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Data-Snooping, Technical Trading Rule Performance,
and the Bootstrap

RYAN SULLIVAN, ALLAN TIMMERMANN, AND HALBERT WHITE*

ABSTRACT

In this paper we utilize White’s Reality Check bootstrap methodology

(White (1997)) to evaluate simple technical trading rules while

quantifying the data-snooping bias and fully adjusting for its effect in the

context of the full universe from which the trading rules were drawn.

Hence, for the first time, the paper presents a comprehensive test of

performance across all technical trading rules examined.  We consider the

study of Brock, Lakonishok, and LeBaron (1992), expand their universe of

26 trading rules, apply the rules to 100 years of daily data on the Dow

Jones Industrial Average, and determine the effects of data-snooping.
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Technical trading rules have been used in financial markets for over a century.

Numerous studies have been performed to determine whether such rules can be employed

to provide superior investing performance.1  By and large, recent academic literature

suggests that technical trading rules are capable of producing valuable economic signals.

In perhaps the most comprehensive recent study of technical trading rules using 90 years

of daily stock prices, Brock, Lakonishok, and LeBaron (1992) (BLL, hereafter) find that

26 technical trading rules applied to the Dow Jones Industrial Average significantly

outperform a benchmark of holding cash.  Their findings are especially strong since every

single one of the trading rules they consider is capable of beating the benchmark.  When

taken at face value, these results indicate either that the stock market is not efficient even

in the weak form – a conclusion which, if found to be robust, will go against most

researchers’ prior beliefs – or that risk premia display considerable variation even over

very short periods of time (i.e., at the daily interval).

An important issue generally encountered, but rarely directly addressed when evaluating

technical trading rules, is data-snooping.  Data-snooping occurs when a given set of data

is used more than once for purposes of inference or model selection.  When such data

reuse occurs, there is always the possibility that any satisfactory results obtained may

simply be due to chance rather than to any merit inherent in the method yielding the

results.  With respect to their choice of technical trading rules, BLL state that “…

numerous moving average rules can be designed, and some, without a doubt, will work.

However, the dangers of data snooping are immense.”2  Thus, BLL rightfully

acknowledge the effects of data-snooping.  They go on to evaluate their results by fitting

several models to the raw data and resampling the residuals to create numerous bootstrap

samples.  The goal of this effort is to determine the statistical significance of their

findings.  However, as acknowledged by BLL, they are not able “to compute a

comprehensive test across all rules.  Such a test would have to take into account the

dependencies between results for different rules.”3  This task has thus far eluded

researchers.
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A main purpose of our paper is to extend and enrich the earlier research on technical

trading rules by applying a novel procedure that permits computation of precisely such a

test.  Although the bootstrap approach (introduced by Efron (1979)) is not new to the

evaluation of technical analysis, White’s Reality Check bootstrap methodology

(introduced by White (1997)) adopted in this paper permits us to correct for the effects of

data-snooping in a manner not previously possible.  Thus we are able to evaluate the

performance of technical trading rules in a way that permits us to ascertain whether

superior performance is a result of superior economic content, or simply due to luck.4

The potential impact of data-snooping on the performance of technical trading rules is

recognized early on by Jensen and Bennington (1970) who refer to it as ‘selection bias’

and explain it this way: “… given enough computer time, we are sure that we can find a

mechanical trading rule which “works” on a table of random numbers – provided of

course that we are allowed to test the rule on the same table of numbers which we used to

discover the rule.” (p. 470)

Data-snooping need not be the consequence of a particular researcher’s efforts.5  It can

result from a subtle survivorship bias operating on the entire universe of technical trading

rules that have been considered historically.  Suppose that, over time, investors have

experimented with technical trading rules drawn from a very wide universe – in principle

thousands of parameterizations of a variety of types of rules.  As time progresses, the

rules that happen to perform well historically receive more attention and are considered

‘serious contenders’ by the investment community, while unsuccessful trading rules are

more likely to be forgotten.6  After a long sample period, only a small set of trading rules

may be left for consideration, and these rules’ historical track record will be cited as

evidence of their merits.  If enough trading rules are considered over time, some rules are

bound by pure luck, even in a very large sample, to produce superior performance even if

they do not genuinely possess predictive power over asset returns.  Of course, inference

based solely on the subset of surviving trading rules may be misleading in this context

since it does not account for the full set of initial trading rules, most of which are likely to

have underperformed.
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The effects of such data-snooping, operating over time and across many investors and

researchers, can only be quantified provided that one considers the performance of the

best trading rule in the context of the full universe of trading rules from which this rule

conceivably is chosen.  A further purpose of our study is to address this issue by

constructing a universe of nearly 8,000 parameterizations of trading rules which are

applied to the Dow Jones Industrial Average over a 100-year period from 1897 to 1996.

We use the same data set as BLL to investigate the potential effects of data-snooping in

their experiment.7  Our results show that, during the sample period originally investigated

by BLL, 1897–1986, certain trading rules did indeed outperform the benchmark, even

after adjustment is made for data-snooping.  We base our evaluation both on mean

returns and on the Sharpe ratio which adjusts for total risk.

Since BLL’s study finished in 1986, we benefit from having access to another 10 years of

data on the Dow Jones portfolio.  We use this data to test whether their results hold out-

of-sample.  Interestingly, we find that this is not the case: the probability that the best-

performing trading rule did not outperform the benchmark during this period is nearly 12

percent, suggesting that, at conventional levels of significance, there is scant evidence

that technical trading rules were of any economic value during the period 1987–1996.

To determine whether transaction costs or short-sale constraints could have accounted for

the apparent historical success of the trading rules studied by BLL, we also conduct our

bootstrap simulation experiment using price data on the Standard and Poor’s 500 (S&P

500) index futures.  Transaction costs are easy to control in trading the futures contract

and it also would not have been a problem to take a short position in this contract.  Over

the 13-year period since the futures contract started trading in 1984, we find no evidence

that the trading rules outperform the benchmark.

While the current paper adopts a bootstrap methodology to evaluate the performance of

technical trading rules, the methodology applied in this paper also has a wide range of

other applications.  This is important, because the dangers from data-snooping emerge in
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many areas of finance and economics, such as in the predictability of stock returns (as

addressed by, for example, Foster, Smith, and Whaley (1997)), modeling of exchange

and interest rates, identification of factors and “anomalies” in cross-sectional tests of

asset pricing models (Lo and MacKinlay (1990)), and other exercises where theory does

not suggest the exact identity and functional form of the model to be tested.  Thus, the

chosen model is likely to be data-dependent and a genuinely meaningful out-of-sample

experiment is difficult to carry out.

The plan of the paper is as follows.  Section I introduces the bootstrap data-snooping

methodology, Section II reviews the existing evidence on technical trading rules, and

Section III introduces the universe of trading rules that we consider in the empirical

analysis.  Section IV presents our bootstrap results for the data set studied by BLL, while

Section V conducts the out-of-sample experiment.  Finally, Section VI discusses in more

detail the economic interpretation of our findings.

I.  The Bootstrap Snooper

Data-snooping biases are widely recognized to be a very significant problem in financial

studies.  They have been quantified by Lo and MacKinlay (1990)8, described in

mainstream books on investing (O’Shaughnessy (1997), page 24) and forecasting

(Diebold (1998), page 87), and have recently been addressed in the popular press

(Business Week, Coy (1997)): “For example, [David Leinweber, managing director of

First Quadrant, LP, in Pasadena, California] sifted through a United Nations CD-ROM

and discovered that historically, the single best prediction of the Standard & Poor’s 500

stock index was butter production in Bangladesh.”  Our purpose in this study is to

determine whether technical trading rules have genuine predictive ability or fall into the

category of “butter production in Bangladesh”.  The apparatus used to accomplish this is

the Reality Check bootstrap methodology which we briefly describe.

Building on work of Diebold and Mariano (1995) and West (1996), White (1997)

provides a procedure to test whether a given model has predictive superiority over a

benchmark model after accounting for the effects of data-snooping.  The idea is to
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evaluate the distribution of a suitable performance measure giving consideration to the

full set of models that led to the best-performing trading rule.  The test procedure is based

on the l × 1 performance statistic:

f n f t
t R

T

= −
+

=
∑1

1
$ , (1)

where l is the number of technical trading rules, n is the number of prediction periods

indexed from R through T so that T = R + n – 1, $f t+1  = f (Zt, $βt ) is the observed

performance measure for period t+1, and $βt  is a vector of estimated parameters.

Generally, Z consists of a vector of dependent variables and predictor variables consistent

with Diebold and Mariano’s (1995) or West’s (1996) assumptions.  For convenience, we

reproduce key results of White (1997) in Appendix B.

In our application there are no estimated parameters.  Instead, the various

parameterizations of the trading rules (βk, k = 1,…,l) directly generate returns that are

then used to measure performance.  In our full sample of the Dow Jones Industrial

Average, n is set equal to 27,069, representing nearly 100 years of daily predictions.  R is

set equal to 251, accommodating the technical trading rules which require 250 days of

previous data in order to provide a trading signal.  For the purpose of assessing technical

trading rules, each of which is indexed by a subscript k, we follow the literature in

choosing the following form for fk,t+1:

fk,t+1  =  ln[1 +  yt+1 Sk(χt, βk)]  –  ln[1 + yt+1 S0(χt, β0)],  k  =  1, …, l (2)

where

χt  =  { }R
iitX 0=− , (3)

Xt is the original price series (the Dow Jones Industrials Average and S&P 500 futures, in

our case), yt+1 = (Xt+1 – Xt) / Xt, and Sk( ⋅ ) and S0( ⋅ ) are “signal” functions that convert

the sequence of price index information χt into market positions, for system parameters

βk and β0.9  The signal functions have a range of three values: 1 represents a long

position, 0 represents a neutral position (i.e., out of the market), and –1 represents a short







Data-Snooping, Technical Trading Rule Performance, and the Bootstrap

- 8 -

place some weight on technical analysis when predicting future returns.  Unsurprisingly,

the wide use of technical analysis in the finance industry has resulted in several academic

studies to determine its value.

Levich and Thomas (1993) research simple moving average and filter trading rules in the

foreign currency futures market.  They apply a bootstrap approach to the raw returns on

the futures, rather than fitting a model to the data and resampling the residuals.  Their

research suggests that some technical rules may be profitable.  Evidence in favor of

technical analysis is also reported in Osler and Chang (1995) who use bootstrap

procedures to examine the head and shoulders charting pattern in foreign exchange

markets.  However, Levich and Thomas (1993) note the dangers of data-snooping and

suggest that “Other filter sizes and moving average lengths along with other technical

models could, of course, be analyzed.  Data-mining exercises of this sort must be

avoided.”10  With the development of White’s Reality Check, it is no longer necessary to

avoid such data mining exercises, as we can now account for their effects.

Our study uses Brock, Lakonishok, and LeBaron (1992) as a springboard for analysis.

Their study utilizes the daily closing price of the Dow Jones Industrial Average from

1897 to 1986 to evaluate 26 technical trading rules.  These rules include the simple

moving average, fixed moving average, and trading range break.  BLL find that these

rules provide superior performance.  One drawback to their analysis is that they are

unable to account for data-snooping biases.  In their words, “… the possibility that

various spurious patterns were uncovered by technical analysis cannot be dismissed.

Although a complete remedy for data-snooping biases does not exist, we mitigate this

problem: (1) by reporting results from all our trading strategies, (2) by utilizing a very

long data series, the Dow Jones index from 1897 to 1986, and (3) emphasizing the

robustness of results across various nonoverlapping subperiods for statistical inference.”

As explained in the previous section, our method provides just such a data-snooping

remedy.
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Three conclusions can be drawn from these previous studies.  First, there appears to be

evidence that technical trading rules are capable of producing superior performance.

Second, this evidence is tempered by the widely recognized importance of data-snooping

biases when evaluating the empirical results.  Third, the preferred way to handle data-

snooping appears to be to focus exclusively on the performance of a small subset of

trading rules, in order not to fall victim to data-snooping biases.  Nevertheless, as

mentioned in the introduction, there are reasons to believe that such a strategy may not

work in practice.  Technical trading rules that historically have been successful are also

the ones most likely to catch the attention of researchers, since they are the ones

promoted by textbooks and the financial press.  Hence, even though individual

researchers may act prudently and do not experiment extensively across trading rules, the

financial community may effectively have acted as such a “filter”, necessitating a

consideration in principle of all trading rules that have been considered by investors.

III.  Universe of Trading Rules

To conduct our bootstrap data-snooping analysis, we first need to specify an appropriate

universe of trading rules from which the current popular rules conceivably may have

been drawn.  The magnitude of data-snooping effects on the assessment of the

performance of the best trading rule is determined by the dependence between all the

trading rules’ payoffs, so the design of the universe from which the trading rules are

drawn is crucial to the experiment.  We consider a very large number (7,846) of trading

rules drawn from a wide variety of rule specifications.  To be considered in our universe,

a trading rule must have been in use in a substantial part of the sample period.  This

requirement is important for the economic interpretation of our results.  Only if the

trading rules under consideration are known during the sample would the existence of

outperforming trading rules seem to have consequences for weak-form market efficiency

or variations in ex ante risk premia.11  For this reason, we make a point of referring to

sources that quote the use of the various trading rules under consideration.

The trading rules employed in this paper are drawn from previous academic studies and

the technical analysis literature.  Included are filter rules, moving averages, support and
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resistance, channel break-outs, and on-balance volume averages.  We briefly describe

each of these types of rules.  Appendix A provides the parameterizations of the 7,846

trading rules used to create the complete universe.  Few of the original sources for the

technical trading rules report their preferred choice of parameter values, so we simply

choose a wide range of parameterizations to span the sorts of models investors may have

considered through time.  Of course, our list of trading rules does not completely exhaust

the set of rules that were considered historically.  Nevertheless, our list of rules is vastly

larger than those compiled in previous studies, and we include the most important types

of trading rules that can be parsimoniously parameterized and do not rely on “subjective”

judgments.

The notation used in the following description corresponds to that used in the appendix

on trading rule parameters.

A.  Filter Rules

Filter rules are used in Alexander (1961) to assess the efficiency of stock price

movements.  Fama and Blume (1966) explain the standard filter rule:

An x per cent filter is defined as follows: If the daily closing price of a

particular security moves up at least x per cent, buy and hold the security

until its price moves down at least x per cent from a subsequent high, at

which time simultaneously sell and go short.  The short position is

maintained until the daily closing price rises at least x per cent above a

subsequent low at which time one covers and buys.  Moves less than x per

cent in either direction are ignored.

The first item of consideration is how to define subsequent lows and highs.  We will do

this in two ways.  As the above excerpt suggests, a subsequent high is the highest closing

price achieved while holding a particular long position.  Likewise, a subsequent low is

the lowest closing price achieved while holding a particular short position.  Alternatively,

a low (high) can be defined as the most recent closing price that is less (greater) than the
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e previous closing prices.  Next, we will expand the universe of filter rules by allowing a

neutral position to be imposed.  This is accomplished by liquidating a long position when

the price decreases y percent from the previous high, and covering a short position when

the price increases y percent from the previous low.  Following BLL (1992), we also

consider holding a given long or short position for a prespecified number of days, c,

effectively ignoring all other signals generated during that time.

B.  Moving Averages

Moving average cross-over rules, highlighted in BLL, are one of the most popular and

common trading rules discussed in the technical analysis literature.  The standard moving

average rule, which utilizes the price line and the moving average of price, generates

signals as explained in Gartley (1935):

In an uptrend, long commitments are retained as long as the price trend

remains above the moving average.  Thus, when the price trend reaches a

top, and turns downward, the downside penetration of the moving average

is regarded as a sell signal…  Similarly, in a downtrend, short positions

are held as long as the price trend remains below the moving average.

Thus, when the price trend reaches a bottom, and turns upward, the upside

penetration of the moving average is regarded as a buy signal.12

There are numerous variations and modifications of this rule.  We examine several of

these.  For example, more than one moving average (MA) can be used to generate trading

signals.  Buy and sell signals can be generated by cross-overs of a slow moving average

by a fast moving average, where a slow MA is calculated over a greater number of days

than the fast MA.13

There are two types of “filters” we impose on the moving average rules.  The filters are

said to assist in filtering out false trading signals (i.e., those signals that would result in

losses).  The fixed percentage band filter requires that the buy or sell signal exceed the

moving average by a fixed multiplicative amount, b.  The time delay filter requires that
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the buy or sell signal remain valid for a prespecified number of days, d, before action is

taken.  Note that only one filter will be imposed at a given time.  Once again, we consider

holding a given long or short position for a prespecified number of days, c.

C.  Support and Resistance

The notion of support and resistance is discussed as early as in Wyckoff (1910) and

tested in BLL (1992) under the title of “trading range break”.  A simple trading rule

based on the notion of support and resistance (S&R) is to buy when the closing price

exceeds the maximum price over the previous n days, and sell when the closing price is

less than the minimum price over the previous n days.  Rather than base the rules on the

maximum (minimum) over a prespecified range of days, the S&R trading rules can also

be based on an alternate definition of local extrema.  That is, define a minimum

(maximum) to be the most recent closing price that is less (greater) than the e previous

closing prices.  As with the moving average rules, a fixed percentage band filter, b, and a

time delay filter, d, can be included.  Also, positions can be held for a prespecified

number of days, c.

D.  Channel Break-Outs

A channel (sometimes referred to as a trading range) can be said to occur when the high

over the previous n days is within x percent of the low over the previous n days, not

including the current price.  Channels have their origin in the “line” of Dow Theory

which was set forth by Charles Dow around the turn of the century.14  The rules we

develop for testing the channel break-out are to buy when the closing price exceeds the

channel, and to sell when the price moves below the channel.  Long and short positions

are held for a fixed number of days, c.  Additionally, a fixed percentage band, b, can be

applied to the channel as a filter.

E.  On-Balance Volume Averages

Technical analysts often rely on volume of transactions data to assist in their market-

timing efforts.  Although volume is generally used as a secondary tool, we include a

volume-based indicator trading rule in our universe of rules.  The on-balance volume
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(OBV) indicator, popularized in Granville (1963), is calculated by keeping a running total

of the indicator each day and adding the entire amount of daily volume when the closing

price increases, and subtracting the daily volume when the closing price decreases.  We

then apply a moving average of n days to the OBV indicator, as suggested in Gartley

(1935).  The OBV trading rules employed are the same as for the moving average trading

rules, except in this case the value of interest is the OBV indicator rather than price.

F.  Benchmark

Following BLL, our benchmark trading rule for the mean return performance measure is

the “null” system, which is always out of the market.  Consequently, S0 is always zero.

An alternative interpretation, also emphasized by BLL (page 1741), is to regard a long

position in the DJIA as the benchmark and superimpose the trading signals on this market

index.  According to this second interpretation a buy signal translates into borrowing

money at the risk-free interest rate and doubling the investment in the stock index, a

“neutral” signal translates into simply holding the stock index, while a sell signal

translates into a zero position in the stock index (i.e., out of the market).

In the case of the Sharpe ratio criterion, we follow standard practice and compute this

measure relative to the benchmark of a risk-free rate.  This also means that trading rules

earn the risk-free rate on days where a neutral signal is generated.

G.  Span of the Trading Rules

An important question is whether or not our full universe of trading rules spans a space

significantly larger than that spanned by the 26 BLL rules.  To investigate this issue, we

form the covariance matrix of returns for the BLL universe of trading rules, which is a 26

× 26 matrix.  Also, we randomly select 474 rules from the full universe and add these to

the 26 BLL rules for a total of 500 rules, and then form the covariance matrix of returns

for the 500 rules.  This provides a 500 × 500 covariance matrix.15  Applying principal

components analysis to both of the matrices yields their respective sets of eigenvalues.

The greater is the number of nonzero eigenvalues, the larger is the effective span of the
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trading rules, so we can address this question by comparing the eigenvalues of the two

matrices.

[Insert Figure 1]

Figure 1 provides the results from this exercise in the form of a ‘scree’ diagram plotting

the eigenvalues (sorted in descending order) along the horizontal axis.  The ten largest

eigenvalues are plotted in Panel A of Figure 1, while the next 190 eigenvalues are plotted

in Panel B, thereby exhibiting the 200 largest eigenvalues.  Of course, the covariance

matrix for the BLL universe only has 26 eigenvalues.

The figure suggests that the covariance matrix of returns for the full universe has

substantially more nonzero eigenvalues than the matrix for the BLL universe.  For

example, the BLL universe eigenvalues drop below 1.0 × 10-5 after only 11 eigenvalues.

The random sample of the full universe, on the other hand, has 196 eigenvalues above 1.0

× 10-5.  This experiment is performed numerous times with different random samples of

the full universe of trading rules.  The qualitative results do not change.  Thus we can be

assured that our universe of 7,846 trading rules does indeed span a substantially larger

space than the original 26 BLL rules.  It is important that the span of the set of trading

rules included in our universe is sufficiently large because the data-snooping adjustment

only accounts for snooping within the space spanned by the included rules.

IV.  Empirical Results

The trading results from the Dow Jones Industrial Average are reported for the 90 years

and four subperiods used by BLL, as well as for the entire 100-year full sample and the

10 years since the BLL study.16  The S&P 500 Futures results are reported for the entire

available sample.  The sample periods are:

In-Sample

Subperiod 1: January 1897 – December 1914

Subperiod 2: January 1915 – December 1938
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Subperiod 3: January 1939 – June 1962

Subperiod 4: July 1962 – December 1986

Out-of-Sample

Subperiod 5: January 1987 – December 1996

S&P 500 Futures: January 1984 – December 1996

For each sample period, Table I reports the historically best-performing trading rule,

chosen according to the mean return criterion.  Two trading rule universes are used: the

BLL universe with 26 rules and our full universe with 7,846 rules.  Table II reports

results when the best-performing trading rule is chosen according to the Sharpe ratio

criterion.

[Insert Table I]

[Insert Table II]

One would expect that the best-performing trading rule in the full universe would be

different from the best performer in the much smaller and more restricted BLL universe.

But it is interesting to notice the very different types of trading rules that are identified as

optimal performers in the full universe.  The BLL study identifies trading rules based on

long moving averages – 50-, 150-, and 200-day averages, respectively – as the best

performers, while in the full universe of trading rules, the best-performing trading rules

use much shorter windows of data typically based on two- through five-day averages.

Hence the best trading rules from the full universe are more likely to trade on very short-

term price movements.

A.  Results for the Mean Return Criterion

Table III presents the performance results of the best technical trading rule in each of the

sample periods.  The table reports the performance measure (i.e., mean return) along with

White’s Reality Check p-value and the nominal p-value.  The nominal p-value is that
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which results from applying the bootstrap methodology to the best trading rule only,

thereby ignoring the effects of the data-snooping.  Hence, the difference between the two

p-values will represent the magnitude of the data-snooping bias on the performance

measure.

[Insert Table III]

Turning to the actual performance of the selected trading rules, first consider the results

for the universe of 26 trading rules used by BLL.  Both in the full sample and in the first

four subperiods, we find that the apparent superior performance of the best trading rule

stands up to a closer inspection for data-snooping effects.  This finding is not surprising

since BLL find that, in fact, every single one of their trading rules outperforms the

benchmark, and hence a consideration of dependencies between trading rules is unlikely

to overturn their original finding.

Over the 100-year period from 1897 to 1996 the best technical trading rule from the BLL

universe is a 50-day variable moving average rule with a 0.01 band, yielding an

annualized return of 9.4 percent.17  For comparison, the mean annualized return on the

buy-and-hold strategy is 4.3 percent during this same period.  In our full universe, the

best trading rule chosen by the mean return criterion is a standard five-day moving

average rule.  The average annual return resulting from this rule is 17.2 percent.  The

Reality Check p-value is effectively zero (i.e., less than 1/B = 0.002) strongly indicating

that trading with the five-day moving average is superior to being out of the market.  In

all four subperiods we find again that the best trading rule outperforms the benchmark

strategy generating data-snooping adjusted p-values less than 0.002.  Furthermore, the

mean return of the best trading rule in the full universe tends to be much higher than the

mean return of the best trading rule considered by BLL.

Considering next the full universe of trading rules from which, over time, the BLL rules

are more likely to have originated, notice that two possible outcomes can occur when an

additional trading rule is inspected.  If the marginal trading rule does not lead to an
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improvement over the previously best performing trading rule, then the p-value for the

null hypothesis that the best model does not outperform will increase, effectively

accounting for the fact that the best trading rule has been selected from a larger set of

rules.  On the other hand, if the additional trading rule improves on the maximum

performance statistic, then this can reduce the p-value since better performance increases

the probability that the optimal model genuinely contains valuable economic

information.18

[Insert Figure 2]

Figure 2 provides a fascinating picture of these effects operating sequentially across the

full universe of trading rules.  For the first subperiod, 1897–1914, the figure plots the

number identifying each trading rule against its mean return.19  We have also drawn a line

tracking the highest annualized mean return (measured on the y-axis to the left of the

figure) up to and including a given number of trading rules (indicated on the x-axis), and

the Reality Check p-value for the maximum mean return performance statistic (measured

on the y-axis to the right of the figure).  The maximum mean return performance starts

out around 11 percent and quickly increases to 15 percent, yielding a p-value of 0.002

after the first 200 trading rules have been considered.  Adding another 300 trading rules

does not improve on the best-performing trading rule while the likelihood of no superior

performance, as measured by the p-value, remains unchanged between rules 200 and 500.

After approximately 550 trading rules have been considered, the best performance is

improved to around 17 percent and the p-value is kept to a level less than 0.002.  After

this, only a very small additional improvement in the performance statistic occurs around

trading rule number 2,700.  Note that this evolution illustrates how the p-values adjust as

our particular exercise proceeds.  Ultimately, the only numbers that matter are those at

the extreme right of the graph, as the order of experiments is arbitrary.  Still, this

evolution is informative as it suggests how the effects of data-snooping may propagate in

the real world.
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[Insert Figure 3]

An even sharper picture of the operation of data-snooping effects emerges from the

corresponding graph (Figure 3) for the second subperiod, 1915–1938.  For this period, the

best performing model is selected early on and remains in effect across the first 500

models.  As a result, its p-value increases from 0.01 to 0.097 as more models are

considered.  After this, the addition of a model which improves the mean performance to

20 percent causes the p-value to drop to less than 0.002.  Only at about rule 4,250 does

the p-value increase marginally as no more improvements occur and the effective span of

trading rules is increased.

A further issue at stake is how a trader could have possibly determined the best technical

trading rule prior to committing money to a given rule.  Although it may be the case that

we are able to find the historically best-performing rule in our universe, there is no

indication that it is possible to find ex ante the trading rule that will perform best in the

future.  To address this issue we consider a new trading strategy whereby on each day of

the experiment we first determine the best-performing trading rule to date.  That is, we

find the rule with the greatest cumulative wealth for each day in the 100-year sample, and

then follow the signal of that rule on the following day.  At each point in time only

historically available information is exploited so this trading rule could have been

implemented by an investor.

[Insert Table IV]

The results of this experiment are provided in Table IV, along with summary statistics for

the best-performing technical trading rule chosen with respect to the mean return

criterion, the five-day simple moving average.  Table IV shows that the recursive

cumulative wealth trading rule described above outperforms the benchmark with a 14.9

percent annualized average return, but lags behind the five-day moving average by over

two percentage points, reflecting the fact that investors could not have known ex ante the

identity of the ex post best-performing trading rule.  It is interesting to see that the
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number of short and long trades is roughly balanced out and that the winning percentage

is much higher for the long than for the short trades.  Long trades are also associated with

average profits that are more than twice as large as those on the short trades.

B.  Results for the Sharpe Ratio Criterion

Proper construction of the Sharpe ratio requires excess returns to be measured, where

excess returns are the returns from the technical trading rule less the risk-free interest

rate.  The available data on daily risk-free interest rates is limited so we employ data from

three separate sources for three overlapping periods.  From 1897 to 1925, we use the

interest rate for 90-day stock exchange time loans as reported in Banking and Monetary

Statistics, 1914–1941 (1943).  These rates are reported on a monthly basis and we convert

them into a daily series by simply applying the interest rate reported for a given month to

each day of that month.  From 1926 to June 1954, we use the one-month T-bill rates from

the Fama/Bliss risk-free rates CRSP file, also reported on a monthly basis, and convert

into a daily series in the same way.  Finally, from July 1954 to 1996, we use the daily

Federal funds rate.20  These three sets of interest rates are concatenated to form one

series, where the annualized rates reported are converted into daily rates using the

following formula:

rd  =  
ln( )1

252
+ rann , (16)

where rd is the daily interest rate, rann is the reported annualized rate, and 252 represents

the average number of trading days in a year.21

Since the volatility of daily interest rates is substantially smaller than that of daily stock

returns, the main effect of including the risk-free rate in the Sharpe ratio is that of a (time-

varying) drift-adjustment.  For this reason, our use of monthly interest rates in the earlier

samples is unlikely to affect the results in any important way.

[Insert Table V]
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Similar to Table III, Table V presents the performance results of the best technical

trading rule in each of the sample periods.  The table reports the performance measure

(i.e., Sharpe ratio) along with White’s Reality Check p-value and the nominal p-value.22

It is clear from Table II that the trading rules selected from the full universe by the

Sharpe ratio criterion again tend to be based on a relatively short sample using 2-20 days

of price information.  Table V shows that the best model according to the Sharpe ratio

criterion generates a p-value well below 0.002 in all but one of the samples for the full

universe of trading rules.  Interestingly, the best model chosen from the BLL universe

does not appear to be significant in several of the sample periods.  Also, the performance

of the best rule in the full universe increases substantially relative to the best rule

considered by BLL.  Over the full 100-year sample on the Dow Jones Industrial Average,

the Sharpe ratio for the buy-and-hold strategy is a mere 0.034, while the best-performing

trading rule in the BLL and full universe produces Sharpe ratios of 0.39 and 0.82,

respectively.

[Insert Figure 4]

[Insert Figure 5]

For the first two subperiods, Figure 4 and Figure 5 plot the sequence of Sharpe ratios

based on the full set of models in contention alongside the p-value for the null that the

highest Sharpe ratio equals zero.  The most interesting graph appears for the second

subperiod (Figure 5).  The maximum Sharpe ratio is initially about 0.44.  As the first 500

models get inspected, the p-value increases from 0.05 to above 0.60, only to fall well

below 0.01 after a superior trading rule is introduced around model number 500.

Towards the end of the universe of trading rules, the p-value increases from close to zero

to a level around 0.056, thus displaying the effects of data-snooping as no improvements

occur in the Sharpe ratio despite a widening of the span of trading rules.
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These experiments also suggest why the alternative procedure of using a simple

Bonferroni bound to assess the significance of the best-performing trading rule would

give misleading results.  Since the performance of the best trading rule drawn from the

full universe is not known when considering only a subset of trading rules, the Bonferroni

bound on the p-value cannot possibly be used to account for data-snooping.  A researcher

might believe that, say, the BLL trading rules are the result of traders considering an

original set of 8,000 rules, in which case the Bonferroni bound on the p-value would be

obtained as 8,000 times the smallest nominal p-value.  But this leads to meaningless

results: in subperiod 4, the Bonferroni bound simply states that the p-value is less than 1,

while in fact the bootstrap p-value for the best trading rule selected from the full universe

is around 0.05.

C.  Performance of the Bootstrap Snooper

In this subsection we carry out a simple check on the performance of White’s Reality

Check methodology by comparing the actual performance measure kf  to the

bootstrapped values of the performance measure *
,ikf , for k = 1,…,l trading rules and i =

1,…,B bootstrap samples (l = 7,846 and B = 500). 23

[Insert Figure 6]

[Insert Figure 7]

The results are displayed in Figures 6 and 7.  For each of the k models and for both the

mean return and  Sharpe ratio criteria applied to the 100-year DJIA sample, these figures

provide a histogram of the realized probability that *
,ikf  is greater than kf  across the full

universe of trading rules.  Note that the distribution is closely centered around one-half,

suggesting that White’s Reality Check methodology is performing as it should.  Also, the

results are very similar for both performance measures. 24
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Calculation of the overall probability, across all trading rules and bootstrap samples, that

*
,ikf  exceeds kf  yields a value of 0.489 for both the mean return and Sharpe ratio

criteria.  Omitting outliers caused by infrequent trading yields a probability of 0.508 for

both performance measures.

D.  The Effects of Nonsynchronous Trading

Another issue to consider is nonsynchronous trading.  If some of the closing prices on the

Dow Jones Industrial Average are stale, they may not reflect the latest information.  In

such a case, the technical trading rules and the cumulative wealth rule would not be able

to obtain the closing price when the markets open the following day.  Although

nonsynchronous trading effects are likely to be relatively small for the stocks included in

the DJIA, it is possible that some do exist, especially on low volume days.25  To address

this issue, we follow Ready (1997) and let a trading signal observed on day t be

implemented on the following day, t+1.  We then perform the bootstrap experiment on

the full universe of trading rules and the 100-year DJIA sample using the delayed signals.

The results are quite interesting.  The best rule according to the mean return criterion is a

variable moving average with a band filter where the fast moving average is calculated

over two days, the slow moving average is calculated over 75 days, and a 0.001 band is

applied.  For the Sharpe ratio criterion, the best rule is a fixed moving average with a fast

MA of 20 days, a slow MA of 75 days, and a fixed holding period of five days.  Not

surprisingly, the best rules in this experiment are of a longer duration than those where

the trading signals are implemented immediately.

The mean return of the best rule is 7.8 percent with a Reality Check p-value of nearly

zero (i.e., less than 0.002), indicating that the best rule is still highly significant.  Note

that this is true even though the performance is far less than the best from the standard

experiment of 17.2 percent.  The Sharpe ratio of the best rule is 0.34  with a Reality

Check p-value of 0.26, suggesting that the best rule, according to the Sharpe ratio

criterion, is no longer significant.26
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One further item of interest is the performance of the cumulative wealth rule under this

regime.  The cumulative wealth rule manages to outperform the benchmark with a mean

return of 4.6 percent.  The nominal p-value is nearly zero (i.e., less than 0.002).

V.  Out-of-Sample Results

The data used in the study by BLL finish in 1986.  This leaves us with a ten-year post-

sample period in which a genuine out-of-sample performance experiment can be

conducted.  We do so using the Dow Jones portfolio originally studied by BLL, and we

also use prices on the S&P 500 futures contract that has traded since 1984 and hence

covers a commensurate period.  Lo and MacKinlay (1990) recommend just such a ten-

year out-of-sample experiment as a way of purging the effects of data-snooping biases

from the analysis.

There is a distinct advantage associated with using the futures data set: the experiment on

the DJIA data ignores dividends (which are not available on a daily basis for the full 100-

year period), while these are not a concern for the futures contract.  Furthermore, while

the assumption that investors could have taken short positions in the DJIA contract

throughout the entire period 1897–1996 may not be realistic, it would have been very

easy for an investor to have gone short in the S&P 500 futures contract.  Finally, it is

possible that while the technical trading rules considered by BLL generated profits before

transaction costs, accounting for such costs and data-snooping effects could change their

findings.27  In the full universe and over the 100-year period 1897–1996, the best-

performing trading rule for the Dow Jones Industrial Average earned a mean annualized

return of 17.17 percent resulting from 6,310 trades (63.1 per year), giving a break-even

transaction cost level of 0.27 percent per trade.  We do not have historical series on

transaction costs, and these would also seem to depend on the size of the trade; so it

seems difficult to assess this number.  Transaction costs are likely to have been higher

than 0.27 percent at the beginning of the sample, but less by the end of the sample.

Ultimately, the transaction cost argument is best evaluated using a trading strategy in a

futures contract, such as the S&P 500, where transactions costs are quite modest.
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The S&P 500 futures data are provided by Pinnacle Data Corporation.  The prices from

the nearest futures contract are employed with a rollover date of the 9th of the delivery

month for the contract.  That is, any position maintained in the current contract is closed

out, and a new position is opened, according to the trading rule, on the 9th of March, June,

September, and December.  A series of returns is created from each of the contracts

which is linked together at the rollover dates.  Starting with the price of the S&P 500

futures contract at the beginning of the series, a new price series is generated from the

returns.

A quick first way of testing the merits of technical trading rules is by considering the

performance of the best trading rule, selected by the end of 1986, in the subsequent ten-

year trading period.  The five-day moving average rule selected from the full universe

produces a mean return of 2.8 percent with a nominal p-value of 0.322 for the period

1987 to 1996, indicating that the best trading rule, as of the end of 1986, did not continue

to generate valuable economic signals in the subsequent ten-year period.

[Insert Figure 8]

Figure 8 presents graphs for the evolution in the maximum performance statistic and the

Reality Check p-value across the 26 trading rules considered by BLL applied to the out-

of-sample period.  The third and fourth trading rules improve substantially on the

maximum mean return statistic and the addition of these rules leads to decreases in the p-

value.  By the end of the sample, the maximum mean return statistic is around 8.5 percent

per year.  The p-value starts out around 0.3, decreases to around 0.13, but then slowly

increases to 0.15.  Such increases in the p-value, in the absence of improvements over the

best performing trading rule, vividly illustrate the importance of jointly considering all

the trading rules when drawing conclusions about the performance of the best-performing

trading rule.  The p-value for the best-performing trading rule, considered in isolation, is

0.05.  The evidence that the best trading rule can produce superior performance is even

weaker when the Sharpe ratio criterion is used to measure performance.  For this
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criterion, the p-value of the best model chosen from the BLL universe terminates at 0.72

when data-snooping is accounted for (see Figure 9) and is 0.12 when the trading rule is

naively considered in isolation.

[Insert Figure 9]

[Insert Figure 10]

Consider next the full universe of 7,846 trading rules for the S&P 500 futures data over

the period 1984–1996.  For models selected by the mean return criterion, Figure 10

demonstrates perhaps more clearly than any other graph the importance of controlling for

data-snooping.  After the first few trading rules are considered, the p-value falls to around

0.3, but it quickly increases to around 0.6 as no improvement over the best-performing

trading rule occurs until after approximately 400 trading rules.  Then the p-value drops

back below 0.4 only to increase to a level around 0.9 by the point the final trading rule

has been evaluated.  As is clear from Figure 11, a very similar picture emerges for the

Sharpe ratio criterion, where the terminal data-snooping-adjusted p-value is 0.99.

[Insert Figure 11]

Notice the very strong conclusion we can draw from this finding.  Even though a

particular trading rule is capable of producing superior performance of almost ten percent

per year during this sample period and has a p-value of 0.04 when considered in isolation,

the fact that this trading rule is drawn from a wide universe of rules means that its

effective data-snooping-adjusted p-value is actually 0.90.  An even bigger contrast occurs

from using the Sharpe ratio criterion: here the snooping-adjusted and unadjusted p-values

are 0.99 and 0.000 (below 0.002), respectively.  Indeed, data-snooping effects are very

important in assessing economic performance.

[Insert Table VI]
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As a final exercise, we compute the out-of-sample performance of the recursive decision

rule described in Section IV.  This rule follows the trading signal generated by the rule

that has produced the highest cumulative wealth as of the previous trading day.  Table VI

provides summary statistics for the best-performing rule and the cumulative wealth rule,

for both the out-of-sample Dow Jones Industrial Average (1987–1996) and the Standard

and Poor’s 500 Futures (1984–1996).  These rules are chosen with respect to the mean

return criterion.  It is interesting to note that in both of these out-of-sample periods the

cumulative wealth rule does not perform well.  In fact, the cumulative wealth rule applied

to the S&P 500 futures generates negative returns.  Also, note that the best rule for the

Dow Jones Industrial Average results in only six trades, where each trade averages over

400 days.  This is considerably greater than the average of 4.3 days per trade resulting

from the best rule over the full 100-year sample.

VI.  Conclusion

This paper applies a new methodology that allows researchers to control for data-

snooping biases to compute the statistical significance of investment performance while

accounting for the dependencies resulting from investigating several investment rules.

We believe that this methodology deserves to be widely used in finance: there is an

obvious focus in finance on information and decision rules that can be used to predict

financial returns, but it is often forgotten that this predictability may be the result of a

large number of researchers’ joint search for a successful model specification with

predictive power.  Many researchers, such as Merton (1987), have called for a remedy to

control for data-snooping biases, and the methodology in this paper provides just such a

tool.  It summarizes in a single statistic the significance of the best-performing model

after accounting for data-snooping.

Besides being important in assessing the importance of data-snooping bias in

performance measurement studies, the approach of this paper also has substantial value to

investors who are searching for successful investment strategies.  Suppose that, after

experimenting with a large number of decision rules, an investor comes up with what

appears to be a highly successful rule that outperforms the benchmark strategy.  The
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investor is then left with the task of assessing just how much of the performance is a

result of data-snooping, and how much is due to genuine superior performance.  In the

presence of complicated dependencies across the rules being evaluated, this is a very

difficult question to answer, and only a bootstrap methodology such as the one offered in

this paper appears to be feasible.  Furthermore, since the investor would know the exact

identity of the universe of investment rules from which the optimal rule is drawn, the

approach of this paper is eminently suited for such an assessment.

Our analysis allows us to reassess previous results on the performance of technical

trading rules.  We find that the results of BLL appear to be robust to data-snooping, and,

indeed, there are trading rules which perform even better than the ones considered by

BLL.  Hence their result that the best performing technical trading rule is capable of

generating profits when applied to the Dow Jones Industrial Average, stands up to

inspection for data-snooping effects.  This finding is valid in all four subperiods

considered by BLL.  However, we also find that the superior performance of the best

technical trading rule is not repeated in the out-of-sample experiment covering the ten-

year period 1987–1996.  In this sample the results are completely reversed and the best

performing trading rule is not even statistically significant at standard critical levels.  This

result is also borne out when data on a more readily tradable futures contract on the S&P

500 index are considered: again there is no evidence that any trading rule outperforms

over the sample period.

Three conclusions appear to be possible from these findings.  First, the out-of-sample

results may simply not be representative, possibly because of the unusually large one-day

movement occurring on October 19, 1987.  While this argument can never be rejected

outright, we want to emphasize that the out-of-sample trading period is rather long (3,291

days) which would seem to lend support to the claim that we can evaluate the trading

rules’ performance reasonably precisely in the post-sample period.  Also, the out-of-

sample results are robust to whether or not data on 1987 are included in the sample.  In a

finite sample, very large movements in stock prices such as those occurring on October

19, 1987 would, if anything, actually tend to improve the performance of the best trading
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rule since some of the rules inevitably would have been short in the index on that date

and hence would have earned returns of 22 percent in a single day.28

Second, the 7846 trading rules that we consider may of course have been selected from

an even larger universe of rules.  If this is the case, then the p-value adjusted for data-

snooping is biased towards zero under the assumption that the included rules are also the

ones that performed quite well during the historical sample period.  While this

explanation is a logical possibility, the experiments reported in this paper also show that

it can only have merit as long as two conditions are both satisfied: the omitted trading

rules cannot improve substantially on the best-performing trading rule drawn from the

current universe, and the omitted trading rules should generate payoffs that are largely

orthogonal to the payoffs of the included trading rules so that they will increase the

effective span.  We think that we have been sufficiently careful in choosing the number

and types of trading rules included in the adopted universe so that it is unlikely that these

conditions are simultaneously satisfied.

Third, it is possible that, historically, the best technical trading rule did indeed produce

superior performance, but that, more recently, the markets have become more efficient

and hence such opportunities have disappeared.29  This conclusion certainly seems to

match up well with the lower transaction costs and increased liquidity in the stock market

that may have helped to remove possible short-term patterns in stock returns.

Appendix A:  Trading Rule Parameters

This appendix describes the parameterizations of the 7,846 trading rules used to generate

the full universe of rules under consideration.

A.1  Filter Rules

x  = change in security price (x × price) required to initiate a position;

y  = change in security price (y × price) required to liquidate a position;



Data-Snooping, Technical Trading Rule Performance, and the Bootstrap

- 29 -

e  = used for an alternative definition of extrema where a low (high) can be defined as

the most recent closing price that is less (greater) than the n previous closing prices;

c  = number of days a position is held, ignoring all other signals during that time;

x  = 0.005, 0.01, 0.015, 0.02, 0.025, 0.03, 0.035, 0.04, 0.045, 0.05, 0.06, 0.07, 0.08, 0.09,

0.1, 0.12, 0.14, 0.16, 0.18, 0.2, 0.25, 0.3, 0.4, 0.5  [24 values];

y  = 0.005, 0.01, 0.015, 0.02, 0.025, 0.03, 0.04, 0.05, 0.075, 0.1, 0.15, 0.2  [12 values];

e  = 1, 2, 3, 4, 5, 10, 15, 20  [8 values];

c  = 5, 10, 25, 50  [4 values].

Noting that y must be less than x, there are 185 x-y combinations.

Number of filter rules  =  x + (x * e) + (x * c) + (x-y combinations)

=  24 + 192 + 96 + 185  =  497.

A.2  Moving Averages

n  = number of days in a moving average;

m  = number of fast-slow combinations of n;

b  = fixed band multiplicative value;

d  = number of days for the time delay filter;

c  = number of days a position is held, ignoring all other signals during that time;

n  = 2, 5, 10, 15, 20, 25, 30, 40, 50, 75, 100, 125, 150, 200, 250  [15 values];

m  = i
i

n

=

−

∑
1

1

 =  105;

b  = 0.001, 0.005, 0.01,  0.015,  0.02, 0.03, 0.04, 0.05  [8 values];

d  = 2, 3, 4, 5  [4 values];

c  = 5, 10, 25, 50  [4 values].

Note that a one percent band filter and a ten-day holding period is applied to all

combinations of moving averages with a fast MA of one, two, and five days and a slow
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MA of 50, 150, and 200 days.  This addition of nine rules allows our universe of trading

rules to encompass all of BLL’s trading rules.

Number of rules  =  n + m + (b * (n + m)) + (d * (n + m)) + (c * (n + m)) + 9

=  15 + 105 + 960 + 480 + 480 + 9  =  2,049.

A.3  Support and Resistance

n  = number of days in the support and resistance range;

e  = used for an alternative definition of extrema where a low (high) can be defined as

the most recent closing price that is less (greater) than the n previous closing prices;

b  = fixed band multiplicative value;

d  = number of days for the time delay filter;

c  = number of days a position is held, ignoring all other signals during that time;

n  = 5, 10, 15, 20, 25, 50, 100, 150, 200, 250  [10 values];

e  = 2, 3, 4, 5, 10, 20, 25, 50, 100, 200  [10 values];

b  = 0.001, 0.005, 0.01,  0.015,  0.02, 0.03, 0.04, 0.05  [8 values];

d  = 2, 3, 4, 5  [4 values];

c  = 5, 10, 25, 50  [4 values].

Number of rules  =  [(1 + c) * (n + e)]  +  [(b * (n + e)) * (1 + c)]  +  [d * c * (n + e)]

=  100 + 800 + 320  =  1,220.

A.4  Channel Break-Outs

n  = number of days for the channel;

x  = difference between the high price and the low price (x × high price) required to

form a channel;

b  = fixed band multiplicative value;

c  = number of days a position is held, ignoring all other signals during that time;

n  = 5, 10, 15, 20, 25, 50, 100, 150, 200, 250  [10 values];
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x  = 0.005, 0.01, 0.02, 0.03, 0.05, 0.075, 0.10, 0.15  [8 values];

b  = 0.001, 0.005, 0.01,  0.015,  0.02, 0.03, 0.04, 0.05  [8 values];

c  = 5, 10, 25, 50  [4 values].

Noting that b must be less than x, there are 43 x-b combinations.

Number of rules  =  (n * x * c) + [n * b * (x-b combinations)]

=  320 + 1,720  =  2,040.

A.5  On-Balance Volume Averages

n  = number of days in a moving average;

m  = number of fast-slow combinations of n;

b  = fixed band multiplicative value;

d  = number of days for the time delay filter;

c  = number of days a position is held, ignoring all other signals during that time;

n  = 2, 5, 10, 15, 20, 25, 30, 40, 50, 75, 100, 125, 150, 200, 250  [15 values];

m  = i
i

n

=

−

∑
1

1

 =  105;

b  = 0.001, 0.005, 0.01,  0.015,  0.02, 0.03, 0.04, 0.05  [8 values];

d  = 2, 3, 4, 5  [4 values];

c  = 5, 10, 25, 50  [4 values].

Number of rules  =  n + m + (b * (n + m)) + (d * (n + m)) + (c * (n + m))

=  15 + 105 + 960 + 480 + 480  =  2,040.

Appendix B:  Reality Check Technical Results

For the convenience of the reader, we replicate the main results of White (1997) and

briefly interpret these.  In what follows, the notation corresponds to that of the text unless

otherwise noted.
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Let P denote the probability measure governing the behavior of the time series {Zt}.

Also, ⇒ denotes convergence in distribution, while p →  denotes convergence in

probability.  In White’s (1997) notation, used here, f * = f (Z, β*) where β* = 
n

plim $βT .  As

no parameters are estimated in our application, we have written E( f ) in the text.

Proposition 2.1: Suppose that n1/2( f – E( f * )) ⇒  N(0, Ω ) for Ω  positive semi-definite

and suppose that   E( f1
* ) > E( f k

* ),  for all  k = 2, ..., l.  Then  P [ f1  > f k   for all  k = 2,

..., l] → 1  as  T  →  ∞ .  If in addition  E( f1
* ) > 0, then for any  0 ≤  c  <  E( f1

* ),

P f c [ ]1 >  → 1  as  T  →  ∞ .

The first conclusion guarantees that the best model eventually has the best estimated

performance relative to the benchmark, with probability approaching certainty.  The

second conclusion ensures that if the best model beats the benchmark, then this is

eventually revealed by a positive estimated performance relative to the benchmark.  The

next result provides the basis for hypothesis tests of the null of no predictive superiority

over the benchmark, based on the predictive model selection criterion.

Proposition 2.2: Suppose that  n1/2( f – E( f * ) ) ⇒  N(0, Ω ) for Ω  positive semi-definite.

Then

max
,...,k l=1

  n1/2 { f k  – E( f k
* )}  ⇒   Vl ≡  max

,...,k l=1
 { Zk } (B1)

and

min
,...,k l=1

  n1/2 { f k  – E( f k
* )}  ⇒   Wl ≡   min

,...,k l=1
  { Zk }, (B2)

where  Z  is an  l x 1  vector with components  Zk,  k = 1, ..., l, distributed as  N(0, Ω ).

Corollary 2.4: Under the conditions of Theorem 2.3 of White (1997), we have

ρ ( L [Vl
*  |  Z1, ..., ZT+τ ],  L [ max

,...,k l=1
  n1/2 ( f k  – E( f k

* ) ) ] ) p →  0 (B3)
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and

ρ ( L [Wl
*  |  Z1, ..., ZT+τ ],  L [ min

,...,k l=1
  n1/2 ( f k  – E( f k

* ) ) ] ) p →  0, (B4)

where

Vl
*  ≡ max

,...,k l=1
  n1/2 ( f k

* – f k ), (B5)

Wl
*  ≡  min

,...,k l=1
  n1/2 ( f k

* – f k ). (B6)

L denotes the probability law of the indicated random variable, and ρ is any distance

metric on the space of probability laws.

Thus, by comparing Vl  to the quantiles of a large sample of realizations of Vl
* , we can

compute a p-value appropriate for testing Ho: max
,...,k l=1

 E( f k
* ) ≤  0, that is, that the best

model has no predictive superiority relative to the benchmark.  White (1997) calls this the

“Reality Check p-value.”

The level of the test can be driven to zero at the same time that the power approaches one

according to the next result, as the test statistic diverges to infinity at a rate n1/2 under the

alternative.

Proposition 2.5: Suppose that conditions A.1(a) or A.1(b) of White’s (1997) Appendix

hold, and suppose that  E( f1
* ) > 0 and E( f1

* ) > E( f k
* ),    for all  k = 2, ..., l.

Then for any  0 < c <  E( f1
* ),  P [Vl  > n1/2c ] → 1  as  T  →  ∞ .

Corollary 5.1: Let  g: U →  ℜ  (U ⊂  ℜ
m

)  be continuously differentiable such that the

Jacobian of  g,  Dg, has full row rank 1 at  E[ hk ] ∈ U,  k = 0, ..., l.  Suppose that the

assumptions of White (1997, Corollary 5.1) hold.  If  H = 0 (the Jacobian of h) or  (n/R)

log log R → 0 then for f *  computed using Politis and Romano’s stationary bootstrap
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ρ( L [n1/2 ( f * – f )  |  Z1, ..., ZT+τ ],  L [n1/2 ( f – µ )] )  p →  0, (B7)

where  ρ  and  L [ ⋅ ] are as previously defined, f f fl≡ ( ,..., )'1 , f g h g hk k≡ −( ) ( )0 ,

µ µ µ≡ ( ,..., )1 l , and µk kg E h g E h≡ −( [ ]) ( [ ])0 .

Maintaining the original definitions of Vl
*  and Wl

*  in terms of f k  and f k
* , we have

Corollary 5.2: Under the conditions of  Corollary 5.1, we have

ρ ( L [Vl
*  |  Z1, ..., ZT+τ ],  L [ max

,...,k l=1
n1/2 ( f k  –  µk ) ] ) p →  0 (B8)

and

ρ ( L [Wl
*  |  Z1, ..., ZT+τ ],  L [ min

,...,k l=1
n1/2 ( f k  –  µk ) ] ) p →  0 . (B9)

The test is performed by imposing the element of the null least favorable to the

alternative, i.e., µk = 0,  k = 1, ..., l; thus the Reality Check p-value is obtained by

comparing  Vl
 to the Reality Check order statistics, obtained as described in Section II.

As before, the test statistic diverges to infinity at the rate n1/2 under the alternative.

Proposition 5.3: Suppose the conditions of Corollary 5.1 hold, and suppose that E( f1
* ) >

0  and  E( f1
* ) > E( f k

* ),  for all  k = 2, ..., l.  Then for any  0 < c <  E( f1
* ), P V n cl [ ]/> 1 2

→ 1  as  T → ∞ .

Note that it is reasonable to expect the conditions required for the above results to hold

for the data we are examining.  As pointed out by BLL, while stock prices do not seem to

be drawn from a stationary distribution, the compounded daily returns (log-differenced

prices) can plausibly be assumed to satisfy the stationarity and dependence conditions

sufficient for the bootstrap to yield valid results.  It is possible to imagine time series for

returns with highly persistent dependencies in the higher order moments that might
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violate the mixing conditions of White (1997), but the standard models for stock returns

do not exhibit such persistence.

Appendix C: The Stationary Bootstrap

Politis and Romano (1994) present a resampling technique, called the stationary

bootstrap, that can be applied to a strictly stationary and weakly dependent time series to

generate a pseudo-time series that is stationary.  Here we describe our application of the

stationary bootstrap and the algorithm used to generate the pseudo-time series of returns.

The notation corresponds to that of the text.

We use a resampled version of f  = n f t
t R

T
−

+
=
∑1

1  to deliver the Reality Check p-value for

testing the hypothesis that the selected (best) model has no predictive superiority over the

benchmark model.  The resampled statistic is computed as

f n f t
t R

T
* *= −

+
=
∑1

1 , (C1)

f t+1
*  ≡  f ( Zθ(t)+1, β ),   t = R,…,T, (C2)

and θ(t) is a random index chosen according to the Politis and Romano stationary

bootstrap algorithm.  For this, we choose a priori a “smoothing parameter”  q = qn,  0 < qn

≤ 1,  qn →   0,  nqn →  ∞   as  n →  ∞ ,  and proceed as follows:

1. Set t = R.  Draw θ(t) = θ(R) at random, independently and uniformly from {R,...,T}.

2. Increment t by 1.  If  t > T, stop.  Otherwise, draw a standard uniform random variable

U  independently of all other random variables.

(a) If U < q, draw θ(t) at random, independently and uniformly, from {R,...,T};

(b) If U ≥ q, expand the block by setting θ(t) = θ(t – 1) + 1; if θ(t) > T, reset θ(t) = R;
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3. Repeat step 2.

Thus, the stationary bootstrap resamples blocks of varying length from the original data,

where the block length follows the geometric distribution, with mean block length 1/q.  A

large value of q is appropriate for data with little dependence, and a smaller value of q is

appropriate for data which exhibit more dependence.

The value of q chosen in our experiments is 0.1, corresponding to a mean block length of

ten.  This value appears to be reasonable given the weak correlation in daily stock

returns.  Furthermore, we find that the results of the paper are not sensitive to the choice

of q.

[Insert Table CI]

Table CI provides White’s Reality Check p-value for several sample and criterion

combinations, along with three separate values of the smoothing parameter.  The values

of q correspond to mean block lengths of 100, 10, and 2.  We include both ends of the

spectrum by reporting White’s p-value for both the 100 year DJIA sample, where the best

rule significantly outperforms the benchmark (i.e., a Reality Check p-value less than

0.002), and the S&P 500 futures sample where the best rule clearly does not out-perform

the benchmark.  Note that there is no fluctuation for the p-values that are near zero, and

that the p-values for the S&P 500 futures fluctuate to a very small degree.  Thus, we can

be assured that the results we have obtained are robust to our choice of the smoothing

parameter q.
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Table I

Best Technical Trading Rules under the Mean Return Criterion

This table reports the historically best-performing trading rule, chosen with respect to the mean return

criterion, in each sample period for both of the trading rule universes: the Brock, Lakonishok, and LeBaron

(BLL) universe with 26 rules and our full universe with 7,846 rules.

Sample BLL Universe of Trading Rules Full Universe of Trading Rules

Subperiod 1
(1897-1914)

50-day variable moving average, 0.01 
band

5-day support & resistance, 0.005 
band, 5-day holding period

Subperiod 2
(1915-1938)

50-day variable moving average, 0.01 
band

5-day moving average

Subperiod 3
(1939-1962)

50-day variable moving average, 0.01 
band

2-day on-balance volume

Subperiod 4
(1962-1986)

150-day variable moving average 2-day on-balance volume

90 Years
(1897-1986)

50-day variable moving average, 0.01 
band

5-day moving average

100 Years
(1897-1996)

50-day variable moving average, 0.01 
band

5-day moving average

Subperiod 5
(1987-1996)

200-day variable moving average, 
0.01 band

filter rule, 0.12 position initiation, 
0.10 position liquidation

S&P 500 Futures
(1984-1996)

200-day variable moving average 30 and 75-day on-balance volume

Out-of-Sample
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Table II

Best Technical Trading Rules under the Sharpe Ratio Criterion

This table reports the historically best-performing trading rule, chosen with respect to the Sharpe ratio

criterion, in each sample period for both of the trading rule universes: the Brock, Lakonishok, and LeBaron

(BLL) universe with 26 rules and our full universe with 7,846 rules.

Sample BLL Universe of Trading Rules Full Universe of Trading Rules

Subperiod 1
(1897-1914)

150-day trading range break-out
20-day channel rule, 0.075 width, 5-
day holding period

Subperiod 2
(1915-1938)

50-day variable moving average, 0.01 
band

5-day moving average, 0.001 band

Subperiod 3
(1939-1962)

50-day variable moving average, 0.01 
band

2-day moving average, 0.001 band

Subperiod 4
(1962-1986)

2 and 200-day fixed moving average, 
10-day holding period

2-day moving average, 0.001 band

90 Years
(1897-1986)

50-day variable moving average, 0.01 
band

5-day moving average, 0.001 band

100 Years
(1897-1996)

50-day variable moving average, 0.01 
band

5-day moving average, 0.001 band

Subperiod 5
(1987-1996)

150-day fixed moving average, 10-
day holding period

200-day channel rule, 0.150 width, 50-
day holding period

S&P 500 Futures
(1984-1996)

200-day fixed moving average, 0.01 
band, 10-day holding period

20-day channel rule, 0.01 width, 10-
day holding period

Out-of-Sample
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Table IV

Technical Trading Rule Summary Statistics:  100-Year Dow Jones Industrial
Average Sample (1897–1996) with the Mean Return Criterion

This table provides summary statistics, White’s Reality Check p-value, and the nominal p-value for the

best-performing rule (the simple five-day moving average), chosen with respect to the mean return

criterion, and the recursive cumulative wealth rule, over the full 100-year sample of the Dow Jones

Industrial Average.  The nominal p-value is that which results from applying the Reality Check

methodology to the best trading rule only, thereby ignoring the effects of the data-snooping.  The

cumulative wealth trading rule bases today’s signal on the best trading rule as of yesterday, according to

total accumulated wealth.  The recursive cumulative wealth rule is not the best trading rule ex post, thus the

Reality Check p-value does not apply.

Summary Statistics Best Rule Cumulative Wealth Rule

Annualized average return 17.2% 14.9%

Nominal p -value 0.000 0.000

White's Reality Check p -value 0.000 n/a*

Total number of trades 6,310 6,160

Number of winning trades 2,501 2,476

Number of losing trades 3,809 3,684

Average number of days per trade 4.3 4.2

Average return per trade 0.29% 0.26%

Number of long trades 3,155 3,103

Number of long winning trades 1,389 1,372

Number of long losing trades 1,766 1,731

Average number of days per long trade 4.7 4.6

Average return per long trade 0.39% 0.35%

Number of short trades 3,155 3,057

Number of short winning trades 1,112 1,104

Number of short losing trades 2,043 1,953

Average number of days per short trade 3.9 3.8

Average return per short trade 0.19% 0.16%
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Table V

Performance of the Best Technical Trading Rules under the Sharpe Ratio Criterion

This table presents the performance results of the best technical trading rule, chosen with respect to the

Sharpe ratio criterion, in each of the sample periods.  Results are provided for both the Brock, Lakonishok,

and LeBaron (BLL) universe of technical trading rules and our full universe of rules.  The table reports the

performance measure (i.e., the Sharpe ratio) along with White’s Reality Check p-value and the nominal p-

value.  The nominal p-value is that which results from applying the Reality Check methodology to the best

trading rule only, thereby ignoring the effects of the data-snooping.

Sample Sharpe White's Nominal Sharpe White's Nominal
Ratio p -value p -value Ratio p -value p -value

Subperiod 1
(1897-1914)

0.51 0.147 0.016 1.15 0.000 0.000

Subperiod 2
(1915-1938)

0.51 0.037 0.000 0.76 0.056 0.000

Subperiod 3
(1939-1962)

0.79 0.000 0.000 2.18 0.000 0.000

Subperiod 4
(1962-1986)

0.53 0.051 0.003 1.41 0.000 0.000

90 Years
(1897-1986)

0.45 0.000 0.000 0.91 0.000 0.000

100 Years
(1897-1996)

0.39 0.000 0.000 0.82 0.000 0.000

Subperiod 5
(1987-1996)

0.28 0.721 0.127 0.87 0.903 0.000

S&P 500 Futures
(1984-1996)

0.23 0.702 0.165 0.66 0.987 0.000

BLL Universe of Trading Rules Full Universe of Trading Rules

Out-of-Sample
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Table VI

Technical Trading Rule Summary Statistics:  Out-of-Sample Dow Jones Industrial
Average (1987–1996) and the Standard and Poor’s 500 Futures (1984–1996) with

the Mean Return Criterion

This table provides summary statistics, White’s Reality Check p-value, and the nominal p-value for the

best-performing rule, chosen with respect to the mean return criterion, and the recursive cumulative wealth

rule, for both the out-of-sample Dow Jones Industrial Average (1987–1996) and the Standard and Poor’s

500 Futures (1984–1996).  The nominal p-value is that which results from applying the Reality Check

methodology to the best trading rule only, thereby ignoring the effects of the data-snooping.  The

cumulative wealth trading rule bases today’s signal on the best trading rule as of yesterday, according to

total accumulated wealth.  The recursive cumulative wealth rule is not the best trading rule ex post, thus the

Reality Check p-value does not apply.

Summary Statistics Best Rule
Cumulative 
Wealth Rule

Best Rule
Cumulative 
Wealth Rule

Annualized average return 14.4% 2.8% 9.4% -5.5%

Nominal P -value 0.000 0.322 0.042 0.895

White's Reality Check P -value 0.341 n/a* 0.908 n/a*

Total number of trades 6 676 43 210

Number of winning trades 4 234 22 56

Number of losing trades 2 442 21 154

Average number of days per trade 411.7 3.7 76.5 14.3

Average return per trade 34.38% 0.04% 3.00% -0.33%

Number of long trades 4 338 22 104

Number of long winning trades 3 140 12 31

Number of long losing trades 1 198 10 73

Average number of days per long trade 598.0 4.3 98.6 17.1

Average return per long trade 48.16% 0.24% 5.76% 0.16%

Number of short trades 2 338 21 106

Number of short winning trades 1 94 10 25

Number of short losing trades 1 244 11 81

Average number of days per short trade 39.0 3.2 53.4 11.6

Average return per short trade 6.82% -0.16% 0.12% -0.82%

Dow Jones Industrial Avg S&P 500 Futures
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Table CI

Sensitivity of White’s Reality Check p-value to Changes in the Smoothing
Parameter q

This table provides White’s Reality Check p-value for several sample and criterion combinations, along

with three separate values of the smoothing parameter (i.e., 0.01, 0.1, and 0.5).  The values of q correspond

to mean block lengths of 100, 10, and 2, respectively.  The p-values reported are those derived from the full

universe of technical trading rules.

Sample and Criterion q  = 0.01 q  = 0.1 q  = 0.5

100 Years -- Mean Return Criterion 0.000 0.000 0.000

100 Years -- Sharpe Ratio Criterion 0.000 0.000 0.000

S&P 500 -- Mean Return Criterion 0.926 0.908 0.909

S&P 500 -- Sharpe Ratio Criterion 0.987 0.987 0.976

White's Reality Check p -value
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Figure 1.  Span of the Brock, Lakonishok, and LeBaron (BLL) Universe of Trading

Rules versus the Full Universe of Trading Rules:  Eigenvalues 1 to 200 of the Covariance

Matrix of Returns

The eigenvalues of the covariance matrix of returns are sorted in descending order for the Brock,

Lakonishok, and LeBaron (BLL) universe of trading rules (i.e., a 26 × 26 matrix), and for 500 randomly

chosen rules from the full universe of trading rules (i.e., a 500 × 500 covariance matrix), including the 26

BLL rules.  Panel A plots the ten largest values in sorted descending order along the x-axis, where the y-

axis measures the eigenvalue.  Panel B plots eigenvalues 11 to 200, again sorted in descending order.

Figure 2.  Economic and Statistical Performance of the Best Model Chosen from the Full

Universe According to the Mean Return Criterion:  Subperiod 1 (1897–1914)

For a given trading rule, n, indexed on the x-axis, the scattered points plot the mean annualized returns

experienced during the sample period.  The thin line measures the best mean annualized return among the

set of trading rules i = 1,…,n, and the thick line measures the associated data-snooping adjusted p-value.

Figure 3.  Economic and Statistical Performance of the Best Model Chosen from the Full

Universe According to the Mean Return Criterion:  Subperiod 2 (1915–1938)

For a given trading rule, n, indexed on the x-axis, the scattered points plot the mean annualized returns

experienced during the sample period.  The thin line measures the best mean annualized return among the

set of trading rules i = 1,…,n, and the thick line measures the associated data-snooping adjusted p-value.

Figure 4.  Economic and Statistical Performance of the Best Model Chosen from the Full

Universe According to the Sharpe Ratio Criterion:  Subperiod 1 (1897–1914)

For a given trading rule, n, indexed on the x-axis, the scattered points plot the Sharpe ratio experienced

during the sample period.  The thin line measures the highest Sharpe ratio among the set of trading rules i =

1,…,n, and the thick line measures the associated data-snooping adjusted p-value.  Note that p-values

greater than 0.10 have been truncated at the top of the figure.

Figure 5.  Economic and Statistical Performance of the Best Model Chosen from the Full

Universe According to the Sharpe Ratio Criterion:  Subperiod 2 (1915–1938)

For a given trading rule, n, indexed on the x-axis, the scattered points plot the Sharpe ratio experienced

during the sample period.  The thin line measures the highest Sharpe ratio among the set of trading rules i =

1,…,n, and the thick line measures the associated data-snooping adjusted p-value.  Note that p-values

greater than 0.10 have been truncated at the top of the figure.
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Figure 6.  Histogram of the Observed Probability that the Bootstrapped Performance

Measure is Greater than the Actual Performance Measure, According to the Mean Return

Criterion:  100-Year Sample (1897 - 1996)

The observed probability is the number of bootstrap samples yielding a performance measure greater than

the actual performance measure, divided by the number of bootstrap samples (500).  For a given probability

range, the y-axis measures the number of models (trading rules) from the full universe of 7,846 rules that

have a calculated probability within that range.  The x-axis value, the probability range, indicates the upper

bound on the range of probability values, where the lower bound is provided by the next smaller upper

bound.

Figure 7.  Histogram of the Observed Probability that the Bootstrapped Performance

Measure is Greater than the Actual Performance Measure, According to the Sharpe Ratio

Criterion:  100-Year Sample (1897 - 1996)

The observed probability is the number of bootstrap samples yielding a performance measure greater than

the actual performance measure, divided by the number of bootstrap samples (500).  For a given probability

range, the y-axis measures the number of models (trading rules) from the full universe of 7,846 rules that

have a calculated probability within that range.  The x-axis value, the probability range, indicates the upper

bound on the range of probability values, where the lower bound is provided by the next smaller upper

bound.

Figure 8.  Economic and Statistical Performance of the Best Model Chosen from the

Brock, Lakonishok, and LeBaron (BLL) Universe According to the Mean Return

Criterion:  Out-of-Sample, Subperiod 5 (1987–1996)

For a given trading rule, n, indexed on the x-axis, the scattered points plot the mean annualized returns

experienced during the sample period.  The thin line measures the best mean annualized return among the

set of trading rules i = 1,…,n, and the thick line measures the associated data-snooping adjusted p-value.

Figure 9.  Economic and Statistical Performance of the Best Model Chosen from the

Brock, Lakonishok, and LeBaron (BLL) Universe According to the Sharpe Ratio

Criterion:  Out-of-Sample, Subperiod 5 (1987–1996)

For a given trading rule, n, indexed on the x-axis, the scattered points plot the Sharpe ratio experienced

during the sample period.  The thin line measures the highest Sharpe ratio among the set of trading rules i =

1,…,n, and the thick line measures the associated data-snooping adjusted p-value.
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Figure 10.  Economic and Statistical Performance of the Best Model Chosen from the

Full Universe According to the Mean Return Criterion:  S&P 500 Futures (1984–1996)

For a given trading rule, n, indexed on the x-axis, the scattered points plot the mean annualized returns

experienced during the sample period.  The thin line measures the best mean annualized return among the

set of trading rules i = 1,…,n, and the thick line measures the associated data-snooping adjusted p-value.

Figure 11.  Economic and Statistical Performance of the Best Model Chosen from the

Full Universe According to the Sharpe Ratio Criterion:  S&P 500 Futures (1984–1996)

For a given trading rule, n, indexed on the x-axis, the scattered points plot the Sharpe ratio experienced

during the sample period.  The thin line measures the highest Sharpe ratio among the set of trading rules i =

1,…,n, and the thick line measures the associated data-snooping adjusted p-value.
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Footnotes

* University of California, San Diego.  We would like to thank an anonymous referee, the

editor (René Stulz), and our discussant at the Western Finance Association meetings

(David Chapman) for many useful comments on the paper.  The authors are grateful to

NeuralNet R&D Associates of San Diego, California for making available its proprietary

(patent pending) Reality Check software algorithms.

1 See, for example, Brock, Lakonishok, and LeBaron (1992), Fama and Blume (1966),

Kaufman (1987), Levich and Thomas (1993), Neftci (1991), Osler and Chang (1995),

Sweeney (1988), Taylor (1992), and Taylor (1994).

2 Brock, Lakonishok, and LeBaron (1992), page 1736.

3 Brock, Lakonishok, and LeBaron (1992), page 1743.  BLL account for part of the

problem associated with data-snooping within the set comprising their 26 trading rules by

reporting the average performance of these trading rules.  This can be regarded as the

expected performance of a trading rule randomly chosen from their universe, although it

does not measure the performance of the best trading rule.

4 A very early attempt at assessing the best performance of a set of 24 financial

forecasting services through use of a simple Monte Carlo procedure is presented in

Cowles (1933).  We are grateful to Stephen Brown for bringing our attention to this.

5 Indeed, BLL report that they do not consider a larger set of trading rules than the 26

rules they report results for.

6 See also Lo and MacKinlay (1990) for a similar point.

7 We thank Blake LeBaron for providing us with the data set used in the BLL study.

8 Lo and MacKinlay (1990) quantify the data-snooping bias in cross-sectional tests of

asset pricing models where the firm characteristic used to sort stocks into portfolios is

correlated with the estimation error of the performance measure.
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9 Note that the best trading rule, identified as the one with the highest average

continuously compounded rate of return, will also be the optimal trading rule for a risk-

averse investor with logarithmic utility defined over terminal wealth.

10 Levich and Thomas (1993), page 458.

11 Suppose that some technical trading rules can be found that unambiguously outperform

the benchmark over the sample period, but that these are based on technology (e.g.,

neural networks) that only became available after the end of the sample.  Since the

technique used was not available to investors during the sample period, we do not believe

that such evidence would contradict weak-form market efficiency.

12 Gartley (1935), page 256.

13 The moving average for a particular day is calculated as the arithmetic average of

prices over the previous n days, including the current day.  Thus, a fast moving average

has a smaller value of n than a slow moving average.

14 Hamilton (1922) and Rhea (1932) explain the Dow line in detail.

15 A subsample of the full universe of 7,846 trading rules is used due to computational

capacity constraints.

16 We refer to BLL, Table 1, for a description of the basic statistical properties of the data

set.

17 Annualized mean returns are calculated as the mean daily return over the duration of

the sample, multiplied by 252.  The mean daily return is simply the total return divided

by the number of days in the sample.

18 Notice, however, that if the improvement is sufficiently small, then it is possible that

the data-snooping effect of searching for an improved model from a larger universe will

dominate the improved performance and hence will lead to a net increase in the p-value.

19 What appear to be vertical clusters of mean return points simply reflect the
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performance of neighbor trading rules in a similar class as the parameters of the trading

rules are varied.

20 The Federal funds rate is the cost of borrowing immediately available funds, primarily

for one day.  The effective rate is a weighted average of the reported rates at which

different amounts of the day’s trading through New York brokers occurs.

21 Examining the behavior of our interest rates in the first overlapping period (1925-1941,

193 observations), we find that monthly values for the stock exchange 90-day time loans

and the Fama/Bliss risk-free rates have a correlation of 0.964.  To compare the

Fama/Bliss risk-free rates (monthly) to the Federal funds rates (daily), we convert the

risk-free rates to daily rates by applying the Fama/Bliss rate for a given month to all days

in that month.  The overlap period of 1954-1996 (15,525 observations) produces a

correlation of 0.963.

22 The Sharpe ratio values are based on annualized returns which are calculated as the

continuously compounded daily return multiplied by 252.

23 We thank an anonymous referee for suggesting this analysis.

24 There is a set of outlier models, about 300 trading rules, that have a probability at, or

near, zero that f k i,
*  will exceed f k .  This is a result of a trading rule having very few

nonzero trading signals.  In such a case, it is entirely possible that none of the 500

bootstrap samples will include any nonzero signals, thereby leading to a bootstrapped

performance measure that is always less than the actual performance measure that does

contain some nonzero trading signals.  This is clearly not a problem for the results

reported in Tables I - VI since the selected  trading rules generate multiple signals.

25 For example, Campbell, Grossman, and Wang (1993) find that the first-order

autocorrelation in daily stock returns is higher when volume is low.

26 Ready (1997) also finds that, what he refers to as ‘price slippage’ effects, can account

for a substantial part of the profits generated by technical trading rules.
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27 In the conclusion to their paper, BLL call for careful consideration of transaction costs

and explicitly recommend using futures data as a way of dealing with this issue.  This is

particularly important for some of the rules selected from the full universe since these use

very short windows of the data, generate very frequent trading signals, and hence are

likely to generate substantial transaction costs.

28 Indeed, as shown in Table III, the best trading rule from the BLL universe under the

mean return criterion generates a mean return of 8.6 percent in the period from January

1987 through December 1996.  However, the best rule (200-day variable moving average

with a one percent band) from the BLL universe in the period January 1988 through

December 1996 generates a mean return of only 5.6 percent.  Furthermore, the large

universe provides a best rule during subperiod 5 that generates a mean return of 14.4

percent, where the best rule (20-day filter rule of 0.10) during the period beginning in

1988 provides a mean return of only 13.9 percent.

29 Ready (1997) also reports a decline in the ability of technical trading rules to predict

daily returns over the period 1990–1995.


