towards zero if ATT v
st > 0. The estimated effects may even be of the

wrong sign.Aggregating over sectors implies that the DD estimate of ATT v
t can be biased

towards zero or away from zero, and can even yield the opposite sign from ATT v
t , whatever

the sign of τt.
The DD estimator imposes that ̂ATCv,DD

st = 0 by assumption. Hence, the magnitude
of the bias in this case equals to the true effect.

Average Treatment Effect on Aggregate Emissions. The proof in Appendix B.3 is
general for R ∈ [0, 1], so it immediately applies in the multi-plant case.

Average Treatment Effect on Plant-Level Emissions. The DD estimate of ATTTZ
t

can be computed as ̂ATTTZ,DD
st = ̂βZ,DD,TT

0,t where ̂βZ,DD,TT
0,t is the regression coefficient

resulting from estimating (28) for TT plants via OLS. We decompose the bias in the
ATTTZ

st into two components:

BiasZ,DD,TT
st = Reg-BiasZ,DD,TT

st + Spillover-BiasZ,DD,TT
st ,

with

Reg-BiasZ,DD,TT
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[
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]
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−µZ
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ρτt
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(B.51)

and

Spillover-BiasZ,DD,TT
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(B.52)

We have Spillover-BiasZ,DD,TT
st positive if and only if τt > 0, as it just encompasses spillovers

from changes in the price index. The term Reg-BiasZ,DD,TT
st represents the bias in the

estimate of the direct effect of the regulation on plant-level emissions of treated plants.
When τ ̸= 0, Reg-BiasZ,DD,TT

st cannot be signed. Hence, BiasZ,DD,TT
st cannot be signed,

and aggregating over sectors, BiasZ,DD,TT
t cannot be signed either.

The DD estimate of ATCTZ
t can be computed as ̂ATCTZ,DD

st = ̂βZ,DD,CT
0,t , where

̂βZ,DD,CT
0,t is the regression coefficient resulting from estimating (28) for CT plants via

OLS. Similarly, we decompose the bias into two components:

BiasZ,DD,CT
st = Reg-BiasZ,DD,CT

st + Spillover-BiasZ,DD,CT
st ,
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with

Reg-BiasZ,DD,CT
st = E

[
̂βZ,DD,CT
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ρτt
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(B.53)

and
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(B.54)

Given its similarities with SpilloverBiasZ,DD,TT
st , SpilloverBiasZ,DD,CT

st is also positive if and
only if τt > 0. When τ ̸= 0, then RegBiasZ,DD,CT

st cannot be signed. Hence, BiasZ,DD,CT
st

cannot be signed, and aggregating over sectors, BiasZ,DD,CT
t cannot be signed either.

B.8 Analytical Results on Bias in LA Estimator for Multi-Plant
Firms

Average Treatment Effect on Firm-Level Outcomes. If condition B.29 holds, en-

suring that the approximation on which the LA estimator rests is valid, then E

[
β̂Z,LA
0,t

]
=

−µZ
t + ρτt

ρ−1
, E

[
β̂y,LA
2,t

]
= (ν−ρ)τt

(ν−1)(1−ρ)
, thereby E

[
̂ATT v,LA

t

]
= ATT v

t and E
[
ÂTZLA

t

]
=

ATZt.
Conversely, if condition B.29 does not hold, Appendix B.4 shows that the bias in the

estimate of average treatment effects on outcome v ∈ {y, Z} for firms in group X ∈ {T,C}
in sector s for the LA model can be computed as in (B.31), (B.32), (B.33), using estimates
from the multi-plant version of (29) via OLS. The αs play no role in the estimated treatment
effects nor in the bias, as they drop out in the computation of treatment effects. Hence, the
bias in the LA model is given by the same expressions as in Appendix B.4, which indicates
that the bias in the LA model cannot be signed analytically.

Average Treatment Effect on Plant-Level Emissions. The LA estimator at the
plant level implies

̂ATTTLA
st = β̂Z,LA
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where β̂y,LA
0,t and β̂y,LA

2,t are estimated from regression model (29), β̂Z,LA
t is estimated from

regression model (25), ζist0 ≡
∑

k∈Ωist
θkist0Rkist, and ζst0 ≡

∑
i∈Υs

Θist0ζist0 .
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The bias can be decomposed as follows

BiasATTT,LA
st = Reg-BiasATTT,LA

st + Approx-BiasATTT,LA
st (B.55)

with
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and
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The term Reg-BiasATTT,LA
st represents the bias in the estimated treatment effect stemming

from omitted variable bias in the estimates of β̂y,LA
0,t and β̂y,LA

2,t coming from leaving Sato-
Vartia-weighted productivity growth at the industry level in the error term. The term
Approx-BiasATTT,LA

st represents the bias resulting from using a linear approximation to the
CES price index. In general, the sign of neither of these terms, nor the sum of them can
be determined analytically.

The average treatment effect on unregulated plants owned by firms that also operate
regulated plants can be computed as

̂ATCTLA
st = β̂y,LA

0,t Rst
CT

+ β̂y,LA
2,t

∑
i∈Υs

NCT
ist

NCT
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ζist0 −
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2,t

)
ζst0 .

The bias can be decomposed as follows

BiasATCT,LA
st = Reg-BiasATCT,LA

st + Approx-BiasATCT,LA
st (B.58)
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with
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and

Approx-BiasATCT,LA
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The term Reg-BiasATCT,LA
st represents the bias in the estimated treatment effect stem-

ming from omitted variable bias in the estimates of β̂y,LA
0,t and β̂y,LA

2,t , as above. The term
Approx-BiasATCT,LA

st represents the bias resulting from using a linear approximation to the
CES price index. In general, the sign of neither of these terms, nor the sum of them can
be determined analytically.

The average treatment effect on emissions of plants owned by control firms can be
computed as

̂ATCCLA
st = β̂y,LA

2,t

∑
i∈Υs

NCC
ist

NCC
st

ζist0 −
(
β̂y,LA
0,t + β̂y,LA

2,t

)
ζst0 .

The bias can be decomposed as follows

BiasATCC,LA
st = Reg-BiasATCC,LA

st + Approx-BiasATCC,LA
st (B.61)

with

Reg-BiasATCC,LA
st =

(
E

[
β̂y,LA
2,t

]
− βy

2,t

)∑
i∈Υs

NCC
ist

NCC
st
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−
(
E

[
β̂y,LA
0,t

]
+ E

[
β̂y,LA
2,t

]
−
(
βy
0,t + βy

2,t

))
ζst0 (B.62)
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and
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ist
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st
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y
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](β
y
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β
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)(B.63)

The term Reg-BiasATCC,LA
st represents the bias in the estimated treatment effect stem-

ming from omitted variable bias in the estimates of β̂y,LA
0,t and β̂y,LA

2,t , as above. The term
Approx-BiasATCC,LA

st represents the bias resulting from using a linear approximation to the
CES price index. In general, the sign of neither of these terms, nor the sum of them can
be determined analytically.
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C Monte Carlo Experiments
In this appendix, we present additional results from Monte Carlo experiments not reported
in the main text.

C.1 Monte Carlo Experiments for Single-Plant Firms

In the paper, we show results from Monte-Carlo experiments assuming that firms can own
multiple plants. Appendix B reveals that if the data generating process assumes that all
firms own a single plant, we can sign analytically the biases at least for the DD estimator.
By contrast, if market shares do not remain at their pre-regulation values, the sign of the
LA estimator biases is indeterminate. Figure C.7 shows the biases in estimating average
treatment effects from each estimator assuming that all firms own a single plant and follow
a random walk productivity growth path.

Figure C.7: Treatment Effects for revenues and emissions at the firm level and in aggregate,
Single-Plant Firms
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Notes: Subfigures in panel a) plot average estimates of treatment effects on revenues (y) and emissions (z)
as a percentage of observed outcomes for each estimator across 100 replications against the average of the
true metric, for each parameter combination. Left panels show the ATTs for each parameter combination,
whereas right panels show the ATCs, all at the firm level. Panel b) plots the average aggregate effect on
total emissions relative to the counterfactual unregulated equilibrium. The black line corresponds to the
45-degree line. Data generating process assumes single-plant firms and random walk productivity growth.
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C.2 Monte-Carlo Experiments for Oligopoly

In the model, we assume that firms do not internalize the effect of their pricing on the
industry-wide price index. However, with a discrete number of firms, some of whom com-
mand nontrivial market shares, it could be that, in reality, at least some firms do internalize
the effect of their pricing behavior on the CES price index. In this case, our estimator would
be misspecified. To explore the potential role of misspecification bias with respect to strate-
gic behavior, we run an adversarial test on our empirical strategy by simulating the data
using Bertrand-Nash pricing behavior, and leaving all other features of the simulations the
same.

To simulate the economy assuming firms engage in Bertrand-Nash pricing, we consider
the following pricing rule since firms internalize the effect of their pricing decision on the
CES price index:

pOfit = cfit

[
(ν − 1)− (ν − ρ) θfit + (1− ρ) νθfitΘit

ρ (ν − 1)− (ν − ρ) θfit + (1− ρ) νθfitΘit

]
, (C.64)

where θfit = (pfit/Pit)
−ρ
1−ρ describes the response of the within-industry price index to firm

f ’s price change, and Θit = (Pit/Ψt)
−ν
1−ν describes the response of the sector price index to

industry i’s price index change. The pricing rule thus varies with firm f ’s market share in
industry i and industry i’s market share in sector s at time t.

We use the same empirical strategies as presented in the paper for multi-plant firms
– our GMM estimator, the DD model, and the LA model – and compare their estimated
ATTs with the true ATTs. Figure C.8 shows the interquartile distribution of estimation
errors by estimator and parameter combination assuming oligopolistic behaviors. We find
that, even if firms play Bertrand-Nash, our procedure still delivers estimates of treatment
effects that matches the true values quite well. Indeed, the interquartile of the distribution
of errors for our GMM estimator always covers zero, except for the ATCT for highly
negative τt. In any case, extremes of the interquartile distribution are never more than
a few percentage points away from zero. By contrast, the LA estimator performs less
well since its interquartile distribution of estimation errors often does not recover zero
(see for instance, subfigures representing ATTy, ATZ, ATTT, and ATCT) and is further
away from zero for some parameter combinations. The DD estimator appears strongly
biased: estimation biases are measured on the right axis of each subfigure, implying large
magnitudes. As predicted, the sign of the bias is opposite to the sign of τt. These patterns
are similar to the ones observed under monopolistic competition.

The good performance of our GMM estimator is reminiscent of the findings in Head &
Mayer (2022), where it was found that even if firms play Bertrand-Nash, estimation based
on the assumption of monopolistic competition performs incredibly well.
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Figure C.8: Bias in Average Treatment Effects in Monte Carlo Simulations, Oligopoly
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Notes: Subfigures plot the interquartile distribution of estimation errors by estimator and parameter
combination for average and aggregate treatment effects across 100 replications for a DGP that assumes
oligopoly. On the x-axis, parameter combinations are ordered by β0 = ρτt

ρ−1 . GMM and LA estimation
biases are measured on the left axis, while DD estimation biases are measured on the right axis. In all
subfigures, parameter combinations to the left (right) of the vertical dashed line indicate simulations for
which τt > 0 (< 0).
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D Data Appendix

D.1 FICUS-FARE

Balance sheet information for the universe of French firms was retrieved from the FICUS
(Annual structural statistics of companies from the SUSE scheme, 1994-2007) and FARE
(Annual structural statistics of companies from the ESANE scheme, 2008-2016). These
firm-level data originate from a fiscal source, since firms need to declare their profits to the
tax authorities. Firm-level data from FICUS/FARE were linked to other data sets based
on the unique identifier of French firms (SIREN).

We identify industries and sectors based on the activity code APE (Activité Principale
de l’Etablissement), from the national activity nomenclature, namely the Nomenclature des
Activités Francaises (NAF). These 4-digit codes correspond to an industry, whereas the
first two digits of the codes are common within a sector. The NAF classification was revised
in 2003 (from the “NAF93” to the “NAFRev.1”) and again in 2008 (to the “NAFRev.2”). If
the conversion from the NAF93 to the NAFRev1 is straightforward, the revision in 2008
deeply modified the within-sector industry decomposition and resulted in a many-to-many
mapping between NAFRev.1 and NAFRev.2. Since our analysis rests on a structure of
industries and sectors, we must assign one activity code to each firm over time. We use
the NAFRev.1 revisions in most of the analysis. If a firm is active both before and after
2008, it is assigned two stable activity codes, one for each revision. Indeed, we assign to
firms that switch industry codes their modal code within a revision. If a firm is not active
in one of the period, it is either assigned a 1-to-1 match in nomenclatures (if available) or
a code in the NAF classification that is observed most frequently for firms with the same
industry code.

We include all firms in all industries with 2-digit codes between 15 - 37 in the NAF
Rev.1. We exclude extractive industries (codes 10 to 14) and energy production and
distribution (40 and 41). We group aggregates of 2-digit APE codes into “sectors”, as in
Harrigan et al. (2018b). We consider the stable firm-level 4-digit APE code as the industry.

D.2 EACEI

The information on energy use comes from the EACEI (Enquête sur les consommations
d’énergie dans l’industrie) and EACEI-IAA (for agro-industry) surveys. These are surveys
of manufacturing establishments (identified by a unique identifier called SIRET, whose
first 9 digits identify the SIREN of the firm) that provide information on the consumption
(quantity and value) of energy, broken down by energy types: electricity (bought and
self-generated), steam, natural gas, other types of gas, coal, lignite, coke, propane/butane,
heavy fuel oil, heating oil and other petroleum products. All establishments with more than
250 employees receive the survey each year, whereas only a sample of establishments with
20 or more employees (stratified by industries, number of employees, and region) receive
it. The response rate is nearly 90% (see Marin & Vona 2021). Figure D.9 shows that
plants covered by the EACEI represent only 10% of the number of manufacturing plants
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in France, but 50% of the labor employed in manufacturing and 80% of manufacturing
emissions (using sector-year averages of emission intensity to impute missing data).

We compute CO2 emissions at the plant level by combining the quantity of energy con-
sumed with an energy-specific conversion factor that indicates the amount of CO2 released
in the atmosphere when the type of energy considered is used. We thus focus on energy-
related CO2 emissions released by each plant during production through the combustion
of fossil energy or through the indirect emissions related to electricity bought from the grid
or steam bought externally. We thus ignore any emissions released in the upstream stages
of extraction, transformation and transportation of energy. We use CO2 emission factors
for the different energy types from ADEME’s “Base Carbone”.46 Whereas the conversion
factors are constant over time for most energy types, given the proportionality between
CO2 emissions and the carbon content of fossil fuels, the amount of CO2 emissions asso-
ciated with the use of electricity from the grid is time varying and depends on the energy
mix of the electricity sector in France. Table D.2 reports these conversion factors.

Table D.2: CO2 Conversion Factors

Fuel name Unit Conversion Factor
Coal t 3.07
Lignite t 1.72
Coke of coal t 3.03
Petroleum coke t 3.1
Gas from the grid MWh 0.169
Non-natural Gas MWh 0.469
Butane/Propane t 2.965
Heavy fuel oil t 3.14
Heating oil L 0.00268
Steam t 0.113
Electricity

2012 MWh 0.0552
2013 MWh 0.0526
2014 MWh 0.0492
2015 MWh 0.0408
2016 MWh 0.0379

Notes: These conversion factors have been computed by
the authors using ADEME’s “Base Carbone”. The units
for fuels are in tons (t), megawatt hours (MWh) or liters
(L). The conversion is toward tons of CO2.

To clean the data, we first identify whether there are within-plant observations that are
50 times smaller or larger than others over time. If so, we drop the entire history of plant

46We use CO2 conversion factors from the document published by ADEME entitled “Base Carbone:
Documentation des Facteurs d’Emissions de la Base Carbone” in its version 11.2.0, available from March
2015.
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CO2 emissions. Next, we identify within-plant year-to-year changes that are equivalent to
being multiplied by 10 or divided by 10. If so, we again drop the entire plant-level history.

Figure D.9: Share of Plants Covered by the EACEI Survey
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Notes: Figure plots the shares of plants, labor share, and emissions shares of plants included in the EACEI
survey by year. Emissions share is computed by imputing emissions for plants excluded from the EACEI
survey.

D.3 EUTL

To assess the treatment status of each firm and plant, we use the European Union Trans-
action Log (EUTL), which is the central reporting tool for the EU ETS. Transactions are
reported through the EUTL with a delay of three years. The data can be downloaded from
the EUTL webpage (https://ec.europa.eu/clima/ets/). We downloaded two registries, one
for 2014 and the other for 2018.

Within the EUTL, an installation is a regulated entity. It faces the obligation to
surrender allowances at least equal to its verified emissions of the previous year to the reg-
ulatory authority. Installations either receive these allowances for free or buy them on the
allowances market. To be able to receive, transfer, and surrender allowances, each instal-
lation must be represented by an operator holding account (OHA). For each account, the
EUTL provides a primary contact for the account holder with an address. Each installation
receives a unique identifier and a registry, which corresponds to its country of location. In
some cases, the EUTL will provide information on companies related to the installation,
that is on the SIREN in the French context. SIREN identifiers are usually reported for
manufacturing industries, but not for the power sector and for heating units. To illustrate,
from the registry of 2014, we obtain 1256 account holders with SIREN information and
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Table D.3: Treatment by Sector

# Firms # Plants
Manufacturing

Motor vehicles & other transport equipment 11 13
Chemicals & Pharmaceuticals 85 126
Computer, Electronic & Optical products 4 4
Electrical equipment 2 2
Food, Beverages & Tobacco 104 148
Machinery & Equipment 7 9
Basic & Fabricated Metal products 40 57
Rubber, Plastic & Non-metallic mineral products 88 198
Textiles & Apparel 17 17
Wood & Paper products 99 116
Other manufacturing 8 9

Subtotal 465 699

Non-Manufacturing/Unknown 381 565

Total 846 1264

130 without. To complement the original file, we use the Ownership links and enhanced
EUTL dataset from Jaraite, Jong, Kazukauskas, Zaklan and Zeitlberger (2016).47 From
the registry of 2018, we obtain 995 account holders with SIREN and 320 without, some of
them being identical to the ones from the registry of 2014.

To assign a treatment status to each plant, we must match the EUTL installations with
the list of SIRET owned by a firm (SIREN) in all manufacturing sectors. We first retrieve
the list of plants and their locations (city code, address) from the “Stock of Establishments”
dataset from the French statistical agency INSEE. The INSEE agency produces this dataset
and the information on plant-level labor force using a combination of CLAP (knowledge
on local production entities), DADS (employer-employee dataset), and EPURE (data from
the French social security system). We then merge the installations from EUTL with this
list using SIREN and city codes. Next, for the installations that match with several SIRET,
we use the street names and a web scraping python code to select among these different
SIRET.

The number of regulated plants and firms by sector (using the nomenclature NAF
Rev.1) are reported in Table D.3. We count 465 firms and 699 plants ever regulated in the
manufacturing sectors.

Figure D.10 shows the distribution of plant-level CO2 emissions in 2004, as well as the
share of plants being regulated within each bin of CO2 emissions level in 2004. We note
that the regulation share never reaches 100% even for the most polluting plants.

47The dataset can be downloaded from https://cadmus.eui.eu/handle/1814/64596.
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Figure D.10: Regulation status by plant-level CO2 emissions in 2004
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D.4 Imports and Exports

We use the Customs data for the export sales by firm-product-destination for each year
of the sample, and aggregate at the firm level. We use BACI from CEPII for aggregate
trade flows and select all flows toward France. Figure D.11 shows that roughly a third of
manufacturing sales in France comes from abroad.

Figure D.11: Sales on French Market by Firm Origin
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Notes: This figure plots the total sales in France across all manufacturing sectors for French firms vs
foreign firms. Foreign sales are computed from BACI.
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D.5 Variable Definitions

Revenue is total sales, including exports. In FICUS, this is CATOTAL, whereas in
FARE this is REDI_R310. Domestic sales are the sales realized on the domestic mar-
ket (CAFRANC in FICUS, REDI_R420 in FARE). We compute them as the difference
between total sales and export sales from the French Customs dataset.

Employment is the full-time equivalent of the number of directly employed workers by
the plant averaged over the year. We use the variable reported in the Stock d’Etablissements.

Energy consumption per energy type is defined as the quantity of energy used by a
plant. In EACEI, the variable is CONS_UP for the surveys from 1994 to 1999, and CSUP
for the surveys from 2000 onward.

D.6 Imputing Emissions

Since we do not observe all plants in the EACEI surveys, we can impute emissions from
missing plants using average sector-year emission intensity. These imputations are not
used to estimate reduced-form parameters, but only to build counterfactual emissions.

Given our theoretical model, emissions at the plant-level are given by

zjfist =
ργκt

wE
t︸ ︷︷ ︸

≡xt

eβ̂10Rjfistαjfistyfist

where we have used our estimate β̂10 in place of the underlying structural parameter −µz.
Note that the emission intensity term xt =

ργκt

wE
t

does not vary by firm within a year. Hence,
we can estimate xt by taking averages over the year, by sector,

x̂st =
1

Nst

∑
j

zjfist
αjfist ∗ yfist

e−̂β10Rjfist

Then for any plant whose emissions we don’t observe, we can compute

ẑjfist = x̂ste
β̂10Rjfistαjfistyfist.

Additionally, we compute emissions related to production for the domestic market only,
by decomposing total sales into domestic and export sales: yfist ≡ ydomfist + yforfist, and by
attributing emissions to domestic sales:

ẑdomjfist =
zjfist
yfist

ydomfist .
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Figure D.12: Emissions, with and without Imputations
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Notes: Figure plots total (solid) and domestic (dashed) emissions, without (left) and with (right) imputing
emissions for plants not surveyed by the EACEI.

Figure D.12 plots total CO2 emissions (solid) vs CO2 generated in production for do-
mestic sales (dashed) with imputing emissions (right) and without imputing emissions
(left). The jumps in the CO2 emissions series are related to large metalworking factories
seeing their legal entities changed (resulting in a change in SIREN), which results in these
plants being missing in the EACEI survey the year after.

Figure D.13 shows that aggregate CO2 emissions from the EACEI surveys, with the
imputation presented above, follows the same trend as the reported emissions from all
manufacturing sectors in the National Emissions Inventory established by the French gov-
ernment.
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Figure D.13: Total vs Domestic Sales and Emissions for French Firms
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Notes: Figure plots the total revenues vs revenues on the French market (domestic) for French firms (left)
and total CO2 emissions vs CO2 generated in production for domestic sales for French firms (right). CO2

emissions are imputed for plants not included in the EACEI survey. The red line plots the total CO2

emissions from all manufacturing sectors reported in the National Emissions Inventory of France.
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