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Abstract

We study the e¤ect of the predictability of an asset’s return on the prices of

options on that asset, for models in which returns are serially uncorrelated, yet

predictable on the basis of a larger information set. We show that return pre-

dictability may matter in a discrete time world, especially for longer maturity

options. However, discrepancies between the frequency of trading and obser-

vation become relevant in estimating the model parameters. When trading is

continuous, Black-Scholes is valid, and the sample variance of holding returns

over …nite periods is an appropriate estimator of the variance of instantaneous

returns.



1 Introduction

In a recent paper, Lo and Wang (1995) convincingly argue that the pre-

dictability of an asset’s returns may a¤ect the prices of options written on

that asset, even though predictability is induced by the drift, which does not

enter the option pricing formula. The rationale is that, unlike in the geo-

metric Brownian motion process with constant drift underlying the standard

Black-Scholes formula, the sample variance of discretely-sampled returns may

not be an appropriate estimator of the instantaneous variance if returns are

predictable. Lo and Wang (1995) show that this is indeed the case for uni-

variate and multivariate continuous time AR(1) processes which imply serially

correlated returns.

We analyze the same issue for models in which asset returns are serially

uncorrelated (i.e. white noise), and therefore unpredictable from their past

history alone, but they are predictable on the basis of a larger information set.

In other words, the market for the primitive asset is weak- but not semistrong-

form e¢cient. The justi…cation for such models lies at the core of the mean-

reversion literature (see e.g. Shiller (1984), Summers (1986), Poterba and

Summers (1988), or Fama and French (1988)), and simply re‡ects the fact that

negligible autocorrelations for observed returns are compatible not only with

constant expected returns, but also with a smoothly time-varying expected

return process whose …rst-order autocorrelation is high (see also Campbell

(1991)). Furthermore, such models are not only a theoretical possibility. As

pointed out by Campbell, Lo and MacKinlay (1997, p. 267), “this possibility

seems to be empirically relevant for the US stock market”.

The paper is organized as follows. In section 2, we introduce a general

discrete-time version of the price process which generates white noise returns.

This process nests a conditional version of the binomial model, which we use
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to assess whether return predictability is potentially important for option val-

uation within a preference-free framework. We also analyze the consequences

of discrepancies between the frequency of trading and the frequency of obser-

vation of prices. Then, in section 3 we derive the continuous-time di¤usion

which aggregates exactly to the discrete-time model, and analyze the e¤ects

of return predictability in the limiting case of continuous trading. In order

to gain some intuition, we also consider a discrete state approximation to the

continuous time model. Our conclusions can be found in section 4.

2 Discrete Time Analysis

2.1 A Discrete Time Model

Let p(t) denote the (log) price at instant t of a risky asset which pays no

dividends, and let x(t) be a predictor variable which Granger-causes prices.

Let’s initially consider a discrete-time world in which the highest frequency is

1. Campbell (1991) and Fiorentini and Sentana (1996) show that if the joint

data generation process for ¢1p (t) = p(t)¡ p(t¡ 1) and x(t) is given by the

following reduced-rank bivariate VAR(1):
0

@ ¢1p (t)

x (t)¡ ¹

1

A =

0

@ ¹

0

1

A+

0

@ 0 1

0 ®

1

A

0

@ ¢1p (t¡ 1)

x (t¡ 1)¡ ¹

1

A+

0

@ "1;1 (t)

"2;1 (t)

1

A (1)

where j®j < 1 and "1(t) = ("1;1 (t) ; "2;1 (t))
0 is a martingale di¤erence sequence

with E ["1(t)jI(t¡ 1)] = 0 and V ["1(t)jI(t¡ 1)] = §1 =

0

@ ¾21;1 ¾12;1

¾12;1 ¾22;1

1

A,

then the (continuously-compounded) return process ¢1p(t) is white noise with

constant variance !2 = ¾21;1 +
¾22;1
1¡®2 ¸ ¾21;1, provided that

¾12;1 =
¡®
1¡ ®2

¾22;1 (2)
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and

¾21;1 ¸
µ

®
1¡ ®2

¶2

¾22;1

Similarly, since ¢kp(t) =
Pk¡1

j=0 ¢1p(t ¡ j), k-period holding returns, with

k integer, will also be white noise, so that the variance ratio V ar (¢kp(t)) over

kV ar (¢1p(t)) will be 1 for all k.

The implications of condition (2) are perhaps easier to understand if we

consider the impulse response functions of price changes with respect to the

di¤erent shocks (see Fiorentini and Sentana (1996)). For the relevant case of

® > 0, the negative correlation between innovations implies that the initial

positive e¤ect on ¢1p(t) of a shock to "1;1 (t) is slowly compensated by the

negative but decaying impact on x(t): More interestingly, a shock to "2;1(t)

has a very large negative immediate impact on ¢1p(t), which is then slowly

reversed by the positive and decaying e¤ect on x(t). The response patterns

are such that a white noise marginal process is obtained for ¢1p(t): Campbell

(1991) provides an economic intuition for such a negative correlation in the

context of a dynamic Gordon growth model.

However, lack of autocorrelation at all horizons should not be taken as

evidence in favour of constant expected returns. In this model, one-period

holding returns are predictable on the basis of x(t), which can actually be

interpreted as expected returns.1 In fact, depending on the parameter values,

the R2 of the theoretical regression of¢1p(t) on x(t¡1)may be substantial (see

Fiorentini and Sentana (1996)). Furthermore, the degree of predictability is

horizon-dependent, in the sense that the ratio of the variance of the k-period

ahead forecast error, ¾21;k, to the variance of the k-period return, k!2, is a

1In this respect, Fiorentini and Sentana (1996) show that any reduced rank VAR(1) for
¢1p(t) and other variable ±(t) which Granger causes it (with a dense companion matrix) can
be written as (1) with x(t ¡ 1) = E [¢1p(t)jI(t ¡ 1)]. The reduced rank restriction simply
guarantees that expected returns follow an AR process of order not higher than 1.
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nonlinear function of k (see Campbell (1993) and the discussion below). Figure

1 presents a plot of these two variances (with the normalization !2 = 1) for

parameter values broadly representative of post-war monthly US stock market

returns when the corresponding lagged dividend yield is used as predictor

variable (see Fiorentini and Sentana (1996), or chapter 7 of Campbell, Lo and

MacKinlay (1997) for details). In particular, we choose ® = 0:98; ½12;1 =

cor ("1;1 (t) ; "2;1 (t)) = ¡0:63 and R21 = 1:6%. As can be seen, ¾21;k is very

close to k in the short-run, but then it becomes signi…cantly smaller in the

medium-run, although eventually it increases linearly again, as the long-run

forecast of x(t) is simply its unconditional mean, ¹.

Nevertheless, given that predictability disappears under a risk neutralized

measure, what is important for implementing option pricing models is to use

the correct values of the relevant parameters (see Lo and Wang (1995)). In

particular, since V ar (¢1p(t)) = V ar (x(t))+V ar ("1;1(t)) ¸ ¾21;1, with equality

if and only if ¾22;1 = 0, option prices computed under the assumption that p(t)

is a geometric random walk with constant drift and variance !2 may well be

wrong. As pointed out by Lo and Wang (1995), the e¤ect on prices may

be particularly important for longer maturity options, even with small levels

of predictability, since an option’s vega is an increasing function of time to

maturity.

2.2 A Discrete State Version of the Discrete Time Model

In order to assess within a preference-free framework whether return pre-

dictability is potentially important for option valuation in discrete time, we

shall use a conditional version of the binomial tree approach of Cox, Ross and

Rubinstein (1979), in which expected returns follow a discrete-time two-state

Markov chain.
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z(t¡ 1) = 1

. # &

(4) (5) (6)

. # & . # & . # &

(4) (5) (6) (4) (5) (6) (1) (2) (3)

The main advantage of such a conditional binomial model is that even

though there are three possible states of nature for each value of z(t ¡ 1), in

two of them, namely (2)-(3) and (5)-(6), the price of the risky asset, p(t), is the

same. As a consequence, we can value derivative assets with payo¤s 1-period

ahead into the future on the basis of the risk-neutralized versions of ¼0;1 and

¼1;1 alone, despite the fact that markets cannot be fully completed through

dynamic trading. It is easy to see that,

¹¼0;1 =
e(logRf¡¹) ¡ e¡M1

e¡m1 ¡ e¡M1

¹¼1;1 =
eM1 ¡ e(logRf¡¹)

eM1 ¡ em1

where

M1 =
¾2;1

2
p
q1(1¡ q1)

+ ¾1;1
¯̄
½12;1

¯̄r q1
1¡ q1

> 0

m1 =
¾2;1

2
p
q1(1¡ q1)

¡
¾1;1¯̄
½12;1

¯̄
r
1¡ q1
q1

S 0

and Rf is the constant gross return on a safe asset.

Absence of arbitrage opportunities requires 0 · ¹¼0;1 · 1 and 0 · ¹¼1;1 ·

1, or equivalently m1 · ¹ ¡ logRf · M1 and ¡M1 · ¹ ¡ logRf · ¡m1

respectively, which in turn requires at least that m1 · 0. In principle, such

conditions on the “risk premium” ¹ ¡ logRf may not be satis…ed without

further restrictions on the stochastic nature of the return generating process

(1). For instance, if we assume that the white noise restriction (2) holds, and
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make ¹ = logRf , then ½212;1 · ®=(1 + ®) becomes a necessary and su¢cient

condition.

For derivative assets such as European call options with maturity at t+1,

t + 2, etc., we would need to decompose ¹¼0;1 into ¹q0;1 ¡ ¹¼0;1 and 1 ¡ ¹q0;1,

and similarly ¹¼1;1 into ¹q1;1 ¡ ¹¼1;1 and 1 ¡ ¹q1;1. Although this is impossible

without knowing the price of some other asset, we nevertheless know that

¹¼0;1 · ¹q0;1 · 1 and ¹¼1;1 · ¹q1;1 · 1. Therefore, we can bound the derivative

price by computing it for every possible pair of admissible values of ¹q0;1; ¹q1;1.2 It

turns out that the bounds obtained in this way are very tight for the parameters

values considered in section 2.1.

An interesting situation arises when ¹ = logRf , condition (2) is satis…ed,

and ½212;1 = ®=(1+®). In this case, the prices of some of the implicit contingent

commodities are 0, and it turns out that the prices of European call options on

the risky asset are independent of z(t¡1) for all exercise prices and maturities.

However, as soon as ½212;1 < ®=(1 + ®), option prices generally depend on

z(t¡ 1). Notable exceptions are at-the-money options, whose prices turn out

to be independent of whether expected returns are low or high.

Figure 2 presents the value of 1 and 4-period European call options as a

function of the strike price, both when expected returns are low and when

they are high.3 As a normalization, we …x the current price of the underlying

risky asset to 1, and take ¹ = logRf = 0. Note that irrespectively of whether

expected returns are low or high, the call price is the same as the value of the

primitive asset (i.e. 1) when the strike price is 0, and tends to 0 as the strike
2For this purpose, it is convenient to make ¹q0;1 ¡ ¹¼0;1 = ¹̧0(1 ¡ ¹¼0;1); 1 ¡ ¹q0;1 = (1 ¡

¹̧0)(1¡ ¹¼0;1), ¹q1;1 ¡ ¹¼1;1 = ¹̧1(1¡ ¹¼1;1) and 1¡ ¹q1;1 = (1¡ ¹̧1)(1¡ ¹¼1;1) with ¹̧0; ¹̧1 2 [0;1].
3Given the structure of our model, the pseudo-pricing function discussed in Hansen and

Richard (1987), which does not take into account the values of the conditioning variable,
yields simply the equally-weighted average of the asset prices when z(t¡1) = 0 and z(t¡1) =
1.
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price goes to in…nite. Since options prices must be convex with respect to the

strike price, and the value of at-the-money options does not depend on the

state variable in this model, out–of-the-money calls attain higher prices when

z(t ¡ 1) = 1 than when z(t ¡ 1) = 0, while the opposite happens to in-the-

money calls. A similar pattern arises for 4-period call options. However, the

di¤erence between prices is substantially higher for 4-period options than for

1-period ones, which is in line with the evidence in Lo and Wang (1995).

2.3 The Consequences of Time Aggregation

In order to capture the predictability in returns, we would have to estimate

the bivariate VAR(1) process (1). Unfortunately, if returns are predictable, any

discrepancy between the frequency of trading and the frequency of observation

of prices becomes relevant in estimating (1).4

In particular, suppose that as econometricians, we only observe p(t) and

x(t) every k trading periods. If we assume for simplicity that x(t) is a stock

variable, the time-aggregated joint process for ¢kp (t) = p (t)¡ p (t¡ k) and

x(t) is also a VAR(1).5 Speci…cally
0

@ ¢kp (t)

x (t)¡ ¹

1

A =

0

@ ¹k

0

1

A+

0

@ 0 1¡®k
1¡®

0 ®k

1

A

0

@ ¢kp (t¡ k)

x (t¡ k)¡ ¹

1

A+

0

@ "1;k (t)

"2;k (t)

1

A

where "k (t) is such that E ["k(t)jI(t¡ k)] = 0 and V ["k(t)jI(t¡ k)] = §k,

with

¾21;k = k¾
2
1;1 +

2¾12;1
1¡ ®

(k ¡
1¡ ®k

1¡ ®
) +

¾22;1
(1¡ ®)2

[k +
1¡ ®2k

1¡ ®2
¡
2(1¡ ®k)
1¡ ®

]

4We are grateful to John Campbell for bringing this point to our attention.
5In order to …nd out the process for the temporally aggregated data, it is more convenient

to re-write (1) as
µ

p (t)
x (t) ¡ ¹

¶
=

µ
¹
0

¶
+

µ
1 1
0 ®

¶ µ
p (t ¡ 1)

x (t ¡ 1) ¡ ¹

¶
+

µ
"1;1 (t)
"2;1 (t)

¶
and

then recursively substitute backwards. Since the …rst column of the VAR(1) companion
matrix is (1;0)0 for all k, we can easily write back the time-aggregated process in terms of
k-period returns.
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¾12;k =
(1¡ ®k)¾12;1

1¡ ®
+
¾22;1
1¡ ®

(
1¡ ®k

1¡ ®
¡
1¡ ®2k

1¡ ®2
)

¾22;k = ¾
2
2;1
1¡ ®2k

1¡ ®2

It is then straightforward to show that if (2) holds,

¾21;k = k¾
2
1;1 +

"

k ¡
µ
1¡ ®k

1¡ ®

¶2
#
¾22;1
1¡ ®2

= k!2 ¡
µ
1¡ ®k

1¡ ®

¶2 ¾22;1
1¡ ®2

· k!2

When ® ·
p
2¡ 1, k¾21;1 · ¾21;k for all k. However, when ® >

p
2¡ 1, it is

possible that ¾21;k=k · ¾21;1 for k less than 1=(1¡®)2. For instance, if ® = 0:98,

¾21;k=k · ¾21;1 for any k ·2500.

The obvious solution to this problem is to recognize the temporal aggrega-

tion explicitly, and estimate the VAR(1) above from data sampled at frequency

k in terms of the parameters of the underlying process (1). In many cases of

interest, though, the ratio of the actual trading frequency to the frequency

of observation will be unknown. Therefore, it seems natural to analyze the

limiting case of continuous trading.

3 Continuous Time Analysis

3.1 A Continuous Time Di¤usion

Let y(t) =

0

@ p(t)

x(t)

1

A, À =

0

@ ¹(1 + ln®
1¡®)

¡¹ ln®

1

Aand A =

0

@ 0 ln®
1¡®

0 ln®

1

A with

0 < ® < 1, and consider the following continuous-time di¤usion

dy(t) = [À +Ay(t)]dt+ dW(t) (3)

where W (t) is a bivariate Wiener process with E
£
dW (t)dW (t)0

¤
= §0dt

and y(0) = y0. It is well known (see e.g. Arnold (1974)) that the solution to

the above system of …rst-order stochastic linear di¤erential equations is

y (t) = eAty0 +
Z t

0
eA(t¡r)Àdr +

Z t

0
eA(t¡r)dW (r) , t ¸ 0 (4)
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It is also well known that the exact discretization of a multivariate Ornstein-

Uhlenbeck process such as (4) satis…es the following system of …rst-order sto-

chastic linear di¤erence equations:

y (t) = gh +Fhy (t¡ h) + "h (t) , t = h; 2h; ::: (5)

where gh =
R h
0 e

ArÀdr, Fh = eAh, "h (t) » iid N(0;§h) and§h =
R h
0 e

Ar§0eA
0rdr

for any positive real number h (see also Bergstrom (1984)).

In our case, given the structure of the matrix A, we obtain

gh =

0

@ ¹(h¡ 1¡®h
1¡® )

¹(1¡ ®h)

1

A

Fh =

0

@ 1 1¡®h
1¡®

0 ®h

1

A

¾21;h = h¾
2
1;0+

2
1¡ ®

µ
h¡

®h ¡ 1
ln®

¶
¾12;0+

1
(1¡ ®)2

µ
h+

®2h ¡ 4®h + 3
2 ln®

¶
¾22;0

¾12;h =
®h ¡ 1
ln®

µ
¾12;0 ¡

®h ¡ 1
2 (1¡ ®)

¾22;0

¶

¾22;h =
®2h ¡ 1
2 ln®

¾22;0

If we take h = 1, equate to §1 and solve for §0, we …nally obtain that (3)

aggregates exactly to (1) with Gaussian innovations if:

¾21;0 = ¾
2
1;1 +

2
(1¡ ®)

·
1 +

ln®
1¡ ®

¸
¾12;1 +

1
(1¡ ®)2

·
1 +

2® ln®
1¡ ®2

¸
¾22;1

¾12;0 = ¡
ln®
1¡ ®

¾12;1 +
ln®
1¡ ®2

¾22;1

¾22;0 = ¡
2 ln®
1¡ ®2

¾22;1

Model (3) turns out to be a special case of the bivariate Ornstein-Uhlenbeck

process discussed by Lo and Wang (1995), in which there is a unit root but no

10



deterministic trends. However, they only analyze in detail the case of ¾12;0 = 0,

which necessarily implies serially correlated discretely-sampled returns. In

particular, condition (2), which guarantees that holding returns over integer

periods will be white noise, is equivalent in this continuous-time framework to:

¾12;0 =
¡1

2 (1¡ ®)
¾22;0: (6)

In fact, condition (6) implies that ¢hp (t) is white noise for any positive

real number h. To see why, let’s express (3) as _y(t) = À +Ay(t)+»(t); where

»(t) is the “derivative” of W(t). If we re-write this expression in terms of the

“di¤erential” operator D as (DI¡A)y(t) = À + »(t), it is then easy to prove

using well known results on …lters (see e.g. Priestley (1981)) that the spectral

density of _p(t) is constant when condition (6) holds.6

Nevertheless, returns are still predictable. Speci…cally, the R2 of the theo-

retical regression of ¢hp (t) on x(t¡ h) is

R2h =
¡

¡
®h ¡ 1

¢2

2h (1¡ ®)2 ln®

¾22;0
¾21;0

Figure 3 presents a plot of R2h as a function of h for the same parameter

values as before. As expected, note that it converges to 0 as h ! 0, since

the variation induced by the drift is of order h, while the variation induced by

the di¤usion is of order h1=2. Similarly, it also converges to 0 as h! 1 since

the predictability becomes proportionally negligible in the long run. However,

note that at the same time R2h can be substantial (' :334) for h ' 60.

It is well known that in this continuous time world, the Black-Scholes pric-

ing formula is valid even though the drift is a function of the state variable x(t),

and the right value of the variance parameter to use for option pricing should

be ¾21;0 (see e.g. Lo and Wang (1995)). But the somewhat surprising result

6We are grateful to Lars Hansen for suggesting this simpler line of proof.
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that we obtain from (6) is that ¾21;0 = !2, so that V ar (¢hp (t)) =h is indeed an

appropriate estimator of the volatility of instantaneous returns. Therefore, it

seems that the e¤ects of predictability and time aggregation discussed in the

previous section exactly o¤set each other in the (continuous time) limit.

3.2 A Discrete State Approximation to the Continuous
Time Model

In order to gain some intuition on the above results, consider the following

bivariate, trinomial iid(0; I) process with equally probable states proposed by

He (1990):

"1Â"2 ¡
q

3
2 0

q
3
2

¡
p
2 0 (b) 1

3 0 1
3q

1
2 (a) 1

3 0 (c) 1
3

2
3

1
3

1
3

1
3

Let "1;h(t) = ¾1;h"1, "2;h(t) = (¾12;h=¾1;h)"1 +
q
¾22;h ¡ ¾212;h=¾21;h"2 and

generate ¢hp (t) and x (t)¡ ¹ according to (5). If h = 1=N; with N integer,

this process aggregates exactly to (1), albeit with non-Gaussian innovations.

At the same time, it converges weakly to (3) as h! 0 (see e.g. He (1990)).

Note that even though there are three possible states of nature for each

value of x(t ¡ h), in two of them, namely (a) and (c), the price of the risky

asset, p(t), is the same (cf. section 2.2). As a result, if ¾22;0 = ¾12;0 = 0 so that

x (t) = ¹;8t; we obtain an asymmetric version of the unconditional binomial

process of Cox, Ross and Rubinstein (1979).

Let ¹¼ [x(t¡ h)] be the risk-neutralized probability of state (b) as a function

of x(t¡ h). It is easy to see that

¹¼ [x(t¡ h)] =
exp

n
h(logRf ¡ ¹) + 1¡®h

®¡1 [x(t¡ h)¡ ¹]¡
q

1
2¾1;h

o
¡ 1

exp
n
¡(

p
2 +

q
1
2)¾1;h

o
¡ 1
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which remains between 0 and 1 provided that

¡
r
1
2
¾1;h · h(¹¡ logRf ) +

1¡ ®h

1¡ ®
[x(t¡ h)¡ ¹] ·

p
2¾1;h

Since ¾1;h is of order h1=2 whereas h(¹ ¡ logRf ) + 1¡®h
1¡® [x(t ¡ h) ¡ ¹] is of

order h; this lack-of-arbitrage condition is increasingly likely to be satis…ed as

h! 0.

For positive h; ¹¼ [x(t¡ h)] depends on the deviations of expected returns

from its long-term mean, ¹. However, it is not di¢cult to see that such a

dependence vanishes at the rate h, and furthermore that limh!0 ¹¼ [x(t¡ h)] =

1=3, which is the actual probability of the corresponding state. Since ¾1;h =

h1=2¾1;0 + o(h) when condition (6) holds, this con…rms that the Black-Scholes

pricing formula is valid in the limit with ! as the relevant parameter.

We can also use the trinomial model to see whether the continuous trading

results provide a reasonable guide when the frequency of trading is small but

…nite. Given that the number of states after a unit time interval is 3N when

h = 1=N; we choose N = 10 for simplicity. For the purposes of the exercise,

we arbitrarily split 1-¹¼ [x(t¡ h)] equally between the …rst and the last state.7

Figure 4 presents the price of a 1-period European call options as a function of

the strike price, when the current expected return is §one standard deviation

away from its mean, ¹. Again, we choose ¹ = logRf = 0 and p(t) = 0 for

normalization. As a benchmark, we also include prices computed on the basis

of the Black-Scholes formula, as well as the asymmetric version of the Cox,

Ross and Rubinstein (1979) approach mentioned above. Although the two

prices computed under the assumption of no predictability are fairly accurate

for a wide range of exercise prices, it seems that the initial value of x(t) still
7Alternatively, we could assume that x(t) is itself the (detrended) price of another …-

nancial asset. In that case, it is possible to prove that the risk-neutralized probabilities of
states (a) and (c) also go to 1/3 as h ! 0. It turns out that the way in which we split
1 ¡ ¹¼ [x(t ¡ h)] has only an imperceptible e¤ect on the results displayed in Figure 4.
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exerts some in‡uence on option prices over the depicted range, at least for

N = 10.

4 Conclusions

We analyze the e¤ect of the predictability of an asset’s return on the prices

of options on that asset, for a class of stochastic processes for prices which

yield predictable, yet serially uncorrelated returns. For a conditional version

of the binomial tree approach of Cox, Ross and Rubinstein (1979) in which

expected returns follow a discrete-time two-state Markov chain, we show that

return predictability matters, especially for longer maturity options (cf. Lo

and Wang (1995)).

However, in a discrete time world with predictable returns, any discrepancy

between the frequency of trading and the frequency of observation of prices

becomes relevant in estimating the model parameters. For that reason, we also

analyze the limiting case of continuous trading. In such a world, the Black-

Scholes option pricing formula is valid despite the predictability, and moreover,

the sample variance of holding returns over …nite periods turns out to be an

appropriate estimator of the variance of instantaneous returns. Therefore, it

seems that what is important for implementing option pricing models is not

merely the predictability of the asset return, but its serial correlation. In fact,

this is also true for more general price processes. In particular, suppose that

the drift follows a general linear covariance stationary process, so that the joint

model for actual and expected returns can be written as

_p(t) = ¹(t) + »1(t)

¹(t)¡ ¹ = g(D)»2(t)

For instance, g(D) = (1 +Db1 + : : :+Dqbq)=(Dp +Dp¡1a1 + : : :+ ap) for the

14



continuous ARMA(p,q) process discussed in Brockwell (1995). Here, returns

are serially uncorrelated over any frequency ¸ if (and only if) jg(i¸)j2 ¾22;0 +

(g(i¸) + g(¡i¸)) ¾12;0 is not a function of ¸. In that case V ar (¢hp (t)) =h is

still an appropriate estimator of the volatility of instantaneous returns, despite

the fact that returns remain predictable as long as g(D) 6= 0:
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