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Abstract

Following Blinder’s (1997) suggestion, we examine the implications for the
optimal interest rate rule which follow from relaxing the assumption that the
policymaker’s loss function is quadratic.  We investigate deviations from
quadratics for both symmetric and asymmetric preferences for a single target
and find that (i) other characterizations of risk aversion than implied by the
quadratic only affect dead-weight losses, unless there is multiplicative
uncertainty; (ii) asymmetries affect the optimal rule under both additive and
multiplicative uncertainty but result in interest rate paths observationally
similar, and in some cases equivalent, to those implied by a shifted quadratic;
(iii) the use of asymmetric loss functions leads to important insights on the
issue of goal independence and monetary policy delegation; (iv) non-
quadratic preferences, per se, are neither sufficient nor necessary to generate
the ‘Brainard conservatism principle’ and thus do not offer much added
value when analyzing policy issues of caution and gradualism.  Our results
suggest that in the context of monetary policymaking the convenient
assumption of quadratic losses may not be that drastic after all.

Keywords:  Loss functions, uncertainty, optimal monetary policy rules

JEL Classification:  E42, E52, E61
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1 INTRODUCTION

“The assumption of a quadratic is, of course, subject to the objection that it treats

positive and negative deviations from target as equally important.  The use of a

fancier utility function would provide additional reasons for departing from certainty

equivalence.” William Brainard (1967, p 413)

Well, maybe.  Since the inception of the Tinbergen-Theil framework for

analysing monetary policy, in the 1950s, there has been a uneasy acceptance

of the quadratic loss function.1  Brainard’s “realistic”2 extensions to the basic

framework recognised this potential limitation and makes the lack of

attention paid in the subsequent literature surprising.  That, in addition, one

of the most respected of recent metamorphoses from academic to practitioner,

Alan Blinder (1997), asks for similar consideration, it would seem only good

manners to produce some response.3

This paper does so by re-examining “the Brainard conservatism principle”

(Blinder, 1997, p 11) with respect to the optimal policy rule with one

instrument and one policy objective under non-quadratic preferences.  Recall

that the standard result, subject to a linear Phillips curve constraint and

quadratic losses, in the sole presence of additive uncertainty means that the

                                                       
1 Both Tinbergen (1954, pp 49-51) and Theil (1966) themselves were clearly aware of
the potential limitations of quadratic losses both in terms of describing risk and possible
prejudice to the robustness of results.  For example, Theil writes (p 19) “...[T]here is no
particular reason to assume that the loss function should always be quadratic...th[e]
asssumption [is a] convenient first approximation.  When we try to generalise...it appears
that the results become much more complicated...it turns out frequently that the results
become completely unmanageable.  This is undoubtedly why the quadratic loss function has
such a prominent place in several fields...”.
2 See Tobin’s (1990) appreciation, inter alia, of the 1967 Brainard paper.
3 Blinder (1997, p 6) writes “[A]cademic macroeconomists tend to use quadratic loss
functions for reasons of mathematical convention, without thinking much about their
substantive implications.  The assumption is not innocuous...I believe that both practical
central bankers and academics would benefit from more serious thinking about the
functional form of the loss function.”
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policy instrument is set to offset any shock completely and immediately.4

And it is only when uncertainty is represented in a multiplicative form -

where imperfect control over the economy is represented by uncertainty over

the impact of policy changes on the target variable – that the policy

instrument is moved cautiously and gradually to offset a shock.5  The

adoption of quadratic losses would seem to be an important part of this story

as these suggest a particular, and possibly perverse, attitude to risk.  One

where, for example, the policymaker is indifferent between a one-period

undershoot of the inflation target by 4% and a four-period overshoot by 2%

(assuming, of course, that there is no discounting).

It seems quite plausible that if the characterisation of the policymaker’s

behaviour were made in a more appealing manner than quadratic utility then

the specific generation of the “conservatism principle”, in response to

multiplicative uncertainty alone, may be overturned.  In fact, much recent

work in both consumption theory and applied finance has involved the

examining of the integration of newer concepts of utility to older pricing

puzzles.6 Again, given the influence of this healthy literature it is surprising

how little impact this has made on the analysis of optimal policy.  And it is

the examination of the robustness of the “conservatism principle” to the

deviations (sic) from quadratic losses that will be the main purpose of this

paper.

The rest of the paper is structured as follows.  Section 2 examines the impact

on the optimal interest rule when the loss function reflects constant absolute

                                                       
4 This is because with additive uncertainty certainty equivalence applies and none of
the moments higher than the mean of the data generating process for the target variable are
affected by policy action.  In our set-up, for example, only the average inflation rate changes.
5 The presence of multiplicative uncertainty means that policy action affects the
higher moments of the data generating process for the target variable (for example, the
variance of the inflation rate).  There is therefore a trade-off between the mean and the
variance of the target variable, which leads to some smoothing in the instrument.
6 See Deaton (1992) for recent developments in consumption and Shiller (1998) for a
signpost to the next generation of applied finance work in the non-expected utility
paradigm.
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risk aversion (CARA) in the face of additive uncertainty, and by analogy

other classes of risk aversion (such as CRRA).  Section 3 examines the impact

on the optimal interest rate rule of both additive and multiplicative

uncertainty when preferences are asymmetric.7  Section 4 analyses

simulations of the resulting optimal rules in four separate cases and a

graphical general solution to the time path of interest and inflation rates

following an inflation shock.  Section 5 offers concluding remarks, discusses

some implications for the optimal delegation of monetary policy and suggests

some possible further work.

2 DEVIATIONS FROM QUADRATICS: OTHER ATTITUDES TO RISK

The Brainard conservatism principle (leading to a cautious and gradualist

setting of the instrument) results from the interaction of multiplicative

uncertainty with quadratic preferences.  Alternatively, one could take the

view that such smoothing is simply caused by a form of risk aversion (with

respect to inflation volatility) other than the one implied by quadratics. For

example, in terms of risk, two well-known properties of the quadratic are that

the coefficient of relative risk aversion is 1 and that its third derivative is zero:

the former implies that the elasticity of the policymaker’s marginal loss with

respect to inflation is always 1 and the latter implies that the variability of

inflation does not affect marginal loss.  The use of non-quadratics might be

analogous to agents smoothing consumption in response to temporary

income shocks.  One might expect that the introduction of loss functions

which deliver such smoothing in a consumption setting will also produce

interest rate gradualism in a setting of monetary policymaking.  This is,

however, not necessarily true.  It is shown below that caution and gradualism

may not follow from non-quadratic preferences as long as losses are

symmetric and uncertainty is additive.

                                                       
7 The asymmetry could, deus ex machina, be interpreted as a form of asymmetric risk
aversion.
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2.1 INTRODUCING THE FRAMEWORK

Consider the following simple control problem:
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Equations (1) and (2) tell us that the policymaker sets a path of interest rates

such that future deviations of inflation from its target are minimised subject

to an inflation relationship and a particular specification of preferences.  The

reduced-form process for inflation in (2) is kept deliberately simple as the

emphasis of this framework is on the specification of the preferences of the

policymaker.8  The minimal features we require are persistence in inflation

(ensuring a role for policy) and uncertainty (of the additive and later the

multiplicative form).  Inflation is described as an autoregressive process with

a long-run mean equal to S .  Inflationary persistence is captured by

parameter a  ( 10 �d a ).  As well as the additive shock, 1�te , inflation can be

influenced by deviations of the policy instrument i t  from its neutral level i  -

which will be set to zero for the rest of the paper.  The policy multiplier, b

( 0!b ), translates policy actions into inflation outcomes and is assumed to be

non-stochastic in this section.  The only source of uncertainty is the additive

shock, 1�te , which is normal and i.i.d. with mean 0 and variance 2
eV .  Note

that the instrument is set at the beginning of each period, whereas the shock

occurs at the end of each period.  As a result, a shock has one-for-one first-

                                                       
8 In a model which does incorporate a private sector with forward-looking
expectations, the sluggishness in equation (2) could be derived from the existence of nominal
rigidities such as menu costs or overlapping nominal contracts.
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round effects on inflation during the current period, but stabilisation policy

can offset its second-round effects in subsequent periods.

The intertemporal loss function in (1) consists of the infinitely discounted

sum of per-period losses � �*
1;SS
�tL , where 1�tS  and *S  refer respectively to

inflation at time 1�t  and the socially optimal target for inflation.  The

discount factor G  takes some value between 0  and 1.

Let us now turn to the specification of the per-period loss function.  Natural

candidates for a richer description of the policymaker’s behaviour towards

risk would be the exponential (or CARA) and the isoelastic (or CRRA) loss

functions

(3) � � � �> @ 1exp; *
1

*
1 �� 

��
SSESS tt

caraL with 0!E

and

(4) � � � � 11;
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11
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crraL for 1zU  and 0!U

(4’) � � � � 11ln; *
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SSSS tt

crraL for 1 U

As the name suggests, the CARA loss function is characterised by constant

absolute risk aversion (equal to E ), whereas CRRA implies constant relative

risk aversion (equal to U ).

Recall that quadratic losses,

� � � �2*
12

1*
1; SSSS � 

�� tt
qL ,

imply increasing absolute risk aversion.
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In order to substantiate our claim that non-quadratic preferences (and thus

other descriptions of risk aversion than implied by the simple quadratic) do

not deliver policy-caution or policy-gradualism, we will focus subsequently

on the CARA loss function.9

There is however one important caveat before proceeding.  In the

consumption literature, smoothing occurs due to the interaction between risk

aversion and an inter-temporal budget constraint ensuring an intertemporal

trade-off between consumption today and consumption in the future.  In the

Tinbergen-Theil setting, however, there is no natural constraint on the inter-

temporal behaviour of inflation - higher inflation does not necessarily imply

lower inflation tomorrow.  Due to the absence of a properly defined resource

constraint, optimisation under CARA preferences will yield unrealistic

solutions for the setting of interest rates. If the inflation target were for

example equal to zero, optimality would require the interest rate to be set at

plus infinity because the resulting negative rates of inflation imply policy

gains.  While the introduction of an output term in the loss function could

certainly offset some of this perverse tendency, we have opted for a

modification of the CARA function such that it incorporates the concept of a

target.  This will also allow for a more natural and direct comparison with the

quadratic paradigm.

2.2 RISK AVERSION ONLY AFFECTS DEAD-WEIGHT LOSSES

Consider the following symmetric two-part CARA loss function,10
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9 The CRRA case is entirely analogous. Calculations are available from the authors
upon request.
10 A similar framework is adopted by Horowitz (1987).
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with EEE   21  for symmetry.  This two-part function is displayed in Figure

1.   Using the indicator function, the loss function can be re-written as follows

(6) � � � �> @ � � � �> @*
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where 1�tI  takes the value 1 for inflation draws below target and zero for

draws above.  Equation (1) can therefore be re-written as
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As a result of the one-period control problem suggested by equation (2), the

control problem in (7) can be reduced to
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FIGURE 1
A Symmetric Two-Part CARA Loss Function
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For notational convenience, set X  equal to � � tt bia ���� SSSS * .  In order to

evaluate the probability of the additive shock being on one side of the split-

distribution or the other, we need to examine the probability of the inflation

draw being greater or less than the current period inflation rate being less

than or equal to the target.  The expectations over the indicator functions are

then given by:

(9)
� � ^ ` � �
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where � ��)  is the cumulative density of the standard normal.  The argument

in (8) then becomes:
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where expectations are taken over the intervals > @X,f�  and > @f,X

respectively.  Equation (10) can be evaluated to give the following expression

(11)
� � � � � �

� �� � � �� � � �¿
¾
½

¯
®
­

��)�)�

��))
u¸̧

¹

·
¨̈
©

§

XXX

XXX

eee

eeee

EVEVV

EVEVVVE

exp/1/1

exp//

2
exp

22

and we can see that this function will be minimised when X equals zero, i.e.

when interest rates are set to close the gap between current inflation and

target completely and immediately.11

(12) � � � �*1
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bb

a
iX tt

                                                       
11 Global convexity of (5) ensures that this is the global minimum.
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This expression is exactly the same as the one obtained under quadratic

losses.  It says that the deviation of the optimal interest rate from its neutral

level (recall that the neutral level has been set to zero) is a function of two

components.  The first component is essentially a simple feedback rule,

implying that the interest rate response depends on how far last period’s

inflation was away from its long-run mean.  The second component derives

from the possibility that the inflation target does not necessarily correspond

with the long-run mean of the autoregressive inflation process.  If the

inflation target is such that inflation will have to be sustained above (below)

its long-run level, then interest rates need to be permanently lower (higher).12

From (12) an important conclusion can be derived:  deviations from

quadratics do not affect the optimal rule, as long as the Tinbergen-Theil loss

function is symmetric and uncertainty is additive.  Interest rates will still be

set so as to offset completely any shock to inflation last period.

These results also imply that richer descriptions of risk aversion (to that

implied by quadratic losses) are irrelevant if the maintained hypothesis of

additive uncertainty and symmetric preferences is not violated.  To put it

differently, risk aversion merely affects dead-weight losses.

Recall that nothing can be done about the first-round effects of an additive

shock to inflation.  Only the second-round effects to the next, and subsequent,

period’s inflation rate can be stabilised.  We have shown that stabilisation

will be complete and immediate:  there is no element of policy-caution or

policy-gradualism.  This is what is meant with risk aversion, per se, being

irrelevant for the optimal rule.

Of course, the extent of risk aversion is not irrelevant for the value of the loss,

which equals:

                                                       
12 When the inflation target coincides with the long-run mean of the inflation process,
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if the optimal policy is implemented.  Note that the equilibrium value of the

loss in (13) increases both with the level of additive variability and the extent

of the policymaker’s aversion to risk.  Intuitively, an increase in risk aversion,

for example, means that a particular level of additive variability becomes

more costly as the first-round inflationary effects cannot be undone.  As a

result, at the time that the policymaker can act upon the shock (i.e. the next

period), the loss has occurred and is dead-weight.13

2.3 MULTIPLICATIVE UNCERTAINTY IS REQUIRED FOR CAUTION AND

GRADUALISM

Introducing multiplicative uncertainty should affect the optimal rule.  (With

multiplicative uncertainty we denote the variability in multiplier b .)  The

reason is simply that the actions of the policymaker bring about an additional

source of variability into the loss function.  Thus, the dead-weight loss

argument no longer applies.  As in the quadratic case, this will make optimal

policy cautious and gradualist.

In a framework with symmetric preferences and both additive and

multiplicative uncertainty there are now two interactions going on.  First of

all, there is the earlier result that for a given level of additive variability risk

aversion increases the dead-weight losses due to first-round effects on

inflation.  This does not affect, however, the optimal rule.  Secondly, risk

aversion will amplify the costs from a given degree of multiplicative

                                                                                                                                                              

then the optimal rule is *))(/( SS � tbati .
13 In finance theory terms, choosing a risk aversion parameter may alter the price of
risk but as additive uncertainty is uncorrelated with policy risk, there is no impact on the
insurable quantity of risk: this means that the optimal plan does not alter.
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uncertainty, when the policymaker tries to stabilise the second-round effects

on inflation.  The more risk averse the policymaker is, the more cautious and

gradualist policy will be.  In contrast to the interaction between risk aversion

and additive variability, risk aversion will not affect the dead-weight losses

through the multiplicative uncertainty channel because this channel operates

when interest rates are moved.  Since in this model interest rate actions

tomorrow cannot offset the first-round effects on inflation today, risk

aversion does not amplify the dead-weight losses through this mechanism.

Unfortunately, the current split-CARA framework becomes analytically

untractable when multiplicative uncertainty is introduced, so that the above

claims still require future verification.  In any case, the framework has served

our purpose, in that we show formally that risk aversion is irrelevant in a

setting of additive variability and symmetric preferences.  If one wishes to

examine issues of policy-caution and policy-gradualism, non-quadratic

preferences (and their implications for risk aversion), per se, are not sufficient.

Moreover, they are not necessary as one can easily examine these issues in a

quadratic framework.

3 DEVIATIONS FROM QUADRATICS:  ASYMMETRY

The quadratic paradigm is frequently criticised because positive and negative

deviations from the target are treated symmetrically.  In this section, we

explore the implications arising from the assumption of asymmetric losses in

a setting of monetary policymaking.  The analysis will show that a non-

quadratic loss function around a particular target is observationally similar to

a quadratic loss function around a different target, even if we allow for a rich

description of the stochastic nature of the economy.
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Asymmetric losses may be an interesting way of characterising the

policymaker’s attitude to policy outcomes, if such attitudes reflect either or

both of a view about the social welfare function14 or an exogenous view of the

policymaker about the embarrassment costs of positive as compared to

negative deviations from target.  Varian (1975), in his discussion on the losses

faced by property valuers,  suggests an asymmetric loss function which rises

linearly on one side of zero and rises exponentially on the other side.15  It is

this loss function, the so-called LINEX (Linear Exponential), which we

employ to examine the impact of both additive and multiplicative uncertainty

on the optimal path of interest rates.

3.1 INTRODUCING THE LINEX FUNCTION

Varian (1975) introduced the following convex loss function:

(14) � � � � DE[J[D[ �� expL , with 0,0, !z DEJ

where [  is the deviation of the policy objective from target.16  We can see that

� � 00  L  and that for a minimum to exist at 0 [  we must have EJD  .17  So

(14) can be re-written as:

(15) � � � � ]1exp[ �� J[J[D[L , with 0,0 !z DJ .

                                                       
14 The social welfare function with respect to inflation may be asymmetric because of
shoe-leather-type arguments on the costs of inflation or views on the probability of debt
deflation.
15 The argument used by Varian was that underassessment of property values led to
approximately linear revenue losses whereas overassessment may result in appeals,
litigation and other costs.  Zellner (1986) suggests an even clearer example by pointing out
that in the construction of dams underestimate of peak flows is much more serious than an
overestimate.
16 In a related vein, Christoffersen and Diebold (1997) study the optimal prediction
problem under general asymmetric loss structures.
17 This is simply found by differentiating  (14) with respect to [  and solving for E .
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The preferences of the policymaker are described by a LINEX loss function.

If for some reason overshooting the inflation target ( *S ) is more costly than

undershooting it, we can restrict J to be strictly positive.  This will imply that

undershooting is penalised in an approximately linear fashion, whereas the

marginal losses from overshooting are increasing in next period’s inflation

rate.  Of course, the following analysis could also be completed for the case

where negative deviations imply exponential losses and positive deviations

imply linear losses.  But for the remainder of this paper, we arbitrarily

require J to be strictly positive, without loss of generality.

The aim of the exercise is to find the optimal interest rate path which will

minimise the intertemporal loss function subject to the relationships in the

above equations.  Note that control is imperfect due to both additive and

multiplicative uncertainty.18  Both sources of uncertainty are assumed to

follow a normal distribution and to be independent from each other (i.e. beV ).

The parameter of inflation persistence is assumed to be a known constant.
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The solution can be found by solving

(18)
� �� �> @

� �� � °¿

°
¾
½

°̄

°
®
­

������

������

��

��

1

exp
*

11

*
11

SHSSSJ

SHSSSJ

tttt

tttt
t

i iba

iba
EMin

t

subject to

»
»
¼

º

«
«
¬

ª
¸̧
¹

·
¨̈
©

§
¸̧
¹

·
¨̈
©

§
¸̧
¹

·
¨̈
©

§

�

�

2

2

1

1

0

0
,

0
~

e

b

t

t b
N

b

V

V

H
, i.i.d.

The first-order condition of this optimisation problem implicitly defines the

optimal interest rate setting (for mathematical details see Appendix B):
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It is analytically intractable to get a reduced form solution for the optimal

rule in the general case.  However, there are some interesting simple special

cases.

THE DEFAULT CASE:   No Asymmetry And Only Additive Uncertainty

If there is no multiplicative instrument uncertainty and the preferences of the

policymaker tend to symmetry, then the optimal rule collapses to

                                                                                                                                                              
18 As to the precise nature of the uncertainty, the policymaker may believe that the
parameters of the model are random variables with a particular positive variance.
Alternatively, she may regard the true (population) parameters values as being nonrandom
quantities in the underlying model but put some margin of error on their estimated (sample)
values.  In what follows, we assume that the underlying additive shocks are genuine random
variables (which will ensure a role for stabilisation policy) and that the multiplicative
uncertainty mainly derives from imperfect inference (which will deliver a cautious setting of
policy).  For a discussion, see Brainard (1967, p 413-4).
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(20) � � � �*1
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In order to interpret this expression, assume that a one-off additive shock has

occurred at time t, producing an overshooting of the inflation target by x%

points.  Nothing can be done about the initial boost in inflation, but as long as

there is some persistence in inflation (i.e. 0!a ), the second-round effects of

the shock to inflation at time t+1 (another deviation from the inflation target

by a x% points) will be fully neutralised.

THE ASYMMETRY CASE:    Asymmetry and Only Additive Uncertainty

If multiplicative uncertainty is absent and preferences are asymmetric, the

optimal rule becomes

(21) � � � �
bbb

a
i e

tt
2

1 2
* JV

SSSS ���� .

The assumption of asymmetric risk aversion produces an upward bias in the

optimal rule if overshooting is considered to be more costly than

undershooting.  It is clear that the interest rate ‘premium’ due to risk aversion

increases with the extent of additive variability as well as with the degree of

asymmetry in the preferences of the policymaker.

THE UNCERTAINTY CASE:    No Asymmetry and Both Types of Uncertainty

Letting preferences approach symmetry, L’HApital’s rule delivers the optimal

rule under multiplicative instrument uncertainty (see Appendix C):
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which is exactly the Brainard result (1967, p 414) that one would obtain under

quadratic losses.  If the coefficient of variation ( bbV ) exceeds zero, the

optimal interest rate response will be such that the gap with the inflation

target is not entirely closed.

Note that we can also solve for the long-run steady-state values of inflation

and interest rates.  This will be illustrated for the default and the uncertainty

cases.  Analytically, Equations (20) and (22) need to be matched with the

steady-state condition

(23) � �SS �
�

 
b

a
i

1

which follows from Equation (2).

For the default case, the steady-state values for the inflation and interest rate

are respectively

(24) *SS  SS

(24’) � �SS �
�

 *1
b

a
i ss .

This tells us that in the long run inflation will settle down at the inflation

target.  Unless the long-run mean is equal to the inflation target, this requires

however continual policy intervention ( 0zSSi ).

For the uncertainty case, the steady state can be characterised by

(25) � �SOOSS �� 1*SS where )/1/(1 22 bbVO � 

(25’) � �SS
O

O �
�

 *1

b

a
i ss
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Equation (25) shows that the long-run steady state in the uncertainty case can

be represented as a weighted average of the long-run mean of the inflation

process and the inflation target.  If there is no multiplicative uncertainty, then

O  equals 1 (as 02  bV ) and long-run inflation will hit the inflation target.  The

other extreme is the case of infinite multiplicative uncertainty which delivers

O  equal to 0 (as fo2
bV ) and a long-run inflation rate which reverts to the

long-run mean of the process.  Similarly, Equation (25’) shows that the degree

of activism is inversely related to the degree of multiplicative uncertainty.

This is what we mean with policy-caution in this particular setting:  because

of multiplicative uncertainty, the long-run response in interest rate is biased

towards its neutral level;  as a result, inflation will settle down closer to its

mean.  Note as well that if the long-run mean and the inflation target

coincide, then the issue of caution entirely evaporates: inflation settles down

at its target and interest rates at their neutral level.

Returning to the most general case (i.e. multiplicative instrument uncertainty

and asymmetric preferences), note that the last two terms in (19) result from

the introduction of multiplicative uncertainty into the asymmetry case.  An

interesting issue is to what extent these terms lead to qualitatively different

results compared to the introduction of such uncertainty in the default case.

In order to answer this question let us turn to some simulation results.

4 RESULTS

Section 3 derived expressions for the general form of the optimal rule,

Equation (19) and for three relevant special cases: that of asymmetry (A),

uncertainty (U) and the default case.  Via simulation techniques, this section

explores the implication of the optimal rule for the setting of interest rates
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both as a static first period choice and as a dynamic path.19  We are also able

to derive graphically the solution to the choice of optimal interest rates for all

four cases.  The final result allows us to answer the question of whether

asymmetric preferences are sufficient to deliver gradualist interest rate

responses and whether cautious interest rate responses are delivered.

For expositional purposes, we have made one modification to the general

expression in Equation (19):  the long-run mean of the inflation process has

been set to zero (i.e. 0 S ).  This will give further insights on the interaction

between a long-run mean and an inflation target, which are not necessarily

equal.

4.1 THE INITIAL INTEREST RATE RESPONSE

Figure 3 examines the initial interest rate response to inflation shocks under

the four different cases.  The size of inflation shocks (on the x-axis) are

allowed to vary from -10% to +10% and the choice of optimal interest rates in

the first period is shown on the y-axis.  We chose the following parameter

values for the simulations J = 1.5, a = 0.5, b = 1, S* = 2.5, Ve

2 = 0.05 and Vb

2 =

0.5. The parameter choice is explained as follows: as J is the extent of

asymmetry in the loss function, which tends to symmetry as Jo 0 , 1.5 from

Figure 2 would seem a fair degree of asymmetry;  a is the extent of non-policy

related inflation persistence in the economy and is set to be something below

the observed persistence - which includes policy reaction - typically found for

modern industrialised economies,20 b is the impact on inflation of an interest

movement and set to allow for full pass through, S* is the inflation target, Ve

2

is the variance of additive shocks and set to be small number value less than

Vb

2, the variance of multiplicative uncertainty, so that the state-independent

                                                       
19 The optimal rule in the general case is solved using Gauss-Newton iterative
procedures.
20 The estimated sample persistence post-Bretton Woods has been in the order of 0.5-
1.0 for OECD countries.  Of course, the non-policy related persistence parameter will in the
real world include some expectation of likely policy accommodation.
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bias in interest rates, the third term on the r.h.s. of Equation (19), does not

swamp the interaction terms between asymmetry and multiplicative

uncertainty, the last two terms in Equation (19).

Figure 3 shows that, for this range of single inflation draws, the optimal

initial interest rate response rises linearly in the value of the inflation draw.

In both the default case and in the A case the initial interest rate response

rises at the rate a b/ , and at the rate )/1)(/( 2 bba bV�  in the U case and

approximately the same in the general case.  We find that in both the default

and U case the optimal initial interest rate response from a five percent

inflation draw is zero but that in both the A and the general case, reflecting

the asymmetry bias, an optimal initial interest rate response of zero occurs

when the inflation draw is )2/(/ 2* aa eJVS � .  This means that in comparison

to the symmetric cases the optimal initial interest rate response with an

inflation draw equal to target is biased up by an intercept amount of

)2/(2 beJV  in the A case but something less in the general case because of the

interaction between risk aversion and uncertainty i.e. the last two terms in

Equation (19). 21

                                                       
21 Note that, for convenience, we assume that the inflation target exceeds the long-run
mean of inflation.  Of course, the opposite case may apply as well.
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What happens to the initial interest rate choice under increasing parameter

uncertainty?  Figure 4 examines the initial response of interest rates to a given

10% inflation shock when the variance of b - the extent of multiplicative

FIGURE 3
Initial Interest Rate Responses to Inflation Shocks
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uncertainty - is allowed to increase from 0 to the implausible level of 2.22  The

chart shows that the initial interest response is state-independent of the level

of multiplicative uncertainty in both the default case and A.  But that the

introduction of multiplicative uncertainty makes the initial response of the

optimal interest rule in the general case similar to the default case when the

variance of b is set at around 1.5.  One way of thinking about this result (if

there is agreement on the other parameters) is to argue that if the policymaker

thinks that the optimal initial step in interest rates following a 10% inflation

shock is 2.5%, she either lives in a default world or a general world with

relatively large multiplicative uncertainty.  Also note that if multiplicative

uncertainty rises to implausibly large levels (i.e. greater than 2) then the

initial interest rate response looks similar for the U and for the general case.

Or less prosaically that if the policymaker considers that the economic

structure is chronically uncertain then, with other factors tending to be

outweighed, the initial interest rate response will tend to zero.23

4.2 THE DYNAMIC INTEREST RATE PATH

We are now able to solve for the dynamic path of interest rates (and

simultaneously for inflation) following the calculation of the initial response.

We assume that the inflation rate is the beginning of period rate and the

interest rate is the end of period rate.  Following the initial inflation draw ( tS )

and optimal interest rate response ( i t ), the economy’s technology, Equation

(2) with 0  iS , delivers a new inflation level ( 1�tS ), and this leads to

second optimal interest rate response ( 1�ti ) and so on until the steady-state

values are reached.

                                                       
22 For a value of b equal to 1, a variance of 2 may be considered to be implausible
because there would be an approximately 20% chance of an increase in interest rates leading
to a perverse response in inflation.
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Figure 5a plots the (time) impulse response of interest rates to an inflation

shock of 10% under the four cases.  The first point to note is that the level of

steady state interest rates is different in the four cases and so then is the

steady-state inflation rate, or implied target.24  Second, note that in the default

and A cases interest rates return to their steady-state path at the end of the

second period - there is no gradualism.  In the two cases involving

uncertainty the return to the steady state occurs by the end of the fourth

period - i.e. it is gradualist.  Finally, as long as the long-run mean of the

inflation process is not equal to the inflation target, the gradualist response

also delivers one which is cautious, in the sense that the long-run steady-state

value of the interest rate will be closer to its neutral level.

Figure 5b plots the dynamic response of interest rates and inflation to a 10%

inflation shock in the default and general cases where the explicit inflation

target has been set to 2.5%.  For the former case, in the absence of gradualism,

interest rates and inflation arrive at their steady-state values after one

                                                                                                                                                              
23 This result is analogous to the Friedman (1951) argument for what might be termed
“policy passivism”.

FIGURE 5a
Impulse Response Paths of Interest Rates
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period.25  In the general case, the economy is close to its steady-state at the

end of the fourth period.  In the general case, because of both uncertainty and

risk aversion, the LINEX loss function forces the optimal policymaker to

drive the economy towards a lower inflation target than explicitly stated.  It is

this implicit modification to the explicit target, down to some -1% in this case,

and to the long run mean projected by the economy’s technology (Equation

(2)) which leads to the negative bias in the long-run inflation rate and the

analogous positive bias to interest rates.

4.3 THE GRAPHICAL SOLUTION

Figure 6 plots a graphical solution to the simulations presented in Figures 3-5,

namely the steady-state locus and the initial interest rate response.  From the

steady-state solution to Equation (2), we find that the steady-state locus

passes through the origin with slope (a-1)/b and cuts the initial interest rate

responses at the steady state locus of inflation and interest rates.  This means

                                                                                                                                                              
24 Note from the discussion in Section 3 that the implicit inflation target is identical in
the default and U case when the explicit inflation target, S * , is the same as the technology’s
long run mean, S .

FIGURE 5b
Impulse Response Paths of Interest and Inflation Rates
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for the four cases shown that the default, uncertainty, general and asymmetry

cases imply successively lower inflation targets and higher steady-state

interest rate.  Just as the dynamic paths in Figure 4 showed different steady-

state interest rates, Figure 6 shows the same steady-state in inflation/interest

rate space.  The rankings of the implied inflation targets in terms of their

deviations from default case are parameter dependent but from Figure 6 we

are able to say the following, that, for positive asymmetry:  (i) the non-default

cases have implied inflation targets lower than for the default case and (ii) the

implied inflation target for the general case will always be lower than that for

the U case.

Figure 7 plots the dynamic response of interest rates in the inflation/interest

rate space.  To find the dynamic response to an initial inflation draw, a

vertical line is displayed from the inflation draw to the initial interest rate

response for one of the four cases.  This vertical line shows the jump variable

property of interest rates in the first period.  In the cases without

multiplicative uncertainty the next step is the final one and represents the

move back to the steady-state locus.  In the cases involving uncertainty, the

next steps involve exponentially decaying movements along the initial

response line back to the steady-state locus.  From the graph we can see

immediately that the gradualist response is also cautious.

So why is the inflation target lower in the non-default case?  There are three

separate reasons.  The easiest way is to first examine the move from the

default case, with no multiplicative uncertainty or from the asymmetry case

to U, we can see that arithmetically the bias follows from the (square) of

coefficient of variation in the denominator.  Intuitively, this means that the

lack of perfect control over the economy makes the optimal policymaker

choose to base interest rate decisions around an implicit inflation target

somewhat lower than the explicit inflation target.  Because of the economy’s

                                                                                                                                                              
25 Interest rates are a negative deviation from base in this example because the
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Finally, when we combine the risk aversion and multiplicative uncertainty in

the general case, for the parameters chosen, the interaction between

uncertainty and risk aversion acts to move the inflation target back to the

right.  This is because of two separate effects:  (i) the dichotomy between the

explicit inflation target and the economy’s long-run inflation mean mitigating

the policy action we noted in the A case and (ii) that the policy maker will, in

any case, tend towards choosing a zero interest rate draw in the presence of

uncertain control over the economy.  For the cases involving uncertainty the

lower inflation target results in smoothing of interest rates which with

cautious responses delivers lower inflation.  This is because the economy’s

technology, with inflation persistence, delivers the interest rate response in

two periods.  In the A case the lower inflation target simply implies activist

first period interest rate setting.

The main impact of asymmetric preferences is not to over-turn the “Brainard

conservatism principle”.  It is still parameter or what we might to think of as

control uncertainty which leads to gradual responses.  With either symmetric

FIGURE 7
Response Paths in The Interest Rate Space
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or asymmetric preferences, risk aversion in itself does not deliver smoothing

when shocks are additive.  We can find biases in interest rate setting for

additive, as well as multiplicative uncertainty, in the case of asymmetric

preferences.  But these seem to occur in a very Brainard way - the implicit

quadratic is simply shifted to the left.

5 CONCLUSION

The paper examines the implications of non-quadratic loss functions for

policy-gradualism and policy-caution within the context of monetary

policymaking. We deviate from the quadratic framework in two respects:

first, while retaining the assumption of symmetry, we allow the curvature of

the loss function to change; secondly, we introduce an asymmetry in the loss

function.

Changing the curvature of a symmetric loss function - for example, by

introducing constant absolute (or relative) risk aversion - is shown not to

matter for the optimal rule as long as uncertainty is additive.  As a result,

certainty equivalence also applies to non-quadratic loss functions provided

that these are symmetric.  So if the source of the uncertainty is about the type

of the shock, deviating from quadratics does not buy us anything new:  the

optimal rule remains the same, and only the policymaker’s dead-weight

losses are different.

As with the quadratic case under additive uncertainty, welfare losses will be

minimised at an inflation rate set equal to target.  And so it continues to make

sense to hit this target as soon and as closely as possible:  there will thus be no

case for gradualism nor caution.  In order to examine gradualism and

caution, non-quadratic preferences, per se, are not sufficient as one needs to

introduce multiplicative uncertainty.  Moreover, non-quadratic preferences

are not necessary as one can easily examine these issues in a quadratic
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framework.  This brings us to the conclusion that the analytically convenient

assumption of quadratic losses may not be that unreasonable after all.

When we introduce an asymmetry in the loss function (with a LINEX

function) we find that the optimal interest rate rule is biased in a state-

independent way, if uncertainty is merely additive.  Asymmetric preferences

then result in an interest rate path which is equivalent to that implied by a

shifted quadratic loss function.  If upward risks are considered more (less)

costly than downward risks, then the minimum of the quadratic loss function

lies to the left (right) of that of the non-quadratic.  In our framework, this

means that the implied inflation target (which internalises the asymmetry)

lies to the left (right) of the stated target.

With multiplicative uncertainty, the asymmetry does not yield qualitatively

different conclusions from changing the curvature of a symmetric loss

function: gradualism and caution only obtain when uncertainty is

multiplicative.  Moreover, simulations of the optimal rule under asymmetry

and multiplicative uncertainty show that the interest rate paths are very

similar to those implied by a shifted quadratic.

As for caution, we have also established that multiplicative uncertainty is not

sufficient.  An additional requirement is that long-run policy interventions

are necessary.  This latter feature is illustrated in our rather simple model by

letting the inflation target and the long-run mean of the inflation process

differ.26

With reference to the delegation of monetary policy, the use of asymmetric

loss functions leads to a number of important insights.  First of all, if the

                                                       
26 Some permanent bias to policy intervention might, however, result from a variety of
factors, for example optimal taxation, which we have not been modelled in this set-up.  It
may therefore be possible to derive such a bias without maintaining that the long-run mean
of inflation and its target are unequal.
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principal requires the agent to be goal dependent, then the agent should also

be required to pursue the delegated goal in a symmetric way.  This result is

consistent with the inflation remits of many central banks operating in

inflation targeting regimes, including that of the Bank of England.  Secondly,

if there is an asymmetry in the loss function of the principal for some social

welfare or political economy reason, this need not require the loss function of

the agent to be asymmetric as well.  The asymmetry in the principal’s loss

function would simply shift the level of the mandated target to the left or the

right (depending on the nature of the asymmetry) without necessarily

altering the symmetry of the agent’s objectives.

Perhaps Alan Blinder (1998) had himself come to a conclusion similar to the

one suggested by this paper because in the year following his clarion call he

wrote “Sceptics often object to certainty equivalence on the grounds

that...there is no particular reason to think that the objective function is

quadratic...[but] policymakers almost always will be contemplating changes

in policy instruments that can be expected to lead to small changes in

macroeconomic variables,  For such changes...any convex objective function is

approximately quadratic”.  On that we can agree.

As to future research, there may be considerable interest in exploring the

implications of the results when the long-run mean and the inflation target

are allowed to gradually coincide under some process of learning.  To do so,

the next step is to incorporate our results in a more realistic setting with

agents whose expectations about inflation influence actual inflation outcomes.

In addition, we might suggest at least three other possible uses of asymmetric

loss functions: in the field of examining non-quadratic adjustment costs, for

example, in models of investment; applications in explaining the excess

returns in financial markets (i.e. that prices of assets may be biased); and

finally, with respect to the maintenance of fixed exchange rate zones, where
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there is large asymmetry in the policymaker’s preferences at either limit of

the exchange rate band.
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APPENDIX A
SOME POINTS ON THE LINEX

The Arrow-Pratt coefficient of absolute risk aversion for this LINEX loss
function is:27

(A.1)
� �

� � 1exp

exp

�
�

J[

J[J
.

This coefficient has the property that there is risk neutrality at 0 [  and that
rA’ > 0 and rA’’ < 0 for 0z[ .

The expectation of the LINEX function is given by the following expression:

� � � � � � 1)(expexp ��� S
S

SJJS
S

JS[
S

EELE impimp ,

which is minimised by differentiating (A.1) and solving the first order
conditions for impS , the implicit inflation target.  This gives:

 � �� �JS
SJ

S �� expln
1

Eimp ,

which can be evaluated analytically when S  has a normal probability density
function with mean P  and variance 2

eV .  In this case the moment generating
function gives:

� � � �22

2

1expexp eE VJPJJS
S

�� �

which in turn gives:

(A.2) 2/2
e

imp VJPS � .

Equation (A.2) tells us that the expectation of the loss function tends to move
away from the quadratic as J  and v move away from 0.

                                                       
27 We take the positive value of the second over the first derivative for 0�]  and the
negative value for 0!] .
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The first-order condition to this problem is
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Using the earlier lemma for the first expectation and a similar line of
reasoning for the second one, we have
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APPENDIX C
DERIVATION OF THE OPTIMAL RULE IN THE PURE UNCERTAINTY CASE
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Consequently, the optimal rule in the pure uncertainty case is
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