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Non-technical Summary

This paper departs from the recent theoretical literature on optimal

monetary policy in two significant ways. First, it is based on a Phillips curve that

embodies persistence in inflation, whereas those recent contributions dealing with

persistence have been restricted to output. Second, unlike most of the work on

time inconsistency and inflation bias, this paper assumes that the central bank

targets the natural rate of output and consequently there is no inflation bias.

In our model inflation is generated by a rational expectations-augmented

Phillips Curve, rather than a Lucas supply function; aggregate demand is

determined by the real interest rate; both supply and demand are subject to

stochastic shocks; the monetary instrument controlled by the authorities is the

nominal interest rate which, in conjunction with the expected inflation rate

determines the real interest rate; expectations in the model are rational, i.e., given

by the expected value determined by the model. The authorities in our model,

concerned about both deviations of output and inflation from their respective

targets, do not control inflation directly, but can only influence it indirectly

through the effect of their instrument on aggregate demand. Our model provides

both a richer and more realistic characterization of the policy problem.

Using a dynamic programming approach, we derive optimal monetary

policy rules both in the case where the cental bank follows a commitment strategy

and where it pursues a discretionary procedure. These rules are state-contingent

and shock-dependent in both cases.

Our results shed new light on the debate over commitment versus

discretion. Numerical solutions show that in the state-contingent part there always

exists a tradeoff between these two optimal rules in that the commitment rule

involves smaller expected deviations of inflation from its target but larger



expected deviations of output from its target; in the shock-dependent part there

can be situations in which the discretionary rule is more effective in reducing the

impact of the random shock on inflation and less effective in reducing the random

shock on output. Only in the latter case it is possible that one rule is superior;

otherwise it is generally the case that a tradeoff exists between these two rules.
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Optimal Monetary Policy Rules
in a Rational Expectations Model of the Phillips Curve

I.  Introduction

The generally poor inflation performance of industrial countries in the

postwar period has led a number of central banks to adopt explicit inflation targets

in an attempt to improve this performance.1 How best to achieve control over

inflation has been the subject of ongoing debate among economists, with

considerable attention devoted to the choices of policy instruments and rules. On

the choice of instrument there are pros and cons of using the interest rate or the

money stock as an instrument to achieve such control; on the choice of rules there

are pros and cons of using commitment rules or discretionary procedures to guide

such control.2 While this debate will no doubt continue indefinitely, the instability

in money demand equations associated with financial market innovations appears

in fact to have led central banks to give more explicit emphasis to adjusting the

interest rates which they influence directly as the primary channel for affecting

inflation.  The control of inflation therefore proceeds by affecting aggregate

demand through the adjustment of interest rates.3 One key element in this process

is the link between aggregate demand and inflation, which is embodied in the

Phillips curve.

                    
     1  The literature on this topic has grown enormously in recent years. For discussions of
recent experience and relevant issues, see Ammer and Freeman (1995), Haldane (1995) and
Leiderman and Svensson (1995).

     2  Friedman (1960), Kydland and Prescott (1977) and Barro and Gordon (1983) are among
the key contributions to the enormous literature on the debate over rule versus discretion in
monetary economics.

     3  The standard interest rate transmission channel though which the monetary authorities
affect aggregate demand has recently been questioned by economists who emphasize the credit
channel. See, for example, the papers and discussion in Thornton and Wheelock (1995).
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Some recent work on the inflation process  has emphasized the need to

adjust interest rates quickly in order to avoid the buildup of inflationary pressure

which is more difficult to reduce once it emerges. For example, Laxton, Meredith

and Rose (1995) and Clark, Laxton and Rose (1996) have stressed the importance

of nonlinearity in the relationship between inflation and excess demand, namely,

where an increase in inflation caused by aggregate demand being above potential

output is greater than the reduction in inflation when demand is below potential by

the same amount. Such nonlinearity or asymmetry in the Phillips curve provides

an incentive for policymakers to raise interest rates with alacrity  to avoid periods

of excess demand, as these require longer and/or more severe recessions to undo

the inflation generated when output is above potential. The policy analysis in those

papers is, however, based on rather arbitrary myopic and forward-looking

monetary policy reaction functions. This paper, using a simplified version of the

same model of the inflation process but with rational expectations, extends that

work in a theoretical direction by deriving explicitly optimal feedback rules both

in the case where the cental bank follows a commitment strategy and where it

pursues a discretionary procedure, and provides an unbiased comparison of these

two approaches to conduct monetary policy.

Our model is built on three equations: an objective function of the monetary

authority concerned with both inflation and output stability; a Phillips curve that

determines the inflation rate; and an equation for real aggregate demand which is

determined by the real interest rate. The monetary instrument controlled by the

authorities is the nominal interest rate, which in conjunction with the expected

inflation rate determines the real interest rate. All expectations in the model are

rational, i.e., given by the expected value determined by the model.

A feature of this model which distinguishes it from the related literature on

time inconsistency (see Barro and Gordon (1983), Goodhart and Huang (1995),

and Svensson (1995)) is that the authorities do not control inflation directly, but

can only influence it indirectly through the effect of the interest rate on real

aggregate demand. Thus there is one instrument to achieve two competing
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objectives in the short run, as both inflation and aggregate demand are subject to

stochastic shocks.4 In long-run equilibrium without shocks, the inflation and

output targets can be achieved simultaneously.  As  discussed below, the inflation

target of the monetary authority provides the nominal anchor that pins down the

inflation rate.

More importantly, in our model we use a Phillips curve to characterize

inflation rather than a Lucas supply function. This feature reflects an important

difference from many other models analyzing the issue of optimal monetary

policy. It is generally assumed that these two specifications are mirror images of

each other. However, we would argue that this is in general not the case. The

reason is that the Phillips curve is based on the assumption that there is persistence

in the behavior of wages and prices. In the case of wages, this can arise - as is

well known - from overlapping wage contracts. The persistence in prices or

inflation is in contrast to the standard Lucas supply function, where prices adjust

each period to equate supply and demand. Such market clearing does not underlie

the Phillips curve, where the change in inflation is driven by excess demand or

supply. Moreover, in the standard Lucas supply function there is a short-run

tradeoff between output and inflation only in the current period when

unanticipated shocks cause output to depart from its natural level. In such a model

the equilibrating forces are so powerful that there is no significant policy problem.

We would argue that price stickiness and nominal wage rigidity are

sufficiently pervasive that they need to be dealt with explicitly in analyzing the

optimal monetary policy response to shocks to the economy. Thus a key element

of our Phillips curve is a parameter that measures the degree of persistence in the

inflation rate. Our model therefore encompasses the assumption of no persistence

as an extreme case, but is more general in that a short-run tradeoff between output

                    
     4 As described below, when the central bank can commit to a state-contingent rule for the
interest rate, it has in effect two instruments: the ex ante expected interest rate and the ex post
actual interest rate. However, these are not two fully independent instruments, which would be
the case, for example, if fiscal policy were considered along with monetary policy.
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and inflation lasts for more than one period. Nonetheless, it incorporates the

natural rate hypothesis, so that there is no long-run tradeoff. A number of the

findings in the paper depend importantly on the relationship between the degree of

inflation persistence, which is parameterized in the model, and the slope of the

Phillips curve. In particular, the size of the optimal adjustment in the nominal

interest rate is quite sensitive to the relative magnitudes of these two parameters.

The implications of sluggish price adjustments, i.e., the absence of period-

by-period market clearing, in a rational expectations model with a Lucas surprise

supply function have been explored by McCallum (1978). He concludes that it

remains the case that the distribution of the level of output is unaffected by the

monetary policy feedback rule. We find that with price persistence, the optimal

feedback rule does affect the behavior of output even though expectations are

assumed to be formed rationally in our model, i.e., by the mathematical

expectations of the relevant variables at the end of period t-1. The difference in

results appears to reflect the fact that with inflation persistence, lagged inflation

enters as a determinant of the current level of output. As shown below, this is a

property of our model both without an optimum monetary policy feedback rule as

well as with such a rule. Indeed, McCallum considers one alternative specification

of his model which also has this property and notes (p.428) that "it is the mixing

of a nominal price adjustment relation into the real aggregate supply process that

is responsible for ... [this non-neutrality]."5

It should be noted that optimal monetary policy with persistence has been

analyzed in some of the contributions to the discussion of time inconsistency and

optimal inflation contracts for central bankers, e.g., Lockwood and

Philippopoulos (1994), Lockwood, Miller and Zhang (1994), Goodhart and

Huang (1995) and Svensson (1995). However, in these models the persistence

                    
     5  Fischer (1977) makes the general point that monetary policy will be effective in
influencing output with rational expectations as long as output is determined as a function of
more than one-period forecast error of the price level. Levine and Currie (1987) also make the
point of policy effectiveness in the context of rather general linear rational expectations.
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the monetary authority cannot achieve its inflation target every period even though

it can commit. We find that optimal control necessarily reduces the impact of

random shocks on inflation but that whether the effect of these shocks on output

are damped depends on the sensitivity of output to the real interest rate and on the

slope of the Phillips curve.

As the closed-form solution for the discretionary case is extremely

complex, numerical methods have been employed to compare the interest rate

decision rules and the behavior of inflation and output under the two policy

regimes. The equations describing the behavior of these two variables have two

components, a systematic state-contingent part and a random shock-dependent

part. Using a wide range of plausible values for the parameters of the model to

compare the coefficients of adjustment of inflation and output, we find that in the

state-contingent part the expected deviation of inflation from its target level in the

case of commitment is always smaller, but the expected deviation of output from

its target level is always larger than in the case of discretion. This provides a clear

demonstration of the tradeoff, in terms of expectations, between the two optimal

monetary policy rules. In other words, our analysis implies that in terms of

expected values, one policy rule is not unambiguously superior to the other.

We also compare the adjustment coefficients to the random shocks and find

that both optimal rules reduce the impact of the inflation shock on the inflation and

output. For each optimal rule, there is always a tradeoff between the impact of the

inflation shock on inflation and output; that is, a larger reduction in the impact of

the inflation shock on inflation involves a smaller offset of the random shock on

output, and vice versa. The comparison shows that it is generally the case that the

commitment rule leads to smaller departures of inflation from its target than

discretion, the same result noted above regarding expectations of the two

variables. However, there can be situations in which the discretionary rule

generates a larger offset to the inflation shock on current-period inflation and a

smaller offset of the shock on output. In this case the aggregation of these two

effects that combines the adjustment coefficients in the systematic and random
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shock parts could lead to the result that one rule is superior to the other. In all

other cases, there always exists a tradeoff between these two optimal rules.

The rest of this paper is organized as follows.  The rational expectations

model of the Phillips curve is presented in Section II. The optimal monetary

response function under commitment is described in Section III. This is followed

by the derivation of the optimal monetary rule under discretion in Section IV,

which includes a comparison of the two policy rules. Section V provides some

concluding comments.

II.  The Model

We start with a standard utility or loss function for the monetary authority,

Ut = - (yt - yn)2 - k(πt - π*)2, (1)

where yt is the level of output and πt is the inflation rate.  We assume that the

monetary authority is the sole relevant government decision-making unit, so that

we abstract from issues arising from different preferences over output and

inflation between the government and the central bank.7 The monetary authority

has an exogenous inflation target, π*, but it is also assumed that its policy actions

take into account deviations of output from the natural rate, yn, which is

exogenous. The parameter k, which is between 0 and infinity,8  is the weight

given to inflation stabilization relative to output stabilization. Finally, as described

above, we do not consider the possibility that the authorities may wish to achieve

a target level of output that differs from the natural rate. The implications of this

                    
     7  For a recent discussion of these issues, see Huang and Padilla (1995).

     8  In the case where k equals infinity, the monetary authority has only one objective,
inflation stability. See Goodhart (1996) for more detailed discussion of this case.
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assumption have been extensively analyzed by Goodhart and Huang (1995) and

Svensson (1995), among others.

Unlike that of the monetary authorities, the behavior of private agents is not

derived from the solution of a maximization process. This approach follows from

our desire to explore the implications for optimal monetary feedback rules of a

very specific kind of private sector behavior, namely, a Phillips curve that

embodies persistence in inflation given by equation (2) below.9

πt = λπt-1 + (1 - λ)Eπt + θ(yt - yn) + ut. (2)

In this equation λ and θ are positive constant coefficients, the operator E

denotes the rational expectation taken at the end of period t-1, and ut ∈ N(0, σu
2)

is a random shock. For simplicity, inflation in the current period is a linear

function of only the contemporaneous gap between the level of aggregate demand

and the natural or capacity level of output. The parameter θ is a positive constant

which measures the sensitivity of inflation to excess demand. As pointed out in

Laxton, Meredith and Rose (1995), Clark, Laxton and Rose (1996), and Clark

and Laxton (1996), there are good reasons to believe that θ is not constant but in

fact depends in a nonlinear fashion on the cyclical position of the economy,

namely, the positive effect on inflation generated when output is above capacity is

greater than the negative effect arising when output is below capacity by the same

amount. In particular, as noted by Lipsey (1960), the fact that the unemployment

rate is bounded by zero implies that the rise in inflation when unemployment is

below the NAIRU is greater than the fall in inflation for the same degree of slack

in the labor market. In principle, such nonlinearity should be taken into account in

our analysis of monetary policy. However, as we wish to obtain a closed form

solution for the optimal feedback rule in the commitment case, we retain the

linearity assumption in this paper. In our analysis below of the effect of changes in

                    
     9  As the parameters of the equations describing private sector behavior are invariant to
changes in the monetary policy rule, our results are still subject to the Lucas critique even
though that rule is part of the information set of the private sector.
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θ on this feedback rule, we discuss the results obtained in Bean (1996), who

explores the implications of nonlinearity for optimal monetary policy in a simpler

model than that presented here which does not embody rational expectations.

The novel feature of this specification of the Phillips curve is the explicit

introduction of persistence in inflation, in the form of lagged inflation, together

with inflation expectations. This type of specification is sometimes referred to as

the "backward and forward-looking components" model -- see Buiter and Miller

(1985). The backward-looking component here reflects inertia in inflation that can

be derived, for example, from overlapping wage contracts based on Fischer

(1977) and Taylor (1980), as is done very elegantly in Ireland and Wren-Lewis

(1995) and by Fuhrer and Moore (1995).10 The forward-looking component is

represented by the rational expectation of current rate of inflation, i.e., all the

determinants of inflation as embodied in the model and known to private agents up

to the beginning of the period. Consistency is achieved by imposing the constraint

that the sum of the coefficients on the two components sum to unity, so that in

long-run equilibrium, πt = πt-1 = Eπt. This constraint implies that the index of

persistence, λ, must lie between zero (no persistence) and unity (complete

persistence). Obviously, the standard Lucas surprise supply function is where λ is

zero.

Note that the Phillips curve described by (2) is consistent with rational

expectations. This can be seen clearly by the following two-step operation: first,

taking the rational expectation of (2), which gives Eπt = πt-1 + (θ/λ)(Eyt - yn), and

second, substituting it into (2), which results in πt = πt-1 + (θ/λ)(Eyt - yn) + θ(yt -

Eyt) + ut. It follows that πt - Eπt = θ(yt - Eyt) + ut, so that the difference between

                    
     10  There is considerable empirical evidence of persistence in inflation. See, for example,
Chadha, Masson and Meredith (1992), Clark, Laxton and Rose (1995), and Fuhrer and Moore
(1995). There is, of course, a great deal of autocorrelation in the time series of inflation itself
which may be a reflection of past inflation being a proxy for expected future inflation. The
papers cited above attempt to distinguish between expected future inflation and the pure
persistence or inertia in inflation.
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the realized actual value and the rational expectation of inflation reflects only

random disturbances.

It should be clear that Phillips curve in equation (2) ties down only the

change in the rate of inflation and not the level of inflation itself.  As a

consequence, if there were no monetary control, the level of inflation would

follow a random walk and would vary without bounds over time. The equilibrium

level of the inflation rate obviously must be tied down by a nominal anchor

outside the dynamics of the inflation process. As noted above, this is

accomplished in the usual fashion through the loss function for the monetary

authorities that includes π*, the target rate of inflation. As shown below in

Sections III and IV, in long-run equilibrium the control exercised by the central

bank ensures that the actual inflation rate is equal to the target level.

Consequently the inflation rate is tied down but the price level is not

determined in the model. This could be done by adding a money demand

equation.  However, this would not change the properties of the model as the

price level plays no role.  In effect, the monetary authority adjusts the supply of

money for a given money demand to achieve the desired nominal interest rate. In

this sense, the money market is always in equilibrium and therefore is redundant.

Of course, in a more complete model in which economic behavior is affected by

nominal magnitudes deflated by the price level, a money demand equation would

be essential.  As the focus of our analysis here is solely on the rate of inflation,

this additional complexity is not needed.

Aggregate demand is given by equation (3) as a function of the real interest

rate.

yt - yn = - φ(it - Eπt - α) + vt. (3)

In the above equation, φ is a positive constant coefficient, α > 0 is the

long-run equilibrium real interest rate, vt ∈ N(0, σv
2) is a random shock which is

assumed to be independent of ut, and it denotes the nominal interest rate, the
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instrument under the monetary authority's control.11  As we wish to explore the

effect of persistence that arises directly in the inflation process per se, we ignore

lags in the effect of the real interest rate on demand. The implications of

persistence in aggregate demand have been examined in a theoretical context by

Goodhart and Huang (1995) and empirically by Clark, Laxton and Rose (1996)

and Fuhrer and Moore (1995). The real interest rate is equal to the nominal

interest rate minus the expected inflation rate in the current period.12 The

monetary authority is assumed to vary the nominal interest rate directly to achieve

the level of excess demand needed to affect the inflation rate. Thus inflation

control is achieved only indirectly through variations in aggregate demand via

changes in the nominal interest rate relative to inflation expectations.

Taking the rational expectation of equations (2) and (3) and after some

algebraic manipulations, we have the following reduced-form equations for

inflation and output, respectively:

πt = πt-1 - φθ[(it - Eit) + (Eit - πt-1 - α)/(λ - φθ)] + ut + θvt. (4)

yt = yn - φ[(it - Eit) + λ(Eit - πt-1 - α)/(λ - φθ)] + vt. (5)

These two equations are useful because they show the relationship between

πt and yt and both the state variable, πt-1, and the control variable(s). In the case of

discretion, the sole control variable is it. With commitment, by contrast, the

monetary authority minimizes the loss function (1) not only with respect to it but

also Eit as well.  In this case expectations regarding the policy stance of the

                    
     11  Note that it is necessary to distinguish between πt and it. In our model πt is the inflation
outcome. Although it can be a target, as treated in Svensson (1995), πt cannot also be a
monetary policy instrument as it is the only instrument in this economy.

     12  Taking the expectation at the end of period t-1 is quite standard. See McCallum (1978). It
seems plausible to assume that aggregate demand is a function of the currently observed interest
rate, it , but only expected, not actual inflation, for at least three reasons. First, the interest rate
is a market-clearing price that is observed on a daily basis, whereas the periodicity (monthly,
quarterly, and annual) and reporting delays are much longer for inflation. Second, as discussed
below, there may be an informational asymmetry between the central bank and the private
sector. Third, because there is persistence in inflation, making an expenditure decision on the
basis of expected inflation would involve a relatively low forecast error.
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authorities are fully incorporated in deriving the feedback rule that determines that

stance. By examining (4) and (5) it can be seen that an increase in it

unambiguously reduces both output and inflation, whereas the effect on the

expected interest rate depends on the value of (λ - φθ). However, as shown below,

after optimal control has been taken into account, the behavior of πt and yt does

not depend on this particular relationship among the parameters.

Finally, these two equations can be expressed more compactly by using Eπt

and Eyt. This can be done by taking expectations of (4) and (5), which upon

substitution yield:

πt = Eπt - φθ(it - Eit) + ut + θvt. (6)

yt = Eyt - φ(it - Eit) + vt. (7)

Equation (6) shows that in this model actual inflation is determined by expected

inflation plus random disturbance terms, and similarly for output.

III. The Optimal Commitment Policy Rule

III.1 General Considerations

In the literature on optimal monetary policy with time inconsistency, a

standard result is that a commitment strategy by the central bank is one way to

overcome the inflation bias resulting from attempts to achieve a level of output

higher than the natural rate. As shown by Svensson (1995), in this case the

commitment solution leads to a better outcome than discretion because the latter

results in too high an inflation rate.  However, as a commitment strategy is

generally viewed as infeasible, alterative ways of improving on the discretionary

outcome have been suggested in the literature, e.g., delegation to a conservative

central banker (Rogoff (1985)) and linear inflation contracts (Walsh (1995)).

In our view the difficulties involved in implementing a commitment strategy

on the part of the monetary authorities have been exaggerated. We find rather
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more persuasive the argument of McCallum (1995) that while there are pressures

from dynamic inconsistency, it is not necessary for the central bank to succumb to

them. There is nothing to prevent a central bank from behaving in a committed

fashion and abstain from attempting to exploit expectations that are predetermined

period by period.  Hence the absence of a "commitment technology" does not

necessarily imply that the central bank will behave in an unconstrained

discretionary manner.

Therefore in this paper we have chosen to examine the effects of alternative

assumptions about the conduct of monetary policy where time inconsistency does

not arise as a result of aiming at an output level greater than the natural rate.

Consequently we do not immediately bias the results by formulating a contrived

problem that can be easily alleviated by a commitment strategy. Instead, we only

consider optimal policy rules where there is no inflation bias and compare

commitment with discretionary solutions. This approach provides a fair test of the

value added of the self-imposed constraint of commitment in comparison with a

policy rule based on discretion.

When the central bank is committed to a state contingent rule in conducting

monetary policy, this implies -- as noted by Svensson (1995) -- that the monetary

authority internalizes the impact of its decision rule on the expectations of the

private sector. With this approach to monetary policy there are in effect two

decision variables or instruments: the actual ex post and the expected ex ante

interest rate each period. The optimal response function is then derived by taking

account of how the economic system responds to both control variables.  By

contrast, under discretion the central bank does not make a commitment to follow

a state-contingent policy rule.  It is no longer bound by this constraint, but as a

result it loses one policy instrument, which is the expectation of the interest rate.

In this case the optimal rule is derived by minimizing the loss function of the

monetary authority only with respect to the actual ex post interest rate.

With a commitment solution, the monetary authority's maximization

problem involves the additional constraint that the ex ante expected nominal
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interest rate, Eit, must be equal to its committed interest rate, Et-1[it].13' 14  Hence,

its problem is:

max E βtUt
 it, Eit
subject to (4), (5) and Eit = Et-1[it]

This is a dynamic programming problem with one state-variable, πt-1, and

two control variables, it and Eit, and where β is the discount factor. The solution

can be obtained by solving the following problem:
V(πt-1) = max E{- (yt - yn)2 - k(πt - π*)2 + βV(πt)}, (8)

     it, Eit
    subject to (4), (5) and Eit = Et-1[it].

For the linear-quadratic problem such as ours, V(πt) must also be quadratic.

Without loss of generality, we can write  V(πt) = c0 + 2c1πt + c2πt
2, so that

V'(πt) = 2(c1 + c2πt). Using this condition together with (4), (5) and Eit = Et-1[it],

we obtain two first-order conditions from (8) with respect to it and Eit,

respectively:

2φ(yt-yn) + 2kφθ(πt-π*) - 2βφθ(c1 + c2πt) + Λt-1 = 0, (9)

-E{2φ[1-λ/(λ-φθ)](yt-yn)+

[2kφθ(πt-π*)-2βφθ(c1+c2πt)][1-1/(λ-φθ)]+Λt-1}=0, (10)

where Λt-1 is the Lagrange multiplier of Eit = Et-1[it].

Eliminating Λt-1 by adding (9) and (10) gives us:

                    
     13  Where Eit is a variable, which is denoted as  ite  in Svensson (1995), while Et-1[it] is a
function of it.

     14  Since Eit is the private sector's rational expectations on it, one may wonder how can the
central bank commit to these expectations. Notice, first, that such a rational expectation is
endogenously derived from the central bank's dynamic programming problem by the private
sector and the central bank. Committing to such a rule means that the monetary authority
internalizes the impact of its decision rule on the expectations of the private sector. Moreover,
the surveying of the financial markets' expectations of the inflation level by the Bank of
England as a part of its conduct of monetary policy indicates that central banks indeed take into
consideration the information on the private sector's expectations into its decision making.
Committing to Eit has been widely used in the recent literature as a commitment strategy, e.g.,
Lockwood, Miller and Zhang (1994), Goodhart and Huang (1995), and Svensson (1995).
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2φ{[λ(Eyt-yn)+kθ(Eπt-π*)-βθ(c1+c2Eπt)]/(λ-φθ)+

(yt-Eyt)+θ(k-βc2)(πt-Eπt)} = 0,

which upon substituting for yt - Eyt and πt - Eπt gives:

2φ[λ(Eyt-yn) + kθ(Eπt-π*) - βθ(c1+c2Eπt)]/(λ-φθ)

-φ(it-Eit)+vt+θ(k-βc2)[-φθ(it-Eit)+ut+θvt)]}=0. (11)

Equation (11) is the optimal feedback rule under commitment expressed as

a function of the parameters of the model and two coefficients, c1 and c2, which

are derived below. Taking the expectation of equation (11) and dividing its both

sides by 2φ/(λ-φθ), we have:

λ(Eyt - yn) + kθ(Eπt - π*) - βθ(c1 + c2Eπt) = 0. (12)

One way to interpret equations (11) and (12) is through specifying the

information structure in our model as follows: both the monetary authority and the

private sector have no information about the shocks at the beginning of each

period; then the monetary authority observes the shocks and conducts its policy;

and finally, near the end of each period, the private sector observes the shocks and

the outcome of monetary policy. Hence, the only information asymmetry occurs

in the interim of each period, and both the monetary authority and the private

sector have exactly the same information ex ante and ex post of each period.15 

Because the private sector only observes the shocks ex post, it is too late for it to

take any action to offset the response of the monetary authority to shocks. We also

describe below the solution for the case where there is no information asymmetry.

As the monetary authority conducts its policy after observing the shocks ut

and vt, equation (11) determines the optimal feedback rule. It is important to note

that equation (12) is the expected optimal policy rule at the beginning of period t

not only from the monetary authority's perspective, but also from the private
                    
     15  This may raise the question why the authorities do not simply inform the public of these
observed shocks when they occur. There are several possible answers. One such answer is that
the authorities may do so, but this will not affect the private sector behavior because wages and
prices are assumed to be sticky in the current period. This is further explained in the next
footnote.
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sector's perspective because it cannot observe the shocks until the end of period t.

However, as the private sector can observe shocks at the end of each period, it

can in principle check the monetary authority's commitment at the end of each

period.16  If the private sector discovers any cheating by the monetary authority, it

can punish the authority through a well-defined trigger mechanism, as in Barro

and Gordon (1983). This provides one mechanism through which the commitment

solution is sustainable. As a result, the expected monetary authority's optimal

policy rule at the beginning of the period t is the correct conjecture on the part of

the private sector because of the commitment of the monetary authority not to

deviate from this rule. Thus the commitment to the rule clearly determines the

expectations of the private sector.

As the solution procedure of the optimal feedback rule for the monetary

authority, i.e., equation (11), involves both the state-contingent variable πt-1 and

the two random shocks ut and vt, it is quite complicated. However, given that the

optimal feedback rule for the monetary authority is a linear function of state-

contingent and shock-dependent components, i.e., it has both a systematic state-

contingent part and a random shock-dependent part, it is simpler to determine

each part of the optimal feedback rule separately. The first step of the solution

procedure therefore is to derive only the state-contingent part of the optimal

feedback rule, and the second step is to derive only the shock-dependent part.

Note that the first step of the procedure is equivalent to solving the expected

optimal feedback rule determined by equation (12). As equation (12) always has

to be satisfied, we can impose (12) on (11). Thus in the second step of the

procedure the random shock-dependent part can be simply solved using the

                    
     16 In practice, of course, the public finds it hard enough to observe what the shocks have
been, even after the event, far less whether the authorities have abided by a complicated feed-
back rule like equation (10) above.  What actually occurs is that the authorities make a
subjective estimate, based on their expectations of the probability distribution of the shocks, ut
and vt, of what bounds of πt - π* and yt - yn their feedback rule can deliver. Then they commit
to keeping within such bounds.  The public can more easily see whether the outcomes remain
within the pre-commitment ranges.
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condition that - φ(it-Eit) + vt + θ(k-βc2)[-φθ(it-Eit) + ut + θvt)] = 0 in equation

(11).

III.2  The Systematic State-Contingent Part of the Optimal Commitment

Policy Rule

Let us start with step one. Substituting Eyt and Eπt into (12), we have

Eit = πt-1 + α + θ(λ-φθ)[(k-βc2)πt-1 - kπ* - βc1]/{φ[λ2 + θ2(k - βc2)]}. (13)

To determine the values of c1 and c2, we apply the envelope theorem into

equation (8). Doing so gives: V'(πt-1) = 2(c1 + c2πt-1) = 2{λ2/[λ2 + θ2(k -

βc2)]}[kπ* + βc1 - (k-βc2)πt-1]. Hence,

c1 = λ2(kπ* + βc1)/[λ2 + θ2(k - βc2)], (14)

c2 = - λ2(k - βc2)/[λ2 + θ2(k - βc2)]. (15)

Solving (15) for c2 gives us two roots, and the only valid root is

. (16)

This is because the other root, ,

is always greater than the root defined by (16). As Lockwood and Philippopoulos (1994) and

Svensson (1995) have shown, only the smaller root is relevant in these circumstances.

Substituting (16) in (14), we have:

. (17)

Substituting c1 and c2 into the monetary authority's expected optimal

feedback rule, equation (12), and further substituting Eit into (4) and (5), we have:

Eit = πt-1+α-{kθ(λ-φθ)/{φ[(1-β)λ2+(k-βc2)θ2]}}(π*-πt-1)

    = πt-1+α-[kθ(λ-φθ)/φ∆](π*-πt-1), (18)

Eπt = πt-1+{kθ2/[(1-β)λ2+(k-βc2)θ2]}(π*-πt-1) = πt-1+(kθ2/∆)(π*-πt-1), (19)

Eyt = yn + {kλθ/[(1-β)λ2+(k-βc2)θ2]}(π*-πt-1) = yn + (kλθ/∆)(π*-πt-1), (20)
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where ∆ denotes (1-β)λ2+(k-βc2)θ2 = [ ]/2

for compact notion.

Note first that the systematic behavior of the instrument as well as that of

the two endogenous variables is a function of the difference between the inflation

target, π*, and realized inflation last period, πt-1. The interest rate is determined in

expectation before the shocks are observed as a positive or negative function of

the gap between desired and last period's actual inflation, whereas expected

inflation and output are positively related to this gap. The signs and magnitude of

the reduced-form adjustment coefficients in front of (π* - πt-1) are discussed at

length below. The target output level, yn, does not enter the optimal feedback rule

because πt is the only state variable in the model on account of persistence.

Equation (20) shows that there is indeed persistence in output, but this in induced

via the inertia in inflation rather than arising from the intrinsic dynamics

embedded in the structural equation that determines the behavior of output.

From (18), (19) and (20), a number of important properties of the model

with the optimal commitment rule can be derived:

Lemma 1: If 1)  goes to zero, i.e., no persistence, or 2) with  > 0 and when

there are no shocks, then Ei t = * + , E t = *, and Eyt = yn.

Proof: The first result directly follows from ∆ =

[ ]/2 = kθ2  when λ goes to zero. The

second result holds because with λ > 0 and when there are no shocks, then in the

long run Eπt = πt-1 = π*. Hence, Eyt = yn and Eit = π* + α.

Based on this lemma, it is clear that when there is no persistence and in the

long-run equilibrium when there are no shocks, both output and inflation targets

can be hit each period and the real interest rate is α > 0. In these special cases

there is no tradeoff between hitting the inflation and output targets. Moreover, for



19

certain parameter values, one target may be hit each period but not the other.

Investigating equation (19) reveals that the inflation target can be hit each period

when k goes to infinity, a scenario where the monetary authority is only

concerned with price stability. Similarly, equation (20) implies that the output

target can be hit each period if θ = 0 or k = 0. However, in the more general

case of persistence and all other parameter values, neither target can be hit each

period. That is:

Theorem 1: With persistence and with shocks, then Ei t *+ , E t *, and Eyt

yn.

This result implies that when there is persistence, even in expectation the

monetary authority cannot hit its target π* every period even though it can indeed

fully commit to the policy rule. This is in sharp contrast with the result from

previous studies, e.g. (Svensson, 1995), where in expectation the monetary

authority can hit its target π* every period if it can fully commit to the policy rule,

although the realized inflation rate will typically differ from its target π*. The

reason for this difference is that in our model, unlike previous studies, inflation

also has persistence which we believe is a fundamental feature of Phillips curve.

Comparing (18), (19) and (20), we also notice that (λ - φθ) only appears as

a part of the numerator of the optimal feedback rule, equation (18), but it does not

appear in the equations for Eπt and Eyt. Recall from (4) and (5) that (λ - φθ) does

appear as a part of the denominator of Eπt and Eyt, hence it directly affects Eπt

and Eyt. In particular, when (λ - φθ) = 0, both Eπt and Eyt become infinity, i.e.,

Eπt and Eyt become unstable before the optimal rule on the nominal interest rate is

imposed. But the outcome for Eπt and Eyt, after imposing such an optimal rule

becomes invariant to the critical condition (λ - φθ). Moreover, as a part of the

numerator of the optimal feedback rule, (λ -φθ) cannot affect the stability of the

interest rate even if it goes to zero. This important point can be seen clearly in the
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analysis below.

We start our analysis by investigating the value of kθ2/∆.

Lemma 2:  0 < kθ2/∆ < 1.

Proof: Because ∆ = [ ]/2 >  >

kθ2 > 0, 0<kθ2/∆< 1.

Using Lemma 2 to investigate Eit, we have the following theorem.

Theorem 2: Under the optimal control, the ratio between the systematic

adjustment in the nominal interest rate between t and t-1 and the change in

inflation between t-1 and t-2, (Ei t-Et-2it-1)/( t-1- t-2),17 is respectively between (1,

/ ) if  >  and ( / , 1) if  < .

Proof: From equation (18), (Eit - Et-2it-1)/(πt-1 - πt-2) = 1+[kθ2(λ-φθ)/φθ∆]. Notice

that 0 <kθ2/∆<1, hence,

if λ > φθ, then 1 < 1 + [kθ2(λ - φθ)/φθ∆] < 1 + (λ - φθ)/φθ = λ/φθ;

and if λ < φθ, then 1 > 1 + [kθ2(λ-φθ)/φθ∆] > 1 + (λ-φθ)/φθ = λ/φθ. 

Theorem 2 provides the upper and lower bounds of the systematic

adjustment in the nominal interest rate between t and t-1 with respect to the

change in inflation between t-1 and t-2. Because the systematic state-contingent

part of the optimal policy rule at t is state-contingent on πt-1, the change in

inflation can only be measured lagged one period. The Theorem says that if λ >

φθ, then the systematic adjustment in the nominal interest rate is greater than the

change in inflation itself but less than λ/φθ times the change in inflation.

Otherwise, i.e., if λ < φθ, then the systematic adjustment in the nominal interest

                    
     17 Et-2 denotes the rational expectations taken at the end of period t - 2.
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rate is less than the change in inflation itself but greater than λ/φθ times the

change in inflation. In the special case where λ = φθ, Eit is not a function of π*

but set equal to πt-1 alone. Therefore, whether λ is greater or less than φθ becomes

a very critical condition.

Indeed, such a condition is in accord with economic intuition. The

condition that λ > φθ corresponds to situations of high persistence (high λ), hence

high inflationary pressure is carried over to the next period; and/or low sensitivity

of inflation to excess demand (low θ), hence the less effective is the nominal

interest rate as the policy instrument to affect inflation through aggregate demand;

and/or low sensitivity of aggregate demand to the real interest rate (low φ), hence

the less effective is the nominal interest rate as the policy instrument to affect

aggregate demand. With high persistence relative to the parameters affecting the

monetary authorities' ability to control inflation, a more active adjustment in the

nominal interest rate is called for. By symmetry, smaller adjustment in the control

instrument is needed as λ approaches φθ.

As pointed out above, the possibility that the magnitude of θ may itself be a

function of the state of the business cycle can have important implications for the

conduct of monetary policy. In particular, Laxton, Meredith and Rose (1995) and

Clark, Laxton and Rose (1996) have presented empirical evidence that the value

of θ is larger for a positive output gap, yt - yn, than for a negative output gap of

the same absolute size. Moreover, they showed that this nonlinear inflation-output

tradeoff implies that the greater the variability in output, the further the average

level of output will lie below  capacity output, yn. The magnitude of this

difference between average and capacity output was found to depend on the type

of monetary policy response function, but those used in these papers were

admittedly rather ad hoc.

Bean (1996) has also recently explored the implications of such nonlinearity

for the optimal policy feedback rule. In other words, he has derived the optimal

policy response using a dynamic programming model with a loss function similar
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is stable and the optimal control improves the equilibrium outcome in terms of

inflation.

Theorem 4: Under the optimal control, the ratio between the expected adjustment

in output between t and t-1 and the inflation change between t-1 and t-2, (Ey t - Et-

1yt-1)/( t-1 - t-2), is between (- / , 0), regardless of whether  is greater or less

than .

Proof: From equation (20), (Eyt - Et-1yt-1)/(πt-1 - πt-2) = - kλθ2/∆θ, which is

between (- λ/θ, 0), due to 0 < kθ2/∆ < 1. 

Theorem 4 shows that the expected adjustment in output between t and t-1

and the inflation change between t-1 and t-2 always move in opposite directions.

And in terms of the absolute value, the ratio between the expected adjustment in

output between t and t-1 and the inflation change between t-1 and t-2 is less than

λ/θ. The economic intuition of this theorem is clear: the larger the most recent

increase in inflation, the larger the expected decline in output in order to reduce

inflation in the current period via the Phillips curve. Moreover, dividing the

adjustment coefficient in the expression for Eπt, i.e., kθ2/∆ as shown in (19), by

that for Eyt, i.e., kλθ/∆ as in (20), we find that the ratio is θ/λ > 0. That is:

Theorem 5: Under the optimal control, the ratio between the adjustment

coefficients for  E t and  Eyt  is /  > 0.

Theorem 5 indicates that under the optimal control, the adjustment

coefficients for Eπt and Eyt move in the same direction. Hence, for a given

deviation of inflation from its target, the larger the adjustment of Eπt to the target

level of inflation, the larger the adjustment of expected output away from its

target, and vice versa. This result is due to the effect of the Phillips curve which

governs the relationship between the inflation and output adjustment; that is, the
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larger the adjustment in inflation in order to reach to its target, the larger the

expected adjustment in output in the current period, which implies a larger

deviation of output from its target. Except in the cases we have specified in

Lemma 1, both inflation and output targets cannot be hit simultaneously, and as

Theorem 5 indicates, there is a tradeoff between reaching these two targets.

We have seen that without imposing the optimal feedback rule, the value of

(λ - φθ) affects both Eπt and Eyt, and in particular, when the value of (λ - φθ) goes

to zero Eπt and Eyt become unstable. However, with the optimal feedback rule,

theorems 3 and 4 show that the value of (λ - φθ) does not affect either Eπt or Eyt.

Furthermore, the ratio between the expected adjustment in inflation and the

change in inflation and the ratio between the expected adjustment in output

between t and t-1 and the inflation change between t-1 and t-2 all are bounded

within a narrow band as a result of the optimal feedback rule. Therefore the

optimal feedback rule does indeed stabilize Eπt and can stabilize Eyt, but,

according to Theorem 5 there is a tradeoff between reaching the inflation and

output targets. We state this result as a proposition below.

Proposition 1: The optimal commitment policy rule stabilizes the rational

expectation model. However, the larger the expected adjustment of inflation

towards its target the larger the expected adjustment of output away from its

target, and vice versa.

Having obtained the solution for the expected feedback rule, we can move

to the second step in our two-step procedure to determine it, the shock-dependent

feedback rule, as well as πt and yt.

III.3  The Random Shock-Dependent Part of the Optimal Commitment

Policy Rule

Without loss of generality, we can write:
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it = Eit + γ1ut + γ2vt. (21)

As already noted above, we have (6) and (7), i.e., πt = Eπt - φθ(it - Eit) + ut +

θvt and yt = Eyt - φ(it - Eit) + vt. Using (21), (6), (7) and imposing (12) onto (11),

the monetary authority's optimal feedback rule, we have:

-φγ1ut + γ2vt) + vt + θ(k-βc2)[- φθ(γ1ut+γ2vt) + ut + θvt] = 0. (22)

Comparing the adjustment coefficients in front of ut and vt leads to two

conditions, i.e., [-φγ1 + θ(k-βc2)(- φθγ1 + 1)]ut = 0 and [- φγ2 + 1 + θ(k-βc2)(-

φθγ2 + θ)]vt = 0. The former condition implies γ1 = θ(k-βc2)/{φ[1 + θ2(k-βc2)]},

and the latter implies γ2 = 1/φ. Hence, it, πt and yt can all be expressed in two

parts, the systematic state-contingent part and the random shock-dependent part,

as follows.

it = πt-1+α-{kθ(λ-φθ)/{φ[(1-β)λ2+(k-βc2)θ2]}}(π*-πt-1)

+{θ(k-βc2)/{φ[1+θ2(k-βc2)]}}ut+(1/φ)vt. (23)

πt = πt-1 + {kθ2/[(1-β)λ2+(k-βc2)θ2]}(π*-πt-1) + {1/[1+θ2(k-βc2)]}ut. (24)

yt = yn+{kλθ/[(1-β)λ2+(k-βc2)θ2]}(π*-πt-1)-{θ(k-βc2)/[1+θ2(k-βc2)]}ut. (25)

Equation (23) is the complete optimal feedback rule which includes both the

systematic state-contingent part and the random shock-dependent part. From

equations (23), (24) and (25), we have the following theorem regarding the effect

of random shocks, ut and vt, on it, πt and yt.

Theorem 6: Under the optimal commitment policy rule, the impact of the random

shock ut on the adjustment of the nominal interest rate is between (0, 1/ )ut,

between (0, 1)ut on the inflation level, and between (-1/ , 0)ut on the output level.

The effect of vt on it is (1/ )vt, but this shock to aggregate demand has no effect on

either t or yt.

Proof: From equations (23), (24) and (25), ut affects it, πt and yt respectively by

{θ(k-βc2)/{φ[1 + θ2(k-βc2)]}}ut, {1/[1 + θ2(k-βc2)]}ut and -{θ(k-βd2)/[1 + θ2(k-

βc2)]}ut, which are greater than zero but less than (1/φθ), greater than zero but
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less than 1, and greater than -(1/θ) but less than zero, respectively, following the

results that 0 < 1/[1+θ2(k-βc2)] < 1 and 0<θ2(k-βc2)/[1+θ2(k-βc2)]<1 due to

k-βc2 > 0. The second part of the theorem follows from equations (23), (24) and

(25). 

Based on this theorem it is clear that the optimal control shrinks the effect

of the random shock ut on inflation from 100 percent of ut before the optimal

policy is imposed to strictly less than 100 percent of ut after the optimal policy is

imposed. And it furthermore completely eliminates the effect on inflation of the

random shock, vt, on aggregate demand. Therefore, optimal control shrinks the

effect of both random shocks on inflation rate. Similarly, the optimal control

transmits an effect on output of random inflation shock ut up to (1/θ)ut. And it

furthermore completely eliminates the effect on output of the random shock vt.

Therefore, optimal control may shrink the effect of random shocks on output if

1/θ < 1.

We state these results regarding the effect of random shocks on inflation

and output level as:

Proposition 2: The optimal commitment policy rule completely eliminates the

effect on inflation and output of the random shock v t. It does shrink the effect on

inflation of the random shock u t, but it may or may not shrink the effect on output

of ut.

Based on Propositions 1 and 2, we have reached a conclusion regarding the

effectiveness of active policy with commitment in a rational expectations model:

with (slightly) asymmetric information and inflation persistence, an active policy

rule improves the equilibrium outcome in the rational expectations model.

Note that the driving force for the above policy effectiveness result is the

sluggish wage and price adjustment rather than the asymmetric information. We
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chose asymmetric information as one possible modelling strategy to rationalize the

existence of sluggish price and wage adjustments. As long as such sluggish

adjustments exist, that is so long as the private sector cannot adjust wages and

prices instantly even if they observe the shocks the same time as the monetary

authority, the same policy effectiveness result still holds. Therefore, our

assumption on interim asymmetric information between the monetary authority

and the private sector is not as restrictive as it appears, and it can be relaxed in a

number of different ways. In one extreme case, both the monetary authority and

the private sector can observe the shocks simultaneously, with policy effective as

long as sluggish adjustments exist. At the other extreme, with neither party

observing anything in the current period, the monetary authority can still

effectively use its instrument to stabilize the economy. The only difference then is

that as the monetary authority has no information on shocks, it has to base its

control only on the expected optimal feedback rule.

To summarize, we arrive at the following conclusion regarding the

effectiveness of active policy rule with commitment in a rational expectations

model: with sluggish adjustments in wages and prices, and therefore inflation

persistence, which may also be reflected by asymmetric information, an active

policy rule with commitment stabilizes the rational expectations model and

improves the model's equilibrium outcome.

IV. The Optimal Discretionary Policy Rule

IV.1 General Considerations

As discussed above, in order to provide a fair test of the value added of the

self-imposed constraint of commitment in comparison with a policy rule based on

discretion, we have chosen to examine the effects of alternative assumptions about

the conduct of monetary policy where time inconsistency does not arise. In this

section we solve for the optimal discretionary policy rule and compare it with the
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optimal commitment policy rule.

When the central bank does not commit on Eit, it cannot internalize the

impact of its decision rule on the expectations of the private sector. With this

approach to monetary policy there is only one decision variable or instrument: the

actual ex post interest rate, it, each period. The central bank loses one policy

instrument, which is the expectation of the interest rate, so that it is no longer

bound by this constraint. In this case the optimal rule is derived by minimizing the

loss function of the monetary authority only with respect to the actual ex post

interest rate. Consequently, the new dynamic problem in this case is:

max E βtUt
    it
 subject to (4) and (5)

This is a dynamic programming problem with one state-variable, πt-1, and

one control variable, it. As in the commitment case, the solution can be obtained

by solving the following problem:
V(πt-1) = max E{- (yt - yn)2 - k(πt - π*)2 + βV(πt)}, (26)

      it
   subject to (4) and (5).

For the linear-quadratic problem such as ours, V(πt) must also be quadratic.

Without loss of generality, we can write  W(πt) = d0 + 2d1πt + d2πt
2, so that

W'(πt) = 2(d1 + d2πt). Using this condition together with (4) and (5), we obtain

the first-order conditions from (26) with respect to it:

(yt-yn) + kθ(πt-π*) - βθ(d1 + d2πt) = 0. (27)

Taking the expectation of the above equation, we have:

(Eyt - yn) + kθ(Eπt - π*) - βθ(d1 + d2Eπt) = 0. (28)

Equation (27) defines the optimal feedback rule and (28) defines the

expected optimal feedback rule. As in the commitment case, we can assume that

the only information asymmetry occurs in the interim of each period, and both the

monetary authority and the private sector have exactly the same information ex

ante and ex post in each period. Furthermore, we can, as in the commitment case,

pursue our analysis in the two-step procedure and start with the systematic state-
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system stability now.

Lemma 3: The necessary and sufficient condition for the system to be stable is k-

d2 > 0.

Proof: Eπt, given in (34), converges if and only if its adjustment coefficient is less

than 1, which is assured if and only if k - βd2 > 0.

If the system is stable in the discretionary case, then as in the commitment

case, the systematic behavior of the instrument as well as that of the two

endogenous variables in the discretionary case is also a function of the difference

between the inflation target, π*, and realized inflation last period,  πt-1.

Moreover, we notice that: 1) When  goes to zero, i.e., no persistence, or

2) with  > 0, if the system is stable and there are no shocks, then Ei t = *+ ,

E t = * and Eyt = yn. These are the identical results we have obtained in the

commitment case and stated there as Lemma 1. Based on these two results, it is

also clear that when there is persistence and when the system is stable, in

expectation the monetary authority cannot hit its target * every period even

though it follows consistently with the optimal discretionary policy rule . This is the

same as Theorem 1 in commitment.

As in the commitment case, we notice that (λ - φθ) only appears as part of

the numerator of the optimal feedback rule, equation (33), but it does not appear

in the equations for Eπt and Eyt. Again recall from (4) and (5) that (λ - φθ) does

appear as part of the denominator of Eπt and Eyt, hence it directly affects Eπt and

Eyt before the optimal rule for the nominal interest rate is imposed. But the

outcome for Eπt and Eyt after imposing such an optimal rule becomes invariant to

the critical condition (λ - φθ). Moreover, as part of the numerator of the optimal

feedback rule, (λ - φθ) cannot affect the stability of interest rate even if it goes to

zero.
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As d2 has three roots that are extremely complicated, the closed-form

solution for the discretionary case is not transparent and the comparisons between

the analytical solutions of the commitment and discretionary cases become very

difficult. A more fruitful approach is to use numerical methods involving a wide

range of plausible values for the parameters of the model to compare the

coefficients of adjustment to the gap between the target and the lagged inflation

rate. By choice of units we set φ = 1 and choose the benchmark case at λ = 0.5,

θ = 0.2, k = 1 and β = 0.9. We then vary λ from 0 to 1, θ from 0 to 10, k from

0 to 100 and β from 0 to 1. From the numerical results presented in Table I.1 to

I.4 below, we find that the coefficients of adjustment to the gap between the target

and the lagged inflation rate are uniformly larger with commitment than

discretion. This implies that in the case of commitment, the expected deviation of

inflation from its target level is always smaller, but the expected deviation of

output from its target level is always larger than in the case of discretion.

Tables I.1, I.2, I.3 and I.4 are about here

The above comparisons of the expected equilibrium outcome between the

commitment and discretionary cases are summarized as follows:

Proposition 3: Under the optimal control the expected equilibrium outcome with

discretion is qualitatively similar to that with commitment and can be described as

function of the difference between the inflation target, *, and realized inflation

last period, t-1. Quantitatively, the expected deviation of inflation from its target

level is always larger, while the expected deviation of output from its target level

is always smaller with discretion than with commitment.

The fact that commitment generates smaller expected deviation of inflation

from its target but simultaneously larger expected deviation of output from its
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target provides a clear demonstration of the tradeoff, at least in the sense of ex

ante expectation, between the optimal commitment and discretionary monetary

policy rules. This result holds because the ratio between the adjustment

coefficients for Eπt and Eyt with discretion, as with commitment, is λ/θ. While

commitment generates a larger adjustment coefficient for Eπt, which implies a

smaller expected deviation of inflation from its target, it simultaneously generates

a larger adjustment coefficient for Eyt, which implies larger expected deviation of

output from its target.

Notice that this result is obtained in our model where there is no

inflationary bias and the discretionary approach is defined by the optimal

discretionary monetary policy rule. The main intuition behind this result is that

with commitment rule, the monetary authority, with its additional instrument on

Eit, internalizes the impact of its decision rule on the expectations of the private

sector, but it also faces an additional constraint determined by equality between

the value of the additional instrument and the private sector's rational expectation

of such a value. As a result, commitment does not come free. This sheds new

light on the debate over commitment versus discretion, that was first analyzed in

Kydland and Prescott (1977), in the absence of time inconsistency or credibility

problems.

It should also be noted that, as can be seen in Table I.1 to I.4, this result

involves adjustments in the control variable, Eit, that are uniformly larger in the

case of commitment than discretion. Thus the former strategy involves a more

active use of interest rate policy to achieve smaller deviations of inflation from

target (but larger deviations of output from target). The model considered here

does not take account of possible costs in adjusting interest rates, which have been

analyzed by Goodhart (1996). If the model were extended to incorporate these

costs, the difference between the two strategies would probably be less sharp, but

the qualitative results described above would still appear to hold.



33

IV.3  The Random Shock-Dependent Part of the Optimal Discretionary

Policy Rule

The shock-dependent parts in this discretionary case are derived as in the

commitment case. Substituting for γ1 and γ2 in (21) with δ1 and δ2 respectively, we

have:

it = Eit + δ1ut + δ2vt. (36)

Simply by substituting d2 for c2 in the expression for γ1 one obtains δ1 =

θ(k-βd2)/{φ[1 + θ2(k-βd2)]}, where δ1 > 0 if the stability condition k-βd2 > 0

holds, whereas δ2 = γ2 = 1/φ. Hence, it, πt and yt can all be expressed in two

parts, the systematic state-contingent part and the random shock-dependent part,

as follows.

it =πt-1+α-{θ(λ-φθ)/φ[θ2+λ/(k-βd2)]}(π*-πt-1)

+{θ(k-βd2)/{φ[1+θ2(k-βd2)]}}ut+(1/φ)vt. (37)

πt = πt-1 + {θ2/[θ2 + λ/(k-βd2)]}(π* - πt-1) + {1/[1+θ2(k-βd2)]}ut. (38)

yt = yn + {λθ/[θ2 + λ/(k-βd2)]}(π* - πt-1) - {θ(k-βd2)/[1+θ2(k-βd2)]}ut. (39)

Equation (37) is the complete optimal feedback rule for the discretionary case

which includes both the systematic state-contingent part and the random shock-

dependent part.

Comparing the discretionary solutions, i.e., equations (37), (38) and (39),

with the commitment solutions, i.e., equations (23), (24) and (25), we notice that,

first, the shock vt has the exactly same effect on both solutions , and second, the

adjustment coefficients for i t, t and yt are analytically the same in both cases but

numerically different because c2 is generally not equal to d2.

Furthermore, from simple comparative statics of the coefficients in front of

ut for it, πt and yt in equations (37), (38) and (39) with respect to d2, we notice that

as d2 increases, the adjustment coefficient for it, πt and yt decreases, increases and

increases, respectively. From Tables II.1 to II.4 below, it is clear that as λ, θ, k

and β change, d2 (the root for the discretionary case) may be larger or smaller
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than c2 (the root for the commitment case). As a result, the adjustment coefficients

for it, πt and yt in the discretionary case will be larger, smaller and smaller,

respectively, than those in the commitment case when d2 < c2, and vice versa

when d2 > c2. Notice that the adjustment coefficients for it and πt in both rules are

positive, but the adjustment coefficient for yt in both rules is negative, which

implies that an decrease in its value means that its absolute value increases.

Therefore, when d2 < c2, the adjustment coefficient for it, πt and yt in the

discretionary case is larger (increasing its absolute value), smaller (decreasing its

absolute value) and smaller (increasing its absolute value), respectively, the

discretionary rule adjusts the nominal interest rate more and it is more effective in

reducing the effect of the random shock ut on inflation but less effective in

reducing the effect of the random shock on output, than the commitment rule, and

vice versa if d2 > c2.

Tables II.1, II.2, II.3 and II.4 are about here

Based on equations (37), (38) and (39) and Tables II.1 to II.4, we have the

following further results regarding the random shock, ut, on it, πt and yt,

respectively. We shall compare these results directly with those in the

commitment case.

Theorem 7: If the control system is stable, then as in the commitment case, under

the optimal discretionary policy rule the effect of the random shock u t on the

nominal interest rate adjustment is between (0, 1/ )ut, between (0, 1)ut on

inflation, and between (-1/ , 0)ut on output. If d2 < c2, then ut in this

discretionary case has a larger effect on i t, smaller effect on t, and larger effect

on yt, respectively, than that in the commitment case, and vice versa if d 2 > c2.

Proof: This first part of this theorem holds because the coefficients in front of ut

for it, πt and yt, respectively {θ(k-βd2)/{φ[1+θ2(k-βd2)]}, {1/[1+θ2(k-βd2)]} and -
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{θ(k-βd2)/[1+θ2(k-βd2)]}, is greater than zero but less than (1/φθ), greater than

zero but less than 1, and greater than -(1/θ) but less than zero, due to

0<1/[1+θ2(k-βd2)]<1 and 0<θ2(k-βd2)/[1+θ2(k-βd2)]<1 when the stability

condition k > βd2 holds. The second part of this theorem holds due to the joint

facts that the comparative statics of the coefficients in front of ut for it, πt and yt in

equations (37), (38) and (39) with respect to d2 are respectively negative, positive

and positive, and d2 may be larger or smaller than c2. 

As in the commitment case, the optimal control shrinks the effect of the

random shock ut on inflation from 100 percent of ut before the optimal policy is

imposed to strictly less than 100 percent of ut after the optimal policy is imposed.

And it furthermore completely eliminates the effect on inflation of the random

shock, vt, on aggregate demand. Therefore, optimal control shrinks the effect of

both random shocks on inflation rate. Similarly, the optimal control transmits an

effect on output of random inflation shocks, ut, up to (1/θ)ut. And it furthermore

completely eliminates the effect on output of the random shock vt. Therefore,

optimal control may shrink the effect of random shocks on output, if 1/θ < 1.

To summarize, we arrive the following statement regarding the effects of

shocks on inflation and output in the discretionary case:

Proposition 4: The optimal discretionary policy rule completely eliminates the

effect on inflation and output of the random shock v t. It does shrink the effect on

inflation of the random shock u t, but it may or may not shrink the effect on output

of ut. If d2 < c2, then ut in this discretionary case has a larger effect on i t, smaller

effect on t, and larger effect on y t, respectively, than that in the commitment case,

and vice versa otherwise. Only in the case where the discretionary rule is more

effective in reducing the random shock on inflation and less effective in reducing

the random shock on output would it be possible that one rule is superior;

otherwise there is always a tradeoff between these two rules.
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The first part of the above proposition implies that, as in the commitment

case, with (slightly) asymmetric information and inflation persistence, an active

policy rule with discretion improves the equilibrium outcome in our rational

expectations model. Furthermore, as in the commitment case, this conclusion only

relies on the feature of the Phillips curve, i.e., the sluggish adjustments in wages

and prices, and therefore inflation persistence. While such persistence may reflect

asymmetric information, the assumption of asymmetric information is not critical

for our result.

More importantly, the second part of the above proposition is a new

contribution to the debate on commitment versus discretion. It indicates that there

is always a tradeoff between these two rules, except in the case where the

discretionary rule is more effective in reducing the random shock on inflation and

less effective in reducing the random shock on output. In this case the

"comparative advantage" of the commitment rule in keeping inflation closer to

target in the systematic part may be offset by the greater effectiveness of the

discretionary rule in targeting inflation in response to shock. In this exceptional

case, one rule may be superior to the other because the aggregate effect of

inflation and output deviating from their targets caused by both the systematic and

the random shock components becomes ambiguous.

Our result implies that if the monetary authority is concerned with both

inflation and output, and the rule governing monetary policy is optimally

designed, then except in a special case which may lead one rule to be superior, it

will always face a tradeoff between choosing the optimal commitment and

discretionary rules. Commitment does not necessarily bring more benefits than

discretion. Moreover, when the discretionary rule is optimally designed, as it

should be, even in the presence of a large shock there may be no need for an

"escape clause" for a conservative central bank, an idea initially proposed by

Flood and Isard (1989) and further extended to a "flexible" central bank by

Lohmann (1992). This is so because even if ut is a large shock, its impact in the
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discretionary case may be stronger on inflation and weaker on output,

respectively, than in the commitment case, then the tradeoff relationship between

these two rules still exists and, as a result, there will be no obvious advantage for

the monetary authority to switch from the commitment to the discretionary rule.

That is, depending on the economic environment, the "escape clause" may not be

needed even in the presence of a large shock because the authorities are by

construction responding optimally.

V. Concluding Remarks

This paper has derived the optimal monetary policy feedback rules with

both commitment and discretionary cases in a simplified economy that is

characterized by what we believe to be a more realistic version of the Phillips

curve than that used in previous analysis of this topic. As persistence in prices and

inflation is a feature of all empirical versions of the Phillips curve, it is important

that such persistence be captured in theoretical discussions of optimal stabilization

policy. Indeed, we would argue that policy questions and issues are relatively

uninteresting in a model where a short-run tradeoff between output and inflation

exists only in the current period, as such an economy is essentially self-stabilizing.

Moreover, our characterization of inflation control appears to us to have

captured at least some of the challenges faced by monetary authorities in achieving

their objectives. While ultimately the inflation level depends on the rate of growth

of the money stock, short-run stabilization of output and inflation depends on

adjusting the (real) interest rate to affect the level of aggregate demand relative to

output capacity, and thereby inflation. Thus inflation control is achieved only

indirectly via changes in demand.

We have two main findings in the paper. First, with inflation persistence,

both commitment and discretion strategies lead to state-contingent and

shock-dependent feedback rules. Thus the overall stance of policy is important and

our analysis is consistent with that contained in the literature (see Goodhart and
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Huang (1995) and Svensson (1995) for recent examples) that has examined the

implications of output persistence on the optimal policy rule. Moreover, the form

of the feedback rules are economically plausible in that they are expressed in

terms of adjustment coefficients times the gap between the target level and lagged

inflation, and both the signs and the variations in the coefficients in response to

changes in parameter values are also in accord with economic intuition.

Second, our numerical results show that in the sense of ex ante expectation

there always exists a tradeoff relationship between the two optimal monetary

policy rules. A commitment rule takes full account the effects of expectations on

the behavior of the economy and in this sense is forward looking, whereas a

discretionary rule is myopic in the sense that it only concerned with the impact of

the realized interest rate on the economy. The commitment rule results in higher

absolute values for the adjustment coefficients for output and inflation, and

consequently leads to expected inflation that is closer to its target, but

simultaneously to expected output that is further away from its target. Moreover, a

discretionary rule may or may not be more effective in reducing the effect of the

random shock on inflation and less effective in reducing the effect of the random

shock on output than the commitment rule. Except where the discretionary rule is

more effective in reducing the effect of the random shock on inflation and less

effective in reducing the effect of the random shock on output than the

commitment rule, which may lead to the possibility of one rule being superior,

there always exists a tradeoff between the use of these two optimal rules.

It is useful to compare the optimal feedback rules derived here with that

described by Taylor (1993). In what he calls a representative monetary policy

rule, the nominal interest rate that is the instrument of the central bank is set equal

to the lagged inflation rate (plus the real steady-state growth rate of 2.2 percent to

give a positive real interest rate) and is specified as responding to deviations of

inflation from a target of two percent and deviations of output from trend GDP. It

is noteworthy that this admittedly ad hoc policy rule is quite similar in form to the

optimal rules in equations (18) and (33), where the expected interest rate is equal
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to the lagged inflation rate plus three other items, namely, the real steady-state

growth rate of α (which gives a positive real interest rate), a coefficient times the

deviation of lagged inflation from the target level (the state-contingent item), and

the effect of random shocks (the shock-dependent item). As the optimal rule takes

full account of preferences regarding deviations of output from target, such

deviations do not appear in the policy rule itself. Taylor's policy rule can be

viewed as a kind of reduced form that in principle combines the preferences of the

policymaker embodied in the loss function as well as the behavioral parameters

and structural relationships in the model, all of which are explicitly incorporated

in the coefficients in the optimal policy rules.

Taylor describes his policy rule as having the general properties of rules

that have been examined in recent research, e.g., Bryant, Hooper and Mann

(1993). Moreover, he finds that it explains remarkably well the actual behavior of

the federal funds rate controlled by the Federal Reserve over the period

1987-1992.  Clarida and Gertler (1996) estimate a modified Taylor rule over the

period 1974-1992 for the short-term interest rate used by the Bundesbank as its

policy instrument.  They also find that it has considerable explanatory power.

While it would be far too strong to conclude anything about the optimality of the

policy reaction functions of these two central banks, the theoretical results in this

paper suggest that a Taylor-type rule does at least embody certain aspects of an

optimal feedback rule.  Alternatively, one can regard this empirical evidence as

providing some support for the type of theoretical analysis pursued in this paper.

The analysis in this paper could be extended in a number of ways.

Allowing for lags in the effect of interest rates on aggregate demand and for

persistence in output would add greater realism, but is likely to add to the

complexity of the analysis without affecting the basic finding that with persistence,

an optimal monetary policy must be active in the sense of being state-contingent

and shock-dependent. In this case there would be a second state variable -lagged

output- and it would be of interest to explore whether it would be possible to

derive an optimal policy rule that would have the same symmetry as Taylor's rule,
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i.e., in which the equation for the control variable would involve adjustment

coefficients for deviations of both inflation and output from their respective

targets. Another extension is to relax the assumption of linear relationship between

excess demand and inflation. As noted above, some preliminary work suggests

that there are important implications for stabilization policy arising from this type

of nonlinearity. We plan to analyze these questions in our future research.



41

References

Ammer, John and Richard T. Freeman. 1995, "Inflation Targets in the 1990's:
The Experiences of New Zealand, Canada and the United Kingdom,"
Journal of Economics and Business, 47: 165-192.

Barro, Robert and David Gordon. 1983, "Rules, Discretion and Reputation in a
Model of Monetary Policy," Journal of Monetary Policy, 12: 101-122.

Bean, Charles. 1996, "Policy Rules with a Non-Linear Output-Inflation
Trade-Off," memeo., London School of Economics, January.

Bryant, Ralph, Peter Hooper and Catherine Mann. 1993, Evaluating Policy 
Regimes: New Research in Empirical Macroeconomics. Washington, 
D.C., Brookings Institution.

Buiter, Willem. 1981, "The Superiority of Contingent Rules over Fixed Rules in
Models with Rational Expectations," Economic Journal. 91: 647-670.

Buiter, Willem and Marcus Miller. 1985, "Costs and Benefits of an
Anti-Inflationary Policy: Questions and Issues," in Victor Argy and John
Neville, eds., Inflation and Unemployment: Theory, Experience, and
Policy-Making. London, Allen and Unwin, 11-38.

Chadha, Bankim, Paul Masson, and Guy, Meredith. 1992. "Models of Inflation
and Costs of Disinflation," Staff Papers, International Monetary Fund,
39:395-431.

Clarida, Richard and Mark Gertler.1996, "How the Bundesbank Conducts 
Monetary Policy," Memeo.

Clark, Peter and Douglas Laxton and David Rose. 1996, "Asymmetry in the 
U.S. Output-Inflation Nexus," Staff Papers, International Monetary Fund, 
43:216-251.

Clark, Peter and Douglas Laxton. 1996, "Phillips Curves, Phillips Lines and the
Unemployment Costs of Overheating," memeo., International Monetary
Fund, May.

Fischer, Stanley. 1977, "Long-Term Contracts, Rational Expectations, and the
Optimal Money Supply Rule," Journal of Political Economy, 85: 191-205.

Flood, Robert P. and Peter Isard. 1989, "Monetary Policy Strategies," Staff 
Papers, International Monetary Fund, 36: 612-632.



42

Friedman, Milton. 1960, A Program for Monetary Stability. New York: Fordham
University Press.

Fuhrer, Jeffrey and George Moore. 1995, "Monetary Policy Trade-offs and the
Correlation Between Nominal Interest rates and Real Output," American
Economic Review, 85: 219-239

Goodhart, Charles and Haizhou Huang. 1995, "What is the Central Bank's 
Game?," Financial Markets Group, London School of Economics, 
Discussion Paper No. 222, November.

Goodhart, Charles. 1996, "Why do the Monetary Authorities Smooth Interest
Rates?", Financial Markets Group, London School of Economics, Special
Paper No. 81, February.

Haldane, Andrew. 1995, Editor, Inflation Targeting, A conference of central
banks on the use of inflation targets organized by the Bank of England,
London, Bank of England, March.

Huang, Haizhou and A. Jorge Padilla. 1995. "Fiscal Policy and Sub-optimality of
the Walsh Contracts for Central Bankers," Financial Markets Group,
London School of Economics, Discussion Paper No. 223, November.

Ireland, Jonathan and Simon Wren-Lewis. 1995, "Inflation Dynamics in a New
Keynesian Model," memeo., University of Strathclyde, September.

Kydland, Finn and Edward C. Prescott, 1977, "Rules rather than Discretion: the
Inconsistence of Optimal Plans," Journal of Political Economy, 85, 473-90.

Laxton, Douglas, Guy Meredith and David Rose. 1995, "Asymmetric Effects of
Economic Activity on Inflation: Evidence and Policy Implications," Staff
Papers, International Monetary Fund, 42: 344-374.

Leiderman, Leonardo and Lars Svensson. 1995, editors, Inflation Targets, 
Centre for Economic Policy Research, London, April.

Levine, Paul and David Currie. 1987, "The Design of Feedback Rules in 
Linear Stochastic Rational Expectations Models," Journal of Economic 
Dynamics and Control, 111(1): 1-28.

Lipsey, Richard. 1960, "The Relation Between Unemployment and the Rate of
Change of Money Wage Rates in the United Kingdom 1862-1957: A
Further Analysis," Economica, 27: 1-31.



43

Lockwood, Ben and Apostolis Philippopoulos. 1994, "Insider Power,
Unemployment Dynamics and Multiple Inflation Equilibria," Economica,
61, 59-77.

Lockwood, Ben., Marcus Miller and Lei Zhang. 1994, "Designing Monetary
policy When Unemployment Persists," University of Exeter, Discussion
Paper 94/08.

Lohmann, Susanne, 1992, "Optimal Commitment in Monetary Policy: Credibility
Versus Flexibility." American Economic Review, 82: 273-286.

McCallum, Bennett. 1978, "Price Level Adjustments and the Rational
Expectations Approach to Macroeconomic Stabilization Policy," Journal of
Money, Credit, and Banking, 10: 418-436.

McCallum, Bennett. 1981, "Price Level Determinacy with an Interest Rate 
Policy Rule and Rational Expectations," Journal of Monetary Economics, 
8: 319-329.

McCallum, Bennett. 1995, "Two Fallacies Concerning Central Bank
Independence," American Economic Review, 85: 207-211.

Rogoff, Kenneth. 1985, "The Optimal Degree of Commitment to an Intermediate
Monetary Target," Quarterly Journal of Economics, 100: 1169-1190.

Svensson, Lars. 1995, "Optimal Inflation Targets, 'Conservative' Central 
Banks, and Linear Inflation Contracts," Centre for Economic Policy 
Research Discussion Paper No. 1249, October.

Taylor, John. 1980, "Aggregate Dynamics and Staggered Contracts," Journal of
Political Economy, 88: 1-23.

Taylor, John. 1993, "Discretion versus Policy Rules in Practice," Carnegie-
Rochester Conference Series on Public Policy, 39: 195-214.

Thornton, Daniel and David Wheelock. 1995, editors, Channels of Monetary
Policy, Proceedings of the Nineteenth Annual Economic Policy Conference
of the Federal Reserve Bank of St. Louis.

Walsh, Carl E. 1995, "Optimal Contracts for Central Bankers," American 
Economic Review, 85: 150-167.



44

Table I: Comparisons between the commitment and discretionary cases
of the adjustment coefficients in the expressions for Eit, Eπt and Eyt

Table I.1: Simulation Results on λ

λ c2 ic πc yc d2 id πd yd

0 0 1 1 0 0 1 1 0

0.01 -0.00249 0.9476 0.9975 0.0499 -0.03758 0.7650 0.8053 0.0403

0.1 -0.20647 0.4129 0.8259 0.4129 -0.55047 0.1871 0.3743 0.1871

0.2 -0.60731 0 0.6073 0.6073 -0.90615 0 0.2663 0.2663

0.3 -1.04083 -0.2313 0.4626 0.6939 -1.15873 -0.1070 0.2141 0.3211

0.5 -1.88280 -0.4519 0.3012 0.7531 -1.51286 -0.2384 0.1589 0.3973

0.7 -2.65479 -0.5418 0.2167 0.7585 -1.75851 -0.3215 0.1286 0.4501

0.9 -3.35177 -0.5793 0.1655 0.7448 -1.94267 -0.3810 0.1089 0.4898

1 -3.67326 -0.5877 0.1469 0.7347 -2.01900 -0.4051 0.1013 0.5064

Table I.2: Simulation Results on θ

θ c2 ic πc yc d2 id πd yd

0 -10 0 0 0 -10 0 0 0

0.01 -9.62779 -0.1887 0.0038 0.1926 -9.54179 -0.0938 0.0019 0.0957

0.1 -3.67326 -0.5877 0.1469 0.7347 -3.22967 -0.2899 0.0725 0.3624

0.2 -1.88280 -0.4519 0.3012 0.7531 -1.51286 -0.2384 0.1589 0.3973

0.4 -0.82348 -0.1318 0.5270 0.6588 -0.51995 -0.0799 0.3196 0.3995

0.5 -0.60732 0 0.6073 0.6073 -0.32293 0 0.3922 0.3922

0.7 -0.36890 0.2065 0.7230 0.5165 -0.11678 0.1485 0.5199 0.3714

1 -0.20647 0.4129 0.8259 0.4129 0 0.3333 0.6667 0.3333

10 -0.00249 0.9476 0.9975 0.0499 0.00245 0.9453 0.9950 0.0496

Legend

"c" and "d" denote the commitment and discretionary cases respectively.

ic = -kθ(λ-φθ)/{φ[(1-β)λ2+(k-βc2)θ2]}, the adjustment coefficient in the expression for Eit;

πc = kθ2/[(1-β)λ2+(k-βc2)θ2], the adjustment coefficient in the expression for Eπt;

yc = kλθ/[(1-β)λ2+(k-βc2)θ2], the adjustment coefficient in the expression for Eyt;

id = -θ(λ - φθ)/φ[θ2 + λ/(k-βd2)], the adjustment coefficient in the expression for Eit;

πd = θ2/[θ2 + λ/(k-βd2)], the adjustment coefficient in the expression for Eπt;
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yd = λθ/[θ2 + λ/(k-βd2)], the adjustment coefficient in the expression for Eyt.
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Table I.3: Simulation Results on k

k c2 ic πc yc d2 id πd yd

0 0 0 0 0 0 0 0 0

0.25 -0.91832 -0.2204 0.1469 0.3672 -0.80742 -0.1087 0.0725 0.1812

0.5 -1.34041 -0.3217 0.2145 0.5362 -1.13620 -0.1629 0.1086 0.2715

1 -1.88280 -0.4519 0.3012 0.7531 -1.51286 -0.2384 0.1589 0.3973

1.5 -2.25607 -0.5415 0.3610 0.9024 -1.73300 -0.2950 0.1966 0.4916

15 -4.71790 -1.1312 0.7549 1.8872 -1.10836 -0.8420 0.5614 1.4334

25 -5.16177 -1.2388 0.8559 2.0647 0 -1 0.6667 1.6667

35 -5.40289 -1.2967 0.8645 2.1612 0.90078 -1.0984 0.7323 1.8307

100 -5.89985 -1.4160 0.9340 2.3600 3.634590 -1.3283 0.8856 2.2139

Table I.4: Simulation Results on β

β c2 ic πc yc d2 id πd yd

0 -0.86207 -0.2069 0.1379 0.3448 -0.82304 -0.1111 0.0741 0.1852

0.01 -0.86852 -0.2084 0.1390 0.3474 -0.82856 -0.1120 0.0746 0.1866

0.1 -0.93033 -0.2233 0.1489 0.3721 -0.88072 -0.1201 0.0801 0.2002

0.3 -1.09577 -0.2630 0.1753 0.4383 -1.01353 -0.1417 0.0945 0.2362

0.5 -1.30783 -0.3139 0.2093 0.5231 -1.16892 -0.1687 0.1125 0.2812

0.7 -1.57213 -0.3773 0.2515 0.6289 -1.34005 -0.2013 0.1342 0.3356

0.9 -1.88280 -0.4519 0.3012 0.7531 -1.51286 -0.2384 0.1589 0.3973

0.99 -2.03264 -0.4878 0.3252 0.8131 -1.58669 -0.2559 0.1706 0.4265

1 -2.04951 -0.4919 0.3279 0.8198 -1.59464 -0.2578 0.1719 0.4297

Legend

"c" and "d" denote the commitment and discretionary cases respectively.

ic = -kθ(λ-φθ)/{φ[(1-β)λ2+(k-βc2)θ2]}, the adjustment coefficient in the expression for Eit;

πc = kθ2/[(1-β)λ2+(k-βc2)θ2], the adjustment coefficient in the expression for Eπt;

yc = kλθ/[(1-β)λ2+(k-βc2)θ2], the adjustment coefficient in the expression for Eyt;

id = -θ(λ - φθ)/φ[θ2 + λ/(k-βd2)], the adjustment coefficient in the expression for Eit;

πd = θ2/[θ2 + λ/(k-βd2)], the adjustment coefficient in the expression for Eπt;

yd = λθ/[θ2 + λ/(k-βd2)], the adjustment coefficient in the expression for Eyt.
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Table II: Comparisons between the commitment and discretionary cases
of the adjustment coefficients in the expressions for the random components

Table II.1: Simulation Results on λ

λ c2 ic,u πc,u yc,u d2 id,u πd,u yd,u

0 0 0.1923 0.9615 -0.1923 0 0.1923 0.9615 -0.1923

0.01 -0.00249 0.1927 0.9615 -0.1927 -0.03758 0.1986 0.9603 -0.1986

0.1 -0.20647 0.2264 0.9547 -0.2264 -0.55047 0.2822 0.9436 -0.2822

0.2 -0.60731 0.2913 0.9417 -0.2913 -0.90615 0.3385 0.9323 -0.3385

0.3 -1.04083 0.3595 0.9281 -0.3595 -1.15873 0.3777 0.9245 -0.3777

0.5 -1.88280 0.4865 0.9027 -0.4865 -1.51286 0.4315 0.9137 -0.4315

0.7 -2.65479 0.5969 0.8806 -0.5969 -1.75851 0.4682 0.9064 -0.4682

0.9 -3.35177 0.6921 0.8616 -0.6921 -1.94267 0.4952 0.9010 -0.4952

1 -3.67326 0.7347 0.8531 -0.7347 -2.01900 0.5063 0.8987 -0.5063

Table II.2: Simulation Results on θ

θ c2 ic,u πc,u yc,u d2 id,u πd,u yd,u

0 -10 0 1 0 -10 0 1 0

0.01 -9.62779 0.0966 0.9990 -0.0966 -9.54179 0.0958 0.9990 -0.0958

0.1 -3.67326 0.4128 0.9587 -0.4128 -3.22967 0.3760 0.9624 -0.3760

0.2 -1.88280 0.4865 0.9027 -0.4865 -1.51286 0.4315 0.9137 -0.4315

0.4 -0.82348 0.5447 0.7821 -0.5447 -0.51995 0.4755 0.8098 -0.4755

0.5 -0.60732 0.5576 0.7212 -0.5576 -0.32293 0.4879 0.7561 -0.4879

0.7 -0.36890 0.5642 0.6051 -0.5642 -0.11678 0.5018 0.6487 -0.5018

1 -0.20647 0.5425 0.4575 -0.5425 0 0.5 0.5 -0.5

10 -0.00249 0.0990 0.0099 -0.0990 0.00245 0.0990 0.0099 -0.0990

Legend

"c" and "d" denote the commitment and discretionary cases respectively.

ic,u = θ(k-βc2)/{φ[1 + θ2(k-βc2)]}, the adjustment coefficient of the random component for it;

πc,u = 1/[1 + θ2(k-βc2)], the adjustment coefficient of the random component for πt;

yc,u = - θ(k-βc2)/[1 + θ2(k-βc2)], the adjustment coefficient of the random component for yt;

id,u = θ(k-βd2)/{φ[1 + θ2(k-βd2)]}, the adjustment coefficient of the random component for it;

πd,u = 1/[1 + θ2(k-βd2)], the adjustment coefficient of the random component for πt;
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yd,u = - θ(k-βd2)/[1 + θ2(k-βd2)], the adjustment coefficient of the random component for yt.
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Table II.3: Simulation Results on k

k c2 ic,u πc,u yc,u d2 id,u πd,u yd,u

0 0 0 1 0 0 0 1 0

0.25 -0.91832 0.2064 0.9587 -0.2064 -0.80742 0.1880 0.9624 -0.1880

0.5 -1.34041 0.3195 0.9361 -0.3195 -1.13620 0.2870 0.9426 -0.2870

1 -1.88280 0.4865 0.9027 -0.4865 -1.51286 0.4315 0.9137 -0.4315

1.5 -2.25607 0.6187 0.8763 -0.6187 -1.73300 0.5452 0.8910 -0.5452

15 -4.71790 2.1749 0.5650 -2.1749 -1.10836 1.9510 0.6097 -1.9510

25 -5.16177 2.7125 0.4575 -2.7125 0 2.5 0.5 -2.5

35 -5.40289 3.0729 0.3854 -3.0729 0.90078 2.8881 0.4224 -2.8881

100 -5.89985 4.0475 0.1919 -4.0475 3.634590 3.9731 0.2054 -3.9731

Table II.4: Simulation Results on β

β c2 ic,u πc,u yc,u d2 id,u πd,u yd,u

0 -0.86207 0.1923 0.9615 -0.1923 -0.82304 0.1923 0.9615 -0.1923

0.01 -0.86852 0.1939 0.9612 -0.1939 -0.82856 0.1938 0.9612 -0.1938

0.1 -0.93033 0.2094 0.9581 -0.2094 -0.88072 0.2085 0.9583 -0.2085

0.3 -1.09577 0.2523 0.9495 -0.2523 -1.01353 0.2479 0.9504 -0.2479

0.5 -1.30783 0.3103 0.9379 -0.3103 -1.16892 0.2980 0.9404 -0.2980

0.7 -1.57213 0.3875 0.9225 -0.3875 -1.34005 0.3597 0.9281 -0.3597

0.9 -1.88280 0.4865 0.9027 -0.4865 -1.51286 0.4315 0.9137 -0.4315

0.99 -2.03264 0.5377 0.8925 -0.5377 -1.58669 0.4662 0.9068 -0.4662

1 -2.04951 0.5436 0.8913 -0.5436 -1.59464 0.4701 0.9060 -0.4701

Legend

"c" and "d" denote the commitment and discretionary cases respectively.

ic,u = θ(k-βc2)/{φ[1 + θ2(k-βc2)]}, the coefficient in front of ut in the expression of it for the commitment case;

πc,u = 1/[1 + θ2(k-βc2)], the coefficient in front of ut in the expression of πt for the commitment case;

yc,u = - θ(k-βc2)/[1 + θ2(k-βc2)], the coefficient in front of ut in the expression of yt for the commitment case;

id,u = θ(k-βd2)/{φ[1 + θ2(k-βd2)]}, the coefficient in front of ut in the expression of it for the discretionary case;

πd,u = 1/[1 + θ2(k-βd2)], the coefficient in front of ut in the expression of πt for the discretionary case;

yd,u = - θ(k-βd2)/[1 + θ2(k-βd2)], the coefficient in front of ut in the expression of yt for the discretionary case.


