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This paper offers an option pricing framework grounded in econometric microstructure
modelling. We consider a model where stock price dynamics follow a pure jump process
with constant jump size similar to a binomial setting with random time steps. Jump ar-
rival times are described as an Autoregressive Conditional Duration (ACD) process while
conditional probabilities of up-moves and down-moves are given by the logistic trans-
formation of an autoregressive process. We derive no-arbitrage pricing formulae under
the minimal martingale measure and illustrate the use of our Autoregressive Conditional
Binomial (ACB) option pricing model on intraday IBM stock data.
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1 Introduction

On financial markets, option traders typically readjust their hedging portfolios when the
underlying stock price has moved by a given percentage. This trading rule implies that
rebalancing occurs at random times and that the BLACK-SCHOLES (1973) model which
relies on the assumption of continuous rebalancing is no longer appropriate. Although this
continuity assumption is clearly unrealistic for transaction cost reasons, because prices are
quoted in ticks, or because of the mere impossibility of continuous trading, it has received
comparatively less academic attention than other assumptions such as constant volatility.

As a discrete approximation to the continuous time model of BLACK and SCHOLES, the
binomial tree of Cox, Ross and RUBINSTEIN (1979) is widely employed by practitioners.
Thanks to its elegant simplicity it is used as an introductory example to pricing theory in
most finance textbooks. The simple structure of this model unfortunately yields its major
drawback. Observed price variations do not follow i.i.d. binomial variables and the model
cannot, cope well with empirical data.

The purpose of this paper is to introduce an easily implementable pricing methodology
which captures some of the salient features of observed market data and trading behaviour
while enabling to derive option prices and deltas consistent with the trading rule described
above. To this aim, we propose a model of discrete trading where market participants
rebalance their position at random times triggered by variations in the underlying stock
price by a given percentage a. In essence we introduce a binomial tree with random time
spacings and probabilities in which the size of price changes is kept fixed. The structure
of the traditional binomial pricing model is modified in order to improve its empirical fit
and relax some of its unrealistic assumptions.

First we relax the stringent constraint of a fixed time interval between two successive
price variations. The random intervals between two arrival times are called durations.
Their conditional expectations depend on past durations in an autoregressive way. Such
modelling for high frequency transaction data has been proposed by ENGLE and Rus-
SELL (1997,1998), and has already proved successful in examining empirical predictions
of microstructure theory (see O’HARA (1995) for a thorough exposition of microstrucure
theory) on how the frequency of transactions (clustering) should carry information about
the state of the market (see also ENGLE (1996)).

Second we allow for a similar past dependence in the probabilities of up-moves and
down-moves. We therefore acknowledge the possibility that the direction of previous price
jumps may influence forthcoming variations in the stock price. Such a relationship can
occur if traders have a herding behaviour (positive relationship) or if a deviation from
the fundamental value of the stock tends to be corrected by market participants (negative
relationship). The autoregressive specification for up-move probabilities mainly follows the
framework of Cox (1970, 1981) and its recent extension by RUSSELL and ENGLE (1998).
It consists of a pure time series version of the specification adopted by HAUSMAN, Lo and
MACKINLAY (1992) for analysing transaction stock prices. This joint dynamic modelling
of the price transition probabilities and the arrival times of the transactions is rich and
flexible enough to capture the historical behaviour of price change data.



The structure of the paper is the following. We first review in section 2 some basic con-
cepts about marked point processes (MPP) which embody our binomial tree specification.
We outline our framework and introduce the main notations and mathematical tools used
in the modelling. Dynamic specifications for the arrival times and the jumps (namely the
ACD and ACB models) are discussed in some detail. These models will be implemented
in the empirical application. Section 3 provides an introduction to the minimal martin-
gale measure (MMM), before giving the option pricing formula based on it. The minimal
martingale measure is the main building block of our pricing strategy. Derivative asset
prices are obtained by taking discounted expectations of future payoffs with respect to
this measure. The option pricing formulae rely on pricing tools derived in PRIGENT, RE-
NAULT and SCAILLET (1999). In Section 4, an empirical application is provided using IBM
intraday transaction data on the NYSE (New York Stock Exchange). Model parameters
are estimated and used as input to compute European call option prices. These prices
are compared with BLACK-SCHOLES prices based on an historical volatility estimate from
daily closing prices. The model is able to capture the shape of the volatility smile usually
observed on stock option markets. Section 5 concludes.

2 Framework

We first start by reviewing some basic facts about marked point processes (MPP). The
initials JS stand for the book of JACOD and SHIRYAEV (1987), which gathers major con-
tributions to the theory of MPPs.

Let us consider an increasing sequence of non overlapping random times 17", j =1, ....
To each of them, we associate a random variable Z , called a mark and defined on the same
probability space : (2, F, P). Each (T', Z ) is said to be a marked point and the sequence
((T',Z)) of marked points is referred to as a marked point process (see Figure 1).

There are therefore three elements which caracterize a MPP. The law of arrival times
of the jumps, the size (or amplitude) of the marks and their ”direction” (either up or
down). In our framework, we restrict the mark size to be constant and equal to a and
denote the mark space by E = {a, —a}, therefore leaving two elements to be specified.

We assume that the logarithm of the stock price S| follows such a MPP so that :
S} = Spe™, (1)

where the random variable :
Xi= > 7, (2)
A <|
corresponds to the sum of jumps taken over the random times T of their arrivals. The
process X is a purely discontinuous process with jumps Z = AXj;. The logarithmic
variations of the stock price : AlogSa, = AXa, thus either take the values a or —a.
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Figure 1: A typical realisation of a marked point process.

The process X can be written as the sum of jumps over time and over the mark space

(see JS p. 69-72) :
I
X :/ / xp(dt, dz)
0oJ.

The random measure p(dt,dz) is the counting measure associated to the marked point
process. This measure records the number of jumps occuring in the time interval dt and
whose size falls in the interval dz (here dz = a or —a). Introducing the predictable measure
v, called the compensator, with the property that u — v is a local martingale measure, we
can write :

X, :/(;'/_ xu(dt,dx)—i—/ol/_ +( — v)(dt, dz). (3)

Although this rewritting may look only technical, it enables us to see the crucial role
of the compensator in our pricing model. We will be concerned with the expected returns
on the stock price or equivalently with the expected value of X. By definition of the
compensator, we know that the second term in (3) is a martingale, only leaving the first
term to specify and estimate from the data.

Recall that two elements were left to fully specify our marked point process : the law
of arrival times and the probability of an up-move (the jump size a being held constant).

The compensator can be disintegrated (JS p. 67) so that these two elements are clearly
identified :
v(dt,dx) = dA K (t,dx),

where A is a predictable integrable increasing process and K is a transition kernel.



The process A represents the intensity of the arrival times of jumps, and when dA| =
Ajdt, the process A is called the directing intensity and corresponds to a conditional
hazard function. The transition kernel K(t¢,dz) is given by : > Iia, EIQJ'H}P(Z +1 €
dz|Fa;, T +1) i.e. the conditional probability of an up-jump (if z = a) or a down-jump (if
r = —a) given the current information set Fa, (made of current and past realisations of
the MPP) and the fact that there is a jump at time T ;1.

Note that the standard Poisson process corresponds to the constant directing intensity
case : dA| = Adt. Its jumps are always 1, so all the probability is concentrated on the
point dx = 1 which implies that the compensator can be written :

v(dt,dx) = Adte; (dz),

where ¢;(dz) denotes the Dirac measure at point 1 with property €;(dx) = 1 for do =1
and €1 (dz) = 0 otherwise.

Let us summarize what we have obtained so far. We have a model where the log of
the stock price follows a marked point process with constant jump size a. We have shown
the usefulness of the compensator which enables us to calculate expected price variations.
This measure can be broken down into two parts, one of which is the intensity of jump
arrival times and the second which determines the up-move probability. The model is fully
specified up to the choice of these two terms which we will now discuss.

In PRIGENT, RENAULT and SCAILLET (1999), we studied two specifications for the
compensator. We considered the case where the true stock price is an unobservable geo-
metric Brownian motion whose values were only known when its logarithm crossed bound-
aries spaced by a. Although intuitive from a continuous time finance point of view, this
specification was not appropriate for empirical purposes because of the cumbersome and
restrictive form of the kernel K (¢,dx). A marked Poisson model (i.e. a Poisson process
whose jumps follow i.i.d. binomial variables) was then proposed. Both parameters (the
directing intensity A and the up-move probability p) were easily estimated on IBM trans-
action data and prices were derived for European call options on IBM stock for values of
a between 3% and 5%. The marked Poisson specification was in the same spirit as the
stochastic volatility model proposed by BOSSAERTS, GHYSELS AND GOURIEROUX (1996),
and based on a time deformed binomial model.

However, we noticed that the hypothesis of exponentially distributed inter-trade du-
rations was rejected for small values of a (< 3%). This was due to the phenomenon of
overdispersion of durations (the standard deviation of the durations exceeds their mean) in
intraday data, a well documented fact in the microstructure literature. Besides, a constant
up-move probability appears not to be a satisfactory assumption as already mentioned be-
cause of a possible herding behaviour of traders or, on the contrary, because of a tendancy
to revert towards the fundamental value of the stock.

We will now tackle these two issues by turning to other possible specifications of
the compensator which will be easily estimable and testable from market data. These



specifications will also allow to derive expressions for option prices. Building on the
econometrics of high frequency data (ENGLE (1996)), we have chosen to use autoregressive
conditional specifications for the conditional distributions of both arrival times and marks.

2.1 Conditional Distribution of Durations

The conditional distribution of arrival times is specified according to an ACD(m,q) model
proposed by ENGLE and RUSSELL (1997, 1998). The Autoregressive Conditional Duration
(ACD) class of models consists in assuming that the durations d 41 =T 11 — T are such
that :

d 1 =1v 1€ 41,

where £ are positive i.i.d. variables and the conditional expectation : ¢ = F [d |]-'Aj71}
is :

6 N
Y =w+ Y agd g+ > Bei g
=1 =1

These models are analogous to ARCH and GARCH models (ENGLE (1982), BOLLERSLEV
(1986)) and share many of the same properties. For example, some constraints must be
satisfied by the parameters, specifically :

w>0,ag >0and G > 02, (4)

in order to ensure the positivity of the durations, and

25:1 ag + Z;:1 Bs <1, (5)

to guarantee model stationarity and allow to use Maximum Likelihood (see ENGLE and
RusseLL (1998), CARRASCO and CHEN (1999)). The conditional hazard function of an
ACD model for ¢ in the random time interval |]T",T 4+1]] is given by :

t—T
A':Wﬁ”O(ml)’

where \g is the baseline hazard of £ (the ratio of the density and survival functions of §).
Two choices are usually adopted for the distribution of £, either the exponential or the
Weibull, which give respectively :

—1
)‘l = ¢ —+1
or :

N=(Thra+1/) ¢-1) (6)

where I is the gamma function and « is the second Weibull parameter. The first Weibull
parameter must be equal to I'(141/v) in order to ensure that £ has mean 1. When v =1,
the Weibull distribution coincides with the exponential distribution.

2The positivity of the parameters is a sufficient but not necessary condition to ensure that 1; be positive.
These constraints can be weakened as shown by NELSON AND CAO (1992).



In trying to fit the above ACD model to IBM transaction data, we found that the
constraints on the parameters ((4) and (5)) were not always satisfied. We thus propose
to use the Log-ACD model proposed by BAUWENS and GIOT (1999) (see also RUSSELL
and ENGLE (1998)) which is the analogue of the Log-GARCH model of GEWEKE (1996)
applied to durations. It is specified as :

d11=exp (¥ 41)& 11,

with a conditional expectation exp (¢ ) satisfying :

6 N
Y =w+ Y agln(d g)+ > fat) e
&=1 &=1
and its conditional hazard function in the random time interval ||T, T 11]] is given by :

)\I = exp (_w +1) )
for the exponential case and
A = (exp (¢ 4)T(1+1/7) (¢-T) ',

for the Weibull case.

2.2 Conditional distribution of marks

Concerning the conditional distribution of marks we use the extension of the logistic linear
model of Cox (1970,1981) given by RUSSELL and ENGLE (1998). We define :

)1 it Z = +a,
Y_{O if Z =-—a.

The probability # = P[Y" = 1|Fa,_,], resp. 1 —7 , gives the conditional probability of an
up-move, resp. a down-move. In a logistic linear model, it satisfies :

6
(m)=w+ > agY
&=1

with I(7) = log (7/(1 —7)). The logistic transformation [ ensures the interpretation of
7 as a probability. RUSSELL and ENGLE (1998) propose to extend this specification by
incorporating lagged values of the conditional probabilities themselves :

6 R 0
(m)=w+> agY g+ Y fBar —a+ > Fal(m _s).
&=1 &=1 &=1

This model has an Autoregressive Conditional Binomial (ACB) structure and is a binomial
version of the Autoregressive Conditional Multinomial (ACM) model of RUSSELL and



ENGLE (1998). We refer to it as an ACB(m,p,7) model. The transition kernel of the MPP
is taken for ¢t €]]T , T 4+1]] equal to :

_ T 41 for dx = +a,
K(t, dr) = { 1—7 4 for dr = —a.
Both autoregressive conditional models, ACD for the arrival times and ACB for the marks,
are thus the building blocks of our specification for the stock price dynamics. This is
summarized by the next assumption.

Dvvxpswlrg 4 +prgho vshfl fdwlrqg,
The compensator v(dt,dz) on IRy x {a,—a} satisfies :

v(dt,dx) = N\dtK (t,dz),

where for t €]|T ,T +1]], the directing intensity \| is given by the conditional hazard
function of an ACD(m,q) model and the transition kernel K(t,dx) corresponds to an
ACB(m,q,7) model.

Now that the setting is described we may turn to the next step : the choice of an
equivalent martingale measure and the derivation of an option pricing formula.

3 Option pricing and the Minimal Martingale Measure

From HARRISON and KREPS (1979) and HARRISON and PLISKA (1981), we know that in
order to preclude arbitrage in a market, there must exist an equivalent martingale measure
(EMM) under which discounted asset prices are martingales. However, this measure needs
not be unique unless markets are complete.

The presence of jumps in our framework implies that the market is incomplete. We
therefore need a criterion by which to choose among all EMM, one measure under which
to calculate option prices as expectations of discounted future payoffs. In this paper we
have chosen the minimal martingale measure (MMM) initially proposed by FOLLMER and
SCHWEIZER (1991). Let us first recall some results about pricing in incomplete markets
before motivating our choice of measure. We consider for simplicity the case of a market
with one risky asset (the stock with price S|) and one riskless asset whose growth rate is
set to zero.

The standard approach to pricing by arbitrage consists of finding a portfolio (i.e.
an investment policy of « in the riskless asset and ( in the stock) which replicates the
payoffs H of the option we want to price. Let V| = o +3S| denote the value of our
hedging portfolio. The cost process of following a trading strategy from time 0 to time ¢
isC =V —Vo— flpdS

Recall that a trading strategy is said to be self-financing if the cost is 0. When markets
are incomplete, no self-financing strategy will provide a perfect hedge (Va = H a.s.) for the
option, or conversely, if we adopt a strategy which replicates the payoff of the contingent



claim perfectly, it will in general not be self-financing. The natural way forward is to try
to minimize some definition of the remaining risk or equivalently the cost associated with
the replicating strategy.

One possibility is to choose a strategy (a*,5*) which minimizes the total risk under
the historical measure P as defined by R = £ [(C’A - C|)2‘ .7-]] . This corresponds to the

choice of pricing under the variance optimal measure (for this measure see e.g. FOLLMER
and SONDERMANN (1986), BOULEAU and LAMBERTON (1989), DUFFIE and RICHARDSON
(1991), SCHWEIZER (1992,1994), GOURIEROUX, LAURENT and PHAM (1998), LAURENT
and SCAILLET (1998)). This strategy is mean self-financing, i.e., on average, its cost is
zero. However the associated measure has two main drawbacks. First, an optimal (i.e.
minimizing the total risk) strategy does not always exist. Second, the variance optimal
measure does not have an analytic form in general and is therefore unpractical.

Another possibility is to adopt another (also self-financing) strategy which minimizes
the local risk in the sense of SCHWEIZER (1991). Instead of considering the total variation
of the cost between dates t and T, it consists in minimizing all the variations of the costs
over successive "small” periods between ¢ and T (see FREY (1997)).

This policy corresponds to the choice of the minimal martingale measure which we will
be using in this paper. This measure is characterized by the fact that it sets to zero all
risk premia on sources of risk orthogonal to the martingale part of the underlying’s price
process. An example, borrowed from HOFMANN, PLATEN and SCHWEIZER (1992), will
help understand this statement. One of the most famous models of option pricing with
stochastic volatility has been proposed by HULL and WHITE (1987). It is particularly
convenient to model volatility smiles (see RENAULT and Touzl (1996)). The authors
assume that the square of the volatility follows a geometric Brownian motion which is
uncorrelated to the Brownian motion driving the price process. The market is incomplete
because there are two sources of risk and only one risky asset to trade with. However
HuLL and WHITE argue that if one assumes that the CAPM holds and that volatility
risk is diversifiable, this source of uncertainty should not bear a risk premium. They
then proceed to derive their option price. This price coincides with that given by the
MMM which precisely assigns a zero value to the market price of risks orthogonal to the
martingale part (here the Brownian motion) of the price.

The MMM has several appealing features which motivate its use in practical appli-
cations. First, there always exists an explicit form for the Radon-Nikodym derivative
enabling to switch from the historical probability measure to the minimal measure. This
makes it a computationally convenient tool as will become apparent later on. Then, re-
cent work on the topic shows that it induces good convergence properties (RUNGGALDIER
and SCHWEIZER (1995), PRIGENT (1995), MERCURIO and VORST (1996), LESNE, PRI-
GENT and SCAILLET (1998)). Furthermore, in our framework (see PRIGENT, RENAULT
and SCAILLET (1999)), jump boundedness ensure that the MMM is a probability measure
(i.e. is always positive) and therefore that the value of the trading strategy is an actual
no-arbitrage price.

Finally this measure can also be linked to other possible choices of measures. For
example SCHWEIZER (1993) shows that in some cases the expectation of the final payoff



under the minimal measure is equal to the value of the variance optimal hedging strategy
(a*, 3*) described above. When the mean-variance trade-off (i.e. the market price of risk)
of the price process is deterministic, the MMM is the closest of all EMM to the historical
measure P, as measured by the relative entropy criterion (FOLLMER and SCHWEIZER
(1991)). Concerning existence and uniqueness of the minimal measure, we refer to ANSEL
and STRICKER (1992, 1993).

We now turn to the derivation of the option pricing formula under the minimal measure.
We take as discount factor (or numéraire) a savings account whose growth rate ra, on the
random time interval : ]|T" _1, T ]] satisfies :

ra, = MR (7)

with p > 0.
The discounted stock price is then equal to :

§| =9/ H (1+TA]»).

A<

Let us introduce the discounted excess return process 6 such that for t €]|T , T 14]] :

e — (1 + TAj)

— i AA A1)
=e J g 1. 8
1+7’Aj (8)

S(t,x)=0(T,Z)=

The minimal measure is characterized by its Radon-Nicodym derivative w.r.t. P. It
takes the following form in our framework (PRIGENT, RENAULT and SCAILLET (1999)).

Sursrvivlrg 4 +plglpdo suredelolw] phdvxuh,
Under Assumption 1, the minimal martingale measure P is a probability measure charac-
terized by its density process 1) relative to P :

7y = ﬂ%ﬂ(uh (7)) exp <_/0'/_ ﬁ(s,m)K(s,dx>Ards>. 9)

where for t €)|T ,T 11]], H(t,x) = h () with :
R L T ,a)m 11+ 6(T,—a)(1 —7 41) .
h (x) = BT a)r o 12T —a) (1= +1)cS(T, ).

H(t,x) takes the interpretation of a jump risk premium process. Once the Radon-
Nicodym derivative 7)) is computed, it is straightforward to derive the price C) = C(t, S|)
of a contingent claim with final payoff C'(T', Sa). For a European call option with maturity
T and strike price K, the final payoff is (Sa — K); = max(0,Sa — K). By taking its
expectation under P after an adequate discounting, we get :

Ct,S)=E |(Sa—K)+ [] +ra) A, (10)
| LAKA
which leads to :

10



Sursrvivlrg 5 +plglpdo rswlirqg sulth,
Under Assumption 1, the call price given by the minimal martingale measure is :

Ct,S)=FE (SA—7)+7?— 11 (1+7"Aj)1|7:|]' (11)
M) kA

If the exponential or the Weibull distribution underlies the ACD model, we have :

(T ,a)m 41+ 6(T ,—a)(1 —7 4+1)

L = _
ff/l :“g}sA (1 52(T,a>7r +1+62(T,—a)(1_7‘-+1)6(T’Z>>

exp (_ (8(T ,a)m 41+ 6(T ,—a)(1 —7 41))*
BT am 11 0, —a) =7 11)

log G(min(T" 41, T) —T )) ,(12)

where G (u) is the survival function (i.e. the probability of not jumping over the period u).
—log G(min(7T" 11,T)—T ) is equal to (min(7T" +1,T) — T ) /1 41 for the exponential ACD,
to (min(7T" 41,T) — T ) /exp (¢ 4+1) for the exponential Log-ACD. For Weibull distributed
noise —log G(min(7T" 41,7) —T') is equal to (I'(1 + 1/v) (min(T" 41,7) —=T") /¢ 41) for
the ACD model and to (I'(1 + 1/v) (min(7T" +1,7) — T ) /exp (¢ 4+1)) for the Log-ACD
model.

Expectation (11) can in principle be valuated by Monte-Carlo integration. Indeed Sa,
nia /1), and (ra;) can be computed from simulated paths of the MPP ((T',Z )) once the
parameters of the ACD and ACB models have been estimated. However, since 7ja/ 7
is made of a product of terms, it will not be accurately estimated through simulations.
Therefore it is wiser to use expression (10) and work directly with the dynamics of S| under
P. The process of S| under P can be derived using relationships between the directing
intensities and transition kernels under P and P (see appendix). These relationships come
from a direct application of Girsanov theorem for jumps (JS p.157).

4 An empirical illustration on IBM trades

This section illustrates the empirical application of our marked point model to the pricing
of European call options.> The parameters of the ACD and ACB models are estimated
from intraday transaction data. The data were extracted from the Trades and Quotes
Database (TAQ Database) released by the NYSE and span the period beginning on Thurs-
day January 2th 1997 and ending on Wednesday September 30th 1997 (9 months). We
report results obtained on trades of the IBM stock, which is one of the most liquid stocks
in this market and is the support of actively traded options.

The observations are the trades recorded every second from market opening (9:30:00)
to market closure (16:00:00). The trades dataset consists of 498,692 transactions. We
removed all trades which took place outside market opening hours and were left with

3Gauss programs developed for this section are available on request.

11



486,506 data points. We also adjusted our series for a 2:1 stock split which occurred on
28th May 1997 before market opening.

We now proceed to estimate the intensity and the kernel, namely the ACD and ACB
models. Given Assumption 1, the likelihood function is separable as in RUSSELL and
ENGLE (1998) and we can estimate the parameters of the two models separately.

4.1 Estimation of the Log-ACD model

We first consider the dynamics of durations between trades. As mentioned above, we have
chosen a Logarithmic Autoregressive Conditional Duration specification. Recall that in a
Log-ACD model durations d are assumed to follow :

d +1 = €xXp (lﬁ —|—1)€ +1,

where ¢ are i.i.d. variables (typically exponential for the Log-EACD model and Weibull
for the Log-WACD model) and ¢ = w + 3.8 agIn(d _g) + Sg_; Get _a-

Parameter estimates are obtained by maximum likelihood for m = 1,2 and ¢ = 1,2
and both specifications of the distribution of ¢ (exponential or Weibull).

The most successful specification is the Log-WACD(1,1) whose parameter estimates
are given in Table 1. Parametrizations with more lags are rejected by a likelihood ratio
test at the 5% level and the hypothesis of exponentially distributed £ is strongly rejected
(v is ranging from 0.40 to 0.48 for different jump sizes and is statistically different from
unity).

Wdeoh 4 = Sdudphwhu hwlpdwhv ri wkh Orj0ZDFG+4/4, prgho

a 0.5% 1% 2%

w 0.6111* 0.8607* 2.3173*
o 0.1844* 0.1701*  0.2293*
8 0.7740* 0.7705*  0.5912*
v 0.4806* 0.4180*  0.3998*

LB(40) 21.0283* 13.4486™ 9.5661"
BI—1 32017 28791  0.3300
BI—2 17112 23959  1.0351

* significant at 1% level, ** significant at 5% level.

These results are in line with what was previously documented in tick-by-tick transac-
tion studies : durations exhibit clustering, i.e. a short time between two price variations
tends to be followed by another short interval. This is suggested by Figure 2 and is con-
firmed by the positivity of & and B Estimates of w, « and 3 are all significantly different
from zero at the 1% confidence level in the Log-WACD(1,1) model.

12



Figure 2: Durations between two 0.5% jumps.

Under our hypothesis, the residuals §A should be i.i.d. Weibull. We start by testing the
absence of autocorrelation. LB(40) reported in Table 1 denotes the Ljung-Box test with
40 lags. The hypothesis of zero autocorrelation in the residuals cannot be rejected at the
5% level for a = 0.5%, a = 1% and a = 2%.

We now want to test for Weibull-distributed residuals. Recall that if £ is Weibull with
parameter «, then (£ ) follows an exponential distribution. This is the latter hypothesis
which we test using Bartlett identities tests for the exponential distribution introduced by
CHESHER, DHAENE, GOURIEROUX and SCAILLET (1999).

The Bartlett Identity test of order 1 considers the equality between mean and standard
deviation (overdispersion test on residuals), while the Bartlett Identity test of order 2
examines a restriction on the first three moments. Taking this second restriction into
account helps gaining power against alternative specifications. Results of these tests (BI-1
and BI-2) are provided in the last two rows of Table 1. All values are below their critical
x? (1) distribution at the 5% level (x2 g5 (1) = 3.841), so we cannot reject the hypothesis
of Weibull distributed residuals.

4.2 Estimation of the ACB model

We now turn to the estimation of the process governing up-moves and down-moves from
trades data. We have adopted the specification of Autoregressive Conditional Binomial
jumps where the logistic transformation [(.) of the up-move probability = is given by :

6 R 0
(m)=®+Y aY e+ Bar g+ Y Rel(r _g),
&=1 &=1 &=1
and Y =1 if the jump at the period j is an up-move and 0 otherwise.
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Again, we find that a simple specification with one lag in all parameters was successful
in capturing the dynamics of the kernel. Table 2 reports the parameter estimates obtained
for this ACB(1,1,1).

Wdeoh 5 = Sdudphwhu hwilpdwhv ri wkh ACB(1,1,1) prgho

0.5% 1% 2%
0.3675*  0.5018  0.3608"
—0.6420* —0.8899* —0.8043"*
0.0634*  0.1582*  (.4863**
—0.7790*  —0.6979* —0.2827*

# jumps 3715 1065 222

* gignificant at 1% level, ** significant at 10% level.

sl o gl e

All parameters but one are significant at the 1% level. The dynamics are similar for
the various values of a, with the past jump and the logistic transform entering negatively
in the recursion and the past probability entering positively.

We show in Figure 3 the relationship between the successive up-move probabilities
m and 7 _; setting alternatively Y _; = 0 (down-move) or Y _; = 1 (up-move), for
a = 0.5%. We can observe that m is a decreasing function of 7 _; in both cases. It
means that a high probability of an up-move will be followed by a lower probability at
the next arrival time. This observation is thus not in favour of a herding behaviour of
market participants. This decrease is less pronounced when a down-move (Y _; = 0) has
occurred, introducing an asymmetry in the response of the probability levels. Such an
effect reinforces the mean reversion type of behaviour of the stock price since the up-move
probability is comparatively higher when the stock has gone down (Y _; = 0) than when
it has gone up (Y _; = 1). This remark also applies for other jump sizes.

‘o 100%
£ 90%
= 80%
> 0%
=  60%
§ 50%
g 40%
q>) 30%
8 20%
T 10% _
D 0% TTTTT I T I I T T T I T I T I T I T T T I T T T T T T I T T T T I T T T T T T I T T T T T I T T T T I T T I T T I I T ITTITT

O @\" {16\" 0;50\° b§\° b90\0 {/3\0\° é,g\° /\(50\° Q),g\° q90\° cs\0\°
Up-move probability at time j-1

Figure 3 : Up-move probability 7 as a function of past probability m _;
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Figure 4 plots the jump risk premium % (x) for a = 0.5% over the whole observation
period. We can clearly see a clustering phenomenon in the risk premium. Large changes
in the risk premium tend indeed to be followed by other large changes of either sign, and
small changes tend to be followed by small changes. This type of clustering corresponds
to the well known MANDELBROT (1963) observation on price changes (also valid for the
IBM stock).

0.8
8 0.6
<< 04
g
g 0.2
S 0
-_é -0.2
o
= -0.4
S
=
-0.6
N~ N~ N~ N~ N~ N~
-0.8 @ (2 D > > >
= I2) g © ISo] Io))
o =] o o S
Time

Figure 4 : Evolution of the risk premium % (z)

Trade prices used so far are appealing because they correspond to prices at which real
transactions take place while quotes are only indicative values at which market markers
are willing to trade. However, our database does not enable us to identify when a trade
corresponds to a purchase of stocks from the market-maker or to a sale to the market-
maker. Trade prices are thus potentially influenced by the bid-ask bounce (a trade at bid
price followed by a trade at offer price leading to an observed price change although the
mid price remained unchanged). This phenomenon has been reported to generate spurious
autocorrelation (see ROLL (1984)) and could also lead to an over-estimation of the number
of jumps for small a. Typical values for the bid-ask spread are one or two ticks ($0.125 or
$0.25) as reported in the NYSE fact book which represents about 0.125% or 0.25% (the
IBM stock price oscillated around $100 in our sample period). We do not believe that the
bid-ask bounce should substantially affect the dynamics of arrival times of the jumps but
it could bias the estimation of the ACB specification for a = 0.5% as considered in this
paper. Especially the negative sign of @ may partially be attributable to it. However we
have seen that the negative sign of @ persists even for large values of a where the bid-ask
bounce surely is not at work. Furthermore the same methodology has been applied to
mid-prices (i.e. the mean of bid and ask prices) which are free of any bid-ask bounce
effect and has lead to similar results. We prefer to proceed further with trades rather than
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quotes because we believe it is more appropriate to work with actual transaction prices,
especially for option pricing and hedging purposes.

4.3 Option pricing with the ACB model

We are now able to price options with the underlying Log-WACD and ACB models and
formulae (11) and (12). We carry out Monte Carlo simulations with 100,000 replications

and use Sa as control variate device, knowing that S| = F | Sa H (1+ rAj)_l\}] ,
|| LAKA

to reduce the variance of Monte Carlo estimates.

Wdeoh 6 = Rswlrq sulfhv = DFE yv Eodfn0Vfkrohv

a\ K 90 95 100 105 110

0.5% 12.2633 8.5415 5.5638 3.4205 2.0076
1% 12.8271  9.3088  6.4706 4.3594 2.8766
2% 13.1964 9.8069 7.0430 4.9518 3.4201
BS 13.5285 10.2305 7.5030 5.3400 3.6926

Option prices based on the estimated Log-WACD(1,1) and ACB(1,1,1) models are
compared with Black-Scholes prices in Table 3. Black-Scholes prices are computed using
historical volatility of daily IBM stock returns taken over a 3 month period (from 2nd
January to 27th March 1997). This 3 month length corresponds to market standards.
Over this period the annualised volatility was 34.67%. For comparison, calculating the
volatility over the whole sample (9 months) would yield an annualised volatility of 31.98%.
All ACB prices are below their Black-Scholes equivalent. However this needs not be the
case for all specifications. We have indeed tested the model on other data and other values
of a and we have found that the Black-Scholes price cannot be seen as an upper bound
on the values of the ACB model. Finally, prices generated by the ACB model can be
inverted using the Black-Scholes formula in order to derive implied volatilities. Implied
volatilities for various strike prices and values of a are displayed in Table 4. We find that
the ACB model exhibits a volatility smile for all @ which is asymetric with respect to the
at-the-money level K. The implied volatility ratio is here defined as the implied volatility
for a given strike price K divided by the implied volatility for K = 100, while moneyness
is (F — SO> /So. The asymetry (smirk) with respect to K is usually observed on stock

option markets (for recent evidence see DUMAS, FLEMING and WHALEY (1998) or PENA,
RUBIO and SERNA (1999)). Such a smile is present for all option maturities (ranging from
one month 7" = 1/12 to one year T'= 1) and is steeper for short dated options as shown
on Figure 5. This result is in accordance with the observed fact reported in DAS and
SUNDARAM (1999), that the smile is deepest for short maturities in most markets and
flattens out as the time to maturity increases.
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Wdeoh 7 = Lpsolhg yrodwlolwlhv 1 wkh DFE prgho

a \ K 90 95 100 105 110

0.5% 25.44% 25.04% 24.82% 24.90% 25.16%
1% 20.77% 29.49% 29.43% 29.70% 30.18%
2% 32.40% 32.30% 32.33% 32.71% 33.19%

1.035 -
1.030 |- - - -T=l12 '

1.025 |——T=l/4 .
1.020 -
1.015 -
1.010 -
1.005 -
1.000 - .
0.995 B A
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S O QO O

Implied volatility ratio

Moneyness

Figure 5 : Implied volatility smile for various maturities

5 Conclusion

In this paper, we have derived option-pricing formulae grounded in microstructure econo-
metric modelling. Our results are very general and can be applied to various price dynam-
ics which can be described as pure jump processes. This kind of process can in particular
arise if traders rebalance their portfolio whenever the underlying price process has changed
by a given percentage. We believe that this model is new to the literature not only because
we propose new option pricing formulae for discontinuous processes but also because our
approach to contingent claim pricing is essentially data-oriented (see RENAULT (1994)
for related empirical option modelling issues). Most models since BLACK AND SCHOLES
(1973) have proceeded to derive their pricing formulae by first assuming a process and
then pricing options based on this a priori. In this paper we first let the dynamics of
the price process be estimated by econometric techniques and then derive option pricing
formulae based on the estimated dynamics.
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6 Appendix

In this appendix, we derive the dynamics of the price process under P. This allows to use
expression (10) directly. We know that the compensator under the MMM is linked to the
compensator under the historical measure (see Girsanov theorem for jumps in JS p.157)
by the following relation :

P (dt, dw) = v (dt,dz) (b (t,z) + 1),

where v (dt,dz) = dA|K (t,dx) . Besides the compensator U (dt, dx) under P can also be
disintegrated into a kernel part K (t,dr) and an intensity component dA| Hence after
identification, we deduce :

- (/ (B(t,x)+1)K(t,dm)>dA|, (13)

R - K (t,dz) (h(t,2) + 1) 14
L () 1) K (tde)

The normalisation factor | ( (t,z) + 1) (t,dx) in (14) comes from the condition
on the transition kernel to integrate to 1.

Thus, by using the directing intensity and transition kernel of the ACD and ACB
models estimated under P, we can immediately deduce the dynamics of the stock price
under P thanks to (13) and (14).

In the specific case of Log-WACD distributed durations with ACB marks under P, we
obtain under P :

~ B T 16(T 1,(1)+(1—7T 1)6(T 1,—0,)
h(T,z) = —6(T 41,7) o ;62 (Tiha) g 11)62 (T++1,—a))’
—~ T 41 /]’; T,a)+1

K (t,a) = p (a)= i (I((T,a)) >,

with : 2
(7'(' +16(T +1,(Z) + (1 - +1) 6(T +1, —CL))

I(T,a)=1- (m 4162(T 41,a) + (1 =7 1) 62(T 41, —a))’

We know that the conditional intensity of the Log-WACD model under the historical
measure is \| = (exp (—¢ +1)T(1+1/7)) (t—T) ~'~, corresponding to the process

d 41 =exp (Y 41)& 41.

21



Under the MMM, we have X| = I (T ,a) \|, thus corresponding to the modified process

exp (Y +1)

+1=

This enables us to simulate durations directly under the MMM.
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