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Abstract

Many practitioners point out that the speculative profits of institutional traders are
eroded by the difficulty in gauging the price impact of their trades. In this paper, we
develop a model of strategic trading where speculators face such a dilemma because
of incomplete information about time-varying market liquidity. Unlike the competi-
tive market makers that they trade against, informed traders do not know whether
the liquidity (“noise”) trades are generated from a distribution with high or low vari-
ance. Instead, they have to learn about liquidity from past prices and trading volume.
Extreme price deviations from forecasts of fundamentals based on public news or low
trading volume tend to lead to revisions of beliefs in favor of the low liquidity state.
This revision in beliefs implies that strategic trades and market statistics such as in-
formational efficiency are path-dependent on past market outcomes. Our paper has a
number of normative implications for practitioners concerned with gauging the poten-
tial price impact of their trades.
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1 Introduction

An issue fundamental to the analysis of asset markets is the determinants of speculative
trades by large traders (e.g. active money management). To begin with, institutional
ownership of common stocks is quite substantial and institutions account for a large
fraction of trading volume on a number of exchanges.! Importantly, their trades can
significantly affect price dynamics. Holthausen, Leftwich and Mayers (1990) find a
price impact of about one percent for the largest buy and sell trades for randomly
selected NYSE firms in 1983, while Keim and Madhavan (1996) find a price impact
of around eight percent for block trades on small NYSE, AMEX and NASDAQ firms
from 1985-1992.2 The conventional wisdom is that these traders have an informational
advantage over all other market participants (e.g., market makers) and hence can
optimally speculate on their private information by taking into account the price impact
of their trades.

However, a number of empirical findings call into question the completeness of this
conventional wisdom. If large traders have superior information, then they ought to
outperform the market or various passive benchmarks. This, however, does not appear
to be the case.® Many point out that this failure is due to the costliness of executing
large trades, or an “implementation shortfall” (see, e.g., Perold (1988), Chan and
Lakonishok (1993)). This implementation shortfall is not due to obvious trading costs
(bid-ask spreads, trading commissions) per se but rather the difficulty in gauging the
potential price impact of their trades.

Indeed, traders generally have incomplete information regarding the trading envi-
ronment (i.e. non-fundamentals) that can significantly affect the profitability of their

trades. For instance, they do not have information on market makers’ inventory fluc-

IFor instance, large institutions held discretionary control over more than half of the U.S. equity
market at the end of 1996 (see, e.g., Gompers and Metrick (1999)) and accounted for over seventy
percent of the trading volume among the New York Stock Exchange, the London Stock Exchange and
the Tokyo Stock Exchange in 1990 (see, e.g., Schwartz and Shapiro (1992)).

2See also Kraus and Stoll (1972), Scholes (1972), Holthausen, Leftwich and Mayers (1987), Haus-
man, Lo and MacKinlay (1992), and Chan and Lakonishok (1993).

3Numerous studies have documented portfolio managers’ inability to outperform various passive
benchmarks, despite considerable effort to analyze and select stocks (see, e.g., Fama (1991), Chevalier
and Ellison (1998)).



tuations or other characteristics of order flow which would affect market liquidity and
hence price impact (see, e.g., Schwartz and Whitcomb (1988)). Such liquidity shocks
are naturally more directly observable to market markers than large traders who par-
ticipate in the market on a less frequent basis. Importantly, market liquidity for a stock
may vary substantially across trading days: using various measures of liquidity such
as spreads and depth, Chordia et al. (2000) document substantial variability over time
for all their liquidity measures. Time varying liquidity is likely to be relevant for more
thinly traded, small stocks where price impact is of central importance for institutional

traders.

Many institutions therefore expend considerable resources on trading facilities and
personnel engaged in acquiring information not only about asset payoffs (i.e. funda-
mentals) but also about the trading environment, that is, the various costs of executing
large trades. Of course, the degree to which incomplete information regarding liquid-
ity matters varies across institutions. For institutions that are resource rich (so have
access to order flows) or that do not demand immediacy (so they can use limit orders),
uncertainty about liquidity is less of an issue. But as practitioners point out and em-
pirical evidence confirms, most institutional speculators want to maintain anonymity
and demand immediacy (and so use primarily market orders)—for these traders the

issue of price impact uncertainty is a very relevant one.*

In response, such traders purchase information technology systems which forecast
the price impact of trades.> Such automated trading programs provide money man-
agers with estimates of price impact based on past market outcomes such as a stock’s
past price fluctuations and trading volume. Fund managers then take into account
these estimates and the error bands around these estimates in formulating their best

execution strategies.

4In this regard, Keim and Madhavan (1995) find that the majority of orders (approximately 87%
of the total number and 90% of total value) in a dataset of 21 institutions are executed using market
(or market-not-held) orders. We will revisit this issue in more detail in Section 2.5.

5 A commonly used system among funds is developed by Investment Technology Group. Those with
more resources may hire consulting firms specializing in executing large trades. A notable example is
Plexus Group based in Los Angeles which provides clients with systems to estimate price impact and
advice on how best to execute large trades.



Motivated by these stylized facts, we develop an equilibrium model of speculation by
large (informed) traders who face incomplete information about liquidity. Our model is
similar to a version of the Kyle model, in which risk-neutral informed traders strategi-
cally trade against risk-neutral and competitive market makers to exploit their private
information (see, e.g., Kyle (1985)). Noise trades are generated from a distribution
whose variance evolves over time according to a Markov chain with two states, high or
low. The true variance (or the true supply of liquidity) is known to market makers but
imperfectly observed by informed traders.® In addition, there are inter-dealer trades
as market makers trade amongst themselves for exogenous reasons. In equilibrium,
the sensitivity of price to order flow depends on the true state of liquidity (it is larger
in the low than in the high liquidity state). Since informed traders have incomplete
information about the true state of liquidity, they face uncertainty regarding the price
impact of their trades.

However, these traders can extract valuable information about the true state of
liquidity by learning from past market prices and trading volume.” As a result of this
learning, their beliefs about the true state of liquidity change over time. We solve
in closed form for how informed traders update their beliefs conditionally on their
private information about asset payoffs and the history of prices and trading volume
(see Section 4).

Based on this solution, we establish a few simple results regarding the revisions of
beliefs. First, past prices that deviate significantly from the forecasted terminal asset
value based on public news lead to revisions of beliefs in favor of the low liquidity state.
In addition to past prices, past trading volumes also provide valuable information on
the state of liquidity. Given a non-zero price deviation from the forecasted fundamental
value, trading volume has a higher mean in the high liquidity state. Hence, observations
of low trading volume indicate an illiquid market and lead to corresponding revisions

in beliefs. Jointly, large price deviations along with low trading volume suggest even

6This assumption is a simple way of capturing large traders’ incomplete information about aspects
of the order flow better known to market makers (see Section 2.5).

"The presence of inter-dealer trades keeps price and trading volume from fully revealing the true
liquidity state to informed traders each period.



more dramatic revisions of beliefs in favor of low liquidity.

The dependence of revisions in beliefs on past prices and trading volume implies that
strategic trading will also be path dependent. When informed traders are uncertain
about the liquidity in the market, they trade as if the price impact were an average of
those in the high and low variance states, weighted by their beliefs about the likelihood
of each state occurring. The more confident they are that the true state is low, the
lower the liquidity they expect and the less aggressively they trade on their private
information. If recent price deviations from fundamentals have been large, or volume
has been low, then informed traders tend to revise their beliefs in favor of a less liquid
market and end up trading less aggressively on their private information. Through
their dependence on strategic trades, market statistics such as informational efficiency
and trading volume then become dependent on the path of prices and trading volume
as well.

The contributions of our paper are two-fold. First, our model yields testable im-
plications on how past prices and trading volume help to predict time variation in
strategic trading and other relevant market statistics. In fact, the behavior of the
informed traders in our model (formulating trading decisions based on forecasts of lig-
uidity) seems to fit very nicely with descriptions of fund managers formulating their
trading decisions based on information technology systems that forecast price impact
from past market outcomes. How one could test these predictions using data sets on
the trading strategies of institutional investors (see, e.g., Chan and Lakonishok (1993,
1995), Keim and Madhavan (1995)) will be discussed in Section 6.

Second and most importantly, our model addresses a problem that many institu-
tional speculators care about—how to forecast the price impact of their trades. Most
existing methods employed by practitioners tend to be statistical in nature (e.g. a
black box approach of fitting price impact to a variety of market statistics and using
these regressions to generate forecasts). In contrast, our model provides practition-
ers a consistent and parsimonious equilibrium framework with which to think about
this problem. This model can perhaps be the basis for a more economically informed

structural model to estimate and forecast the price impact of trades. In other words,
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our model has a number of normative implications for practitioners concerned with
estimating the price impact of their trades.

In the following section, we develop a simple dynamic model to capture the ideas
outlined above. Equilibrium trading and pricing strategies are derived in Section 3.
The emphasis of Section 4 is on understanding how large traders learn from prices and
trading volume about market liquidity. In Section 5, we discuss the time variation
in strategic trading induced by learning about liquidity. In Section 6, we draw out
the empirical implications of our model. We contrast our work with related papers in

Section 7. Section 8 concludes. All proofs are in the appendix.

2 The Model

In this section, we analyze a simple model of strategic trading. We consider a setup
similar to that of Kyle (1985). One risky security is traded by three types of traders:
informed, risk-neutral traders who possess identical private information about the liqui-
dation value of the risky security, liquidity (“noise”) traders who trade for idiosyncratic

or liquidity reasons, and competitive, risk-neutral market makers.

2.1 Market Structure

The single asset is traded over a span of time equal to 7 trading periods. It is assumed

that the ex post liquidation value of the asset at the end of period 7 is exogenously

given by
T
Y=V (1)
t=1
where Y; for W =1 7 are independently distributed normal random variables each

having a mean zero and variance }2. Any trader holding a share of the asset at the
end of period 7 receives a liquidating dividend of Y dollars. The value of the asset is
gradually resolved over time. Y; becomes public information to all market participants
in period W. By the end of period 7, the value of the asset will be known by all.

The quantity traded by noise traders in period W, denoted by X;, is drawn from a

normal distribution with mean zero and a variance }? that follows an exogenous two-
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state Markov process with possible values }7 ¥ }2 1 0. Let |, (N =0 1) denote the
probability of staying in state }} for one more period: |, = Pr(}7,, = }I1} = }H).
We assume that |, 1 for N=0 1and that |+ |; ¥ 1. Thus, there is no absorbing
state and the Markov chain exhibits persistence in the sense that a given state is more
likely to be reached from that same state than from the other. The variables Y; Yr
are independent of the noise trades and, conditional on }?2, the variables X; Xr are
independent as well.

The total net quantity of inter-dealer trades, denoted by H;, is drawn from a normal
distribution with mean zero and variance }? and is LL G over time and independent of
the Y’s, X’s and the Markov chain for the variance of noise trades. The distribution of

the inter-dealer trades is common knowledge.

2.2 Timing of Trades

In period W, trading takes place in three steps as follows. In step one, the 1 informed
traders submit market orders [,; (Q =1 1). At the beginning of period W, Y;
is observed by the informed traders. One can think of Y; as public news, which the
informed traders get to peek at the period before it is released. The informed traders
know Y; but do not know X; when placing the market order order, nor do they know
from which of the two possible distributions X; was drawn.

In step two, the market makers determine the price S; at which they trade the
quantity necessary to clear the market. When doing so, they observe the total order
flow \; = 2, [.:+X;, but not the [,,; or X; separately. However, unlike the informed
traders, they do know from which distribution X; was drawn. That is, they know the
realization of }?2.

In step three, market makers may trade amongst themselves for exogenous reasons
unrelated to the pricing of the risky asset.® Once all trades are completed at the end
of period W, the total trading volume T; = |\; + H;| becomes public information along

with the innovation Y; to the fundamental asset value.

8This assumption is simply a modeling device analogous to assuming that market makers can
identify certain parts of the order flow as uninformative (see section 2.5).



2.3 Pricing

The competitive, risk-neutral market makers determine the price in period W based on
the history of public information, past and current order flows, and past inter-dealer
trades. The zero expected profit condition implies that S;, the price set in period W by

the market makers, is
S;=E [Y ¥ 9% < (t—l] (2)

where 9,5,1 = (Y1 Y2 thl), <; = (\1 \2 \t) and (t,1 = (H1 H2 Htfl).

2.4 Informed Trading and Learning

In each period, a different and new cohort of 1 informed traders is active in the market.
So the 1 informed traders in the market in period W trade on their private information
Y,, then a different cohort of 1 informed traders participate in the market in period W+1
to trade on their private information Y;,1, and so on. More formally, after observing
the market history and the current realization of Y;, each of the 1 traders in period W

chooses a trade [,,; so as to maximize his expected profits, i.e.,
E[L: (Y=S) |9 311 4] (3)

where 3; 1 = (S; S;1)and 4y, 1 =(Ty T T, 1) are the histories of prices and
volumes, respectively. Here, issues related to the timing of informed trading, which are
important in Kyle (1985), do not arise since informed traders participate infrequently
in the market. However, different trading periods are linked through the informed
traders’ updating of beliefs about the current variance of noise trades. In equilibrium,
the revelation of Y; at the end of round W makes the trades [,,; publicly known. The
new cohort of informed traders then uses this information and the observation of price
and trading volume to update their belief about the variance of noise trades according
to Bayes’ law. In other words, informed traders in period W can learn from past prices
and trading volume in all the periods preceding W.

Suppose that informed traders begin trading round W with the common belief as-

signing probability {; to the event that }? = }?. At the end of round W, this belief
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is updated to a belief {{ on the basis of the observed price S; and trading volume T,
given the informed orders [,,;.” The belief {;;; that is then taken into trading round
4 1 is obtained by adjusting {; for the possibility of a state change between rounds
W and W+ 1. This process repeats itself every round. At the end of each round, the
market makers know everything that the informed traders know, so they can infer the

informed traders’ updated belief.

2.5 Comments on the Model

Next, we discuss the various assumptions of our model. We wish to highlight the types
of institutional traders and the market settings that our model really speaks to and
acknowledge some of the model’s limitations.

Several key assumptions drive our results. The first is that market makers have
more information regarding the variance of liquidity trades than informed traders.
This assumption is a simple way to model the asymmetry in information between
market makers and traders regarding various factors that affect price impact.!? Ac-
cording to various descriptions of transactions costs and institutional investor trading
strategies (see, e.g., Schwartz and Whitcomb (1988)), this assumption is eminently
realistic since market makers tend to have more information about limit orders and
other characteristics of order flow related to liquidity and price impact.!!

Relatedly, we assume that there are inter-dealer trades in the background which
are irrelevant for the purposes of pricing. This assumption is a simple way to keep
the combination of price and trading volume from fully revealing the true state of
liquidity in each period. There are other ways to prevent information about liquidity
from being fully revealed each period. For instance, we could have also assumed that

market makers are able to identify certain parts of order flow as being uninformative

9The updated belief 7}’ reflects both price and volume in round ¢; in Section 4 we will also consider
an updated belief 7, that reflects just the price.

10T jke many other rational expectations models, we assume that competitive market makers do not
sell or compete on their private information. One can think of several different rationales behind this;
see the many related models of trading on private information following Grossman and Stiglitz (1980).

HUThere are some exceptions. Perhaps proprietary traders at Goldman Sachs may be able to peek
at the order flow handled by the brokerage wing of Goldman. But such peeking is generally frowned
upon and is certainly the exception.



or that informed traders observe trading volume with some noise. Inter-dealer trades
just provide a more specific rationale for why price and trading volume need not fully
reveal all information about factors affecting price impact.

Furthermore, we assume that there is a new cohort of informed traders in each
period | who only have access to private information for that period. The idea here
is that we think of the 7 trading periods as being a long period of time and of each
period as being a day or a week. So, over time, different informed traders have different
pieces of private information and participate with their trades. Traders that come later
inherit an endowment of information and beliefs from previous generations of traders.
This assumption provides tractability and allows us to focus on the information content
of past prices and trading volume about liquidity.

Perhaps most importantly, we have to limit traders to only submitting market
orders to exploit their information. This assumption is related to the broader issue
of what types of institutional trader really face uncertainty regarding price impact.
For instance, traders with long-lived private information (e.g., value traders) and no
demand for immediacy may submit limit orders instead of market orders. Thus, the
issue of uncertainty about price impact becomes less of an issue. Moreover, institutions
with access to upstairs markets may want to negotiate their block trades, once again
mitigating the effect of price impact uncertainty.

However, empirical evidence suggests that for the majority of institutional traders,
price impact uncertainty is a big issue. A surprisingly high number of the orders placed
by institutional traders (e.g., technical traders whose information decays quickly) are
in fact market orders (see, e.g., Keim and Madhavan (1995)). No doubt an important
reason is that they are speculating on short-lived information and require immediacy.
This forces them into the more costly strategy of market orders and away from limit
orders.

Moreover, institutions who want to speculate on private information prefer to keep
their anonymity and hence shy away from upstairs markets in which they have to
reveal their identity before negotiating trades. Upstairs markets are also very expensive

because there is limited capital available. So except for the most difficult of trades,
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most traders stay away from the upstairs market.

Of course, the issue of whether price impact uncertainty matters for a particular
institution also depends on how resource rich the institution is. For the rare institutions
with very sophisticated trading desks or access to order flow, this problem is mitigated
precisely because they have the resources to acquire information about liquidity. But
based on the descriptions of the business of active money management, such institutions
are the exception rather than the norm.

Overall, the evidence speaks very clearly to the fact that most institutions have
incomplete information regarding the price impact of their trades and that this affects
their decision making. As we mentioned in the introduction, the remedy used by many
institutions consists of information technology systems that forecast the price impact
of their trades based on past market outcomes for a stock. This type of behavior
very closely mirrors that of the informed traders in our model. Moreover, consulting
practices have risen up to address precisely such issues. Interestingly, exchanges, noting
the profitability of such services, have gotten into the act promising to set up trading
systems which allow a typical institutional trader more access to information regarding
liquidity. 2

Finally, our model is limited in its focus on the speculative motive for trade by large
traders. In reality, large traders probably trade to both speculate and hedge. This dual
trading motive is captured in a number of papers such as Admati and Pfleiderer (1988),
Foster and Vishwanathan (1990), Seppi (1990), and Vayanos (1998). Additionally,
we ignore the dynamics in the unwinding of large positions, which is an important
problem encountered by large institutions. This problem is addressed by Bertsimas
and Lo (1998) who study the dynamic strategies of large traders who have a fixed time
horizon to complete a trade. To fully understand the importance of uncertainty about

market liquidity, a model should incorporate these other motives for trade as well.

12For instance, the NYSE is promising an electronic trading tool for institutional investors called
Institutional Express (see Ruyter (1999)). The product will use software and connections to the NYSE
floor to give investors more information about the order book.
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3 Equilibrium
3.1 Prices and Trading Strategies

We characterize the unique linear equilibrium of the trading game. In a linear equilib-
rium, the informed traders place orders [,,; = n,,Y; and the market makers employ a

pricing rule of the form

SELY pwg, e if 32 =132
St_{ j=1 "] 0,6 M }t }0 (4)

LY hw\ i ¥R =)

where \; is the combined order flow from informed traders and noise traders. Our
notation conforms with that in Kyle (1985). Here, wi; (N = 0 1) measures the respon-
siveness of price to order flow when the noise trades are drawn from the distribution
with variance }7. As news Y, about the terminal value of the asset gets revealed over
time, the expected liquidation value of the asset changes. Market makers adjust the
price in response to the part of current order flow that is not inter-dealer trades, hence
conveys some of the informed traders’ short-lived private information.

Given the pricing rule (4), the informed traders’ uncertainty about the variance
of noise trades translates directly into price impact uncertainty. The average w; =
{ew1: + (1 — {4)Wo measures the informed traders’ expected price impact. As in Kyle
(1985), the inverse 1 w; captures the market depth dimension of market liquidity: this
is the order size that, from the perspective of an informed trader, will on average move
the price by one unit. Of course, actual market depth depends on the true variance of
noise trades and is measured by 1 wj; with N =10 or 1.

As inter-dealer trades do not convey information about asset values, the market
makers disregard these orders when setting the price. Therefore, inter-dealer trades do
not contribute to the informed traders’ price impact uncertainty and have no effect on
their trading strategies.

The following result describes equilibrium strategies as a function of beliefs. To

state it, we define
}152 = {t}% + (1 - {t)}(Q) (5)
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This is the variance of uninformed order flow from noise traders that informed traders

expect in trading round W given that their belief at the beginning of the trading round
18 {t°

Lemma 3.1 The dynamic trading game has a unique linear equilibrium. In this equi-
librium, all informed traders submit identical market orders, [; = nYy, expecting to
achieve trading profits of n,Y? (1 + 1) per trader. Market makers use a pricing strat-

eqy as in (4) with the informed traders’ expected price impact given by

1

Wy = LWy + (1 —{o)Wo, = m
t

(6)

Given the belief {; with which the informed traders enter trading round\, the equilibrium
n; Wo, and W, are

n=n({) = /;7} (7)

and

_ Vlot}v

Wit =W ({s) = 1o, + }]% (8)

where 0, = 0({;) is the unique positive root of the quadratic equation
10%+ B+ -(1+1)¥]o-3} =0 (9)

While this lemma pins down equilibrium behavior for any given belief of the in-
formed traders, it does not say anything about the evolution of these beliefs. We will
derive their equilibrium law of motion in Section 4. Before that, we wish to take note
of some basic properties of the equilibrium and interpret the variable 0; that is crucial

to the calculation of equilibrium strategies.

3.2 Simple Properties of the Equilibrium

First, we point out some properties of the equilibrium price function. Since the market
makers always know the true distribution from which the liquidity trades are drawn,
the price set by the market makers is more sensitive to order flow (and the market is less

deep) when the variance of noise trades is low: Wy, T w;;. Furthermore, competition
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between the risk-neutral market makers ensures that, conditional on the true variance
of noise trades, price is an unbiased estimator. So by taking the expectation over that
variance, we see that price is also an unbiased forecast unconditionally. These results

are stated formally in the following proposition.

Proposition 3.1 In the equilibrium with price impact uncertainty, the price is more
sensitive to order flow when the variance of noise trades is low. However, price is

always an unbiased forecast of the liquidation value:
St - E[Y | 9,5,1 St] (10)

We next point out a few basic properties of the informed traders’ equilibrium strate-
gies. To develop some intuition, consider first the special case where the informed
traders have full information on the state of the variance of noise trades, i.e. }? = }?
and {y = N. Then o, = }? and n, = }, (V1 },), which is exactly the equilibrium
strategy for the 1-player one-period Kyle model with commonly known variance }7.
For non-degenerate beliefs, equation (7) shows that the informed traders behave as if
they were in an 1 -player one-period Kyle model with known variance 0;. In this sense,
0; is the “certainty equivalent variance” for the informed traders. A second useful in-
terpretation of the variable 0; emerges when we calculate the variance of the informed
order flow: Var[1n,Y;|9; ; 3; 1 4; ] = 1?n?}?> = 1o;. Thus, the variance of in-
formed order flow is proportional to 0;, the factor of proportionality being the number
of informed traders. Finally, we note from equation (6) that the trading aggressiveness
N, of an informed trader is inversely related to the expected price impact of his trades,
W;. This generalizes a well-known property of the standard Kyle model to the case of
price impact uncertainty.

To gain a better understanding of the effects of liquidity uncertainty on strategic
trading, we fix an expected level of liquidity }? and vary the spread between the two
possible variances of noise trades. The higher this spread, the more uncertain informed

traders are about liquidity. We have the following result.
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Proposition 3.2 As the informed traders” uncertainty about liquidity increases (hold-
ing expected liquidity constant), they expect a higher price impact of their trades, trade

less aggressively, and expect lower profits.

In fact, the proof shows that, given an expected variance of noise trades }?, the certainty
equivalent variance 0; is strictly decreasing in the difference }? —3}2. In view of equation
(7), therefore, the aggressiveness of informed trading, measured by n;, also decreases
in }? — }2. In particular, informed traders trade less aggressively than if the variance
of noise trades were }? for sure.

This uncertainty effect, which is already discussed in Lindsey (1992) and Forster and
George (1992), is easy to understand. Suppose that the informed traders are uncertain
about liquidity, but use the trading strategy [, = n,Y, with n, = \/ﬁ (vV1},) that
would be the equilibrium strategy if the variance of noise trades were commonly known
to be }?. The market makers, who know the true variance }?, determine the slope of
their pricing strategy by estimating the asset value on the basis of the order flow. By
the projection formula for normal variables, this slope coefficient turns out to be strictly
convex in }7. By Jensen’s inequality, therefore, the expected slope w; = {iw;; + (1 —
{)Wo, exceeds w, =1 }, [(1 + 1)\/}72], which would be the equilibrium slope if the
variance of noise trades were }? for sure. Since it is the expected slope that determines
the price response anticipated by the informed traders, they face higher expected costs
to trading, and are thus better off trading less aggressively. At the same time, higher
expected trading costs mean lower expected profits.

The other effect of liquidity uncertainty on strategic trading, which will be the
focus of our paper, is how trading aggressiveness depends on beliefs about liquidity.
The following proposition proves an important result that will be used later in the

paper.

Proposition 3.3 The informed traders trade more aggressively as they become more

confident that the variance of noise trades is high.

In fact, 0; and in turn n; are strictly increasing functions of the beliefs about liquidity,

{i- One can characterize this as the level effect of liquidity uncertainty on strategic
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trading.

Informed traders change their trading strategies over time as they learn from past
prices and trading volume and update their beliefs about the distribution that generates
the noise trades. The market makers condition their pricing rule on the variance of
noise trades as well as the beliefs of the informed traders. Consequently, the equilibrium
price functions also change over time. How beliefs are updated is the focus of the next
section; how the time variation in beliefs affects strategic trading and other market

statistics will then be the focus of the remainder of the paper.

4 Learning about Liquidity

In this section, we study how informed investors can learn about the variance of lig-
uidity trades and hence form forecasts of price impact to optimally determine their
strategic trades. This analysis is interesting in light of the automated trading sys-
tems (described in the introduction) that many institutional traders use to help them
formulate their trading decisions.

We begin by defining the price innovation
t—1
L=S->Y (11)
j=1

We call ]; a price innovation because Z;;ll Y; represents the best forecast of the funda-
mental value or fair price of the asset entering period W, and ], represents the deviation
of the new equilibrium price from this forecast. We note that in the absence of inter-
dealer trades (}2? = 0), observing the equilibrium price innovation and the transaction
volume T; is sufficient to determine the current level of liquidity. This is because without
inter-dealer trades, the pricing rule (4) implies |];| = Wy ;T; when the current variance
of noise trades is }#, so knowledge of ]; and T; implies knowledge of Wy ;. And since
Wo+ 7# Wy, this fully reveals the current level of liquidity.

When there are inter-dealer trades (}? 1 0), informed traders cannot perfectly infer
current liquidity from the observed price and volume since it is impossible to infer wy;

from ]; and T; without knowing H,. However, the joint distribution of equilibrium price
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and volume when liquidity is high will in general be different from the distribution
when liquidity is low, so informed traders can still extract valuable information about

current liquidity from their observation of the market outcome.

4.1 The Basics of Updating

For expositional purposes, we will decompose the updating of beliefs in three steps.
In the first step, informed traders update their belief from {; to {} in response to the
observed price innovation J;. In the second step, they update from {; to {} in response
to the observed transaction volume T;. In the third step, they form the belief {;,;
by adjusting {;’ for the possibility of a change in the variance of noise trades between
periods W and W+ 1. We analyze each of these steps in turn.

Given the belief {; held at the beginning of trading round W, and conditional on
the realization of Y, and the variance }? = }7, the price innovation ], = wy;\; =

Wi+ (I n.Y, + X;) is normally distributed with mean

1o
Ed:{: Y: };%] =W, AN,Y, = T‘i-t};% Y = Xpt Yy (12)
and variance
1o}
Var[lo|{; Y: }7] = wi 37 = m = X7, (13)

We denote the corresponding density function by 1y (];/{: Y:). By Bayes’ rule, the belief
held after observing Y; and ]; (but not T;) is

-1

{ - L o) _ 1+1_{t 1
COLh@d YO+ =)@l ) £ G Vo)

where C,(J¢[{: Y¢e) = Qe Ye) Vo(Qe{: Ye) is the likelihood ratio for ]; given {; and

(14)

Y;. Note that {] increases strictly in C,(];|{; Y:). In particular, we have {; ¥ {; if and
only if C,(J¢/{: Y:) ! 1, i.e., if and only if the observed price is more likely to have been
generated from the distribution associated with the high variance of noise trades.

Next, conditional on ]; and }? = }2, transaction volume

L + H;
Wy, ¢

Tt = |1nth+Xt+Ht| =
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is distributed like the absolute value of a normal random variable with mean ], Wy,
and variance }2. Let Ji(T,|{; ];) be the corresponding density function. By Bayes’ rule
again, the belief that the informed traders hold at the end of trading round W (i.e. after
observing Y;, ] and T;) is
1-{ 1 -
{ G 1)
where C,(Te|{: 1t) = Ii(Tel{e 1) Jo(Te|{: 1¢) is the likelihood ratio for T; given {; and
1:- Note that {{/ ¥ { if and only C,(T:|{;: 1:) ¥ 1, i.e. if and only if the observed order

f=11+ (16)

flow is more likely to have been generated from the distribution associated with the
high variance of noise trades. It is straightforward to see that {J ¥ {; if and only the
product C, (J¢|{¢ Y:+)Cq(Te|{: 1¢) exceeds 1. Of course, this product is the likelihood ratio
for (1, T;) given {; and Y; — the likelihood ratio one would use to update from {; to {;/
in a single step.

Given the belief {} held at the end of period W, the informed traders assign prob-
ability {}' |1 to the event that }?,, = }7 = }{, and probability (1 — {}')(1 — |o) to
the event that }7 = }§ and }7,; = }{. So the belief that these traders take into the

subsequent trading round is

L= L+0-{)H1~1o) (17)

It is instructive to re-write this as

fo={+Uo+ 1L - =D (18)

where £ = (1 — |o) (2 — o — |1) is the expected long-run fraction of time that the
variance process will spend in state }?. By assumption, 0 Jo+ |1 —1 1, s0 {i11
is increasing in {/, yet closer to { than {]' was. Thus, the possibility of a change in
liquidity introduces mean reversion into the informed traders’ beliefs: from the end
of period Wl to the beginning of period W + 1, beliefs are adjusted towards the long-run
average . This mean reversion is the stronger, the smaller |o + |1 — 1, i.e. the lower

the persistence of the variance process.
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Since {41 is monotonic with respect to {;', we can focus on the updating from {; to
¢ when studying the dynamics of beliefs. Our next aim is to provide some qualitative

insights into these dynamics. We consider learning from prices first.

4.2 Learning from Prices

Given the belief {; and the private information Y;, the price signal ]; is drawn from one
of two possible normal distributions. As X;; X4, the two possible distributions of ],
have different means (unless Y; = 0, which is a null event). The informed traders thus
expect to see price innovations closer to zero when the market is deeper. If the two
possible price distributions had the same variance, informed traders would therefore
put more weight on the high liquidity state whenever they saw a price innovation close
to zero. Examination of (13) shows, however, that the two distributions will in general
have different variances.

Small absolute price innovations will still be evidence in favor of the deeper market
if the deeper market has a smaller price variance. Yet, as we shall see shortly, this
need not be the case. Nor is the deeper market necessarily associated with a higher
price variance. While this would hold true if the market makers used the same pricing
strategy in both states, they actually choose a flatter pricing strategy when the variance
of noise trades is high (W;;  Wg.). As the variance of price innovations is the product
of the squared slope of the pricing strategy and the variance of noise trades, it is not
clear, without further analysis, in what state the variance of price innovations will be
higher.

To determine which of the two possible price distributions has the higher variance
we have to compare the difference in the squared slopes of pricing strategies, Wg , — W5 ,,
with the given difference in the variances of noise trades, }? —}2. It is straightforward to
show that W§ ,—W7 , decreases monotonically in 1.0, the variance of informed order flow.
This is very intuitive: a growing variance of informed order flow means that orders from
the informed traders become a larger component of total order flow, while the orders
from noise traders become less important; consequently, the market makers’ incentive

to vary their pricing strategy according to the true variance of noise trades diminishes.
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The higher the variance of informed order flow, therefore, the less pronounced is the
flattening of the market makers’ pricing strategy when the true variance of noise trades
is high, and the higher is the price variance in the high liquidity state relative to the
price variance in the low liquidity state. More precisely, the ranking of these two price
variances depends on whether 10, exceeds }o}; or not. We thus need to distinguish
between these two cases.

To figure out how traders revise their beliefs after observing price innovations, we
will calculate the likelihood ratio. Consider the first case in which the variance of in-
formed order flow is small—210;, ~ }o}1. In this instance, X7, X5, and so the deeper
market is associated with a smaller variance of price innovations. To see the implica-
tion of this for the updating of beliefs from {; to {}, we compute the corresponding

likelihood ratio:

C.(Ael{e Vi) = g—?’z exp <_% K]t _E)l(i,t Yt> B <]t —E)O((t),t Yt> ]) (19)

For 7, X§,, the quadratic in the exponent of (19) is strictly concave in ];, with a
global maximum at

2 2
No X — X1 Xor,, 1707

2 2 t 2 212

X5 — 21y 1207 — }oH

Yt = Xt Yt (20)

Thus, the informed traders update the stronger in favor of the state where the market
is deeper, the closer the realized innovation is to X;Y;. Price innovations far off this
mark are more likely to have been generated from the price distribution with higher
variance, X3 ,, hence lead the traders to update in favor of }3.

The second case is when the variance of informed order flow is large—210;, ¥ }o}1.
In this instance, X7, ¥ ¥§,, and so the deeper market is associated with a higher
variance of price innovations. The quadratic in the exponent of (19) is now strictly
convex in J;, with a global minimum at X; Y;. Price innovations far off this mark are
more likely to stem from the price distribution with variance X7 ,, hence lead the traders
to update in favor of }?.

Note that as 1 0; decreases, the factor X; defined above tends to 0; as 1 0; increases,

X; tends to 1. For sufficiently small and sufficiently large variances of informed order
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flow, therefore, a price innovation that is far off the mark X;Y; is also large in absolute

value. This yields the following proposition.

Proposition 4.1 When the variance of informed order flow is small, then large price
deviations from the forecast of the asset value based on public information lead to
revisions of beliefs in favor of the low liquidity state. When the variance of informed
order flow is large, then large price deviations from the forecast lead to revisions of

beliefs in favor of the high liquidity state.

The intuition behind this is simple. For relatively large and relatively small vari-
ances of informed order flow, the difference between the means of the two possible
price distributions is small, so learning about the variance of prices is the dominant
force in the updating. Large price innovations then simply speak in favor of whatver
distribution has the higher variance.

Over an intermediate range of the variance of informed flow, namely for 10, close
to }o}1, the difference between the variances of the two possible price distributions is
small, and learning about the means of prices is the dominant force in the updating.
In that case, a price innovation close to zero is indicative of a deeper market. This is
most easily seen by examining the borderline between the two cases discussed above—
10; = }o}:. Byequation (9), this is equivalent to }2+3}— (1 +1)}2—(1—-1)}o} =0
which holds if and only if the current belief is

h - 1%

(L +1)G — o)

In this instance, 37, = X%, = }oh}: (3o + }1)? and the likelihood ratio simplifies to

{:= (21)

C.(Qel{e Yi) = exp <_ }}10}_1}}20 Yi []t - %YtD (22)

This is strictly decreasing in ]; if Y; ¥ 0, and strictly increasing if Y; 0, in accordance
with our earlier statement that for identical price variances, a price innovation close to

zero is indicative of a deeper market.!

BOf course, if v, = 0, then the two possible distributions for z, are identical, and there is no
updating at all.
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Note that the right-hand side of (21) equals % for 1 = 1, decreases in 1 and }g, and
increases in }1. If }; < 1} (which requires at least two traders, and will always hold
for sufficiently large 1) the right-hand side of (21) is non-positive, so 1 0; 1 }¢}; at all
beliefs {;. As the number of traders or the spread between the two possible variances
of uninformed order flow grows, therefore, there is a larger range of beliefs where the
state with a high variance of noise trades (and thus a deeper market) is characterized
by more variable equilibrium prices.

In summary, belief revisions due to price observations depend in a non-trivial way on
the variance of informed order flow, 1 0;, which in turn is determined by the number
of traders and the belief with which they enter the trading period. In comparison,

learning from volume, which we address next, turns out to be simpler.

4.3 Learning from Trading Volume

Given the belief {; and the observed price innovation ];, transaction volume T; is the
absolute value of a draw from one of two possible normal distributions with common
variance }? and means J; Wy, (N=10 1)."

If ]; = 0, these means are identical, so the observation of T; does not contain any
new information, and {} = {;. This is easy to explain. Given ], = 0, the informed
traders know already that the order flow \; = 1 n,;Y;+X; must have been zero. Since the
informed traders also know Y;, they can perfectly infer the noisy order flow X;. This is
as much information as they could possibly hope for — observing a second signal cannot
improve matters.

Almost surely, however, ]; # 0. Then the distribution of T; in the low liquidity
state has a lower mean and a lower variance than in the high liquidity state. This
suggests that informed traders will interpret high volume as evidence of high liquidity.
To confirm this, we compute the relevant likelihood ratio:

y) ST el )
(G5 Te) + exp (=23 o)

1
232

1 1

2 n2
Wi;  Wou

& 1) = exp(— (23)

14 Alternatively, we could consider the informationally equivalent volume signal ¢?. The two possible
distributions from which this signal is drawn are non-central x? distributions of degree 1 with non-
centrality parameter b, = 27 /(A7 ,02) (k = 0,1), hence mean 1 + by, and variance 2 + 4by,.
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We first note that C,(T;|{; 1) is invariant to a sign change of ]; in other words, the
likelihood ratio depends on the price innovation only through its absolute value, |];|.'°
Second, the inequality Wy,  Wg, implies that the likelihood ratio is increasing in T,
when ]; # 0. Thus, we have the very intuitive result that higher observed volume makes
informed traders more optimistic about market liquidity. Third, if J; # 0, then the
likelihood ratio is smaller than 1 at T, = 0; by continuity, this also holds for sufficiently
small observed transaction volume. This means that very small volume is unambigious
evidence in favor of the low liquidity state and leads to a downward belief revision from
o fl.

We summarize these results in the following proposition:'6

Proposition 4.2 After a small volume of transactions has been observed, beliefs are
revised in favor of the low liquidity state. Optimism about liquidity increases with

observed transaction volume.

The implications of this proposition and the results of Section 4.2 for strategic
trading, informational efficiency and trading volume will be spelled out in Sections

5.2-5.3.

4.4 Speed of Learning

The speed of learning, i.e., how much adjustment in beliefs one should expect to see
in any given trading round, depends on how much information about the variance of
noise trades the informed traders can extract from the equilibrium price and volume.

A measure of the information content of the price signal ]; is the relative entropy

&0 L(del e Ye
Hy = [m |1(]t|{t Yi) IH%GL (24)

The entropy is always non-negative, and equals zero if and only if the two density

functions coincide. Moreover, a higher entropy means a higher information content

15This is obvious when one uses the alternative signal ¢7 since the non-centrality parameters of the
relevant distributions depend on the price innovation only through 22.

16Tn this and the following propositions, we neglect the null event of a zero price innovation. Thus
all statements are meant for z; # 0.
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of observed prices, and hence a stronger revision of beliefs from {; to {,.17 Tt is easy

to evaluate (24) for normal distributions; for the means and variances (12)-(13), the

result is
E%,t + (Xl,t - XO,t)2 Y152 E%t

1
- —In——1 25
2 > "SI (25)

H =

This explicit representation allows us to perform comparative statics with respect to

various factors that affect the speed of learning.

Proposition 4.3 The speed of learning from prices increases with the absolute value
of the realization of the informed traders’ private information and with the difference
between the two possible variances of noise trades. It decreases with the number of

informed traders.

The statement for |Y;| is obvious from (25), and that for }# — }2 and 1 follows from
some straightforward but tedious computations. We therefore omit the proof.

The intuition behind Proposition (4.3) is the following. First, a larger (in absolute
value) realization of the private information drives the means of the two possible price
distributions further apart while keeping their variances unchanged, and so makes the
observed price more informative. Second, the larger the spread between the two possi-
ble variances of noise trades, the larger is the spread between the corresponding price
volatilities and means, and the easier it becomes to distinguish the two states. Third,
as the number of informed traders grows, the distribution of noise trades becomes less
important to the overall order flow and the formation of prices. As a consequence, the
difference between the two possible price distributions shrinks, and price observations
reveal less about the variance of noise trades.

The same analysis can be carried out for the information content of trading volume

given the price observation.

"In a simple example with binary uncertainty about a time-invariant fundamental asset value,
binary signals (sale or purchase) and i.i.d. trades, O’'Hara (1995, pp. 82-86) shows that beliefs converge
exponentially at a rate equal to the entropy. Our setup here is more complicated insofar as the entropy
itself changes as beliefs change, but the basic relationship between speed of learning and entropy carries
over.
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Proposition 4.4 The speed of learning from transaction volume (after observing the
price) increases with the absolute value of the price innovation and with the difference
between the two possible variances of noise trades. It decreases with the variance of

inter-dealer trades and the number of informed traders.

The proof is again omitted.

The intuition behind this result is clear. A larger (in absolute value) realization of
the price innovation or a larger spread between the two possible variances of noise trades
drives the means and variances of the two possible distributions of transaction volume
further apart. This makes volume more informative. As the variance of inter-dealer
trades or the number of informed traders grows, on the other hand, noise trades become

a less important component of total volume. This makes volume less informative.

5 Strategic Trades and Market Statistics

Having established an understanding of the dynamics of beliefs, we turn to the im-
plications of learning by informed traders for their trading strategies and in turn for

market statistics such as informational efficiency and trading volume.

5.1 Time Variation in Beliefs about Liquidity

So far, we have studied updating by an insider who has the informational advantage of
knowing Y,;. In this sub-section, we shall consider updating by an outside observer who
enters trading round W with the belief {; and observes the market outcome, but not
the insiders’ private information Y;.!* This is an important and empirically relevant
case because the perspective of the outside observer is the appropriate one when we
consider how past market outcomes affect future trading behavior and informational
efficiency:.

Conditional on the true variance of noise trades being }? = }2, such an observer

anticipates the equilibrium price innovation, ]; = Wi (1 n.Y; + X;), to be normally

18 The observer can calculate the belief m; from the informed traders’ prior belief at ¢ = 1 and the
public history of fundamentals, prices and volumes, (Vi—1, Pi—1, Q¢—1)-
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distributed with mean zero and variance f)%t = Wi, (1°n?}7+37) = 1o}) (Lo+37).
Note that this variance is unambiguously smaller in the state where the market is
deeper: X2, %2, This is because from the perspective of the outsider, the variance
of price innovations has two components: one stemming from informed order flow
(W7 ,10;), the other from uninformed order flow (w; }7)."” When the variance of
informed order flow is small (10;  }o}1), both components are smaller in the state
where the market is deeper: Wi, 10, wg,10, and w;,}? W, }§. When the variance
of informed order flow is large (1 0; > }o}1), the “informed component” is still smaller
in the state where the market is deeper, but the “uninformed component” is larger in
this state: Wi, 10,  W§, 10, and w7, }7 > w5, }5. Yet precisely because the variance
of informed order flow is large, the “informed component” dominates, and we obtain
the same ranking of the two possible price variances as before. For someone who does
not condition on the private information Y;, therefore, a deeper market unambiguously
means a lower variance of equilibrium prices.

Consequently, an observer who sees a price innovation close to zero will put more
weight on the state where the variance of uninformed order flow is high. Conversely, a
very high or very low price innovation is ascribed to a lack of market depth, and more
weight is put on the state where the variance of uninformed order flow is low. In fact,
the same arguments as above imply that in response to seeing an innovation ];, the

observer updates his belief to

oo [1en (-
{t—{” T \1ot+}%e"p< 210} >] 2

which is strictly decreasing in |];|.

After observing the market price, the outside observer views the belief {; held by
the informed traders as a random variable whose realization depends on the realization
of the private information Y;. On average, the outsider expects this belief to equal the
one he holds himself: E[{}|{; 1:] = {&- So the fact that {; decreases in [];| suggests
that after a small price innovation, an informed trader will tend to be more confident

that liquidity is high. The next proposition confirms this.

YFor an insider who knows vy, there is only the second component; cf. Section 4.2.
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The intuition for this result is clear. Small absolute price innovations tend to indicate a
deeper market, and informed traders take advantage of a deeper market by trading more
aggressively. Moreover, the informed traders’ optimism about liquidity, and hence their
trading aggressiveness in the following period, increases with the observed transaction

volume.

5.3 Time Variation in Trading Volume

We next consider the effects of liquidity uncertainty and learning on trading volume.
Unlike the case of complete information in which past outcomes are uninformative as to
the future level of volume, past outcomes do help predict future levels of trading volume
when there is liquidity uncertainty. For example, we saw that a small price innovation
tends to make informed traders more optimistic about the level of liquidity, hence
more aggressive in their trading on private information. This causes an increase in the
trading volume generated by informed traders. By definition, increased confidence in
the high liquidity state also implies higher expected trading volume from uninformed
traders. Finally, the market makers on average have to accomodate more trades as the
order flows from informed and uninformed traders increase.

This yields the following result.

Proposition 5.4 After a small absolute price innovation in a given period, the proba-
bility that trading volume is higher in the following period exceeds one half. Moreover,

this probability increases with the observed transaction volume.

5.4 Time Variation in Informational Efficiency

Finally, we consider the effects of liquidity uncertainty and learning on informational
efficiency. When the informed traders face uncertainty about the variance of liquidity
trades, they are no longer able to trade exactly the “right” amount, and informational
efficiency depends on the extent to which informed traders over- or underestimate
market depth. If they overestimate it, they will trade too aggressively and reveal too

much information. If they underestimate market depth, they will trade too gingerly
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and reveal too little information. After seeing the market outcome, an outside observer
can draw inferences as to which of the two scenarios is more likely, and how much
information has been revealed through price and volume.

In this regard, a measure of the informational efficiency of the equilibrium price in

trading round W is
Up == Var [Yt | {t 9,5,1 St] == Var [Yt | {t ]t] (27)

Higher informational efficiency means a lower “residual variance” U?. This is the appro-
priate measure for an observer whose information set is the same as that of an informed
trader, except that he has no privileged information about Y, at the beginning of each
trading period.

It is well known that in the Kyle model, the informed traders trade in such a way
as to reveal exactly the fraction 1 (1 +1) of their private information, i.e., the above
measure of informational efficiency equals }? (1 + 1). Interestingly, under certainty
about liquidity, informational efficiency is constant, and it does not depend at all on
the (known) variance of liquidity trades. The main intuition behind this result is that
the informed traders trade just aggressively enough to take advantage of any additional
variance of noise trades.

With uncertainty about liquidity, however, informed traders are unable to fine-tune
their trades in this way, and informational efficiency becomes a stochastic variable
depending on beliefs and price innovations. In fact, when the absolute price innovation
1:| is large, it is quite likely, given the analysis in Section 5.1, that the market is less
liquid. So the informed traders probably overestimated the variance of noise trades
(and in turn market depth) and traded too aggressively. Hence, when [];| is large, it
is likely that the informed traders revealed too much information and so prices are
more informationally efficient than in the certainty benchmark. Conversely, when |];|
is small, it is quite likely that the informed traders underestimated the variance of noise
trades (and in turn market liquidity) and traded too gingerly. Hence, when [];| is small,
the informed traders probably did not reveal enough information and so prices are less

informationally efficient than if there were complete information about liquidity trades.
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The following proposition confirms this.

Proposition 5.5 With price impact uncertainty, informational efficiency of prices,
as measured in (27), depends on the price and is strictly increasing in the absolute

magnitude of the price innovation.

More precisely, the proof shows that there is a cutoff level [I;| such that for absolute
price innovations above [];|, informational efficiency of the price is higher than under
complete information, i.e., U }? (1 + 1); whereas for absolute innovations below
|T:|, informational efficiency is lower than in the benchmark, i.e., Uf ¥ }2 (1 +1). The
proof of the proposition also shows that average informational efficiency is exactly as

under certainty about liquidity: E[Uf|{;| =3}? (1 +1).

6 Empirical Implications

In this section, we draw out the empirical implications of our model. Without bela-
boring the point, our model matches a number of basic stylized facts about strategic
trading that are absent from many of the existing models. Our informed traders face
an implementation shortfall associated with incomplete information about market lig-
uidity and hence price impact. As a result, their speculative profits are eroded (see
results in Section 3) and they use forecasts of the price impact of their trades (based on
past market outcomes) in formulating their strategic trades (see results in Section 4).
These findings fit very well with (1) what practitioners tell us is an important source
of the under-performance (relative to passive benchmarks) on the part of active money
management and (2) what institutional traders use (black-box systems to forecast price
impact based on market outcomes) to address this uncertainty regarding price impact.

Beyond these general findings, our model also generates a number of testable im-
plications. The most basic is how past prices affect future strategic trading. Extreme
price innovations, reflecting a market with low liquidity, will lead to less aggressive
trading by informed traders in the next period. One could test this prediction using

data sets on institutional trades similar to those in Keim and Madhavan (1995) and

Chan and Lakonishok (1993, 1995).
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For instance, Keim and Madhavan use data on buyer and seller initiated trades
for the period of January 1991 to March 1993. This data includes the date when the
trading decision was made, the desired number of shares in the order at the time of the
trading decision with a buy-sell indicator, the number of broker releases per order, the
duration before orders were filled and the choice of order type (active market orders
or more passive limit orders). Keim and Madhavan study various aspects of trading
behavior motivated by models such as Kyle (1985) and more generic trading behavior
such as feedback trading.

Here, we propose that one could use this data to get a reasonable measure of
aggressiveness of trading on private information (i.e. estimate n; using the desired
market order size) and test the prediction of the model by regressing this measure on
a measure of illiquidity derived from past prices (higher moments or some measure of
deviation from forecasted fundamentals) and trading volume. Of course, one would
need to control for a variety of factors, but seeing how future strategic trading depends
on past prices and trading volume would be interesting. In a similar vein, it would
not be hard to implement the predictions regarding the path dependence of trading
volume on past prices. The result on informational efficiency is of course more difficult

to test, though not entirely impossible with more data.

7 Comparison with Related Models

Our model is related to two literatures. First, the goal of our paper is broadly related to
the literature on strategic trading.?® For the most part, this literature — following Kyle
(1985) — has maintained the assumption that the parameters of the model (such as the
variance of noise trades) is known to all. Some examples include the following: Back
(1992) extends Kyle’s results to more general distributions of asset payoffs; Holden
and Subrahmanyam (1992) consider the case of many informed traders who have the

same information; Foster and Vishwanathan (1996) and Back, Cao and Willard (1998)

20 Admati (1991) and O’Hara (1995) provide surveys of this growing literature on strategic trading.
Relatedly, a number of other papers in the market-microstructure literature have shown that strategic
trading is an important part of explanations for a number of empirical findings regarding intra-day
return and volume patterns (see, e.g., Admati and Pfleiderer (1988), Foster and Vishwanathan (1990)).
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assume many informed traders who have different pieces of information.

In virtually all of the papers in this literature, there is no scope for traders to
learn about non-fundamental information from market outcomes, and past outcomes
have little effect on future decisions. The existence of a link from past prices and
trading volume to future actions is perhaps the most distinguishing feature of our
model. This link generates many empirical implications that are not obtainable under
the assumption of perfect information about liquidity.

Lindsey (1992) comes closest to our model. He also considers a market where
informed traders do not know the variance of noise trades whereas market makers do.
Unlike us, he develops a dynamic model with long-lived private information in which
the low variance state can only be the extreme case of zero variance (i.e. no noise trades
whatsoever).?! In each period, there is some probability that the low variance state is
drawn — everyone finds out immediately and the informed traders make no trading
profits after that point. So, the informed trader always knows that he is in the high
variance state as long as the trading game continues. There is little learning from past
prices and trading volume. The model is like Kyle (1985) except that there is a certain
probability that the game will end each period and informed traders lose out on further
speculative opportunities. Hence, informed traders tend to trade more aggressively on
their private information than in the Kyle benchmark. In our model, the low variance
state is not necessarily zero variance, so there is scope for genuine learning from past
prices. Hence, our results on learning about the variance of noise trades are absent
from Lindsey, as are all of our implications regarding the path dependence of strategic
trading, informational efficiency and trading volume on past market outcomes.

Our model is also related to a small but important literature on learning from trad-
ing volume in addition to prices. In the classic rational expectations models along the
lines of Grossman and Stiglitz (1980), investors extract information from prices but
trading volume contains no additional information. Yet, there appears to be ample

anecdotal evidence such as technical analysis which indicates that investors do learn

21Lindsey (1992) also develops a static model in which the low variance state need not be zero. This
static version pre-dates the static version of our model.
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from trading volume. The first paper to provide a rationale for learning from volume
is Blume, Easley and O’Hara (1994), who consider a model of trading on private infor-
mation in which traders have heterogeneous (rather than homogeneous) information
quality. They show that trading volume provides information on information quality
not deduceable from the price statistic. Bernardo and Judd (1997) generalize Grossman
and Stiglitz (1980) by considering non-normal distributions for payoffs, which results
in non-linear price equilibria where trading volume contains additional information. In
these two models, volume is informative about payoff relevant variables, whereas our
paper emphasizes the information content of volume for non-payoff variables such as
liquidity:.

There are a few other papers related to our model. Forster and George (1992)
consider a static model in which market makers have better information regarding
liquidity trades. They examine the consequences of anonymity of liquidity trading for
various welfare measures. Kumar and Seppi (1994) examine a model of arbitrage in
index futures where the precision of heterogeneous signals received by market makers
at different geographic locations is private information. Madrigal (1996) considers
a Kyle-like model in which there are a set of traders that have private information
about non-fundamentals (e.g., they know the realizations of noise trades unlike other
informed traders who have information about fundamentals). He derives the effect
of the interaction between these two sets of traders on equilibrium prices and market
liquidity. And more recently, Gervais (1997) and Spiegel and Subrahmanyam (1999)
consider models in which market markers not only lack information on an informed
trader’s signal about the mean of the asset value but also have to infer the ex-ante
value (variance) of his private information. While the set-ups of these models share

some similarities with ours, their focus and results are entirely different from ours.

8 Conclusion

In this paper, we develop a model to study the effects of price impact uncertainty on

the optimal trading strategies of large traders as well as the equilibrium feedback to
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prices. In our model, risk-neutral, informed traders strategically trade against risk-
neutral competitive market makers to exploit their private information. Unlike market
makers, they have incomplete information about the distribution from which liquidity
(“noise”) trades are drawn. As a result, they face uncertainty about the price impact of
their trades (i.e. market liquidity). They optimally take into account this uncertainty
in their trades and learn about market liquidity from past prices and trading volume.

To summarize briefly, we find the following. Extreme past price realizations and
low trading volume tend to lead to revisions of informed traders’ beliefs in favor of a
low liquidity state. In turn, strategic trades and other market statistics are dependent
on the path of past prices and trading volume.

Even though the model is highly stylized, it does exhibit an attractive property:
past prices and trading volume affect future strategic trades through a learning effect,
which in turn feeds back to market statistics. This feature is missing in most of the
existing models of strategic trading. Hence, a careful study of the dynamics may yield
more insights into return and trading patterns. Also, it would be interesting to consider
in future research strategic experimentation on the part of the large speculators, which
we neglect in this paper. Large traders with longer trading horizons may have an
important incentive to trade in such a way as to sacrifice short-term speculative profits

for more precise information about liquidity which will benefit them in the longer run.
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By (A.3), therefore, each informed trader’s expected profit in trading round W (condi-
tional on Yt) equals [nth] (Yt — Wt[l nth]) = nth2 (1 + 1)
Using (A.4) and (A.2), we can rewrite (A.5) as

1 1n,}? 1n}? !
e (e O Ve A0

Simplifying this equation, we see that it is a quartic in n;, with only the even powers
of n, appearing. Writing 0 = 1 n?}2, we find that (A.6) transforms into the quadratic
equation (9). As the left-hand side of (9) is negative at 0 = 0, this equation has a
unique positive root. Since a negative n; would imply a negative w; in contradiction to
the informed traders’ second-order condition, we then obtain (7) and (8). This is the
unique linear equilibrium.

Proof of Proposition 3.1

The claim that wy; T wy, follows directly from equation (8).

By the definition of equilibrium, S; = E[Y|}? 9,1 \i]. As S; = Z;;ll Y; 4+ Wi\
when }? = 3}2 (N =0 or 1), conditioning on (}? 9; ; \;) is equivalent to conditioning
on (}? 9:1 S;),s0S =E[Y|}? 9,1 S. This in turn implies S; = E[Y|9; 1 $].

Proof of Proposition 3.2

Define
Goy

Sky = —=
k,t G}]% 62

+=constant

for N =0 1. Differentiating equation (9) with respect to }# while holding }? fixed, we
obtain

(210, +}7) Sk =} — O

where N is the element of {0 1} different from N. At non-degenerate beliefs, }2 o,
}:, hences;; 0 sp;. The proposition now follows from Lemma 3.1.

Proof of Proposition 3.3

Equation (A.6) characterises n; as the unique fixed point of the function

1n}? -
TR+ )

1 1n}?
)i(n) = 1+1 <{t12n2}3 +3}2 =)

As );(n) increases in {;, so does the fixed point n;, and with it 0;.
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Proof of Proposition 5.1

We want to show that the median of {;;; conditional on {; and ]; exceeds {; when [];|
is sufficiently small. By continuity, it suffices to show this for ], = 0. In this case, the
likelihood ratio simplifies to

C (0K Vo) =

(Lo +310 <1ot F _ L] Y_>
(Lo, +3)h 2 ¥ HI¥
The random variable Y2 }? has a  ?(1) distribution with median P lying strictly be-
tween 0 and 1.%> The median of C*(0[{; Y;) is

(10,5 +}%)}0 10,5 1 1
(Lo + 3% ¥ <_ l}_ - }_] P)

2
and we are done if we can show that it always exceeds 1.
To this end, we consider the expression

_S+¥h (B[ 1
/‘<$+}3>}1ep<2l}3 }%]P>

for arbitrary $ 1 0. Clearly, / — 1 as }1 — }o. It is therefore enough to prove
that / is strictly increasing in };. Now, straightforward computation shows that the

partial derivative of / with respect to }; has the same sign as the quadratic 4 =
$°P + $(1 — P)}{ + }{, which is obviously positive.

Proof of Proposition 5.5

Given the belief {; held by informed traders at the beginning of round W, and condi-
tional on }? = }7, the variables Y, and ], = wy; (1 n,Y; + X;) are jointly normal with
E[Yt|{t }t2 = }1%] = E[]t|{t }t2 = }1%] =0, VaT[Yt|{t }t2 = }1%] = 37 Var[]t|{t }t2 = }1%] =
Wi, (120732 437) and Cov[Y, 1¢/{: 3/ = }] = Wkt 1 n,};. By the Projection Theorem,

Cov[Y, 1/{: ¥

Varlful{e 3 1 = Varltil{ 1) -~ e

hence

U NS
i+ Ulo+ ¥
with the last equality following from equation (7).

Since E[Y;[{; }? 1:] =1: by (10), we have Var[E[Y;|{; }? 1:]I{; 1) = 0, so the Law
of Tterated Variances reduces to Var[Y,|{; {: 1:| = E[Var[Y:|{: }? 1:JI{; 1] In Section

VarlVel{e 3 1) =3 — (A.T)

22 A more precise numerical estimate is 0.45493 < m < 0.45494.
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5.1 we calculated the conditional probability {; that }? = }? given ];. By (A.7), we
then have

VarlYel{: 1] = }. El#j—}? L ]t]
LR Yo
-y [{tmﬂl—{” ml o

which is strictly increasing in {;. Straightforward algebra using (9) shows that
Var[Yel{: 1t = }?* (1 + 1) if and only if { = {;. By equation (26), {; is strictly
decreasing in [];| and greater than {; for J; = 0, so there is a unique cutoff level
IT:| for the absolute price innovation such that {; = {; if and only if [];| = [T:|, and
Var[Ye|{: 1:] ¥ }? (1 + 1) if and only if |]] [J:|- Finally, note that E[{;/{;] = {.,
hence E [Var[Y;|{; 1]|{:] = }? (1 +1) by equation (A.8) and the remark immediately
after it.

Proof of Proposition 5.4

Given {;11 (but not Y;1; or J;+1), volume T, is the absolute value of a draw from a
normal distribution with mean zero and variance

Var[Ln, Y1 + Xepq +Hpq [{e] = 1044 + }152+1 +3}

By Proposition 4.2 and the definition of }7,, in equation (5), this variance is strictly
increasing in {;;1. A higher {;;; therefore implies higher transaction volume T;,; in
the sense of first-order stochastic dominance. The result thus follows from Propositions
5.1 and 5.2.
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