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Abstract

This paper puts forward the existence of of �nancing constraints as a pos-

sible explanation for two main empirical regularities about inventories; that (i)

inventory investment is procyclical, and that (ii) the inventory-sales relationship

displays highly positive serial correlation. There are no costs shocks, and in the

numerical computations demand shocks are assumed to be serially uncorrelated.

When �nancing constraints are not binding, the model predicts that the �rm's op-

timal inventory investment is counter-cyclical. However, this prediction is reversed

for a �rm with binding �nancing constraints. Moreover, some persistence in the

inventory-sales relationship is also generated by the model.
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Group, London School of Economics.
3The authors would like to thank John Moore, and Nobu Kiyotaki for their valuable comments.



Non-technical summary

There are two main empirical regularities about inventories. First, inventory

investment is procyclical. Second, the inventory-sales relationship displays highly

positive serial correlation. This paper puts forward a possible explanation for

these observed empirical regularities: the existence of �nancing constraints. In

our model, �rms produce output with a convex production technology and pay

convex storage costs on any unsold inventory. There are no costs shocks, and

in the numerical computations demand shocks are assumed to be serially uncor-

related. These assumptions imply a procyclical target inventory level (as in the

basic version of the linear-quadratic model). Therefore, when �nancing constraints

are not binding, this model predicts that the �rm's optimal inventory investment

is counter-cyclical. However, this prediction is reversed for a �rm with binding

�nancing constraints. The intuition behind this result is that after a low demand

realisation a constrained �rm does not have suÆcient cash (after paying storage

costs) to enable it to produce as much as it had sold, and thereby return to the

optimal target inventory level. Similarly, for a �rm whose actual inventory level is

below this optimum, a high demand realisation will cause it to produce more than

it has sold in an e�ort to return to the optimum level as quickly as possible. Thus

for constrained �rms, inventory behaviour is consistent with both empirical regu-

larities. It is procyclical, and the inventory-sales relationship is positively serially

correlated.



1 Introduction

There are two main empirical regularities about inventories.1 First, inventory in-

vestment is procyclical. Second, the inventory-sales relationship displays highly

positive serial correlation. The standard workhorse model to study inventories -

the linear-quadratic model (Holt, Modigliani, Muth, and Simon (1960)) - has dif-

�culties to explain these empirical regularities. In that model, convex costs lead

to the prediction that �rms will use their inventories to smooth production, which

implies counter-cyclical inventory investment. To explain the highly persistent

relationship between inventories and sales, the benchmark model relies upon im-

plausibly high parameters for either the convexity of the cost function or costs of

inventory adjustment.

However, empirical work does generally support the linear-quadratic model's

assumption of convex production costs.2 Therefore, the literature has focused

on two other possible explanations of these empirical facts, both of which can

be incorporated into the linear-quadratic framework:3 (i) serially correlated cost

shocks,4 or (ii) a exible-accelerator mechanism which relies on serially correlated

demand shocks.5

This paper puts forward a third possible explanation for the observed empirical

regularities: the existence of �nancing constraints. It extends earlier work by

the authors on this topic.6 We model the problem in a dynamic-programming

framework. We derive some general results analytically, but to demonstrate the

results concerned with the above empirical regularities we use a numerical solution

methods. In our model, �rms produce output with a convex production technology

and pay storage costs on any unsold inventory. There are no cost shocks, and in

the numerical solution, demand shocks are assumed to be serially uncorrelated.

1See Ramey and West (1997) for a detailed discussion.
2Non-convex costs are of interest because they can explain procyclical inventory investment.

But evidence for non-convex costs has been found only for a select group of industries (see, for

example, Hall (1996), Bresnahan and Ramey (1994). Broader support for non-convex costs does

not exist (see Ramey and West (1997) for a summary of the empirical literature).
3However, many of the papers which explore these alternative explanations do not use the

linear-quadratic model.
4See, for example, Blinder (1986), Eichenbaum (1989).
5See, for example, Kahn (1987)) and Bils and Kahn (2000).
6See Brown and Haegler (1999), where we present a `pen-and-paper' solution for a very simple

numerical example, as well as an analytical proof of the `excess-volatility-of-production' result.
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These assumptions imply that when �nancing constraints are not binding, the

�rm's optimal inventory investment is counter-cyclical.

However, this prediction is reversed for a �rm with binding �nancing con-

straints. The intuition behind this result is that after a low demand realisation a

constrained �rm does not have suÆcient cash (after paying storage costs) to enable

it to produce as much as it had sold, and thereby attain the optimal target inven-

tory level. Similarly, for a �rm whose actual inventory level is below this optimum,

a high demand realisation will cause it to produce more than it has sold in an ef-

fort to reach the optimum level as quickly as possible. Thus for constrained �rms,

inventory behaviour is consistent with both empirical regularities. It is procyclical,

and the ratio of inventories to sales is positively serially correlated.

An interesting feature of this model is that, unlike other models in the literature,

its results do not depend upon an assumption of serial correlation in unobservable

exogenous shocks to either cost or demand functions. Since a constrained �rm's

production a�ects the demand faced by producers of intermediate goods, our model

suggests that inventory investment may have a more active impact on business cy-

cles through its potential to amplify exogenous shocks. Further research is required

to examine the impact of �nancing constraints in environments where exogenous

shocks are serially correlated.

There is empirical support for the hypothesis that �nancing constraints a�ect

the inventory investment of some �rms. For example, Gertler and Gilchrist (1994)

�nd evidence that small manufacturing �rms draw down their inventory stocks

heavily following a monetary contraction, whereas large �rms appear to borrow in

order to smooth the impact of a downturn on their inventory behaviour. Similarly,

using U.S. panel data, Carpenter, Fazzari, and Petersen (1994) �nd that the inven-

tory investment of small �rms is more sensitive to cash ow than is the inventory

investment of large �rms.7

The rest of the paper is organized as follows. Section 2 describes our model.

We then derive some general characteristics of the model analytically in Section 3,

and in Section 4 we present two results concerning the dynamics of sales. This is

followed by the description of the numerical solution and a discussion of the results

in Section 5. Section 6 concludes.

7Other studies which report similar �ndings include Kashyap, Stein, and Wilcox (1993),

Kashyap, Lamont, and Stein (1994), Guariglia (1996) and Guariglia and Schiantarelli (1995).
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2 The Model

There are in�nitely many time periods t = 0; 1; 2; :::. We consider a �rm that

produces a good for which, in each period, demand is random. The shock which

governs the demand distribution in each period does not hinge on the price. In

fact, we assume that demand is in�nitely price-elastic, such that the goods sell at

a given price pt in period t. To facilitate the analysis further, we keep the sequence

of prices constant, i.e. pt = p 8 2 IN.

For notational reasons we denote the period-t demand realisation by zt+1. In

each period t the demand shocks are distributed on a subset Z � IR+, according

to the probability density function � : Z ! IR+. The associated cumulative

distribution function is denoted by � : Z ! [0; 1]. For convenience we de�ne

z = inf Z � 0, and �z = supZ (which may be in�nity). By parametrising � with

the demand shock from the previous period, we can allow for �rst-order serial

correlation in the demand shocks. In this case the probability density functions

are given by �(zt+1jzt) and the cumulative distribution functions by �(zt+1jzt), for
all t. We assume that if there exists �rst-order serial correlation in demand, it is

positive.

At the beginning of period t, t � 1, the �rm `inherits' a non-negative stock of

goods gt 2 G � IR+ and a non-negativ
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Figure 1: Timing of events

�rm obtains only ps < p per unit of the good.

Next, the �rm decides how to allocate the remaining funds (if any) between

�nancing new production, building monetary reserves (precautionary savings), and

paying dividends. Production yt in period t is simply added to the stock of goods

gt carried over from the previous period. It leads to the �rm providing a target

inventory nt = gt + yt for sale in period t. The liquid funds retained are given by

st, and we assume that these funds earn a safe gross rate of return of R. Finally,

we denote by dt the dividends paid out in period t.

Production costs are represented by a strictly convex and twice di�erentiable

function c : IR+ ! IR+, which maps a non-negative production output yt into the

set of non-negative real numbers, with c(0) = 0, c0(yt) > 0 and c00(yt) < 0 for all

y 2 IR+. Furthermore we assume that the average production costs exceed the

scrap value at any level of production, that is
c(yt)

yt
> ps for all yt 2 IR+ and all t.

This sequence of events in period t is summarised in Fig. 1.

When making its its reserving decisions, st, and its dividend decisions, dt, the

�rm is subjected to the �nancing constraints,

st � 0 (2.1)

dt � 0 (2.2)

for all t 2 IN.

Moreover, each period it faces the budget constraint

h(gt) + c(maxf0; ytg) + psminf0; ytg+ st + dt � mt: (2.3)

Note that there is no non-negativity constraint on production yt. As suggested

by the non-negative domain of the cost function c, we do not allow the �rm to

reverse-engineer products into cash. However, it can sell goods at scrap value,
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which is interpreted as negative production in this paper.8 Moreover, our de�nition

of production is consistent with that used predominantly in the inventory literature

(see, e.g., Blinder and Maccini (1991)). Since production is not directly observable

in most �rm data, it is de�ned empirically to be the change in inventories stocks

plus sales.

The non-negativity constraint on dividends prevents the �rm from raising equity

capital. The non-negativity constraint on liquid reserves is a simple borrowing

constraint.9

Once production has taken place the demand realisation, zt+1, occurs. As this

is a stockout-avoidance model we also impose a non-negativity constraint on the

stock of goods. That is, the �rm is not allowed to sell short output, or

xt+1 = minfzt+1; ntg; (2.4)

where nt = gt + yt, the total amount of goods the �rm makes available for sale.

The stock of cash (�nancial reserves) in period t + 1 is the sum of period-t

savings and returns on the latter, Rst, as well as the revenue generated from sales.

Thus, the law of motion for cash holdings stock is

mt+1 = st + pxt+1; (2.5)

The law of motion for the stock of goods is

gt+1 = gt + yt � xt+1; (2.6)

which can be rewritten as gt+1 = nt � xt+1.

Using (2.6), observable production is de�ned to be

yt = gt+1 � gt + xt+1; (2.7)

which again can be positive, zero or negative. Alternatively, can write

yt = nt � nt�1 + xt:

8Alternatively, one could treat scrap sales simply as additional sales, the revenue of which

would then be added to the right-hand side of the budget constraint. This has no consequences

for the decisions made by the �rm.
9Alternatively, it could be interpreted as restricting the �rm's access to trade credit.
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The analysis below is simpli�ed considerably if we restrict the rate of return on

cash to be smaller than the rate of time preference. The impact of the �nancing

constraint would not be a�ected by setting �R = 1. However, our assumption that

�R < 1 avoids technical problems related to indeterminacies of optimal solutions

and to the unboundedness of return functions.

The objective of the �rm is to choose production and savings to maximise the

present discounted value of dividends, i.e.

maxE0

1X
t=0

�t dt (2.8)

subject to (2.1), (2.2), (2.3), (2.4), (2.5), (2.6), with the discount factor � 2 (0; 1),

where

dt = mt � h(gt)� c(maxf0; ytg)� psmin0; yt � st � 0;

for all t.

3 Characteristics of Value and Policy Functions

In this section we identify a number of properties that can be derived for the

general model formulated in the previous section.

The choice of control variables yt and st in each period t merely depends on the

value of current state variables gt and mt, regardless of how the �rm arrived there.

Hence, the problem exhibits a recursive structure, which allows us to formulate the

Bellman equation associated with the sequence problem outlined in Section 2. In

each period t,

v(gt; mt; zt) = max
yt;st

mt � h(gt)� c(maxf0; ytg)� psminf0; ytg � st

+�

Z gt+yt

z

v(gt+1; mt+1) d�(dzt+1jzt) + �

Z �z

nt

v(0; mt+1) d�(dzt+1jzt); (3.9)

subject to (2.1), (2.2), (2.5), and (2.6).

Before examining the full problem we will consider the benchmark case that

arises from relaxing constraint (2.2). We will refer to the resulting model as the

unconstrained problem.
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3.1 The Unconstrained Problem

In order to allow the �rm to perfectly insure its desired production expenditure

against negative demand shocks, it is suÆcient to drop the non-negativity con-

straint on dividends dt. If we did not retain the borrowing constraint (2.1), the

�rm's optimal policy would be to incur as much debt possible in the very �rst

period. This is due to the return function being linear in mt and the assumption

that �R < 1.

With (2.1) still in place, the �rm can simply raise equity �nance if cash holdings

are not suÆcient to cover storage costs. In fact, it will always be necessary to do so

whenever the latter exceed sales revenues. The reason is that optimal cash holding

s?(g;m; z) = 0 in each period and for each state (g;m; z), because �R < 1.

To obtain the optimal production choice we formulate the modi�ed Bellman

equation

v(g;m; z) = max
y

m� h(g)� c(maxf0; yg)� psminf0; yg (3.10)

+�

Z g+y

z

v(g + y � z
0
; pz

0
)d�(z

0jz) + �v(0; p(g + y))[1� �(g + yjz)]:

where we have already incorporated the laws of motion and the fact that, in equi-

librium, s�(g;m; z) = 0.

Di�erentiating with respect to y and using the envelope conditions, vg = �h0(g)
and vm = 1, we obtain

�c0(maxf0; yg)� psmin

(
0;

y

jyj

)
� �h�(g + yjz) + �p[1��(g + yjz)] = 0 (3.11)

as the Euler equation.

First, note that if g increases due to a drop in z by the same amount, �(g+yjz)
increases. Optimality then requires y to drop.

Taking into account that n = g + y, the Euler equation can also be written in

the form

�c0(maxf0; n�gg)�psmin

(
0;

n� g

jn� gj

)
��h�(njz)+�p[1��(njz)] = 0: (3.12)

Viewed from this angle, we see that the optimal response to the same increase

in g as before is an increase in n. Combining the two insights, it follows that a
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decrease in sales by one unit, which raises g by the same amount, leads to a decrease

in y by less than one unit (as otherwise n could not have increased). Conversely,

a increase in sales by one unit, which lowers g by the same amount, leads to a

increase in y by less than one unit.

As a consequence, we obtain the classic production-smoothing result. In other

words, due to the assumption of increasing marginal costs, production is less vari-

able than sales in the absence of �nancing constraints that are relevant for a �rm's

production decisions.

3.2 The Constrained Problem

We now turn back to the original problem in which it is not possible to raise funds

through negative dividends. This implies that there is an inequality constraint

on the return function, which may be binding in some periods but not in others.

In other words, optimal choices will not always be interior solutions, and we can

therefore not proceed in the same way we did in the previous subsection.

We will, however, derive a few general properties of the solution. These prop-

erties ensure that the problem is well de�ned and provide insights as to the nature

of the solution when �nancing constraints are imposed.

Property 1. The Bellman operator de�ned in (3.9) is a contraction mapping

with a unique �xed point.

Due to the non-negativity constraints (2.1) and (2.2), the state subspace G�M
for this problem is bounded below by zero. We will demonstrate in Proposition

3.1 below that this subspace is also bounded above by some �nite values �g and

�m. Under this assumption it is straightforward to show that the conditions for

Lemma 9.5 and Theorem 9.6 in Stokey, Lucas, and Prescott (1989) (pp.261-64) are

satis�ed. Thus, the Bellman operator de�ned on the right-hand side of (3.9) is a

contraction mapping with a unique �xed point.

Property 2. The value function v is increasing in m and g.

Because of the law of motion for money (2.5), the one period return to the

�rm, and the feasibility constraints are all increasing in the state variable, m, v is

also increasing in m by Theorem 9.7 in Stokey, Lucas, and Prescott (1989) (p.264).

Similarly, since the law of motion for goods (2.6), and the �rm's one-period return

8



are also increasing in g, v is increasing in g as well.

Property 3. The value function v is concave and strictly concave in states where

the �nancing constraints are binding.

Proof: See Appendix.

The following propositions and corollaries characterise optimal policy functions.

They will prove useful in deriving a number of statements about the distribution

of sales and net production later on. To derive we will simply assume that a

stationary equilibrium exists.

Proposition 3.1: There exist upper bounds to the optimal target inventory,

n, and the optimal cash retention, s, referred to as �n and �s, respectively. If m��s >

h(g)� c(maxf0; yg)� psminf0; yg the remaining money is paid out as a dividend.

Proof: Suppose the �rm never pays dividends. Since v(g;m; z) is then strictly

concave in the �rst two arguments , the marginal returns to savings and to produc-

tion will be decreasing in both state variables. The value of an in�nitesimal unit of

cash converges to �R as m!1, since the probability of encountering a sequence

of sales realisations in which the non-negativity constraint on dividends will be

binding goes to zero. (E�ectively, the �rm becomes unconstrained.) Since �R < 1,

there will be a level of cash retention, �s, beyond which the �rm will prefer paying

dividends over building further cash reserves. Similarly, as g ! 1 the marginal

value of inventories will eventually become smaller than the marginal cost, since

the probability of selling the marginal unit goes to zero. Thus, there also exists

a cap on the amount goods the �rm puts up for sale, �n, beyond which the �rm

prefers paying dividends over further production. The existence of �s and �n implies

the existence of endogenous upper bounds �g and �m to the state subspace G �M
(see Property 1 above).

Corollary 3.2: There exist optimal policy functions, denoted by s?(g;m; z)

and n?(g;m; z), which map each element of the state space into the space of feasible

actions.

Proof: The one-period return function is concave in the state variables, and the

feasibility set for the choice variables is convex. In those states where no dividends

are paid out, v is strictly concave in g and m. It follows that the maximum in (3.9)

in this region is attained by unique choices of st and nt. From Proposition 3.1 it

follows that when dividends are positive, s�t = �s and n�t = �n.
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Corollary 3.3: The mean of production, ŷ, equals the mean of sales, x̂.

Proof: Assume ŷ > x̂ is true. Then the �rm would accumulate inventories

inde�nitely, contradicting the existence of �n.

Conversely, if ŷ < x̂ were true, then gt ! 0 as t!1, which cannot be optimal

since v(g;m; z) is increasing in g.

Intuitively speaking, this corollary holds because each unit of output that the

�rm produces is either sold on the `regular' market, or it is given away at scrap

value, which is accounted for as negative production.

The next proposition demonstrates that after an increase in either stock g or

cash m held at the beginning of a period, the �rm will never reduce its choice of

target inventory n or reserving s. Thus, in a sense, n and s weakly increase with

the operating capital of the �rm.

Proposition 3.4: The policy functions n�(g;m; z) and s�(g;m; z) are non-

decreasing in �nancial slack, for all z 2 Z.
Proof: See Appendix.

We end this section with an additional observation to provide some intuition

for the main results below. In the range of sales that do not lead the �rm to stock

out, an increase in previous-period sales x� never causes a reduction in the �rm's

`overproduction', de�ned as y � x�. Put di�erently, in response to the increase in

x�, production y is augmented by at least as much as the increase in x�. This is

a consequence of Proposition 3.4. If one increases sales by one unit, the �rm will

produce at least one unit more to replace it, and it has additional funds to retain

or expand production further.

4 Some Further Analytical Results

Due to the presence of �nancing constraints it is not straightforward to �nd an-

alytical answers to some of the questions that are of interest to us here. This

is true in particular for the two main stylised facts that have emerged from the

empirical literature, as outlined in the introduction. Therefore, we analyse the
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model numerically in the next section.10 Before doing so, however, we present two

results regarding the dynamics of sales, which are less challenging to prove. This

is followed by some reections on the nature of the �nancing constraints.

4.1 The Dynamic Behaviour of Sales

Let us �rst assume that in equilibrium the covariance of production and sales ex-

ceeds the variance of sales. The next proposition demonstrates that under these

circumstances, there is positive correlation between sales and changes in invento-

ries.

Proposition 4.1: If the covariance between production and sales is larger than

the variance of sales, changes in the stock of inventory put up for sale, �nt, covary

positively with sales, xt.

Proof: Writing out the expression for cov(�n; x) we obtain

cov(�n; x) = cov(n; x)� cov(n�1; x)

= cov(g + y; x)� cov(n�1; x)

= cov(y; x) + cov(n�1 � x; x)� cov(n�1; x)

= cov(y; x)� var(x) ;

which is positive by assumption.

Another interesting result is that the model generates positive serial correlation

in sales despite the fact that the underlying demand process i.i.d.

Proposition 4.2: Sales exhibit positive �rst-order autocorrelation.

Proof: De�ning X as the space of sales realisations and  (x) as the probability

density on X, it needs to be shown that

Z
X

(x� x̂)

�Z
X

(x0 � x̂) (x0jx)dx0
�
 (x)dx > 0; (4.13)

where x and x0 refer to the sale realisation in the current and the next peridod,

respectively, and  (x0jx) to the probability density of x0, conditional on the current-
period sales level being x. The left-hand side of inequality (4.13) can be simpli�ed

10The reader may want to consult Brown and Haegler (1999) for an analytical proof of the

`excess-volatility-of-production' result.
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to Z
X

�Z
X

(x0 � x̂) (x0jx)dx0
�
 (x)dx; (4.14)

It follows from Proposition 3.4 that an increase in the sales realisation leads to

a target inventory which is at least as high as that without the increase. Therefore,

the conditional mean, �(x) � R
X(x

0�x̂) (x0jx)dx0, is nondecreasing in x. Moreover,

since the �rm does not always put up �n for sale, it must be true that �(�n) > 0.

This implies that there is a sale, ! 2 [z; �n] such that for all x > ! the conditional

expectation of next period's di�erential between sales and the unconditional mean

of sales is positive, i.e. �(�n) > 0. Note that positive weight is attached to higher

values of x and the same negative weight (in absolute terms) to lower values of x.

Hence, (4.14) must be positive.

4.2 The Nature of Financing Constraints

To what extent do the results in this paper depend on the type of �nancing con-

straints used? Here we o�er only informal arguments that our results will not

alter under di�erent assumptions about the �nancing constraints. The basis for

our argument is that regardless how the �nancing constraint is modeled, it will

be binding primarily after low sales realisations. Thus `underproduction' will still

be associated only with low sales realisations, which is the central feature of the

results in this paper.

Speci�cally, consider two di�erent ways to model the �nancing constraints: (i)

a supply of external �nance which is perfectly elastic, but at a higher cost than

internal �nance; (ii) the �rm is able to enter information-constrained insurance

contracts.

The �rst case, where the �rm faces a hierarchy of �nance, is closest to our

model. Indeed, the �nancing constraints in our model could be interpreted as

representing a �nance hierarchy in which the premium on external funds is so high

that it is never optimal for the �rm to use external �nance. Suppose instead that

the premium were not so high. In this case there will be three di�erent regions.

In the �rst region, internal funds will be so low that the bene�t of the marginal

good put up for sale is high enough to warrant the use of external �nance. In the

second region the �rm is still constrained, but the value of the marginal good put

up for sale is not high enough to justify the use of external funds. In this region
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the �rm behaves exactly as it would in our model. In the third region the �rm

is unconstrained. Note that, because external �nance is more costly, the optimal

amount of goods put up for sale will be lower when the marginal unit is �nanced

externally than when the marginal unit is �nanced with internal funds. Thus, if

the �rm begins with the unconstrained amount of goods for sale and has a low

sales realisation it will underproduce. In other words, underproduction will still be

associated with low sales realisations.

The second case is further from our model. Thus, our argument is only sugges-

tive. Suppose that lenders can observe inventories at only two points in time: after

sales and payment of storage costs, and just before sales. In other words, lenders

can observe the �rm's production decision, yt. However, lenders cannot observe

sales and storage costs. In this setup there is scope for the �rm to report a bad

sales realisation when in fact there has been a good sales realisation. Typically,

the optimal contract in such a setup places restrictions on the observable decision

variable in order to ensure that the borrower truthfully reports good outcomes.

This usually implies that in bad outcomes the level of the decision variable is set

lower than it would be if all variables were observable in order to introduce a cost

to misreporting a good outcome as a bad outcome. In the information constrained

framework, the optimal constract would likely force the �rm to set production

lower for low sales realisations. Thus, this informal argument suggests that the as-

sociation between low sales and underproduction would remain, thereby preserving

the excess variance of production result.

5 Numerical Analysis

First we describe how the general model of the previous sections is adapted for

the purpose of numerical computations. This encompasses the speci�cation of the

production-cost and storage-cost functions, as well as of the distribution of the

demand shocks. Moreover, a number of variable transformations are required to

ensure that state and choice spaces are compact, and we need to formulate penalty

functions to represent the �nancing constraints.

The production-cost function c is assumed to be of the quadratic type, that is

c(maxf0; yg) = c1maxf0; yg+ c2

2
maxf0; yg2;

13



with parameters c1 > 0 and c2 > 0. For the sake of simplicity we impose linearity

on the storage-cost function h, such that, with a slight abuse of notation

h(g) = hg:

We assume the demand shocks to be log-normally distributed. Thus, the realisation

of demand in period t, zt+1, is determined by the autoregressive process

ln zt+1 = � ln zt + �t;

where �t is a serially uncorrelated, normally distributed random variable with zero

mean and variance �2, and � 2 [0; 1) is the autocorrelation coeÆcient.

As the support of zt+1 is not compact, we transform the demand shock into a

new variable

Zt+1 � 1

2
[tanh(ln zt+1) + 1] :

This implies that Zt+1 is distributed on the unit interval.

Note that for a target inventory n � g+ y, the level of � at which the �rm just

stocks out, denoted by ��, is given by the equation

� ln z + �� = tanh
�1
(2n� 1);

or

�� = ln

s
n

1� n
� � ln z:

Furthermore, we transform � and �� themselves into � = �

�
p
2
and �� = ��

�
p
2
, respec-

tively. As � has a probability density function equal to e��
2

, this allows us to apply

directly the Gauss-Hermite quadrature rule in the numerical integration below. It

follows that the law of motion for the transformed demand-shock variable is

Z 0(Z; �) =
1

2

�
tanh

�
� ln

Z

1� Z
+ �

p
2�

�
+ 1

�
:

The problem of a non-compact state space arises with the cash state variable,

too. Therefore, we also transform cash holdings m to M � tanh(lnm) to ensure

that (transformed positive) cash holdings are con�ned to the interval [�1; 1]. For
a given M , the actual cash holding is

m = exp(tanh
�1
(M)) =

s
1 +M

1�M
:

14



Given state (g;m; Z) and choices (y; s), we can now write the return function

as

�(g;m; Zjy; s) = m� hg �
�
c1maxf0; yg+ c2

2
maxf0; yg2

�
� psminf0; yg � s:

As for the �nancing constraints we follow McGrattan (1993) in using the

penalty-function approach to represent them numerically. That is, in order to

capture the non-negativity constraint on dividends we will modify the Bellman by

adding the penalty function



3
minf0;�(g;m; Zjy; s)g3 (5.15)

to the return function, for some `large' parameter  > 0.11 For the non-borrowing

constraint s � 0 we do the same by adding

�

3
minf0; sg3;

for some `large' parameter �.

This procedure results in the modi�ed Bellman equation

v(g;m; Z) = max
y;s

�(g;m; Zjy; s) + 

3
minf0;�(g;m; Zjy; s)g3 + �

3
minf0; sg3

+
�p
�

Z ��

�1
v(n� Z 0(Z; �); Rs+ pZ 0(Z; �))e��

2

d� +
�p
�

Z 1

��
v(0; Rs+ p�)e��

2

d�:

Di�erentiating with respect to y and s, and making use of the envelope conditions

yields Euler equations

�
"
c1max

 
0;

y

jyj

!
+ c2max(0; y) + psmin

 
0;

y

jyj

!# h
1 + minf0;�(g;m; Zjy; s)g2

i

� �p
�

Z ��

�1
h
h
1 + minf0;�(n� Z 0(Z; �); Rs+ pZ 0(Z; �)jy0; s0)g2

i
e��

2

d�

+
�p
�

Z 1

��
p
h
1 + minf0;�(0; Rs+ p�jy0; s0)g2

i
e
��2

d� = 0;

and

11Typically, values of 103 or 104 are chosen.
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�
h
1 + minf0;�(g;m; Zjy; s)g2� �minf0; sg2

i

+
�p
�

Z ��

�1
R
h
1 + minf0;�(n� Z 0(Z; �); Rs+ pZ 0(Z; �); Z 0jy0; s0)g2

i
e��

2

d�

+
�p
�

Z 1

��
R
h
1 + minf0;�(0; Rs+ pn; Z 0jy0; s0)g2

i
e��

2

d� = 0;

respectively.

To �nd the policy functions y�(g;m; Z) and s�(g;m; Z) that solve this system of

equations, we apply the �nite-elements method (see, e.g. Reddy (1992),McGrattan

(1993) for conceptual details). MATLAB is the software package used to implement

the computations.12

Note that we can replace next period's choices y0 and s0 above by

y0 � y�[g0(g;m; Z); m0(g;m; Z); Z 0(Z; �)]

and

s0 � s�[g0(g;m; Z); m0(g;m; Z); Z 0(Z; �)];

respectively.

The main objective of the paper is to show that our model with �nancing con-

straints can generate an outcome consistent with the two stylised facts mentioned

in the introduction. In order to bias our numerical analysis against this hypothesis,

we rule out the possibility of positive serial correlation in demand, and compute

the model with i.i.d. shocks only, i.e. for � = 0. This has the added bene�t that

there are only two state variables, g and m. We do not claim that serial correla-

tion in demand shock does not play a role in generating the empirical observations,

but we deem it preferable to isolate the e�ect of �nancing constraints from other

inuences.

The �rst set of parameters used is given in Table 1. The resulting policy

functions for y, n and s are depicted in Figures 2, 3 and 4, respectively. The graph

for the value function can be viewed in Figure 5. Inspection of the value function

appears to con�rm our result from Section 3 that it is strictly concave at lower

levels of g and m, where the �rm is likely to be �nancially constrained, and to

become linear at higher levels (unconstrained region).

12The programming code is available upon request from u.haegler@rhul.ac.uk.
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Parameter Value

� 0.95

p 2

c1 1

c2 0.7

ps 0.8

h 0.8

R 1

� 1.5

Table 1: Parameters for Constrained Model 1
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Measure Value

Mean of production y 0.1240

Mean of sales x 0.1251

Var(y)/Var(x) 1.8379

1st order autocorrelation coeÆcent of x 0.3648

1st order autocorrelation coeÆcent of n��x 0.2507

2nd order autocorrelation coeÆcent of n��x 0.1603

correlation coeÆcent between n and x 0.3810

correlation coeÆcent between s and x 0.3465

Table 2: Simulation Results for Constrained Model 1

The next stage of the numerical analysis is to use the policy functions and a

random sequence of demand-shock realisations to generate time series for output,

target inventories and sales. The results of these simulations are reported in Table

2.

A number of insights can be gained from these results. Firstly, we note that

the mean of production is virtually the same as that for the mean of sales, which

con�rms Corollary 3.3. Secondly, we �nd that the model is consistent with the

stylised fact that production is more volatile than sales, as expressed by the ratio

of the two variances. Thirdly, there is positive serial correlation in sales. This is not

surprising, as in the previous section we were able to prove this result analytically.

The next observation is in line with the second signi�cant stylised fact we are

interested here, namely the persistence of the inventory-sales relationship. This is

highlighted by the positive values of the �rst-order and second-order autocorrela-

tion coeÆcients for the series nt � �xt, where � � mean(n)

mean(x)
.13 It is true that the

individual values, or even their sum, are not as high as those that are empirically,

which tend to be well above 0.7. However, it has to be kept in mind that the sim-

ulations are based on i.i.d. demand shocks. It is to be expected that by allowing

for suÆciently large positive serial correlation in demand shocks one would obtain

values in that range as well.14 A typical pattern for the inventory-sales relationship

13Ramey and West (1997) demonstrate that nt � �xt is a stationary relationship if the sales

process is non-integrated, which is the case here.
14We remind the reader that in order to generate the persistence result Ramey and West (1997)

assume the demand shocks to be a unit-root process.
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over time is depicted in Figure 6.

Finally, we point out the positive correlations between sales and (target) inven-

tories (0.3810) as well as between sales and cash reserves (0.3465).

To verify that the �nancing constraint are indeed crucial in obtaining these

results, we compare them with those the emerge from the simulation of a model

where there they are absent. More precisely, we simulate a version of the uncon-

strained model outlined in Subsection 3.1, using the same parameters as before.

The results of this exercise are given in Table 3.

First note that the last �gure is zero because in the unconstrained model cash

holdings are held constant at zero. Holding monetary reserves is unnecessary as

funds can be raised more cheaply through equity if necessary.

Mean production and mean sales are again identical as expected, but they are

higher than in the constrained model. The reasons are that the �rm is never

forced to produce less than desired, and that it is more con�dent to provide more
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Measure Value

Mean of production y 0.1759

Mean of sales x 0.1759

Var(y)/Var(x) 0.7943

1st order autocorrelation coeÆcent of x -0.0793

1st order autocorrelation coeÆcent of n��x -0.0698

2nd order autocorrelation coeÆcent of n��x 0.0079

correlation coeÆcent between n and x -0.7546

correlation coeÆcent between s and x 0

Table 3: Simulation Results for Unconstrained Model

goods for sale on average. It is less worried about not stocking out and incurring

high storage costs, so that no resources have to be allocated to precautionary cash

holdings.

The variance of production is now smaller than the variance of sales, which

means that there is production smoothing rather than production bunching.

We also lose the second stylised fact (persistence in the inventory-sales relation-

ship). The �rst-order autocorrelation coeÆcient is negative and the second-order

coeÆcient very close to zero.

Finally, in contrast to the constrained model there is negative serial correlation

in sales here, and target inventories correlate negatively with sales.

Thus, as nothing else has changed in the model, it is clear that the presence

of �nancing constraints is responsible for the results which to a large extent are

completely the opposite of those obtained in the unconstrained model.

As a �nal experiment, we return to the constrained model and change one of

the parameters. We examine the impact of a decrease in the (regular) price of

output p from 2 to 1.8, leaving all other values unaltered. Table 4 displays the

results of this new simulation.

It should come as no surprise that average output and sales are lower than

under the higher price. However, qualitatively speaking, there are no changes to

the picture that emerged from the �rst simulation. The ratio of variances still

clearly exceeds 1, and all the correlation measures are still positive. The only
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Measure Value

Mean of production y 0.0833

Mean of sales x 0.0833

Var(y)/Var(x) 1.7004

1st order autocorrelation coeÆcent of x 0.3083

1st order autocorrelation coeÆcent of �n 0.2257

2nd order autocorrelation coeÆcent of �n 0.1314

correlation coeÆcent between n and x 0.5517

correlation coeÆcent between s and x 0.3081

Table 4: Simulation Results for Constrained Model 2

di�erence is that, with the exception of the correlation between n and x, they tend

to be slightly lower than before.

6 Conclusions

This paper has presented a model of inventory investment which uses �nancing

constraints to explain two empirical regularities of inventories: the procyclicality

of inventory investment, and the positive serial correlation of the inventory-sales

ratio. The model shows that then a �rm is �nancially constrained, it may unable

to produce as much as it has sold following particularly poor demand realisations.

Under these circumstances, production is lower than sales. Conversely, when in-

ventories are below their optimum level, a �rm produces more than it sells after

a relatively good demand realization in order to return to the optimum inventory

level as quickly as possible. This behaviour implies that inventory investment is

procyclical, and that the inventory-sales ratio exhibits positive serial correlation.

These results do not stem from assumptions regarding the cost function. When

the �rm is unconstrained, neither empirical regularity is predicted by the model.

Equally interesting, these results are also not driven by assumptions of serially

correlated exogenous shocks. In our model there is no cost shock, and the demand

shock is assumed to be i.i.d. This is unlike other models in the literature, and

suggests that inventory investment may have a more active role business cycles

through its potential to transform or amplify exogenous shocks. A future avenue

24



of research is to examine how �nancing constraints a�ect inventory investment in

environments where exogenous shocks are serially correlated.
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A Appendix

Proof of Property 3

That v is concave is standard and stems from the fact that the Bellman func-

tional equation v = Tv is a contraction mapping, with an operator T that preserves

concavity. This is because integration in (3.9) preserves concavity and the return

function is concave as well (see Stokey, Lucas, and Prescott (1989) [p.265] for

details).

To show strict concavity in the constrained region we adopt the method of a

concavity proof in Abel (1985).15

Consider two �rms, labelled A and B, respectively. Suppose the non-negativity

constraints on dividends are binding in their respective current inventory-cash

states (gA; mA) and (gB; mB). Firm A's optimal choice is assumed to be (yA; sA)

and that of �rm B is (yB; sB). De�ne a function ~c that combines the cost function

with the revenue function from scrap sales, i.e. ~c(y) � c(maxf0; yg)�psminf0; yg.
Note that ~c is convex. Since �nancing constraints are binding we have

mi = h(gi) + ~c(yi) + si; (A.16)

i = A;B. Assume that gA � gB andmA � mB, with at least one inequality holding

strictly. Under binding �nancing constraints it then follows that nA < nB, that is

the `wealthier' �rm is able to attain a higher target inventory.

Next, form a convex combination of the two �rms is, that construct a new

�rm which is in state (�gA + (1 � �)gB; �mA + (1 � �)mB). A policy choice of

(�yA + (1 � �)yB; �sA + (1 � �)sB) may not be optimal for this �rm, but it is

feasible. To show this one can apply the following argument. Feasibility requires

�mA + (1� �)mB � c(�yA + (1� �)yB) + h(�gA + (1� �)gB) + �sA + (1� �)sB:

Due to equations (2.3) and the fact that yi = ni�gi, i = A;B, this can be rewritten

as

15In that paper production occurs with a lag. Consequently, only the stock of inventories

which the �rm has at the beginning of the period are available for sale. Moreover, the stock of

inventories is the only state variable, as �rms do not hold cash variable and there is no serial

correlation in demand shocks.
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�[c(nA � gA) + h(gA)] + (1� �)[c(nB � gB) + h(gB)] �
c(�(nA � gA) + (1� �)(nB � gB)) + h(�gA + (1� �)gB):

Due to the convexity of c(�) + h(�) in ni and gi, this condition is met (Jensen's

inequality).

If the demand shock in the current period, z0, is greater than both nA and nB,

both �rms stock out which leads to next period's states (g0A; m
0
A) = (0; sA + pnA)

and (g0B; m
0
B) = (0; sB + pnB), respectively. The same is true, however, for the

convex combination, whose new state would then be (g0�; m
0
�) = (0; �(sA + pnA) +

(1� �)(sB + pnA)). As v is concave the value of the convex-combination �rm next

(and hence in the current) period, denoted by v�, is therefore not smaller than the

convex combination of the two �rms, given by �vA + (1� �)vB.

Similarly, if the demand shock z0 lies below both nA and nB, none of the �rms,

including the convex-combination �rm, will stock out. Next period's states are

then (g0A; m
0
A) = (nA � z0; sA + pz0) and (g0B; m

0
B) = (nB � z0; sB + pz0) for �rms A

and B, respectively, and (g0�; m
0
�) = (�nA+(1� �)nB� z0; �sA+(1� �)sB+ pz0) for

the convex-combination �rm. Its next-period state is just the convex combination

of (g0A; m
0
A) and (g0A; m

0
A). Because of the concavity of v, v� � �vA + (1� �)vB in

this case as well.

If the demand shock z0 lies between nA and nB, �rm A stocks out but �rm

B does not. Their states next period are then (g0A; m
0
A) = (0; sA + pnA) and

(g0B; m
0
B) = (nB � z0; sB + pz0), respectively. If z0 < �nA + (1 � �)nB, (g

0
�; m

0
�) =

(�nA+(1� �)nB� z0; �sA+(1� �)sB+ pz0), and if z0 � �nA+(1� �)nB, (g0�; g0�) =
(0; �(sA+ pnA) + (1� �)(sB + pnB)). In either case we can imagine that, in a �rst

stage, shares � and 1�� of demand z0 are covered by divisions a and b, respectively,

of the convex-combination �rm, where divivsion a corresponds a proportion � and

division b a proportion 1 � � of the entire �rm. Its value would then just be the

same as the convex combination of the values of �rm A and B. However, in a second

stage, excess demand from division a can be shifted to division b and (partially)

satis�ed there. This leads not only to higher overall revenues but also to a reduction

in goods depreciation. Hence, with this demand constellation, v� > �vA+(1��)vB .
In expected terms, the valuation of the convex-combination �rm is therefore strictly

higher than the convex combination of the values of A and B.
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Proof of Proposition 3.4.

We will �rst present the proof for n�(g;m; z). The statement clearly holds for

states in which the non-negativity constraint on dividends is not binding, as in

this region additional cash is simply used to pay dividends, without changing the

amount �n made available for sale. For states in which the non-negativity constraint

on consumption is binding we prove the statement by contradiction. Note that in

those states the return function is equal to zero, and we can therefore write

v(g;m; z) = �

Z n�(g;m;z)

z

v(n�(g;m; z)� z0; s�(g;m; z) + pz0; z0)d�(z0jz)
+�[1� �(n�(g;m; z))]v(0; s�(g;m; z) + pn�(g;m; z); z0):(A.17)

Assume that in some (g;m; z) the optimal policy is to choose values (n; s). Also

suppose that, for some small � > 0, the optimal policy in (g;m+ �; z) is (N; S�) �
(n��; s+�+~�), for some small decrease in output � > 0, which reduces production

costs by some ~�. This impliesZ N

z

v(N � z0; S� + pz0; z0)d�(z0jz) +
Z �z

N

v(0; S� + pN; z0)d�(z0jz) >
Z n

z

v(n� z0; s� + pz0; z0)d�(z0jz) +
Z �z

n

v(0; s� + pn; z0)d�(z0jz); (A.18)

where s� � s + �. But then the �rm could do better by shifting funds ~� from

production to savings in state (g;m; z) as well, i.e. for (N; S) � (n� �; s+ ~�)Z N

z

v(N � z0; S + pz0; z0)d�(z0jz) +
Z �z

N

v(0; S + pN; z0)d�(z0jz) >
Z n

z

v(n� z0; s+ pz0; z0)d�(z0jz) +
Z �z

n

v(0; s+ pn; z0)d�(z0jz): (A.19)

Hence, (n; s) cannot be an optimal choice in state (g;m; z), which contradicts

the initial assumption.

To show that (A.18) does imply (A.19), note �rst that for very small �, the

decrease of the �rst term of the left-hand side due to the change � in the (upper)

integral boundary is o�set by the increase of the second term of the left-hand side

due to the same change � in the (lower) integral boundary.

Since v is strictly concave when the non-negativity constraint on consumption is

binding, the stockout terms (without probabilities) of the two inequalities compare

as follows:

v(0; S� + pN; z0)� v(0; s� + pn; z0) � v(0; S + pN; z0)� v(0; s+ pn; z0): (A.20)

28



Moreover, conditional on not stocking out, reducing n in favour of s is at least

as valuable at lower savings as it is at higher savings, which is due to storage costs.

Hence, 8 z0 � N ,

v(N�z0; S�+pz0; z0)�v(n�z0; s�+pz0; z0) � v(N�z0; S+pz0; z0)�v(n�z0; s+pz0; z0):
(A.21)

This is true since the change of stockout probability is the same on both sides

of the inequality. This results in identical reductions in expected storage costs.

This `relief' on cash holdings has a weakly higher when the latter are lower (m

instead of m + �, which is again due to the concavity of v.

The gross unit return on additional savings � is 1 8 z, whereas the gross unit
return on an additional goods provision of � is strictly smaller than 1 for at least

some z that do not lead to a stockout.

An analogous argument can be made when there is a jump from state (g;m)

to a state (g + �;m), as this would be equivalent to the previous situation, in the

sense that there is again an increase in the �rm's operating capital.

As for the function s�(g;m) assume that there is a range of states over which

the function is decreasing. The only way s� could be decreasing in the constrained

region is if there was an overproportionate increase of n in response to a small

increase of funds available (be it in the form of more cash or of higher goods

inventories). Due to strict concavity of the value function, however, the negative

e�ect on the expected value of v next period due to a decrease in s would more

than o�set the positive e�ect of an increase in n. We conclude that such a policy

cannot be optimal.
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