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ABSTRACT
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extensive cross-section and time-series variation. The standard least
squares estimators in such data structures turn out to have an asymp-
totic distribution that is neither Op(T−1) Dickey-Fuller, nor Op(N−1=2)
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be consistent and asymptotically normal, but has a nonvanishing bias in
its asymptotic distribution.
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so, interesting subtleties will arise: the principal result of the paper shows that
the unit root regression coefficient estimator is asymptotically distributed neither
(unbiased) normal at rate Op(N−1=2), as one might expect from standard panel
data analysis, nor standard Dickey-Fuller at rate Op(T−1), as one might expect
from standard time series analysis. Instead, the estimator is consistent and asymp-
totically normal, but with a nonvanishing bias in the asymptotic distribution.

The remainder of this paper is organized as follows. Section 2 calculates the
asymptotic distribution of the least squares estimator for the lag coefficient when
the data have a unit root in the time series dimension, and where both cross-
section and time series dimensions are comparable in magnitude (i.e., the data are
a random �eld). Differences from the standard time series case are described more
carefully there. Section 3 reports the results of a Monte Carlo study to evaluate
the accuracy of the asymptotic approximation. Section 4 briefly concludes; an
appendix gives the proof of the main result.

2. Asymptotic Approximation

Unit root regression for univariate time series is now well understood (Phillips,
1987). We briefly present it here only to establish notation. Suppose { ε(t) :
integer t } is a mean zero random sequence satisfying a functional central limit
theorem, i.e., for

B̃T (r) def= T−1=2

[rT ]∑
t=1

ε(t), all r in [0, 1]

(by the usual convention, [ ] denotes integer part, and
∑0
t=1 ε(t) is taken to be

zero), there exists a finite positive constant s such that:

s−1B̃T ⇒ B as T →∞

(with ⇒ denoting weak convergence, and B standard Brownian motion or Wiener
process). It will be convenient in the sequel to define the normalized version

BT = s−1B̃T
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A number of features in this result are useful to note here, for comparison with
those below. First, the least squares estimator bT converges to the correct value
of unity at rate T , faster than the usual T 1=2 rate in ordinary regression. Second,
the initial condition X(0) is asymptotically irrelevant. Third, the approximating
random variable on the left hand side bears a non-normal distribution, one that
does not in general have expectation zero. Fourth, the numerator random variable
is a shifted χ2(1) with mean 1 − σ2/s2 (zero when ε is serially uncorrelated, but
not otherwise), while the denominator is a nondegenerate positive random vari-
able. Nevertheless, the distribution of the ratio is easily generated by Monte Carlo
simulation; its critical points have been tabulated, for instance, in Fuller (1976)
Table 8.5.1.

We turn now to the situation of interest, where we have an extensive cross-
section of observations

{Xj(t) : j = 1, 2, . . . ,N ; t = 0, 1, . . . , T } ,

which, for each j, is generated by

Xj(t) = Xj(t− 1) + εj(t), t ≥ 1;

Xj(0) a given random variable.

The simplest case arises when observations are independent in the cross-section:
this would be standard in panel data analysis, although in time series econometrics,
positing independence across observations is unusual. Modelling cross-sectional
dependence is complicated considerably by the fact that, unlike in a time series,
individual observations in a cross section need display no natural ordering. Thus,
the interpretation of mixing conditions (say) in cross-section economic data is
unclear—it is not evident what is meant by independence for observations “suf-
ficiently far apart”. One possibility for modelling dependence in dynamic cross
sections might be a structure like that in Quah and Sargent (1993), although as
Geweke (1993) emphasizes, a rigorous inference theory there too has yet to be
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developed. Yet another possibility in such data sets with rich cross-section and
time-series variation is to eschew regression analysis altogether and to model the
data as a dynamically evolving distribution. [Some economic models even suggest
this as the natural econometric structure to investigate particular questions (see
Quah, 1993a, b, c).]

Instead of the standard panel data setting where the researcher is concerned
with unobservable individual effects and a fixed, finite time dimension T , here
we ignore the first issue, and take N and T to be the same order of magnitude,
N = N(T ) = O(T ). We do this to focus on how this new data structure affects
the time series results given above in Theorem 2.1 and its surroundings.

By analogy with the time series case, take the estimator for the regression
coefficient of X on its own first lag to be:

bT =
(N(T )∑
j=1

T∑
t=1

Xj(t− 1)2

)−1(N(T )∑
j=1

T∑
t=1

Xj(t)Xj(t− 1)
)

.

Notice that the terms that appear on the right hand side are not those obtained
by stacking the data as in, e.g., Holtz-Eakin, Newey, and Rosen (1988). These
terms are instead, when appropriately normalized, sample analogues of certain
(conditional) population moments.

For random variable Y with finite p-th absolute moment, E|Y |p <∞, define
p-norm as

‖Y ‖p = (E|Y |p)1=p = E1=p|Y |p.

The asymptotic distribution of bT is then given in the following.

Theorem 2.2: Assume that { εj(t) : integer j, t } is a collection of independent

random variables, and {Xj(0) : integer j } is a sequence of independent random

variables such that:

(i) Eεj(t) = 0 and 0 < Var(εj(t)) = σ2 <∞ for all j and t; and
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(ii) for all j,

E

(
Xj(0) ·

[
T−1=2

T∑
t=1

εj(t)

] )
→ µ as T →∞ with |µ| <∞.

Further, assume that for some positive number δ,

(iii) supj;t ‖εj(t)‖4+� <∞ ;

(iv) supj;T ‖T−1=2
∑T
t=1 εj(t)‖4+� <∞ and;

(v) supj ‖Xj(0)‖2+� <∞ .

Then, for N = N(T ) = κT with κ > 0, we have:

2−1=2N(T )1=2T
(

bT − 1− 2
µ

σ2
T−3=2

)
L−→ N(0, 1) as T →∞.

The proof of this result is given in the Appendix, but some remarks are appro-
priate here: notice that the convergence rate is N(T )1=2T , or simply T 3=2, under
our assumption that N(T ) is κT . In any application, N and T are fixed and given;
thus any assumption we make on the relation between them as each gets large is
necessarily arbitrary. I have chosen what seems to me the natural normalization.
The assumption could be relaxed to be N = O(T ) without loss, but some such
assumption will certainly be needed.

The resulting rate of T 3=2 can be viewed as multiplying the rate N1=2 from
standard regression with the rate T from unit root time series regression. The
theorem asserts that the estimator bT is consistent for the correct value of unity,
but the asymptotic distribution has a nonzero mean of 2µ/σ2 which depends on the
covariances of the initial condition X(0) with subsequent ε’s as well as the variance
of the ε’s. Thus, unlike the time series case of Theorem 2.1, initial conditions do
matter here—even as T gets arbitrarily large.
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In the time series case, the numerator random variable of the asymptotic ap-
proximation has zero mean when the ε’s are serially uncorrelated; here, however,
the mean of the asymptotic distribution is nonzero even when the ε’s are seri-
ally independent. Notice that in condition (ii), under the other assumptions, the
product’s second term T−1=2

∑T
t=1 εj(t) is Op(1). The moment conditions (iii)–(v)

require only a little more than bounded fourth and second moments on ε and X(0)
respectively. In (iv), the term T−1=2

∑T
t=1 εj(t) is, again, seen to be just Op(1),

and converges to a normal random variable; the last of course has all moments
finite. While more primitive conditions might be available that would imply (iv),
they would add no further insight in the current discussion. Finally, notice that if
ε were iid normal, then (iii) and (iv) would automatically hold.

These conditions are not the weakest possible, but they are easy to verify;
further, in the proof, they illustrate the reasoning giving rise to the result without
unnecessary and distracting complications.

3. Monte Carlo Results

This section reports the results from a Monte Carlo study to assess the small-
sample accuracy of Theorem 2.2. The Table gives the critical values for different
tail probabilities from a Monte Carlo sample of 10,000 draws. The experiments
here take the (nuisance) parameters µ and σ—for which it is easy to get consistent
estimators—as known.

I consider 25 different settings for N and T , each ranging from 25 to 1000.
Looking down the columns of Table 1 gives—for varying values of N and T—Monte
Carlo critical values for different tail probabilities, the latter ranging across the
rows. The last two rows also show the asymptotic critical values for the standard
cross-section/panel data regression (N =∞, T = 1) and for the standard Dickey-
Fuller time series regression (N = 1, T =∞). Thus, the last but one row simply
tabulates the standard normal, while the last row reproduces Table 8.5.1 from
Fuller (1976).

This table makes clear that large N and T drive the distribution of the esti-
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mator towards the normal: Small N and T give rise to the same asymmetry that
describes the Dickey-Fuller (1,∞) distribution, while both the large N , small T

and simultaneously large N and T cases are well-approximated by the standard
normal distribution.2

Note that the table already corrects for the asymptotic bias, and thus large
N—with both small and large T—should (and does) have the same asymptotics.

More extensive experiments have been carried out—all verifying the asymp-
totic approximations of the previous section and the appendix. For reasons of
space, however, they are not presented here. (See Quah, 1992.)

4. Conclusion

This paper has begun analysis of the subtleties that arise in unit-roots regression
in data that have simultaneously extensive cross-section and time-series variation.
The asymptotic distribution derived here can be understood as a mixture of the
standard normal and Dickey-Fuller-Phillips asymptotics.

Economists (macroeconomists in particular) are now considering progressively
richer models where the natural datasets to study are no longer time series or
standard cross-sections or panels. The analytical results in this note should serve
as a useful beginning to allow more complete and rigorous econometric analysis of
such situations.

2 The unit roots case with large N and small T had also been suggested on
page 1373 of Holtz-Eakin, Newey, and Rosen (1988).
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5. Appendix

This appendix contains the proof of the Theorem in the paper.
Proof of Theorem 2.2: Define for each j the Brownian motion approximant

BjT (r) def= σ−1T−1=2

[rT ]∑
t=1

εj(t), for r in [0, 1]

(recognizing that s = σ when, for fixed j, the sequence {εj(t)} comprises uncorre-
lated random variables). Note that (ii) implies

∀j : E(Xj(0)BjT (1))→ σ−1µ as T →∞.

From the definition of bT we have:

bT − 1− 2
µ

σ2
T−3=2 =

(∑
j

T∑
t=1

Xj(t− 1)2

)−1

×
(∑

j

T∑
t=1

Xj(t− 1)εj(t)− 2
µ

σ2
T−3=2

∑
j

T∑
t=1

Xj(t− 1)2

)
.

Take the denominator: performing the usual time series calculations for each j

gives

∑
j

T∑
t=1

Xj(t− 1)2 = T
∑
j

Xj(0)2

+ 2σT 3=2
∑
j

Xj(0)
[ ∫ 1

0

BjT (r) dr − T−1BjT (1)
]

+ σ2T 2
∑
j

[ ∫ 1

0

BjT (r)2 dr − T−1BjT (1)2

]
.
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Normalizing by T 2N , this obeys

(T 2N(T ))−1

N(T )∑
j=1

T∑
t=1

Xj(t− 1)2 Pr−→ σ2/2 as T →∞. (5.1)

To see this, consider each of the summands in turn. First,

(T 2N(T ))−1T

N(T )∑
j=1

Xj(0)2 = T−1N(T )−1

N(T )∑
j=1

Xj(0)2 Pr−→ 0 as T →∞,

from Markov inequality combined with∥∥∥∥T−1N−1
N∑
j=1

Xj(0)2

∥∥∥∥
1

≤ T−1N−1
N∑
j=1

‖Xj(0)2‖1

≤ T−1 sup
j
‖Xj(0)‖22 → 0 as T →∞

given (v) (using Liapounov inequality). Next, we show that

T−1=2N(T )−1

N(T )∑
j=1

Xj(0)
[ ∫ 1

0

BjT (r) dr − T−1BjT (1)
]

Pr−→ 0. (5.2)

This follows from:∫ 1

0

BjT (r) dr − T−1BjT (1) =
T∑
t=1

BjT ((t− 1)/T ) · T−1

= σ−1T−3=2
T∑
t=1

(t−1∑
l=1

εj(l)
)

= σ−1T−1=2
T∑
t=1

(1− t/T )εj(t),
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so that

T−1=2N(T )−1

N(T )∑
j=1

Xj(0)
[ ∫ 1

0

BjT (r) dr − T−1BjT (1)
]

= σ−1T−1=2N(T )−1

N(T )∑
j=1

Xj(0)

(
T−1=2

T∑
t=1

(1− t/T )εj(t)

)
.

But ∥∥∥∥N−1
N∑
j=1

Xj(0)

(
T−1=2

T∑
t=1

(1− t/T )εj(t)

)∥∥∥∥
1

≤ N−1
N∑
j=1

‖Xj(0)‖2 ·
∥∥∥∥T−1=2

T∑
t=1

εj(t)
∥∥∥∥

2

≤ sup
j
‖Xj(0)‖2 · sup

j;T

∥∥∥∥T−1=2
T∑
t=1

εj(t)
∥∥∥∥

2

by the Minkowski and Hölder inequalities. From (iv) and (v) and the Liapounov
inequality, the right hand side above is finite independent of j and T ; combined
with the Markov inequality, this establishes (5.2). Finally, it only remains to verify

N(T )−1

N(T )∑
j=1

[ ∫ 1

0

BjT (r)2 dr − T−1BjT (1)2

]
Pr−→ 1

2
as T →∞. (5.3)

Notice that for all T , the individual summands
∫ 1

0
BjT (r)2 dr − T−1BjT (1)2 are

independent across j. Expanding each summand,∫ 1

0

BjT (r)2 dr − T−1BjT (1)2 =
T∑
t=1

T−1BjT ((t− 1)/T )2

= σ−2T−1
T∑
t=1

(
T−1=2

t−1∑
l=1

εj(l)
)2

,
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so that the expectation of each satisfies:

E

[ ∫ 1

0

BjT (r)2 dr − T−1BjT (1)2

]
= σ−2T−2

T∑
t=1

(t− 1)σ2

=
1
2
(1− T−1)→ 1

2
as T →∞

uniformly in j, using the uncorrelatedness of { εj(t) : t }. Further, there exists
some positive δ such that:

∥∥∥∥ ∫ 1

0

BjT (r)2 dr − T−1BjT (1)2

∥∥∥∥
1+�

≤ σ−2T−1
T∑
t=1

∥∥∥∥(
T−1=2

t−1∑
l=1

εj(l)
)2∥∥∥∥

1+�

≤ σ−2T−1
T∑
t=1

∥∥∥∥(
T−1=2

t−1∑
l=1

εj(l)
)∥∥∥∥2

2(1+�)

≤ σ−2 sup
j;T

∥∥∥∥ T−1=2
T∑
t=1

εj(t)
∥∥∥∥2

2(1+�)

<∞

by the Minkowski and Liapounov inequalities and assumption (iv). Thus the
family

{ ∫ 1

0
BjT (r)2 dr − T−1BjT (1)2

}
is uniformly integrable in j and T (e.g.,

Billingsley 1968, p. 32). The result (5.3) then follows by a weak law of large
numbers (Andrews 1988, p. 462, item 1).
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Turn next to the numerator. Normalized by TN1=2, this is:

T−1N−1=2
∑
j

∑
t

Xj(t− 1)εj(t)− 2
µ

σ2
T−5=2N−1=2

∑
j

∑
t

Xj(t− 1)2

= T−1=2N−1=2
∑
j

Xj(0) (σBjT (1))

+
1
2
N−1=2

[
σ2

∑
j

BjT (1)2 − T−1
∑
j

∑
t

εj(t)2

]
− 2

µ

σ2
T−1=2N1=2

[
(T 2N)−1

∑
j

∑
t

Xj(t− 1)2

]
.

Adding and subtracting the term −µT−1=2N1=2, this is

T−1=2N−1=2
∑
j

[
Xj(0) (σBjT (1)) − µ

]
+

1
2
N−1=2

[
σ2

∑
j

BjT (1)2 − T−1
∑
j

∑
t

εj(t)2

]
− 2

µ

σ2
T−1=2N1=2

[
(T 2N)−1

∑
j

∑
t

Xj(t− 1)2 − 1
2
σ2

]
.

But from T−1=2N1=2 = κ1=2, and the previous convergence result (5.1) for the
denominator, the last term is op(1). Further, the first term too is op(1) from

T−1=2N(T )−1=2

N(T )∑
j=1

[ Xj(0) (σBjT (1))− µ ]

= κ−1=2N(T )−1

N(T )∑
j=1

[Xj(0) (σBjT (1)) − µ ] ,
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with the individual summands being independent and uniformly integrable, and
the limiting relation limT→∞E [Xj(0) (σBjT (1))− µ ] = 0. To see uniform inte-
grability, calculate for positive δ,

E |Xj(0) (σBjT (1))|1+�

≤ E
(
|Xj(0)|1+� |σBjT (1)|1+�

)
=

∥∥ |Xj(0)|1+� |σBjT (1)|1+�
∥∥

1

≤ ‖Xj(0)‖1+�
2+2� ·

∥∥∥∥T−1=2
T∑
t=1

εj(t)
∥∥∥∥1+�

2+2�

(by Hölder inequality)

≤
(

sup
j
‖Xj(0)‖2+2�

)1+� (
sup
j;T

∥∥∥∥T−1=2
T∑
t=1

εj(t)
∥∥∥∥

2+2�

)1+�

<∞ independent of j and T .

Thus, the numerator after normalization is asymptotically equivalent to

1
2
N−1=2

∑
j

[
(σBjT (1))2 − T−1

∑
t

εj(t)2

]

= N−1=2
∑
j

[
T−1

T−1∑
m=1

T∑
l=m+1

εj(l)εj(l −m)
]
.

Each summand is independent across j, and by the serial uncorrelatedness in εj ,
has expectation zero. Further, there is a positive δ such that:∥∥∥∥ (σBjT (1))2 − T−1

∑
t

εj(t)2

∥∥∥∥
2+�

≤ sup
j;T

∥∥∥∥ T−1=2
T∑
t=1

εj(t)
∥∥∥∥2

2(2+�)

+ sup
j;T
‖εj(t)‖22(2+�)

<∞ independent of j and T by (iii) and (iv).
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Finally, it is straightforward to calculate:

Var
(

T−1
T−1∑
m=1

T∑
l=m+1

εj(l)εj(l −m)
)

= T−2 1
2
T (T − 1)σ4

→ 1
2
σ4 as T →∞.

Consequently, by Wooldridge and White (1988, 3.1, p.219), the normalized nu-
merator converges in distribution to N(0, 1

2
σ4). Recalling that the normalized

denominator converges in probability to 1
2σ2, we have

2−1=2N(T )1=2T
(

bT − 1− 2
µ

σ2
T−3=2

)
L−→ N(0, 1),

as was to be shown. Q.E.D.



Table: Monte Carlo CDF: 10,000 draws (Known µ, σ)

2−1=2N(T )1=2T
(
bT − 1− 2 �

�2 T−3=2
)

Probability no greater than:
(N,T ) 1% 2.5% 5% 10% 90% 95% 97.5% 99%

(25, 25) −3.13 −2.60 −2.14 −1.64 1.11 1.42 1.66 1.93
(25, 50) −3.19 −2.60 −2.12 −1.60 1.10 1.40 1.67 1.94

(25, 100) −3.17 −2.57 −2.06 −1.58 1.08 1.38 1.65 1.95
(25, 250) −3.19 −2.62 −2.14 −1.60 1.07 1.36 1.58 1.85

(25, 1000) −3.25 −2.62 −2.13 −1.62 1.08 1.38 1.65 1.92
(50, 25) −2.87 −2.46 −2.00 −1.55 1.16 1.47 1.76 2.06
(50, 50) −2.86 −2.36 −1.93 −1.49 1.18 1.50 1.75 2.02

(50, 100) −2.96 −2.37 −1.91 −1.48 1.14 1.44 1.70 2.01
(50, 250) −2.83 −2.36 −1.93 −1.47 1.12 1.43 1.69 1.99

(50, 1000) −2.88 −2.37 −1.97 −1.51 1.14 1.47 1.75 2.04
(100, 25) −2.74 −2.29 −1.90 −1.47 1.20 1.51 1.80 2.13
(100, 50) −2.65 −2.20 −1.82 −1.39 1.22 1.57 1.89 2.17

(100, 100) −2.56 −2.15 −1.81 −1.39 1.19 1.51 1.80 2.12
(100, 250) −2.65 −2.20 −1.81 −1.39 1.18 1.47 1.77 2.08

(100, 1000) −2.68 −2.22 −1.83 −1.40 1.18 1.50 1.80 2.13
(250, 25) −2.61 −2.17 −1.85 −1.43 1.24 1.57 1.87 2.23
(250, 50) −2.45 −2.06 −1.73 −1.31 1.29 1.67 1.96 2.31

(250, 100) −2.46 −2.05 −1.70 −1.31 1.24 1.58 1.90 2.23
(250, 250) −2.44 −2.08 −1.75 −1.34 1.23 1.55 1.83 2.16

(250, 1000) −2.54 −2.07 −1.73 −1.33 1.19 1.54 1.84 2.16
(1000, 25) −2.44 −2.04 −1.74 −1.36 1.27 1.61 1.89 2.24
(1000, 50) −2.36 −1.94 −1.59 −1.20 1.37 1.74 2.02 2.37

(1000, 100) −2.39 −1.94 −1.63 −1.25 1.33 1.69 1.95 2.26
(1000, 250) −2.44 −2.02 −1.70 −1.31 1.28 1.62 1.91 2.26

(1000, 1000) −2.39 −2.04 −1.73 −1.31 1.23 1.58 1.85 2.18
(∞, 1) −2.33 −1.96 −1.64 −1.29 1.29 1.64 1.96 2.33
(1,∞) −13.8 −10.5 −8.1 −5.7 0.93 1.28 1.60 2.03


